summaryrefslogtreecommitdiff
path: root/libs/raylib/src/external/jar_xm.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/external/jar_xm.h')
-rw-r--r--libs/raylib/src/external/jar_xm.h2686
1 files changed, 2686 insertions, 0 deletions
diff --git a/libs/raylib/src/external/jar_xm.h b/libs/raylib/src/external/jar_xm.h
new file mode 100644
index 0000000..1839e61
--- /dev/null
+++ b/libs/raylib/src/external/jar_xm.h
@@ -0,0 +1,2686 @@
+// jar_xm.h - v0.01 - public domain - Joshua Reisenauer, MAR 2016
+//
+// HISTORY:
+//
+// v0.01 2016-02-22 Setup
+//
+//
+// USAGE:
+//
+// In ONE source file, put:
+//
+// #define JAR_XM_IMPLEMENTATION
+// #include "jar_xm.h"
+//
+// Other source files should just include jar_xm.h
+//
+// SAMPLE CODE:
+//
+// jar_xm_context_t *musicptr;
+// float musicBuffer[48000 / 60];
+// int intro_load(void)
+// {
+// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM");
+// return 1;
+// }
+// int intro_unload(void)
+// {
+// jar_xm_free_context(musicptr);
+// return 1;
+// }
+// int intro_tick(long counter)
+// {
+// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2);
+// if(IsKeyDown(KEY_ENTER))
+// return 1;
+// return 0;
+// }
+//
+//
+// LISCENSE - FOR LIBXM:
+//
+// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com>
+// Contributor: Dan Spencer <dan@atomicpotato.net>
+// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com>
+// This program is free software. It comes without any warranty, to the
+// extent permitted by applicable law. You can redistribute it and/or
+// modify it under the terms of the Do What The Fuck You Want To Public
+// License, Version 2, as published by Sam Hocevar. See
+// http://sam.zoy.org/wtfpl/COPYING for more details.
+
+#ifndef INCLUDE_JAR_XM_H
+#define INCLUDE_JAR_XM_H
+
+#include <stdint.h>
+
+#define JAR_XM_DEBUG 0
+#define JAR_XM_LINEAR_INTERPOLATION 1 // speed increase with decrease in quality
+#define JAR_XM_DEFENSIVE 1
+#define JAR_XM_RAMPING 1
+
+// Allow custom memory allocators
+#ifndef JARXM_MALLOC
+ #define JARXM_MALLOC(sz) malloc(sz)
+#endif
+#ifndef JARXM_FREE
+ #define JARXM_FREE(p) free(p)
+#endif
+
+//-------------------------------------------------------------------------------
+struct jar_xm_context_s;
+typedef struct jar_xm_context_s jar_xm_context_t;
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/** Create a XM context.
+ *
+ * @param moddata the contents of the module
+ * @param rate play rate in Hz, recommended value of 48000
+ *
+ * @returns 0 on success
+ * @returns 1 if module data is not sane
+ * @returns 2 if memory allocation failed
+ * @returns 3 unable to open input file
+ * @returns 4 fseek() failed
+ * @returns 5 fread() failed
+ * @returns 6 unkown error
+ *
+ * @deprecated This function is unsafe!
+ * @see jar_xm_create_context_safe()
+ */
+int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename);
+
+/** Create a XM context.
+ *
+ * @param moddata the contents of the module
+ * @param rate play rate in Hz, recommended value of 48000
+ *
+ * @returns 0 on success
+ * @returns 1 if module data is not sane
+ * @returns 2 if memory allocation failed
+ *
+ * @deprecated This function is unsafe!
+ * @see jar_xm_create_context_safe()
+ */
+int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate);
+
+/** Create a XM context.
+ *
+ * @param moddata the contents of the module
+ * @param moddata_length the length of the contents of the module, in bytes
+ * @param rate play rate in Hz, recommended value of 48000
+ *
+ * @returns 0 on success
+ * @returns 1 if module data is not sane
+ * @returns 2 if memory allocation failed
+ */
+int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate);
+
+/** Free a XM context created by jar_xm_create_context(). */
+void jar_xm_free_context(jar_xm_context_t* ctx);
+
+/** Play the module and put the sound samples in an output buffer.
+ *
+ * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+ * @param numsamples number of samples to generate
+ */
+void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples);
+
+/** Play the module, resample from 32 bit to 16 bit, and put the sound samples in an output buffer.
+ *
+ * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+ * @param numsamples number of samples to generate
+ */
+void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples)
+{
+ float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
+ jar_xm_generate_samples(ctx, musicBuffer, numsamples);
+
+ if(output){
+ int x;
+ for(x=0;x<2*numsamples;x++)
+ output[x] = musicBuffer[x] * SHRT_MAX;
+ }
+
+ JARXM_FREE(musicBuffer);
+}
+
+/** Play the module, resample from 32 bit to 8 bit, and put the sound samples in an output buffer.
