summaryrefslogtreecommitdiff
path: root/libs/raylib/src/external/jar_xm.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/external/jar_xm.h')
-rw-r--r--libs/raylib/src/external/jar_xm.h1960
1 files changed, 872 insertions, 1088 deletions
diff --git a/libs/raylib/src/external/jar_xm.h b/libs/raylib/src/external/jar_xm.h
index 1839e61..36d6fb3 100644
--- a/libs/raylib/src/external/jar_xm.h
+++ b/libs/raylib/src/external/jar_xm.h
@@ -1,9 +1,26 @@
-// jar_xm.h - v0.01 - public domain - Joshua Reisenauer, MAR 2016
+// jar_xm.h
//
-// HISTORY:
+// ORIGINAL LICENSE - FOR LIBXM:
//
-// v0.01 2016-02-22 Setup
+// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
+// Contributor: Dan Spencer <dan@atomicpotato.net>
+// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
+// This program is free software. It comes without any warranty, to the
+// extent permitted by applicable law. You can redistribute it and/or
+// modify it under the terms of the Do What The Fuck You Want To Public
+// License, Version 2, as published by Sam Hocevar. See
+// http://sam.zoy.org/wtfpl/COPYING for more details.
//
+// HISTORY:
+// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016
+// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling)
+// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included)
+// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop
+// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability
+// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments
+// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation
+// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code
+// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments
//
// USAGE:
//
@@ -36,27 +53,14 @@
// return 0;
// }
//
-//
-// LISCENSE - FOR LIBXM:
-//
-// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
-// Contributor: Dan Spencer <dan@atomicpotato.net>
-// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
-// This program is free software. It comes without any warranty, to the
-// extent permitted by applicable law. You can redistribute it and/or
-// modify it under the terms of the Do What The Fuck You Want To Public
-// License, Version 2, as published by Sam Hocevar. See
-// http://sam.zoy.org/wtfpl/COPYING for more details.
-
#ifndef INCLUDE_JAR_XM_H
#define INCLUDE_JAR_XM_H
#include <stdint.h>
#define JAR_XM_DEBUG 0
-#define JAR_XM_LINEAR_INTERPOLATION 1 // speed increase with decrease in quality
#define JAR_XM_DEFENSIVE 1
-#define JAR_XM_RAMPING 1
+#define JAR_XM_RAYLIB 1 // set to 0 to disable the RayLib visualizer extension
// Allow custom memory allocators
#ifndef JARXM_MALLOC
@@ -74,224 +78,145 @@ typedef struct jar_xm_context_s jar_xm_context_t;
extern "C" {
#endif
-/** Create a XM context.
- *
- * @param moddata the contents of the module
- * @param rate play rate in Hz, recommended value of 48000
- *
- * @returns 0 on success
- * @returns 1 if module data is not sane
- * @returns 2 if memory allocation failed
- * @returns 3 unable to open input file
- * @returns 4 fseek() failed
- * @returns 5 fread() failed
- * @returns 6 unkown error
- *
- * @deprecated This function is unsafe!
- * @see jar_xm_create_context_safe()
- */
+//** Create a XM context.
+// * @param moddata the contents of the module
+// * @param rate play rate in Hz, recommended value of 48000
+// * @returns 0 on success
+// * @returns 1 if module data is not sane
+// * @returns 2 if memory allocation failed
+// * @returns 3 unable to open input file
+// * @returns 4 fseek() failed
+// * @returns 5 fread() failed
+// * @returns 6 unkown error
+// * @deprecated This function is unsafe!
+// * @see jar_xm_create_context_safe()
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
-/** Create a XM context.
- *
- * @param moddata the contents of the module
- * @param rate play rate in Hz, recommended value of 48000
- *
- * @returns 0 on success
- * @returns 1 if module data is not sane
- * @returns 2 if memory allocation failed
- *
- * @deprecated This function is unsafe!
- * @see jar_xm_create_context_safe()
- */
+//** Create a XM context.
+// * @param moddata the contents of the module
+// * @param rate play rate in Hz, recommended value of 48000
+// * @returns 0 on success
+// * @returns 1 if module data is not sane
+// * @returns 2 if memory allocation failed
+// * @deprecated This function is unsafe!
+// * @see jar_xm_create_context_safe()
int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
-/** Create a XM context.
- *
- * @param moddata the contents of the module
- * @param moddata_length the length of the contents of the module, in bytes
- * @param rate play rate in Hz, recommended value of 48000
- *
- * @returns 0 on success
- * @returns 1 if module data is not sane
- * @returns 2 if memory allocation failed
- */
+//** Create a XM context.
+// * @param moddata the contents of the module
+// * @param moddata_length the length of the contents of the module, in bytes
+// * @param rate play rate in Hz, recommended value of 48000
+// * @returns 0 on success
+// * @returns 1 if module data is not sane
+// * @returns 2 if memory allocation failed
int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
-/** Free a XM context created by jar_xm_create_context(). */
+//** Free a XM context created by jar_xm_create_context(). */
void jar_xm_free_context(jar_xm_context_t* ctx);
-/** Play the module and put the sound samples in an output buffer.
- *
- * @param output buffer of 2*numsamples elements (A left and right value for each sample)
- * @param numsamples number of samples to generate
- */
+//** Play the module and put the sound samples in an output buffer.
+// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+// * @param numsamples number of samples to generate
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
-/** Play the module, resample from 32 bit to 16 bit, and put the sound samples in an output buffer.
- *
- * @param output buffer of 2*numsamples elements (A left and right value for each sample)
- * @param numsamples number of samples to generate
- */
-void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples)
-{
+//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer.
+// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+// * @param numsamples number of samples to generate
+void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) {
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
if(output){
- int x;
- for(x=0;x<2*numsamples;x++)
- output[x] = musicBuffer[x] * SHRT_MAX;
+ for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int
}
-
JARXM_FREE(musicBuffer);
}
-/** Play the module, resample from 32 bit to 8 bit, and put the sound samples in an output buffer.
- *
- * @param output buffer of 2*numsamples elements (A left and right value for each sample)
- * @param numsamples number of samples to generate
- */
-void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples)
-{
+//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer.
+// * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+// * @param numsamples number of samples to generate
+void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) {
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
jar_xm_generate_samples(ctx, musicBuffer, numsamples);
if(output){
- int x;
- for(x=0;x<2*numsamples;x++)
- output[x] = musicBuffer[x] * CHAR_MAX;
+ for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit
}
-
JARXM_FREE(musicBuffer);
}
-
-
-/** Set the maximum number of times a module can loop. After the
- * specified number of loops, calls to jar_xm_generate_samples will only
- * generate silence. You can control the current number of loops with
- * jar_xm_get_loop_count().
- *
- * @param loopcnt maximum number of loops. Use 0 to loop
- * indefinitely. */
+//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count().
+// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely.
void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
-/** Get the loop count of the currently playing module. This value is
- * 0 when the module is still playing, 1 when the module has looped
- * once, etc. */
+//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc.
uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
-
-
-/** Mute or unmute a channel.
- *
- * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
- *
- * @return whether the channel was muted.
- */
+//** Mute or unmute a channel.
+// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
+// * @return whether the channel was muted.
bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
-/** Mute or unmute an instrument.
- *
- * @note Instrument numbers go from 1 to
- * jar_xm_get_number_of_instruments(...).
- *
- * @return whether the instrument was muted.
- */
+//** Mute or unmute an instrument.
+// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
+// * @return whether the instrument was muted.
bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
-
-
-/** Get the module name as a NUL-terminated string. */
+//** Get the module name as a NUL-terminated string.
const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
-/** Get the tracker name as a NUL-terminated string. */
+//** Get the tracker name as a NUL-terminated string.
const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
-
-
-/** Get the number of channels. */
+//** Get the number of channels.
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
-/** Get the module length (in patterns). */
+//** Get the module length (in patterns).
uint16_t jar_xm_get_module_length(jar_xm_context_t*);
-/** Get the number of patterns. */
+//** Get the number of patterns.
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
-/** Get the number of rows of a pattern.
- *
- * @note Pattern numbers go from 0 to
- * jar_xm_get_number_of_patterns(...)-1.
- */
+//** Get the number of rows of a pattern.
+// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1.
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
-/** Get the number of instruments. */
+//** Get the number of instruments.
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
-/** Get the number of samples of an instrument.
- *
- * @note Instrument numbers go from 1 to
- * jar_xm_get_number_of_instruments(...).
- */
+//** Get the number of samples of an instrument.
+// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
-
-
-/** Get the current module speed.
- *
- * @param bpm will receive the current BPM
- * @param tempo will receive the current tempo (ticks per line)
- */
+//** Get the current module speed.
+// * @param bpm will receive the current BPM
+// * @param tempo will receive the current tempo (ticks per line)
void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
-/** Get the current position in the module being played.
- *
- * @param pattern_index if not NULL, will receive the current pattern
- * index in the POT (pattern order table)
- *
- * @param pattern if not NULL, will receive the current pattern number
- *
- * @param row if not NULL, will receive the current row
- *
- * @param samples if not NULL, will receive the total number of
- * generated samples (divide by sample rate to get seconds of
- * generated audio)
- */
+//** Get the current position in the module being played.
+// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table)
+// * @param pattern if not NULL, will receive the current pattern number
+// * @param row if not NULL, will receive the current row
+// * @param samples if not NULL, will receive the total number of
+// * generated samples (divide by sample rate to get seconds of generated audio)
void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
-/** Get the latest time (in number of generated samples) when a
- * particular instrument was triggered in any channel.
- *
- * @note Instrument numbers go from 1 to
- * jar_xm_get_number_of_instruments(...).
- */
+//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel.
+// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
-/** Get the latest time (in number of generated samples) when a
- * particular sample was triggered in any channel.
- *
- * @note Instrument numbers go from 1 to
- * jar_xm_get_number_of_instruments(...).
- *
- * @note Sample numbers go from 0 to
- * jar_xm_get_nubmer_of_samples(...,instr)-1.
- */
+//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel.
+// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...).
+// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1.
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
-/** Get the latest time (in number of generated samples) when any
- * instrument was triggered in a given channel.
- *
- * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
- */
+//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel.
+// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
-/** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
- *
- * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
- * @note This function is very slow and should only be run once, if at all.
- */
+//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
+// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
+// * @note This function is very slow and should only be run once, if at all.
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
#ifdef __cplusplus
@@ -299,12 +224,6 @@ uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
#endif
//-------------------------------------------------------------------------------
-
-
-
-
-
-//Function Definitions-----------------------------------------------------------
#ifdef JAR_XM_IMPLEMENTATION
#include <math.h>
@@ -330,19 +249,16 @@ extern int __fail[-1];
#endif
/* ----- XM constants ----- */
-
#define SAMPLE_NAME_LENGTH 22
#define INSTRUMENT_NAME_LENGTH 22
#define MODULE_NAME_LENGTH 20
#define TRACKER_NAME_LENGTH 20
#define PATTERN_ORDER_TABLE_LENGTH 256
-#define NUM_NOTES 96
-#define NUM_ENVELOPE_POINTS 12
+#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0
+#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max
#define MAX_NUM_ROWS 256
-#if JAR_XM_RAMPING
-#define jar_xm_SAMPLE_RAMPING_POINTS 0x20
-#endif
+#define jar_xm_SAMPLE_RAMPING_POINTS 8
/* ----- Data types ----- */
@@ -389,7 +305,7 @@ typedef struct jar_xm_envelope_s jar_xm_envelope_t;
struct jar_xm_sample_s {
char name[SAMPLE_NAME_LENGTH + 1];
int8_t bits; /* Either 8 or 16 */
-
+ int8_t stereo;
uint32_t length;
uint32_t loop_start;
uint32_t loop_length;
@@ -446,12 +362,13 @@ struct jar_xm_sample_s {
uint16_t num_channels;
uint16_t num_patterns;
uint16_t num_instruments;
+ uint16_t linear_interpolation;
+ uint16_t ramping;
jar_xm_frequency_type_t frequency_type;
uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
jar_xm_pattern_t* patterns;
- jar_xm_instrument_t* instruments; /* Instrument 1 has index 0,
- * instrument 2 has index 1, etc. */
+ jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */
};
typedef struct jar_xm_module_s jar_xm_module_t;
@@ -517,15 +434,15 @@ struct jar_xm_sample_s {
uint64_t latest_trigger;
bool muted;
-#if JAR_XM_RAMPING
- /* These values are updated at the end of each tick, to save
- * a couple of float operations on every generated sample. */
+ //* These values are updated at the end of each tick, to save a couple of float operations on every generated sample.
float target_panning;
float target_volume;
unsigned long frame_count;
- float end_of_previous_sample[jar_xm_SAMPLE_RAMPING_POINTS];
-#endif
+ float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS];
+ float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS];
+ float curr_left;
+ float curr_right;
float actual_panning;
float actual_volume;
@@ -537,18 +454,16 @@ struct jar_xm_sample_s {
jar_xm_module_t module;
uint32_t rate;
- uint16_t tempo;
+ uint16_t default_tempo; // Number of ticks per row
+ uint16_t default_bpm;
+ float default_global_volume;
+
+ uint16_t tempo; // Number of ticks per row
uint16_t bpm;
float global_volume;
- float amplification;
-#if JAR_XM_RAMPING
- /* How much is a channel final volume allowed to change per
- * sample; this is used to avoid abrubt volume changes which
- * manifest as "clicks" in the generated sound. */
- float volume_ramp;
+ float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */
float panning_ramp; /* Same for panning. */
-#endif
uint8_t current_table_index;
uint8_t current_row;
@@ -561,9 +476,7 @@ struct jar_xm_sample_s {
uint8_t jump_dest;
uint8_t jump_row;
- /* Extra ticks to be played before going to the next row -
- * Used for EEy effect */
- uint16_t extra_ticks;
+ uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */
uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
uint8_t loop_count;
@@ -572,45 +485,33 @@ struct jar_xm_sample_s {
jar_xm_channel_context_t* channels;
};
-/* ----- Internal API ----- */
-
#if JAR_XM_DEFENSIVE
-/** Check the module data for errors/inconsistencies.
- *
- * @returns 0 if everything looks OK. Module should be safe to load.
- */
+//** Check the module data for errors/inconsistencies.
+// * @returns 0 if everything looks OK. Module should be safe to load.
int jar_xm_check_sanity_preload(const char*, size_t);
-/** Check a loaded module for errors/inconsistencies.
- *
- * @returns 0 if everything looks OK.
- */
+//** Check a loaded module for errors/inconsistencies.
+// * @returns 0 if everything looks OK.
int jar_xm_check_sanity_postload(jar_xm_context_t*);
#endif
-/** Get the number of bytes needed to store the module data in a
- * dynamically allocated blank context.
- *
- * Things that are dynamically allocated:
- * - sample data
- * - sample structures in instruments
- * - pattern data
- * - row loop count arrays
- * - pattern structures in module
- * - instrument structures in module
- * - channel contexts
- * - context structure itself
-
- * @returns 0 if everything looks OK.
- */
+//** Get the number of bytes needed to store the module data in a dynamically allocated blank context.
+// * Things that are dynamically allocated:
+// * - sample data
+// * - sample structures in instruments
+// * - pattern data
+// * - row loop count arrays
+// * - pattern structures in module
+// * - instrument structures in module
+// * - channel contexts
+// * - context structure itself
+// * @returns 0 if everything looks OK.
size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
-/** Populate the context from module data.
- *
- * @returns pointer to the memory pool
- */
+//** Populate the context from module data.
+// * @returns pointer to the memory pool
char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
@@ -636,8 +537,7 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz
bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
mempool = JARXM_MALLOC(bytes_needed);
- if(mempool == NULL && bytes_needed > 0) {
- /* JARXM_MALLOC() failed, trouble ahead */
+ if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */
DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
return 2;
}
@@ -657,23 +557,19 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz
mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
mempool = ALIGN_PTR(mempool, 16);
- ctx->global_volume = 1.f;
- ctx->amplification = .25f; /* XXX: some bad modules may still clip. Find out something better. */
+ ctx->default_global_volume = 1.f;
+ ctx->global_volume = ctx->default_global_volume;
-#if JAR_XM_RAMPING
ctx->volume_ramp = (1.f / 128.f);
ctx->panning_ramp = (1.f / 128.f);
-#endif
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
- jar_xm_channel_context_t* ch = ctx->channels + i;
-
+ jar_xm_channel_context_t *ch = ctx->channels + i;
ch->ping = true;
ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
ch->vibrato_waveform_retrigger = true;
ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
ch->tremolo_waveform_retrigger = true;
-
ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
ch->panning = ch->panning_envelope_panning = .5f;
ch->actual_volume = .0f;
@@ -681,12 +577,11 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz
}
mempool = ALIGN_PTR(mempool, 16);
- ctx->row_loop_count = (uint8_t*)mempool;
+ ctx->row_loop_count = (uint8_t *)mempool;
mempool += MAX_NUM_ROWS * sizeof(uint8_t);
#if JAR_XM_DEFENSIVE
- if((ret = jar_xm_check_sanity_postload(ctx))) {
- DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
+ if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
jar_xm_free_context(ctx);
return 1;
}
@@ -695,106 +590,98 @@ int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, siz
return 0;
}
-void jar_xm_free_context(jar_xm_context_t* ctx) {
- JARXM_FREE(ctx->allocated_memory);
+void jar_xm_free_context(jar_xm_context_t *ctx) {
+ if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); }
}
-void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt) {
+void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) {
ctx->max_loop_count = loopcnt;
}
-uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx) {
+uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) {
return ctx->loop_count;
}
-bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t channel, bool mute) {
+bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) {
bool old = ctx->channels[channel - 1].muted;
ctx->channels[channel - 1].muted = mute;
return old;
}
-bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t instr, bool mute) {
+bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) {
bool old = ctx->module.instruments[instr - 1].muted;
ctx->module.instruments[instr - 1].muted = mute;
return old;
}
-
-
-const char* jar_xm_get_module_name(jar_xm_context_t* ctx) {
+const char* jar_xm_get_module_name(jar_xm_context_t *ctx) {
return ctx->module.name;
}
-const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx) {
+const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) {
return ctx->module.trackername;
}
-
-
-uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx) {
+uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) {
return ctx->module.num_channels;
}
-uint16_t jar_xm_get_module_length(jar_xm_context_t* ctx) {
+uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) {
return ctx->module.length;
}
-uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx) {
+uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) {
return ctx->module.num_patterns;
}
-uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t pattern) {
+uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) {
return ctx->module.patterns[pattern].num_rows;
}
-uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx) {
+uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) {
return ctx->module.num_instruments;
}
-uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t instrument) {
+uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) {
return ctx->module.instruments[instrument - 1].num_samples;
}
-
-
-void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo) {
+void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) {
if(bpm) *bpm = ctx->bpm;
if(tempo) *tempo = ctx->tempo;
}
-void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples) {
+void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) {
if(pattern_index) *pattern_index = ctx->current_table_index;
if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
if(row) *row = ctx->current_row;
if(samples) *samples = ctx->generated_samples;
}
-uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t instr) {
+uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) {
return ctx->module.instruments[instr - 1].latest_trigger;
}
-uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample) {
+uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) {
return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
}
-uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t chn) {
+uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) {
return ctx->channels[chn - 1].latest_trigger;
}
-/* .xm files are little-endian. (XXX: Are they really?) */
+//* .xm files are little-endian. (XXX: Are they really?)
-/* Bounded reader macros.
- * If we attempt to read the buffer out-of-bounds, pretend that the buffer is
- * infinitely padded with zeroes.
- */
+//* Bound reader macros.
+//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes.