+ *
+ * @param output buffer of 2*numsamples elements (A left and right value for each sample)
+ * @param numsamples number of samples to generate
+ */
+void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples)
+{
+ float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float));
+ jar_xm_generate_samples(ctx, musicBuffer, numsamples);
+
+ if(output){
+ int x;
+ for(x=0;x<2*numsamples;x++)
+ output[x] = musicBuffer[x] * CHAR_MAX;
+ }
+
+ JARXM_FREE(musicBuffer);
+}
+
+
+
+/** Set the maximum number of times a module can loop. After the
+ * specified number of loops, calls to jar_xm_generate_samples will only
+ * generate silence. You can control the current number of loops with
+ * jar_xm_get_loop_count().
+ *
+ * @param loopcnt maximum number of loops. Use 0 to loop
+ * indefinitely. */
+void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt);
+
+/** Get the loop count of the currently playing module. This value is
+ * 0 when the module is still playing, 1 when the module has looped
+ * once, etc. */
+uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx);
+
+
+
+/** Mute or unmute a channel.
+ *
+ * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
+ *
+ * @return whether the channel was muted.
+ */
+bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool);
+
+/** Mute or unmute an instrument.
+ *
+ * @note Instrument numbers go from 1 to
+ * jar_xm_get_number_of_instruments(...).
+ *
+ * @return whether the instrument was muted.
+ */
+bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool);
+
+
+
+/** Get the module name as a NUL-terminated string. */
+const char* jar_xm_get_module_name(jar_xm_context_t* ctx);
+
+/** Get the tracker name as a NUL-terminated string. */
+const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx);
+
+
+
+/** Get the number of channels. */
+uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx);
+
+/** Get the module length (in patterns). */
+uint16_t jar_xm_get_module_length(jar_xm_context_t*);
+
+/** Get the number of patterns. */
+uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx);
+
+/** Get the number of rows of a pattern.
+ *
+ * @note Pattern numbers go from 0 to
+ * jar_xm_get_number_of_patterns(...)-1.
+ */
+uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t);
+
+/** Get the number of instruments. */
+uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx);
+
+/** Get the number of samples of an instrument.
+ *
+ * @note Instrument numbers go from 1 to
+ * jar_xm_get_number_of_instruments(...).
+ */
+uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t);
+
+
+
+/** Get the current module speed.
+ *
+ * @param bpm will receive the current BPM
+ * @param tempo will receive the current tempo (ticks per line)
+ */
+void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo);
+
+/** Get the current position in the module being played.
+ *
+ * @param pattern_index if not NULL, will receive the current pattern
+ * index in the POT (pattern order table)
+ *
+ * @param pattern if not NULL, will receive the current pattern number
+ *
+ * @param row if not NULL, will receive the current row
+ *
+ * @param samples if not NULL, will receive the total number of
+ * generated samples (divide by sample rate to get seconds of
+ * generated audio)
+ */
+void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples);
+
+/** Get the latest time (in number of generated samples) when a
+ * particular instrument was triggered in any channel.
+ *
+ * @note Instrument numbers go from 1 to
+ * jar_xm_get_number_of_instruments(...).
+ */
+uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t);
+
+/** Get the latest time (in number of generated samples) when a
+ * particular sample was triggered in any channel.
+ *
+ * @note Instrument numbers go from 1 to
+ * jar_xm_get_number_of_instruments(...).
+ *
+ * @note Sample numbers go from 0 to
+ * jar_xm_get_nubmer_of_samples(...,instr)-1.
+ */
+uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample);
+
+/** Get the latest time (in number of generated samples) when any
+ * instrument was triggered in a given channel.
+ *
+ * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...).
+ */
+uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t);
+
+/** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples.
+ *
+ * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass.
+ * @note This function is very slow and should only be run once, if at all.
+ */
+uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx);
+
+#ifdef __cplusplus
+}
+#endif
+//-------------------------------------------------------------------------------
+
+
+
+
+
+
+//Function Definitions-----------------------------------------------------------
+#ifdef JAR_XM_IMPLEMENTATION
+
+#include <math.h>
+#include <stdio.h>
+#include <stdlib.h>
+#include <limits.h>
+#include <string.h>
+
+#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0
+#include <stdio.h>
+#define DEBUG(fmt, ...) do { \
+ fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \
+ fflush(stderr); \
+ } while(0)
+#else
+#define DEBUG(...)