#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
-static void memcpy_pad(void* dst, size_t dst_len, const void* src, size_t src_len, size_t offset) {
- uint8_t* dst_c = dst;
- const uint8_t* src_c = src;
+static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) {
+ uint8_t *dst_c = dst;
+ const uint8_t *src_c = src;
/* how many bytes can be copied without overrunning `src` */
size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
@@ -808,40 +695,22 @@ static void memcpy_pad(void* dst, size_t dst_len, const void* src, size_t src_le
#if JAR_XM_DEFENSIVE
int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
- if(module_length < 60) {
- return 4;
- }
-
- if(memcmp("Extended Module: ", module, 17) != 0) {
- return 1;
- }
-
- if(module[37] != 0x1A) {
- return 2;
- }
-
- if(module[59] != 0x01 || module[58] != 0x04) {
- /* Not XM 1.04 */
- return 3;
- }
-
+ if(module_length < 60) { return 4; }
+ if(memcmp("Extended Module: ", module, 17) != 0) { return 1; }
+ if(module[37] != 0x1A) { return 2; }
+ if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */
return 0;
}
int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
- /* @todo: plenty of stuff to do here… */
-
/* Check the POT */
for(uint8_t i = 0; i < ctx->module.length; ++i) {
if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
if(i+1 == ctx->module.length && ctx->module.length > 1) {
- /* Cheap fix */
- --ctx->module.length;
DEBUG("trimming invalid POT at pos %X", i);
+ --ctx->module.length;
} else {
- DEBUG("module has invalid POT, pos %X references nonexistent pattern %X",
- i,
- ctx->module.pattern_table[i]);
+ DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]);
return 1;
}
}
@@ -854,36 +723,29 @@ int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
size_t memory_needed = 0;
- size_t offset = 60; /* Skip the first header */
+ size_t offset = 60; /* 60 = Skip the first header */
uint16_t num_channels;
uint16_t num_patterns;
uint16_t num_instruments;
/* Read the module header */
num_channels = READ_U16(offset + 8);
-
num_patterns = READ_U16(offset + 10);
memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
memory_needed = ALIGN(memory_needed, 16);
-
num_instruments = READ_U16(offset + 12);
memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
memory_needed = ALIGN(memory_needed, 16);
-
memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
- /* Header size */
- offset += READ_U32(offset);
+ offset += READ_U32(offset); /* Header size */
/* Read pattern headers */
for(uint16_t i = 0; i < num_patterns; ++i) {
uint16_t num_rows;
-
num_rows = READ_U16(offset + 5);
memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
-
- /* Pattern header length + packed pattern data size */
- offset += READ_U32(offset) + READ_U16(offset + 7);
+ offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */
}
memory_needed = ALIGN(memory_needed, 16);
@@ -892,42 +754,30 @@ size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_
uint16_t num_samples;
uint32_t sample_header_size = 0;
uint32_t sample_size_aggregate = 0;
-
num_samples = READ_U16(offset + 27);
memory_needed += num_samples * sizeof(jar_xm_sample_t);
+ if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); }
- if(num_samples > 0) {
- sample_header_size = READ_U32(offset + 29);
- }
-
- /* Instrument header size */
- offset += READ_U32(offset);
-
+ offset += READ_U32(offset); /* Instrument header size */
for(uint16_t j = 0; j < num_samples; ++j) {
uint32_t sample_size;
uint8_t flags;
-
sample_size = READ_U32(offset);
flags = READ_U8(offset + 14);
sample_size_aggregate += sample_size;
- if(flags & (1 << 4)) {
- /* 16 bit sample */
+ if(flags & (1 << 4)) { /* 16 bit sample */
memory_needed += sample_size * (sizeof(float) >> 1);
- } else {
- /* 8 bit sample */
+ } else { /* 8 bit sample */
memory_needed += sample_size * sizeof(float);
}
-
offset += sample_header_size;
}
-
offset += sample_size_aggregate;
}
memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
memory_needed += sizeof(jar_xm_context_t);
-
return memory_needed;
}
@@ -942,26 +792,25 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
/* Read module header */
uint32_t header_size = READ_U32(offset);
-
mod->length = READ_U16(offset + 4);
mod->restart_position = READ_U16(offset + 6);
mod->num_channels = READ_U16(offset + 8);
mod->num_patterns = READ_U16(offset + 10);
mod->num_instruments = READ_U16(offset + 12);
-
mod->patterns = (jar_xm_pattern_t*)mempool;
+ mod->linear_interpolation = 0; // Linear interpolation can be set after loading
+ mod->ramping = 1; // ramping can be set after loading
mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
mempool = ALIGN_PTR(mempool, 16);
-
mod->instruments = (jar_xm_instrument_t*)mempool;
mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
mempool = ALIGN_PTR(mempool, 16);
-
uint16_t flags = READ_U32(offset + 14);
mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
-
- ctx->tempo = READ_U16(offset + 16);
- ctx->bpm = READ_U16(offset + 18);
+ ctx->default_tempo = READ_U16(offset + 16);
+ ctx->default_bpm = READ_U16(offset + 18);
+ ctx->tempo =ctx->default_tempo;
+ ctx->bpm = ctx->default_bpm;
READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
offset += header_size;
@@ -970,69 +819,52 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
for(uint16_t i = 0; i < mod->num_patterns; ++i) {
uint16_t packed_patterndata_size = READ_U16(offset + 7);
jar_xm_pattern_t* pat = mod->patterns + i;
-
pat->num_rows = READ_U16(offset + 5);
-
pat->slots = (jar_xm_pattern_slot_t*)mempool;
mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
-
- /* Pattern header length */
- offset += READ_U32(offset);
-
- if(packed_patterndata_size == 0) {
- /* No pattern data is present */
+ offset += READ_U32(offset); /* Pattern header length */
+
+ if(packed_patterndata_size == 0) { /* No pattern data is present */
memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
} else {
/* This isn't your typical for loop */
for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
uint8_t note = READ_U8(offset + j);
jar_xm_pattern_slot_t* slot = pat->slots + k;
-
if(note & (1 << 7)) {
/* MSB is set, this is a compressed packet */
++j;
-
- if(note & (1 << 0)) {
- /* Note follows */
+ if(note & (1 << 0)) { /* Note follows */
slot->note = READ_U8(offset + j);
++j;
} else {
slot->note = 0;
}
-
- if(note & (1 << 1)) {
- /* Instrument follows */
+ if(note & (1 << 1)) { /* Instrument follows */
slot->instrument = READ_U8(offset + j);
++j;
} else {
slot->instrument = 0;
}
-
- if(note & (1 << 2)) {
- /* Volume column follows */
+ if(note & (1 << 2)) { /* Volume column follows */
slot->volume_column = READ_U8(offset + j);
++j;
} else {
slot->volume_column = 0;
}
-
- if(note & (1 << 3)) {
- /* Effect follows */
+ if(note & (1 << 3)) { /* Effect follows */
slot->effect_type = READ_U8(offset + j);
++j;
} else {
slot->effect_type = 0;
}
-
- if(note & (1 << 4)) {
- /* Effect parameter follows */
+ if(note & (1 << 4)) { /* Effect parameter follows */
slot->effect_param = READ_U8(offset + j);
++j;
} else {
slot->effect_param = 0;
}
- } else {
- /* Uncompressed packet */
+ } else { /* Uncompressed packet */
slot->note = note;
slot->instrument = READ_U8(offset + j + 1);
slot->volume_column = READ_U8(offset + j + 2);
@@ -1076,7 +908,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
instr->volume_envelope.sustain_point = READ_U8(offset + 227);
instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
-
instr->panning_envelope.sustain_point = READ_U8(offset + 230);
instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
@@ -1090,7 +921,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
instr->panning_envelope.enabled = flags & (1 << 0);
instr->panning_envelope.sustain_enabled = flags & (1 << 1);
instr->panning_envelope.loop_enabled = flags & (1 << 2);
-
instr->vibrato_type = READ_U8(offset + 235);
if(instr->vibrato_type == 2) {
instr->vibrato_type = 1;
@@ -1101,7 +931,6 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
instr->vibrato_depth = READ_U8(offset + 237);
instr->vibrato_rate = READ_U8(offset + 238);
instr->volume_fadeout = READ_U16(offset + 239);
-
instr->samples = (jar_xm_sample_t*)mempool;
mempool += instr->num_samples * sizeof(jar_xm_sample_t);
} else {
@@ -1111,7 +940,7 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
/* Instrument header size */
offset += READ_U32(offset);
- for(uint16_t j = 0; j < instr->num_samples; ++j) {
+ for(int j = 0; j < instr->num_samples; ++j) {
/* Read sample header */
jar_xm_sample_t* sample = instr->samples + j;
@@ -1119,25 +948,28 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
sample->loop_start = READ_U32(offset + 4);
sample->loop_length = READ_U32(offset + 8);
sample->loop_end = sample->loop_start + sample->loop_length;
- sample->volume = (float)READ_U8(offset + 12) / (float)0x40;
+ sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f;
+ if (sample->volume > 1.0f) {sample->volume = 1.f;};
sample->finetune = (int8_t)READ_U8(offset + 13);
uint8_t flags = READ_U8(offset + 14);
- if((flags & 3) == 0) {
- sample->loop_type = jar_xm_NO_LOOP;
- } else if((flags & 3) == 1) {
- sample->loop_type = jar_xm_FORWARD_LOOP;
- } else {
+ switch (flags & 3) {
+ case 2:
+ case 3:
sample->loop_type = jar_xm_PING_PONG_LOOP;
- }
-
- sample->bits = (flags & (1 << 4)) ? 16 : 8;
-
- sample->panning = (float)READ_U8(offset + 15) / (float)0xFF;
+ case 1:
+ sample->loop_type = jar_xm_FORWARD_LOOP;
+ break;
+ default:
+ sample->loop_type = jar_xm_NO_LOOP;
+ break;
+ };
+ sample->bits = (flags & 0x10) ? 16 : 8;
+ sample->stereo = (flags & 0x20) ? 1 : 0;
+ sample->panning = (float)READ_U8(offset + 15) / 255.f;
sample->relative_note = (int8_t)READ_U8(offset + 16);
READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
sample->data = (float*)mempool;
-
if(sample->bits == 16) {
/* 16 bit sample */
mempool += sample->length * (sizeof(float) >> 1);
@@ -1149,42 +981,72 @@ char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t modd
/* 8 bit sample */
mempool += sample->length * sizeof(float);
}
+ // Adjust loop points to reflect half of the reported length (stereo)
+ if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) {
+ div_t lstart = div(READ_U32(offset + 4), 2);
+ sample->loop_start = lstart.quot;
+ div_t llength = div(READ_U32(offset + 8), 2);
+ sample->loop_length = llength.quot;
+ sample->loop_end = sample->loop_start + sample->loop_length;
+ };
offset += sample_header_size;
}
- for(uint16_t j = 0; j < instr->num_samples; ++j) {
+ // Read all samples and convert them to float values
+ for(int j = 0; j < instr->num_samples; ++j) {
/* Read sample data */
jar_xm_sample_t* sample = instr->samples + j;
- uint32_t length = sample->length;
-
- if(sample->bits == 16) {
- int16_t v = 0;
- for(uint32_t k = 0; k < length; ++k) {
- v = v + (int16_t)READ_U16(offset + (k << 1));
- sample->data[k] = (float)v / (float)(1 << 15);
- }
- offset += sample->length << 1;
+ int length = sample->length;
+ if (sample->stereo) {
+ // Since it is stereo, we cut the sample in half (treated as single channel)
+ div_t result = div(sample->length, 2);
+ if(sample->bits == 16) {
+ int16_t v = 0;
+ for(int k = 0; k < length; ++k) {
+ if (k == result.quot) { v = 0;};
+ v = v + (int16_t)READ_U16(offset + (k << 1));
+ sample->data[k] = (float) v / 32768.f ;//* sign;
+ if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
+ }
+ offset += sample->length << 1;
+ } else {
+ int8_t v = 0;
+ for(int k = 0; k < length; ++k) {
+ if (k == result.quot) { v = 0;};
+ v = v + (int8_t)READ_U8(offset + k);
+ sample->data[k] = (float)v / 128.f ;//* sign;
+ if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
+ }
+ offset += sample->length;
+ };
+ sample->length = result.quot;
} else {
- int8_t v = 0;
- for(uint32_t k = 0; k < length; ++k) {
- v = v + (int8_t)READ_U8(offset + k);
- sample->data[k] = (float)v / (float)(1 << 7);
+ if(sample->bits == 16) {
+ int16_t v = 0;
+ for(int k = 0; k < length; ++k) {
+ v = v + (int16_t)READ_U16(offset + (k << 1));
+ sample->data[k] = (float) v / 32768.f ;//* sign;
+ if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
+ }
+ offset += sample->length << 1;
+ } else {
+ int8_t v = 0;
+ for(int k = 0; k < length; ++k) {
+ v = v + (int8_t)READ_U8(offset + k);
+ sample->data[k] = (float)v / 128.f ;//* sign;
+ if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;};
+ }
+ offset += sample->length;
}
- offset += sample->length;
}
- }
- }
-
+ };
+ };
return mempool;
-}
+};
//-------------------------------------------------------------------------------
//THE FOLLOWING IS FOR PLAYING
-//-------------------------------------------------------------------------------
-
-/* ----- Static functions ----- */
-
static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
@@ -1216,35 +1078,21 @@ static void jar_xm_post_pattern_change(jar_xm_context_t*);
static void jar_xm_row(jar_xm_context_t*);
static void jar_xm_tick(jar_xm_context_t*);
-static float jar_xm_next_of_sample(jar_xm_channel_context_t*);
-static void jar_xm_sample(jar_xm_context_t*, float*, float*);
-
-/* ----- Other oddities ----- */
+static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int);
+static void jar_xm_mixdown(jar_xm_context_t*, float*, float*);
#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
-static const uint16_t amiga_frequencies[] = {
- 1712, 1616, 1525, 1440, /* C-2, C#2, D-2, D#2 */
- 1357, 1281, 1209, 1141, /* E-2, F-2, F#2, G-2 */
- 1077, 1017, 961, 907, /* G#2, A-2, A#2, B-2 */
- 856, /* C-3 */
-};
+ // C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3
+static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 };
-static const float multi_retrig_add[] = {
- 0.f, -1.f, -2.f, -4.f, /* 0, 1, 2, 3 */
- -8.f, -16.f, 0.f, 0.f, /* 4, 5, 6, 7 */
- 0.f, 1.f, 2.f, 4.f, /* 8, 9, A, B */
- 8.f, 16.f, 0.f, 0.f /* C, D, E, F */
-};
+ // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
+static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f };
-static const float multi_retrig_multiply[] = {
- 1.f, 1.f, 1.f, 1.f, /* 0, 1, 2, 3 */
- 1.f, 1.f, .6666667f, .5f, /* 4, 5, 6, 7 */
- 1.f, 1.f, 1.f, 1.f, /* 8, 9, A, B */
- 1.f, 1.f, 1.5f, 2.f /* C, D, E, F */
-};
+ // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
+static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f };
#define jar_xm_CLAMP_UP1F(vol, limit) do { \
if((vol) > (limit)) (vol) = (limit); \
@@ -1284,43 +1132,26 @@ static const float multi_retrig_multiply[] = {
|| (s)->effect_param == 6 \
|| ((s)->volume_column >> 4) == 0xB)
#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
-
-/* ----- Function definitions ----- */
+#define NOTE_OFF 97
static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
static unsigned int next_rand = 24492;
step %= 0x40;
-
switch(waveform) {
-
- case jar_xm_SINE_WAVEFORM:
- /* Why not use a table? For saving space, and because there's
- * very very little actual performance gain. */
+ case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */
return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
-
- case jar_xm_RAMP_DOWN_WAVEFORM:
- /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
+ case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
return (float)(0x20 - step) / 0x20;
-
- case jar_xm_SQUARE_WAVEFORM:
- /* Square with a 50% duty */
+ case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */
return (step >= 0x20) ? 1.f : -1.f;
-
- case jar_xm_RANDOM_WAVEFORM:
- /* Use the POSIX.1-2001 example, just to be deterministic
- * across different machines */
+ case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */
next_rand = next_rand * 1103515245 + 12345;
return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
-
- case jar_xm_RAMP_UP_WAVEFORM:
- /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
+ case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
return (float)(step - 0x20) / 0x20;
-
default:
break;
-
}
-
return .0f;
}
@@ -1328,33 +1159,21 @@ static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t*
if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
jar_xm_instrument_t* instr = ch->instrument;
float sweep = 1.f;
-
- if(ch->autovibrato_ticks < instr->vibrato_sweep) {
- /* No idea if this is correct, but it sounds close enough… */
- sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep);
- }
-
+ if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); }
unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
- ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step)
- * (float)instr->vibrato_depth / (float)0xF * sweep;
+ ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep;
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
unsigned int step = pos * (param >> 4);
- ch->vibrato_note_offset =
- 2.f
- * jar_xm_waveform(ch->vibrato_waveform, step)
- * (float)(param & 0x0F) / (float)0xF;
+ ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF;
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
unsigned int step = pos * (param >> 4);
- /* Not so sure about this, it sounds correct by ear compared with
- * MilkyTracker, but it could come from other bugs */
- ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step)
- * (float)(param & 0x0F) / (float)0xF;
+ ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF;
}
static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
@@ -1372,80 +1191,36 @@ static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch,
ch->arp_note_offset = param & 0x0F;
break;
}
-
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
- /* 3xx called without a note, wait until we get an actual
- * target note. */
- if(ch->tone_portamento_target_period == 0.f) return;
-
+ /* 3xx called without a note, wait until we get an actual target note. */
+ if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */
if(ch->period != ch->tone_portamento_target_period) {
- jar_xm_SLIDE_TOWARDS(ch->period,
- ch->tone_portamento_target_period,
- (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ?
- 4.f : 1.f) * ch->tone_portamento_param
- );
+ jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param);
jar_xm_update_frequency(ctx, ch);
}
}
static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
- /* Don't ask about the 4.f coefficient. I found mention of it
- * nowhere. Found by ear™. */
- if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {
- period_offset *= 4.f;
- }
-
+ /* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by ear™. */
+ if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; }
ch->period += period_offset;
jar_xm_CLAMP_DOWN(ch->period);
/* XXX: upper bound of period ? */
-
jar_xm_update_frequency(ctx, ch);
}
static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
- float f;
-
- if((rawval & 0xF0) && (rawval & 0x0F)) {
- /* Illegal state */
- return;
- }
-
- if(rawval & 0xF0) {
- /* Slide right */
- f = (float)(rawval >> 4) / (float)0xFF;
- ch->panning += f;
- jar_xm_CLAMP_UP(ch->panning);
- } else {
- /* Slide left */
- f = (float)(rawval & 0x0F) / (float)0xFF;
- ch->panning -= f;
- jar_xm_CLAMP_DOWN(ch->panning);
- }
-}
+ if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;};
+ if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;};
+};
static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
- float f;
-
- if((rawval & 0xF0) && (rawval & 0x0F)) {
- /* Illegal state */
- return;
- }
-
- if(rawval & 0xF0) {
- /* Slide up */
- f = (float)(rawval >> 4) / (float)0x40;
- ch->volume += f;
- jar_xm_CLAMP_UP(ch->volume);
- } else {
- /* Slide down */
- f = (float)(rawval & 0x0F) / (float)0x40;
- ch->volume -= f;
- jar_xm_CLAMP_DOWN(ch->volume);
- }
-}
+ if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;};
+ if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;};
+};
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
/* Linear interpolation between two envelope points */
@@ -1461,6 +1236,9 @@ static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
/* Loop if necessary */
if(ctx->current_table_index >= ctx->module.length) {
ctx->current_table_index = ctx->module.restart_position;
+ ctx->tempo =ctx->default_tempo; // reset to file default value
+ ctx->bpm = ctx->default_bpm; // reset to file default value
+ ctx->global_volume = ctx->default_global_volume; // reset to file default value
}
}
@@ -1477,24 +1255,19 @@ static float jar_xm_amiga_period(float note) {
uint8_t a = intnote % 12;
int8_t octave = note / 12.f - 2;
uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
-
if(octave > 0) {
p1 >>= octave;
p2 >>= octave;
} else if(octave < 0) {
- p1 <<= (-octave);
- p2 <<= (-octave);
+ p1 <<= -octave;
+ p2 <<= -octave;
}
-
return jar_xm_LERP(p1, p2, note - intnote);
}
static float jar_xm_amiga_frequency(float period) {
if(period == .0f) return .0f;
-
- /* This is the PAL value. No reason to choose this one over the
- * NTSC value. */
- return 7093789.2f / (period * 2.f);
+ return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */
}
static float jar_xm_period(jar_xm_context_t* ctx, float note) {
@@ -1508,29 +1281,20 @@ static float jar_xm_period(jar_xm_context_t* ctx, float note) {
}
static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
- uint8_t a;
- int8_t octave;
- float note;
- uint16_t p1, p2;
-
switch(ctx->module.frequency_type) {
-
case jar_xm_LINEAR_FREQUENCIES:
return jar_xm_linear_frequency(period - 64.f * note_offset);
-
case jar_xm_AMIGA_FREQUENCIES:
- if(note_offset == 0) {
- /* A chance to escape from insanity */
- return jar_xm_amiga_frequency(period);
- }
-
- /* FIXME: this is very crappy at best */
- a = octave = 0;
+ if(note_offset == 0) { return jar_xm_amiga_frequency(period); };
+ int8_t octave;
+ float note;
+ uint16_t p1, p2;
+ uint8_t a = octave = 0;
/* Find the octave of the current period */
if(period > amiga_frequencies[0]) {
--octave;
- while(period > (amiga_frequencies[0] << (-octave))) --octave;
+ while(period > (amiga_frequencies[0] << -octave)) --octave;