+#endif
+
+#if jar_xm_BIG_ENDIAN
+#error "Big endian platforms are not yet supported, sorry"
+/* Make sure the compiler stops, even if #error is ignored */
+extern int __fail[-1];
+#endif
+
+/* ----- XM constants ----- */
+
+#define SAMPLE_NAME_LENGTH 22
+#define INSTRUMENT_NAME_LENGTH 22
+#define MODULE_NAME_LENGTH 20
+#define TRACKER_NAME_LENGTH 20
+#define PATTERN_ORDER_TABLE_LENGTH 256
+#define NUM_NOTES 96
+#define NUM_ENVELOPE_POINTS 12
+#define MAX_NUM_ROWS 256
+
+#if JAR_XM_RAMPING
+#define jar_xm_SAMPLE_RAMPING_POINTS 0x20
+#endif
+
+/* ----- Data types ----- */
+
+enum jar_xm_waveform_type_e {
+ jar_xm_SINE_WAVEFORM = 0,
+ jar_xm_RAMP_DOWN_WAVEFORM = 1,
+ jar_xm_SQUARE_WAVEFORM = 2,
+ jar_xm_RANDOM_WAVEFORM = 3,
+ jar_xm_RAMP_UP_WAVEFORM = 4,
+};
+typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t;
+
+enum jar_xm_loop_type_e {
+ jar_xm_NO_LOOP,
+ jar_xm_FORWARD_LOOP,
+ jar_xm_PING_PONG_LOOP,
+};
+typedef enum jar_xm_loop_type_e jar_xm_loop_type_t;
+
+enum jar_xm_frequency_type_e {
+ jar_xm_LINEAR_FREQUENCIES,
+ jar_xm_AMIGA_FREQUENCIES,
+};
+typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t;
+
+struct jar_xm_envelope_point_s {
+ uint16_t frame;
+ uint16_t value;
+};
+typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t;
+
+struct jar_xm_envelope_s {
+ jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS];
+ uint8_t num_points;
+ uint8_t sustain_point;
+ uint8_t loop_start_point;
+ uint8_t loop_end_point;
+ bool enabled;
+ bool sustain_enabled;
+ bool loop_enabled;
+};
+typedef struct jar_xm_envelope_s jar_xm_envelope_t;
+
+struct jar_xm_sample_s {
+ char name[SAMPLE_NAME_LENGTH + 1];
+ int8_t bits; /* Either 8 or 16 */
+
+ uint32_t length;
+ uint32_t loop_start;
+ uint32_t loop_length;
+ uint32_t loop_end;
+ float volume;
+ int8_t finetune;
+ jar_xm_loop_type_t loop_type;
+ float panning;
+ int8_t relative_note;
+ uint64_t latest_trigger;
+
+ float* data;
+ };
+ typedef struct jar_xm_sample_s jar_xm_sample_t;
+
+ struct jar_xm_instrument_s {
+ char name[INSTRUMENT_NAME_LENGTH + 1];
+ uint16_t num_samples;
+ uint8_t sample_of_notes[NUM_NOTES];
+ jar_xm_envelope_t volume_envelope;
+ jar_xm_envelope_t panning_envelope;
+ jar_xm_waveform_type_t vibrato_type;
+ uint8_t vibrato_sweep;
+ uint8_t vibrato_depth;
+ uint8_t vibrato_rate;
+ uint16_t volume_fadeout;
+ uint64_t latest_trigger;
+ bool muted;
+
+ jar_xm_sample_t* samples;
+ };
+ typedef struct jar_xm_instrument_s jar_xm_instrument_t;
+
+ struct jar_xm_pattern_slot_s {
+ uint8_t note; /* 1-96, 97 = Key Off note */
+ uint8_t instrument; /* 1-128 */
+ uint8_t volume_column;
+ uint8_t effect_type;
+ uint8_t effect_param;
+ };
+ typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t;
+
+ struct jar_xm_pattern_s {
+ uint16_t num_rows;
+ jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */
+ };
+ typedef struct jar_xm_pattern_s jar_xm_pattern_t;
+
+ struct jar_xm_module_s {
+ char name[MODULE_NAME_LENGTH + 1];
+ char trackername[TRACKER_NAME_LENGTH + 1];
+ uint16_t length;
+ uint16_t restart_position;
+ uint16_t num_channels;
+ uint16_t num_patterns;
+ uint16_t num_instruments;
+ jar_xm_frequency_type_t frequency_type;
+ uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH];
+
+ jar_xm_pattern_t* patterns;
+ jar_xm_instrument_t* instruments; /* Instrument 1 has index 0,
+ * instrument 2 has index 1, etc. */
+ };
+ typedef struct jar_xm_module_s jar_xm_module_t;
+
+ struct jar_xm_channel_context_s {
+ float note;
+ float orig_note; /* The original note before effect modifications, as read in the pattern. */
+ jar_xm_instrument_t* instrument; /* Could be NULL */
+ jar_xm_sample_t* sample; /* Could be NULL */
+ jar_xm_pattern_slot_t* current;
+
+ float sample_position;
+ float period;
+ float frequency;
+ float step;
+ bool ping; /* For ping-pong samples: true is -->, false is <-- */
+
+ float volume; /* Ideally between 0 (muted) and 1 (loudest) */
+ float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */
+
+ uint16_t autovibrato_ticks;
+
+ bool sustained;
+ float fadeout_volume;
+ float volume_envelope_volume;
+ float panning_envelope_panning;