} else if(period < amiga_frequencies[12]) {
++octave;
while(period < (amiga_frequencies[12] >> octave)) ++octave;
@@ -1539,7 +1303,6 @@ static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_of
/* Find the smallest note closest to the current period */
for(uint8_t i = 0; i < 12; ++i) {
p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
-
if(octave > 0) {
p1 >>= octave;
p2 >>= octave;
@@ -1547,51 +1310,36 @@ static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_of
p1 <<= (-octave);
p2 <<= (-octave);
}
-
if(p2 <= period && period <= p1) {
a = i;
break;
}
}
-
- if(JAR_XM_DEBUG && (p1 < period || p2 > period)) {
- DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1);
- }
-
+ if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); }
note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
-
return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
-
}
return .0f;
}
static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
- ch->frequency = jar_xm_frequency(
- ctx, ch->period,
- (ch->arp_note_offset > 0 ? ch->arp_note_offset : (
- ch->vibrato_note_offset + ch->autovibrato_note_offset
- ))
- );
+ ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) );
ch->step = ch->frequency / ctx->rate;
}
-static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch,
- jar_xm_pattern_slot_t* s) {
+static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) {
+ jar_xm_module_t* mod = &(ctx->module);
if(s->instrument > 0) {
- if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) {
- /* Tone portamento in effect, unclear stuff happens */
+ if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
- } else if(s->instrument > ctx->module.num_instruments) {
- /* Invalid instrument, Cut current note */
+ } else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */
jar_xm_cut_note(ch);
ch->instrument = NULL;
ch->sample = NULL;
} else {
ch->instrument = ctx->module.instruments + (s->instrument - 1);
- if(s->note == 0 && ch->sample != NULL) {
- /* Ghost instrument, trigger note */
+ if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */
/* Sample position is kept, but envelopes are reset */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
}
@@ -1599,270 +1347,174 @@ static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_chan
}
if(NOTE_IS_VALID(s->note)) {
- /* Yes, the real note number is s->note -1. Try finding
- * THAT in any of the specs! :-) */
-
+ // note value is s->note -1
jar_xm_instrument_t* instr = ch->instrument;
-
if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
/* Tone portamento in effect */
ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
- } else if(instr == NULL || ch->instrument->num_samples == 0) {
- /* Bad instrument */
+ } else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */
jar_xm_cut_note(ch);
} else {
if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
-#if JAR_XM_RAMPING
- for(unsigned int z = 0; z < jar_xm_SAMPLE_RAMPING_POINTS; ++z) {
- ch->end_of_previous_sample[z] = jar_xm_next_of_sample(ch);
- }
- ch->frame_count = 0;
-#endif
+ if (mod->ramping) {
+ for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) {
+ jar_xm_next_of_sample(ctx, ch, i);
+ }
+ ch->frame_count = 0;
+ };
ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
- ch->orig_note = ch->note = s->note + ch->sample->relative_note
- + ch->sample->finetune / 128.f - 1.f;
+ ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
if(s->instrument > 0) {
jar_xm_trigger_note(ctx, ch, 0);
- } else {
- /* Ghost note: keep old volume */
+ } else { /* Ghost note: keep old volume */
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
}
} else {
- /* Bad sample */
jar_xm_cut_note(ch);
}
}
- } else if(s->note == 97) {
- /* Key Off */
+ } else if(s->note == NOTE_OFF) {
jar_xm_key_off(ch);
}
- switch(s->volume_column >> 4) {
-
- case 0x5:
- if(s->volume_column > 0x50) break;
- case 0x1:
- case 0x2:
- case 0x3:
- case 0x4:
- /* Set volume */
- ch->volume = (float)(s->volume_column - 0x10) / (float)0x40;
- break;
-
- case 0x8: /* Fine volume slide down */
- jar_xm_volume_slide(ch, s->volume_column & 0x0F);
- break;
-
- case 0x9: /* Fine volume slide up */
- jar_xm_volume_slide(ch, s->volume_column << 4);
- break;
-
- case 0xA: /* Set vibrato speed */
- ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((s->volume_column & 0x0F) << 4);
- break;
-
- case 0xC: /* Set panning */
- ch->panning = (float)(
- ((s->volume_column & 0x0F) << 4) | (s->volume_column & 0x0F)
- ) / (float)0xFF;
- break;
-
- case 0xF: /* Tone portamento */
- if(s->volume_column & 0x0F) {
- ch->tone_portamento_param = ((s->volume_column & 0x0F) << 4)
- | (s->volume_column & 0x0F);
- }
- break;
-
- default:
- break;
-
- }
-
+ // Interpret Effect column
switch(s->effect_type) {
-
case 1: /* 1xx: Portamento up */
- if(s->effect_param > 0) {
- ch->portamento_up_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; }
break;
-
case 2: /* 2xx: Portamento down */
- if(s->effect_param > 0) {
- ch->portamento_down_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; }
break;
-
case 3: /* 3xx: Tone portamento */
- if(s->effect_param > 0) {
- ch->tone_portamento_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; }
break;
-
case 4: /* 4xy: Vibrato */
- if(s->effect_param & 0x0F) {
- /* Set vibrato depth */
- ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F);
- }
- if(s->effect_param >> 4) {
- /* Set vibrato speed */
- ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F);
- }
+ if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */
+ if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */
break;
-
case 5: /* 5xy: Tone portamento + Volume slide */
- if(s->effect_param > 0) {
- ch->volume_slide_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
-
case 6: /* 6xy: Vibrato + Volume slide */
- if(s->effect_param > 0) {
- ch->volume_slide_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
-
case 7: /* 7xy: Tremolo */
- if(s->effect_param & 0x0F) {
- /* Set tremolo depth */
- ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F);
- }
- if(s->effect_param >> 4) {
- /* Set tremolo speed */
- ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F);
- }
+ if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */
+ if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */
break;
-
case 8: /* 8xx: Set panning */
- ch->panning = (float)s->effect_param / (float)0xFF;
+ ch->panning = (float)s->effect_param / 255.f;
break;
-
case 9: /* 9xx: Sample offset */
- if(ch->sample != NULL && NOTE_IS_VALID(s->note)) {
+ if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) {
uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
- if(final_offset >= ch->sample->length) {
- /* Pretend the sample dosen't loop and is done playing */
- ch->sample_position = -1;
+ switch (ch->sample->loop_type) {
+ case jar_xm_NO_LOOP:
+ if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */
+ ch->sample_position = -1;
+ } else {
+ ch->sample_position = final_offset;
+ }
+ break;
+ case jar_xm_FORWARD_LOOP:
+ if (final_offset >= ch->sample->loop_end) {
+ ch->sample_position -= ch->sample->loop_length;
+ } else if(final_offset >= ch->sample->length) {
+ ch->sample_position = ch->sample->loop_start;
+ } else {
+ ch->sample_position = final_offset;
+ }
+ break;
+ case jar_xm_PING_PONG_LOOP:
+ if(final_offset >= ch->sample->loop_end) {
+ ch->ping = false;
+ ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
+ } else if(final_offset >= ch->sample->length) {
+ ch->ping = false;
+ ch->sample_position -= ch->sample->length - 1;
+ } else {
+ ch->sample_position = final_offset;
+ };
break;
}
- ch->sample_position = final_offset;
}
break;
-
case 0xA: /* Axy: Volume slide */
- if(s->effect_param > 0) {
- ch->volume_slide_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; }
break;
-
case 0xB: /* Bxx: Position jump */
if(s->effect_param < ctx->module.length) {
ctx->position_jump = true;
ctx->jump_dest = s->effect_param;
}
break;
-
case 0xC: /* Cxx: Set volume */
- ch->volume = (float)((s->effect_param > 0x40)
- ? 0x40 : s->effect_param) / (float)0x40;
+ ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
break;
-
case 0xD: /* Dxx: Pattern break */
/* Jump after playing this line */
ctx->pattern_break = true;
ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
break;
-
case 0xE: /* EXy: Extended command */
switch(s->effect_param >> 4) {
-
case 1: /* E1y: Fine portamento up */
- if(s->effect_param & 0x0F) {
- ch->fine_portamento_up_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
break;
-
case 2: /* E2y: Fine portamento down */
- if(s->effect_param & 0x0F) {
- ch->fine_portamento_down_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
break;
-
case 4: /* E4y: Set vibrato control */
ch->vibrato_waveform = s->effect_param & 3;
ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
break;
-
case 5: /* E5y: Set finetune */
if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
- ch->note = ch->current->note + ch->sample->relative_note +
- (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
+ ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
ch->period = jar_xm_period(ctx, ch->note);
jar_xm_update_frequency(ctx, ch);
}
break;
-
case 6: /* E6y: Pattern loop */
if(s->effect_param & 0x0F) {
- if((s->effect_param & 0x0F) == ch->pattern_loop_count) {
- /* Loop is over */
+ if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */
ch->pattern_loop_count = 0;
- break;
+ ctx->position_jump = false;
+ } else { /* Jump to the beginning of the loop */
+ ch->pattern_loop_count++;
+ ctx->position_jump = true;
+ ctx->jump_row = ch->pattern_loop_origin;
+ ctx->jump_dest = ctx->current_table_index;
}
-
- /* Jump to the beginning of the loop */
- ch->pattern_loop_count++;
- ctx->position_jump = true;
- ctx->jump_row = ch->pattern_loop_origin;
- ctx->jump_dest = ctx->current_table_index;
} else {
- /* Set loop start point */
- ch->pattern_loop_origin = ctx->current_row;
- /* Replicate FT2 E60 bug */
- ctx->jump_row = ch->pattern_loop_origin;
+ ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */
+ ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */
}
break;
-
case 7: /* E7y: Set tremolo control */
ch->tremolo_waveform = s->effect_param & 3;
ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
break;
-
case 0xA: /* EAy: Fine volume slide up */
- if(s->effect_param & 0x0F) {
- ch->fine_volume_slide_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
break;
-
case 0xB: /* EBy: Fine volume slide down */
- if(s->effect_param & 0x0F) {
- ch->fine_volume_slide_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; }
jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
break;
-
case 0xD: /* EDy: Note delay */
- /* XXX: figure this out better. EDx triggers
- * the note even when there no note and no
- * instrument. But ED0 acts like like a ghost
- * note, EDx (x ≠ 0) does not. */
+ /* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠ 0) does not. */
if(s->note == 0 && s->instrument == 0) {
unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
-
if(ch->current->effect_param & 0x0F) {
ch->note = ch->orig_note;
jar_xm_trigger_note(ctx, ch, flags);
} else {
- jar_xm_trigger_note(
- ctx, ch,
- flags
- | jar_xm_TRIGGER_KEEP_PERIOD
- | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION
- );
+ jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION );
}
}
break;
@@ -1870,106 +1522,77 @@ static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_chan
case 0xE: /* EEy: Pattern delay */
ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
break;
-
default:
break;
-
}
break;
case 0xF: /* Fxx: Set tempo/BPM */
if(s->effect_param > 0) {
- if(s->effect_param <= 0x1F) {
+ if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo)
ctx->tempo = s->effect_param;
- } else {
+ } else { //32 and greater values adjust the BPM
ctx->bpm = s->effect_param;
}
}
break;
case 16: /* Gxx: Set global volume */
- ctx->global_volume = (float)((s->effect_param > 0x40)
- ? 0x40 : s->effect_param) / (float)0x40;
+ ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40;
break;
-
case 17: /* Hxy: Global volume slide */
- if(s->effect_param > 0) {
- ch->global_volume_slide_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; }
break;
-
case 21: /* Lxx: Set envelope position */
ch->volume_envelope_frame_count = s->effect_param;
ch->panning_envelope_frame_count = s->effect_param;
break;
-
case 25: /* Pxy: Panning slide */
- if(s->effect_param > 0) {
- ch->panning_slide_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; }
break;
-
case 27: /* Rxy: Multi retrig note */
if(s->effect_param > 0) {
- if((s->effect_param >> 4) == 0) {
- /* Keep previous x value */
+ if((s->effect_param >> 4) == 0) { /* Keep previous x value */
ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
} else {
ch->multi_retrig_param = s->effect_param;
}
}
break;
-
case 29: /* Txy: Tremor */
- if(s->effect_param > 0) {
- /* Tremor x and y params do not appear to be separately
- * kept in memory, unlike Rxy */
- ch->tremor_param = s->effect_param;
- }
+ if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */
break;
-
case 33: /* Xxy: Extra stuff */
switch(s->effect_param >> 4) {
case 1: /* X1y: Extra fine portamento up */
- if(s->effect_param & 0x0F) {
- ch->extra_fine_portamento_up_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
break;
-
case 2: /* X2y: Extra fine portamento down */
- if(s->effect_param & 0x0F) {
- ch->extra_fine_portamento_down_param = s->effect_param & 0x0F;
- }
+ if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; }
jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
break;
-
default:
break;
-
}
break;
-
default:
break;
-
}
}
static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
- if(!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
+ if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
ch->sample_position = 0.f;
ch->ping = true;
- }
-
- if(ch->sample != NULL) {
- if(!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
- ch->volume = ch->sample->volume;
- }
-
- ch->panning = ch->sample->panning;
- }
-
+ };
+
+ if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
+ if(ch->sample != NULL) {
+ ch->volume = ch->sample->volume;
+ };
+ };
+ ch->panning = ch->sample->panning;
ch->sustained = true;
ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
ch->panning_envelope_panning = .5f;
@@ -1977,44 +1600,28 @@ static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t*
ch->vibrato_note_offset = 0.f;
ch->tremolo_volume = 0.f;
ch->tremor_on = false;
-
ch->autovibrato_ticks = 0;
- if(ch->vibrato_waveform_retrigger) {
- ch->vibrato_ticks = 0; /* XXX: should the waveform itself also
- * be reset to sine? */
- }
- if(ch->tremolo_waveform_retrigger) {
- ch->tremolo_ticks = 0;
- }
-
+ if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */
+ if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; }
if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
ch->period = jar_xm_period(ctx, ch->note);
jar_xm_update_frequency(ctx, ch);
}
-
ch->latest_trigger = ctx->generated_samples;
- if(ch->instrument != NULL) {
- ch->instrument->latest_trigger = ctx->generated_samples;
- }
- if(ch->sample != NULL) {
- ch->sample->latest_trigger = ctx->generated_samples;
- }
+ if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; }
+ if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; }
}
static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
- /* NB: this is not the same as Key Off */
- ch->volume = .0f;
+ ch->volume = .0f; /* NB: this is not the same as Key Off */
+// ch->curr_left = .0f;
+// ch->curr_right = .0f;
}
static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
- /* Key Off */
- ch->sustained = false;
-
- /* If no volume envelope is used, also cut the note */
- if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) {
- jar_xm_cut_note(ch);
- }
+ ch->sustained = false; /* Key Off */
+ if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */
}
static void jar_xm_row(jar_xm_context_t* ctx) {
@@ -2032,24 +1639,24 @@ static void jar_xm_row(jar_xm_context_t* ctx) {
ctx->jump_row = 0;
jar_xm_post_pattern_change(ctx);
}
-
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
bool in_a_loop = false;
- /* Read notes… */
+ /* Read notes information for all channels into temporary pattern slot */
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
jar_xm_channel_context_t* ch = ctx->channels + i;
-
ch->current = s;
-
+ // If there is no note delay effect (0xED) then...
if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
+ //********** Process the channel slot information **********
jar_xm_handle_note_and_instrument(ctx, ch, s);
} else {
+ // read the note delay information
ch->note_delay_param = s->effect_param & 0x0F;
}
-
if(!in_a_loop && ch->pattern_loop_count > 0) {
+ // clarify if in a loop or not
in_a_loop = true;
}
}
@@ -2058,101 +1665,68 @@ static void jar_xm_row(jar_xm_context_t* ctx) {
/* No E6y loop is in effect (or we are in the first pass) */
ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
}
-
- ctx->current_row++; /* Since this is an uint8, this line can
- * increment from 255 to 0, in which case it
- * is still necessary to go the next
- * pattern. */
- if(!ctx->position_jump && !ctx->pattern_break &&
- (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
+
+ /// Move to next row
+ ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */
+ if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
ctx->current_table_index++;
- ctx->current_row = ctx->jump_row; /* This will be 0 most of
- * the time, except when E60
- * is used */
+ ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */
ctx->jump_row = 0;
jar_xm_post_pattern_change(ctx);
}
}
-static void jar_xm_envelope_tick(jar_xm_channel_context_t* ch,
- jar_xm_envelope_t* env,
- uint16_t* counter,
- float* outval) {
+static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) {
if(env->num_points < 2) {
- /* Don't really know what to do… */
if(env->num_points == 1) {
- /* XXX I am pulling this out of my ass */
*outval = (float)env->points[0].value / (float)0x40;
- if(*outval > 1) {
- *outval = 1;
- }
- }
-
- return;
+ if(*outval > 1) { *outval = 1; };
+ } else {;
+ return;
+ };
} else {
- uint8_t j;
-
if(env->loop_enabled) {
uint16_t loop_start = env->points[env->loop_start_point].frame;
uint16_t loop_end = env->points[env->loop_end_point].frame;
uint16_t loop_length = loop_end - loop_start;
-
- if(*counter >= loop_end) {
- *counter -= loop_length;
- }
- }
-
- for(j = 0; j < (env->num_points - 2); ++j) {
- if(env->points[j].frame <= *counter &&
- env->points[j+1].frame >= *counter) {
+ if(*counter >= loop_end) { *counter -= loop_length; };
+ };
+ for(uint8_t j = 0; j < (env->num_points - 1); ++j) {
+ if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) {
+ *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
break;
- }
- }
-
- *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
-
+ };
+ };
/* Make sure it is safe to increment frame count */
- if(!ch->sustained || !env->sustain_enabled ||
- *counter != env->points[env->sustain_point].frame) {
- (*counter)++;
- }
- }
-}
+ if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; };
+ };
+};
-static void jar_xm_envelopes(jar_xm_channel_context_t* ch) {
+static void jar_xm_envelopes(jar_xm_channel_context_t *ch) {
if(ch->instrument != NULL) {
if(ch->instrument->volume_envelope.enabled) {
if(!ch->sustained) {
ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
jar_xm_CLAMP_DOWN(ch->fadeout_volume);
- }
-
- jar_xm_envelope_tick(ch,
- &(ch->instrument->volume_envelope),
- &(ch->volume_envelope_frame_count),
- &(ch->volume_envelope_volume));
- }
-
+ };
+ jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume));
+ };
if(ch->instrument->panning_envelope.enabled) {
- jar_xm_envelope_tick(ch,
- &(ch->instrument->panning_envelope),
- &(ch->panning_envelope_frame_count),
- &(ch->panning_envelope_panning));
- }
- }
-}
+ jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning));
+ };
+ };
+};
static void jar_xm_tick(jar_xm_context_t* ctx) {
if(ctx->current_tick == 0) {
- jar_xm_row(ctx);
+ jar_xm_row(ctx); // We have processed all ticks and we run the row
}
-
+
+ jar_xm_module_t* mod = &(ctx->module);
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_channel_context_t* ch = ctx->channels + i;
-
jar_xm_envelopes(ch);
jar_xm_autovibrato(ctx, ch);
-
if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
ch->arp_in_progress = false;
ch->arp_note_offset = 0;
@@ -2164,46 +1738,59 @@ static void jar_xm_tick(jar_xm_context_t* ctx) {
jar_xm_update_frequency(ctx, ch);
}
- switch(ch->current->volume_column >> 4) {
-
- case 0x6: /* Volume slide down */
- if(ctx->current_tick == 0) break;
+ // Effects in volumne column mostly handled on a per tick basis
+ switch(ch->current->volume_column & 0xF0) {
+ case 0x50: // Checks for volume = 64
+ if(ch->current->volume_column != 0x50) break;
+ case 0x10: // Set volume 0-15
+ case 0x20: // Set volume 16-32
+ case 0x30: // Set volume 32-48
+ case 0x40: // Set volume 48-64
+ ch->volume = (float)(ch->current->volume_column - 16) / 64.0f;
+ break;
+ case 0x60: // Volume slide down
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
break;
-
- case 0x7: /* Volume slide up */
- if(ctx->current_tick == 0) break;
+ case 0x70: // Volume slide up
jar_xm_volume_slide(ch, ch->current->volume_column << 4);
break;
-
- case 0xB: /* Vibrato */
- if(ctx->current_tick == 0) break;
+ case 0x80: // Fine volume slide down
+ jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
+ break;
+ case 0x90: // Fine volume slide up
+ jar_xm_volume_slide(ch, ch->current->volume_column << 4);
+ break;
+ case 0xA0: // Set vibrato speed
+ ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4);
+ break;
+ case 0xB0: // Vibrato
ch->vibrato_in_progress = false;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
break;
-
- case 0xD: /* Panning slide left */
- if(ctx->current_tick == 0) break;
+ case 0xC0: // Set panning
+ if(!ctx->current_tick ) {
+ ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f;
+ }
+ break;
+ case 0xD0: // Panning slide left
jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
break;
-
- case 0xE: /* Panning slide right */
- if(ctx->current_tick == 0) break;
+ case 0xE0: // Panning slide right
jar_xm_panning_slide(ch, ch->current->volume_column << 4);
break;
-
- case 0xF: /* Tone portamento */
- if(ctx->current_tick == 0) break;
+ case 0xF0: // Tone portamento
+ if(!ctx->current_tick ) {
+ if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); }
+ };
jar_xm_tone_portamento(ctx, ch);
break;
-
default:
break;
-
}
+ // Only some standard effects handled on a per tick basis
+ // see jar_xm_handle_note_and_instrument for all effects handling on a per row basis
switch(ch->current->effect_type) {
-
case 0: /* 0xy: Arpeggio */
if(ch->current->effect_param > 0) {
char arp_offset = ctx->tempo % 3;
@@ -2236,49 +1823,44 @@ static void jar_xm_tick(jar_xm_context_t* ctx) {
if(ctx->current_tick == 0) break;
jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
break;
-
case 2: /* 2xx: Portamento down */
if(ctx->current_tick == 0) break;
jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
break;
-
case 3: /* 3xx: Tone portamento */
if(ctx->current_tick == 0) break;
jar_xm_tone_portamento(ctx, ch);
break;
-
case 4: /* 4xy: Vibrato */
if(ctx->current_tick == 0) break;
ch->vibrato_in_progress = true;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
break;
-
case 5: /* 5xy: Tone portamento + Volume slide */
if(ctx->current_tick == 0) break;
jar_xm_tone_portamento(ctx, ch);
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
-
case 6: /* 6xy: Vibrato + Volume slide */
if(ctx->current_tick == 0) break;
ch->vibrato_in_progress = true;
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
-
case 7: /* 7xy: Tremolo */
if(ctx->current_tick == 0) break;
jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
break;
-
+ case 8: /* 8xy: Set panning */
+ break;
+ case 9: /* 9xy: Sample offset */
+ break;
case 0xA: /* Axy: Volume slide */
if(ctx->current_tick == 0) break;
jar_xm_volume_slide(ch, ch->volume_slide_param);
break;
-
case 0xE: /* EXy: Extended command */
switch(ch->current->effect_param >> 4) {
-
case 0x9: /* E9y: Retrigger note */
if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
@@ -2287,59 +1869,46 @@ static void jar_xm_tick(jar_xm_context_t* ctx) {
}
}
break;
-
case 0xC: /* ECy: Note cut */
if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
jar_xm_cut_note(ch);
}
break;
-
case 0xD: /* EDy: Note delay */
if(ch->note_delay_param == ctx->current_tick) {
jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
jar_xm_envelopes(ch);
}
break;
-
default:
break;
-
}
break;
-
+ case 16: /* Fxy: Set tempo/BPM */
+ break;
case 17: /* Hxy: Global volume slide */
if(ctx->current_tick == 0) break;
- if((ch->global_volume_slide_param & 0xF0) &&
- (ch->global_volume_slide_param & 0x0F)) {
- /* Illegal state */
- break;
- }
- if(ch->global_volume_slide_param & 0xF0) {
- /* Global slide up */
+ if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */
+ if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */
float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
ctx->global_volume += f;
jar_xm_CLAMP_UP(ctx->global_volume);
- } else {
- /* Global slide down */
+ } else { /* Global slide down */
float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
ctx->global_volume -= f;
jar_xm_CLAMP_DOWN(ctx->global_volume);
- }
+ };
break;
case 20: /* Kxx: Key off */
- /* Most documentations will tell you the parameter has no
- * use. Don't be fooled. */
- if(ctx->current_tick == ch->current->effect_param) {
- jar_xm_key_off(ch);
- }
+ if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); };
break;
-
+ case 21: /* Lxx: Set envelope position */
+ break;
case 25: /* Pxy: Panning slide */
if(ctx->current_tick == 0) break;
jar_xm_panning_slide(ch, ch->panning_slide_param);
break;
-
case 27: /* Rxy: Multi retrig note */
if(ctx->current_tick == 0) break;
if(((ch->multi_retrig_param) & 0x0F) == 0) break;
@@ -2349,228 +1918,251 @@ static void jar_xm_tick(jar_xm_context_t* ctx) {
jar_xm_CLAMP(v);
jar_xm_trigger_note(ctx, ch, 0);
ch->volume = v;
- }
+ };
break;
case 29: /* Txy: Tremor */
if(ctx->current_tick == 0) break;
- ch->tremor_on = (
- (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2)
- >
- (ch->tremor_param >> 4)
- );
+ ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) );
break;
-
default:
break;
-
- }
+ };
float panning, volume;
-
- panning = ch->panning +
- (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
-
+ panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
if(ch->tremor_on) {
- volume = .0f;
+ volume = .0f;
} else {
volume = ch->volume + ch->tremolo_volume;
jar_xm_CLAMP(volume);
volume *= ch->fadeout_volume * ch->volume_envelope_volume;
- }
+ };
-#if JAR_XM_RAMPING
- ch->target_panning = panning;
- ch->target_volume = volume;
-#else
- ch->actual_panning = panning;
- ch->actual_volume = volume;
-#endif
- }
+ if (mod->ramping) {
+ ch->target_panning = panning;
+ ch->target_volume = volume;
+ } else {
+ ch->actual_panning = panning;
+ ch->actual_volume = volume;
+ };
+ };
- ctx->current_tick++;
+ ctx->current_tick++; // ok so we understand that ticks increment within the row
if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
+ // This means it reached the end of the row and we reset
ctx->current_tick = 0;
ctx->extra_ticks = 0;
- }
+ };
- /* FT2 manual says number of ticks / second = BPM * 0.4 */
+ // Number of ticks / second = BPM * 0.4
ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
-}
+};
-static float jar_xm_next_of_sample(jar_xm_channel_context_t* ch) {
+static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) {
+ jar_xm_module_t* mod = &(ctx->module);
+
+// ch->curr_left = 0.f;
+// ch->curr_right = 0.f;
if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
-#if JAR_XM_RAMPING
- if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
- return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], .0f,
- (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
- }
-#endif
- return .0f;
- }
+ ch->curr_left = 0.f;
+ ch->curr_right = 0.f;
+ if (mod->ramping) {
+ if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
+ if (previous > -1) {
+ ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ } else {
+ ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ };
+ };
+ };
+ return;
+ };
if(ch->sample->length == 0) {
- return .0f;
- }
-
- float u, v, t;
- uint32_t a, b;
- a = (uint32_t)ch->sample_position; /* This cast is fine,
- * sample_position will not
- * go above integer
- * ranges */
- if(JAR_XM_LINEAR_INTERPOLATION) {
- b = a + 1;
- t = ch->sample_position - a; /* Cheaper than fmodf(., 1.f) */
- }
- u = ch->sample->data[a];
-
+ return;
+ };
+
+ float t = 0.f;
+ uint32_t b = 0;
+ if(mod->linear_interpolation) {
+ b = ch->sample_position + 1;
+ t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */
+ };
+
+ float u_left, u_right;
+ u_left = ch->sample->data[(uint32_t)ch->sample_position];
+ if (ch->sample->stereo) {
+ u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length];
+ } else {
+ u_right = u_left;
+ };
+ float v_left = 0.f, v_right = 0.f;
switch(ch->sample->loop_type) {
-
case jar_xm_NO_LOOP:
- if(JAR_XM_LINEAR_INTERPOLATION) {
- v = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
- }
+ if(mod->linear_interpolation) {
+ v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
+ if (ch->sample->stereo) {
+ v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f;
+ } else {
+ v_right = v_left;
+ };
+ };
ch->sample_position += ch->step;
- if(ch->sample_position >= ch->sample->length) {
- ch->sample_position = -1;
- }
+ if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample
break;
-
case jar_xm_FORWARD_LOOP:
- if(JAR_XM_LINEAR_INTERPOLATION) {
- v = ch->sample->data[
- (b == ch->sample->loop_end) ? ch->sample->loop_start : b
- ];
- }
+ if(mod->linear_interpolation) {
+ v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ];
+ if (ch->sample->stereo) {
+ v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length];
+ } else {
+ v_right = v_left;
+ };
+ };
ch->sample_position += ch->step;
- while(ch->sample_position >= ch->sample->loop_end) {
+ if (ch->sample_position >= ch->sample->loop_end) {
ch->sample_position -= ch->sample->loop_length;
- }
+ };
+ if(ch->sample_position >= ch->sample->length) {
+ ch->sample_position = ch->sample->loop_start;
+ };
break;
-
case jar_xm_PING_PONG_LOOP:
if(ch->ping) {
+ if(mod->linear_interpolation) {
+ v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b];
+ if (ch->sample->stereo) {
+ v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length];
+ } else {
+ v_right = v_left;
+ };
+ };
ch->sample_position += ch->step;
- } else {
- ch->sample_position -= ch->step;
- }
- /* XXX: this may not work for very tight ping-pong loops
- * (ie switches direction more than once per sample */
- if(ch->ping) {
- if(JAR_XM_LINEAR_INTERPOLATION) {
- v = (b >= ch->sample->loop_end) ? ch->sample->data[a] : ch->sample->data[b];
- }
if(ch->sample_position >= ch->sample->loop_end) {
ch->ping = false;
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
- }
- /* sanity checking */
+ };
if(ch->sample_position >= ch->sample->length) {
ch->ping = false;
ch->sample_position -= ch->sample->length - 1;
- }
+ };
} else {
- if(JAR_XM_LINEAR_INTERPOLATION) {
- v = u;
- u = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[a] : ch->sample->data[b - 2];
- }
+ if(mod->linear_interpolation) {
+ v_left = u_left;
+ v_right = u_right;
+ u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2];
+ if (ch->sample->stereo) {
+ u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2];
+ } else {
+ u_right = u_left;
+ };
+ };
+ ch->sample_position -= ch->step;
if(ch->sample_position <= ch->sample->loop_start) {
ch->ping = true;
ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
- }
- /* sanity checking */
- if(ch->sample_position <= .0f) {
+ };
+ if (ch->sample_position <= .0f) {
ch->ping = true;
ch->sample_position = .0f;
- }
- }
+ };
+ };
break;
default:
- v = .0f;
+ v_left = .0f;
+ v_right = .0f;
break;
- }
+ };
- float endval = JAR_XM_LINEAR_INTERPOLATION ? jar_xm_LERP(u, v, t) : u;
+ float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left;
+ float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right;
-#if JAR_XM_RAMPING
- if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
- /* Smoothly transition between old and new sample. */
- return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], endval,
- (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
- }
-#endif
-
- return endval;
-}
+ if (mod->ramping) {
+ if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
+ /* Smoothly transition between old and new sample. */
+ if (previous > -1) {
+ ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ } else {
+ ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ };
+ };
+ };
+
+ if (previous > -1) {
+ ch->end_of_previous_sample_left[previous] = endval_left;
+ ch->end_of_previous_sample_right[previous] = endval_right;
+ } else {
+ ch->curr_left = endval_left;
+ ch->curr_right = endval_right;
+ };
+};
-static void jar_xm_sample(jar_xm_context_t* ctx, float* left, float* right) {
+// gather all channel audio into stereo float
+static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) {
+ jar_xm_module_t* mod = &(ctx->module);
+
if(ctx->remaining_samples_in_tick <= 0) {
jar_xm_tick(ctx);
- }
+ };
ctx->remaining_samples_in_tick--;
-
*left = 0.f;
*right = 0.f;
-
- if(ctx->max_loop_count > 0 && ctx->loop_count >= ctx->max_loop_count) {
- return;
- }
+ if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; }
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
jar_xm_channel_context_t* ch = ctx->channels + i;
-
- if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
- continue;
- }
-
- const float fval = jar_xm_next_of_sample(ch);
-
- if(!ch->muted && !ch->instrument->muted) {
- *left += fval * ch->actual_volume * (1.f - ch->actual_panning);
- *right += fval * ch->actual_volume * ch->actual_panning;
- }
-
-#if JAR_XM_RAMPING
- ch->frame_count++;
- jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
- jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
-#endif
- }
-
- const float fgvol = ctx->global_volume * ctx->amplification;
- *left *= fgvol;
- *right *= fgvol;
-
-#if JAR_XM_DEBUG
- if(fabs(*left) > 1 || fabs(*right) > 1) {
- DEBUG("clipping frame: %f %f, this is a bad module or a libxm bug", *left, *right);
- }
-#endif
-}
+ if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) {
+ jar_xm_next_of_sample(ctx, ch, -1);
+ if(!ch->muted && !ch->instrument->muted) {
+ *left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning);
+ *right += ch->curr_right * ch->actual_volume * ch->actual_panning;
+ };
+
+ if (mod->ramping) {
+ ch->frame_count++;
+ jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
+ jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
+ };
+ };
+ };
+ if (ctx->global_volume != 1.0f) {
+ *left *= ctx->global_volume;
+ *right *= ctx->global_volume;
+ };
+
+ // experimental
+// float counter = (float)ctx->generated_samples * 0.0001f
+// *left = tan(&left + sin(counter));
+// *right = tan(&right + cos(counter));
+
+ // apply brick wall limiter when audio goes beyond bounderies
+ if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;};
+ if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;};
+};
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
if(ctx && output) {
ctx->generated_samples += numsamples;
for(size_t i = 0; i < numsamples; i++) {
- jar_xm_sample(ctx, output + (2 * i), output + (2 * i + 1));
- }
- }
-}
+ jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1));
+ };
+ };
+};
-uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx)
-{
+uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) {
uint64_t total = 0;
uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
jar_xm_set_max_loop_count(ctx, 0);
-
- while(jar_xm_get_loop_count(ctx) == currentLoopCount)
- {
+ while(jar_xm_get_loop_count(ctx) == currentLoopCount) {
total += ctx->remaining_samples_in_tick;
ctx->remaining_samples_in_tick = 0;
jar_xm_tick(ctx);
}
-
ctx->loop_count = currentLoopCount;
return total;
}
@@ -2578,7 +2170,6 @@ uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx)
//--------------------------------------------
//FILE LOADER - TODO - NEEDS TO BE CLEANED UP
//--------------------------------------------
-
#undef DEBUG
#define DEBUG(...) do { \
fprintf(stderr, __VA_ARGS__); \
@@ -2642,43 +2233,236 @@ int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const
switch(ret) {
case 0:
break;
-
- case 1:
- DEBUG("could not create context: module is not sane\n");
+ case 1: DEBUG("could not create context: module is not sane\n");
*ctx = NULL;
return 1;
break;
-
- case 2:
- FATAL("could not create context: malloc failed\n");
+ case 2: FATAL("could not create context: malloc failed\n");
return 2;
break;
-
- default:
- FATAL("could not create context: unknown error\n");
+ default: FATAL("could not create context: unknown error\n");
return 6;
break;
-
}
-
+
return 0;
}
// not part of the original library
-void jar_xm_reset(jar_xm_context_t* ctx)
-{
- // I don't know what I am doing
- // this is probably very broken
- // but it kinda works
- for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++)
- {
+void jar_xm_reset(jar_xm_context_t* ctx) {
+ for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
jar_xm_cut_note(&ctx->channels[i]);
}
ctx->current_row = 0;
ctx->current_table_index = 0;
ctx->current_tick = 0;
+ ctx->tempo =ctx->default_tempo; // reset to file default value
+ ctx->bpm = ctx->default_bpm; // reset to file default value
+ ctx->global_volume = ctx->default_global_volume; // reset to file default value
+}
+
+
+void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) {
+ if (ctx->module.linear_interpolation) {
+ ctx->module.linear_interpolation = 0;
+ } else {
+ ctx->module.linear_interpolation = 1;
+ }
+}
+
+void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) {
+ for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) {
+ jar_xm_cut_note(&ctx->channels[i]);
+ }
+ ctx->current_row = 0;
+ ctx->current_tick = 0;
+ if(table_ptr > 0 && table_ptr < ctx->module.length) {
+ ctx->current_table_index = table_ptr;
+ ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track
+ } else {
+ ctx->current_table_index = 0;
+ ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track
+ ctx->tempo =ctx->default_tempo; // reset to file default value
+ ctx->bpm = ctx->default_bpm; // reset to file default value
+ ctx->global_volume = ctx->default_global_volume; // reset to file default value
+ };
+}
+
+
+// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... )
+const char* xm_note_chr(int number) {
+ if (number == NOTE_OFF) {
+ return "==";
+ };
+ number = number % 12;
+ switch(number) {
+ case 1: return "C-";
+ case 2: return "C#";
+ case 3: return "D-";
+ case 4: return "D#";
+ case 5: return "E-";
+ case 6: return "F-";
+ case 7: return "F#";
+ case 8: return "G-";
+ case 9: return "G#";
+ case 10: return "A-";
+ case 11: return "A#";
+ case 12: return "B-";
+ };
+ return "??";
+};
+
+const char* xm_octave_chr(int number) {
+ if (number == NOTE_OFF) {
+ return "=";
+ };
+
+ int number2 = number - number % 12;
+ int result = floor(number2 / 12) + 1;
+ switch(result) {
+ case 1: return "1";
+ case 2: return "2";
+ case 3: return "3";
+ case 4: return "4";
+ case 5: return "5";
+ case 6: return "6";
+ case 7: return "7";
+ case 8: return "8";
+ default: return "?"; /* UNKNOWN */
+ };
+
+};
+
+// TRANSLATE NOTE EFFECT CODE INTO USER VALUE
+const char* xm_effect_chr(int fx) {
+ switch(fx) {
+ case 0: return "0"; /* ZERO = NO EFFECT */
+ case 1: return "1"; /* 1xx: Portamento up */
+ case 2: return "2"; /* 2xx: Portamento down */
+ case 3: return "3"; /* 3xx: Tone portamento */
+ case 4: return "4"; /* 4xy: Vibrato */
+ case 5: return "5"; /* 5xy: Tone portamento + Volume slide */
+ case 6: return "6"; /* 6xy: Vibrato + Volume slide */
+ case 7: return "7"; /* 7xy: Tremolo */
+ case 8: return "8"; /* 8xx: Set panning */
+ case 9: return "9"; /* 9xx: Sample offset */
+ case 0xA: return "A";/* Axy: Volume slide */
+ case 0xB: return "B";/* Bxx: Position jump */
+ case 0xC: return "C";/* Cxx: Set volume */
+ case 0xD: return "D";/* Dxx: Pattern break */
+ case 0xE: return "E";/* EXy: Extended command */
+ case 0xF: return "F";/* Fxx: Set tempo/BPM */
+ case 16: return "G"; /* Gxx: Set global volume */
+ case 17: return "H"; /* Hxy: Global volume slide */
+ case 21: return "L"; /* Lxx: Set envelope position */
+ case 25: return "P"; /* Pxy: Panning slide */
+ case 27: return "R"; /* Rxy: Multi retrig note */
+ case 29: return "T"; /* Txy: Tremor */
+ case 33: return "X"; /* Xxy: Extra stuff */
+ default: return "?"; /* UNKNOWN */
+ };
}
+#ifdef JAR_XM_RAYLIB
+
+#include "raylib.h" // Need RayLib API calls for the DEBUG display
+
+void jar_xm_debug(jar_xm_context_t *ctx) {
+ int size=40;
+ int x = 0, y = 0;
+
+ // DEBUG VARIABLES
+ y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE);
+ x = size * 12; y = 0;
+
+ y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE);
+ y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE);
+ y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE);
+ y += size * 7;
+
+ x = 0;
+ size=16;
+ // TIMELINE OF MODULE
+ for (int i=0; i < ctx->module.length; i++) {
+ if (i == ctx->jump_dest) {
+ if (ctx->position_jump) {
+ DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD);
+ } else {
+ DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN);
+ };
+ };
+ if (i == ctx->current_table_index) {
+// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE);
+ DrawRectangle(i * size * 2, y, size * 2, size, RED);
+ DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW);
+ } else {
+ DrawRectangle(i * size * 2, y, size * 2, size, ORANGE);
+ };
+ DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE);
+ };
+ y += size;
+
+ jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
+
+ /* DISPLAY CURRENTLY PLAYING PATTERN */
+
+ x += 2 * size;
+ for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
+ DrawRectangle(x, y, 8 * size, size, PURPLE);
+ DrawText("N", x, y, size, YELLOW);
+ DrawText("I", x + size * 2, y, size, YELLOW);
+ DrawText("V", x + size * 4, y, size, YELLOW);
+ DrawText("FX", x + size * 6, y, size, YELLOW);
+ x += 9 * size;
+ };
+ x += size;
+ for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) {
+ y += size;
+ x = 0;
+ if (j >=0 && j < (cur->num_rows)) {
+ DrawRectangle(x, y, size * 2, size, BROWN);
+ DrawText(TextFormat("%02X",j), x, y, size, WHITE);
+ x += 2 * size;
+ for(uint8_t i = 0; i < ctx->module.num_channels; i++) {
+ if (j==(ctx->current_row)) {
+ DrawRectangle(x, y, 8 * size, size, DARKGREEN);
+ } else {
+ DrawRectangle(x, y, 8 * size, size, DARKGRAY);
+ };
+ jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i;
+ // jar_xm_channel_context_t *ch = ctx->channels + i;
+ if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);};
+ if (s->instrument > 0) {
+ DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE);
+ if (s->volume_column == 0) {
+ DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW);
+ };
+ } else {
+ DrawText("..", x + size * 2, y, size, GRAY);
+ if (s->volume_column == 0) {
+ DrawText("..", x + size * 4, y, size, GRAY);
+ };
+ };
+ if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);};
+ if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);};
+ x += 9 * size;
+ };
+ };
+ };
+
+}
+#endif // RayLib extension
#endif//end of JAR_XM_IMPLEMENTATION
//-------------------------------------------------------------------------------