+ uint16_t volume_envelope_frame_count;
+ uint16_t panning_envelope_frame_count;
+
+ float autovibrato_note_offset;
+
+ bool arp_in_progress;
+ uint8_t arp_note_offset;
+ uint8_t volume_slide_param;
+ uint8_t fine_volume_slide_param;
+ uint8_t global_volume_slide_param;
+ uint8_t panning_slide_param;
+ uint8_t portamento_up_param;
+ uint8_t portamento_down_param;
+ uint8_t fine_portamento_up_param;
+ uint8_t fine_portamento_down_param;
+ uint8_t extra_fine_portamento_up_param;
+ uint8_t extra_fine_portamento_down_param;
+ uint8_t tone_portamento_param;
+ float tone_portamento_target_period;
+ uint8_t multi_retrig_param;
+ uint8_t note_delay_param;
+ uint8_t pattern_loop_origin; /* Where to restart a E6y loop */
+ uint8_t pattern_loop_count; /* How many loop passes have been done */
+ bool vibrato_in_progress;
+ jar_xm_waveform_type_t vibrato_waveform;
+ bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */
+ uint8_t vibrato_param;
+ uint16_t vibrato_ticks; /* Position in the waveform */
+ float vibrato_note_offset;
+ jar_xm_waveform_type_t tremolo_waveform;
+ bool tremolo_waveform_retrigger;
+ uint8_t tremolo_param;
+ uint8_t tremolo_ticks;
+ float tremolo_volume;
+ uint8_t tremor_param;
+ bool tremor_on;
+
+ uint64_t latest_trigger;
+ bool muted;
+
+#if JAR_XM_RAMPING
+ /* These values are updated at the end of each tick, to save
+ * a couple of float operations on every generated sample. */
+ float target_panning;
+ float target_volume;
+
+ unsigned long frame_count;
+ float end_of_previous_sample[jar_xm_SAMPLE_RAMPING_POINTS];
+#endif
+
+ float actual_panning;
+ float actual_volume;
+ };
+ typedef struct jar_xm_channel_context_s jar_xm_channel_context_t;
+
+ struct jar_xm_context_s {
+ void* allocated_memory;
+ jar_xm_module_t module;
+ uint32_t rate;
+
+ uint16_t tempo;
+ uint16_t bpm;
+ float global_volume;
+ float amplification;
+
+#if JAR_XM_RAMPING
+ /* How much is a channel final volume allowed to change per
+ * sample; this is used to avoid abrubt volume changes which
+ * manifest as "clicks" in the generated sound. */
+ float volume_ramp;
+ float panning_ramp; /* Same for panning. */
+#endif
+
+ uint8_t current_table_index;
+ uint8_t current_row;
+ uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */
+ float remaining_samples_in_tick;
+ uint64_t generated_samples;
+
+ bool position_jump;
+ bool pattern_break;
+ uint8_t jump_dest;
+ uint8_t jump_row;
+
+ /* Extra ticks to be played before going to the next row -
+ * Used for EEy effect */
+ uint16_t extra_ticks;
+
+ uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */
+ uint8_t loop_count;
+ uint8_t max_loop_count;
+
+ jar_xm_channel_context_t* channels;
+};
+
+/* ----- Internal API ----- */
+
+#if JAR_XM_DEFENSIVE
+
+/** Check the module data for errors/inconsistencies.
+ *
+ * @returns 0 if everything looks OK. Module should be safe to load.
+ */
+int jar_xm_check_sanity_preload(const char*, size_t);
+
+/** Check a loaded module for errors/inconsistencies.
+ *
+ * @returns 0 if everything looks OK.
+ */
+int jar_xm_check_sanity_postload(jar_xm_context_t*);
+
+#endif
+
+/** Get the number of bytes needed to store the module data in a
+ * dynamically allocated blank context.
+ *
+ * Things that are dynamically allocated:
+ * - sample data
+ * - sample structures in instruments
+ * - pattern data
+ * - row loop count arrays
+ * - pattern structures in module
+ * - instrument structures in module
+ * - channel contexts
+ * - context structure itself
+
+ * @returns 0 if everything looks OK.
+ */
+size_t jar_xm_get_memory_needed_for_context(const char*, size_t);
+
+/** Populate the context from module data.
+ *
+ * @returns pointer to the memory pool
+ */
+char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*);
+
+int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) {
+ return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate);
+}
+
+#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1))
+#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1))
+int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) {
+#if JAR_XM_DEFENSIVE
+ int ret;
+#endif
+ size_t bytes_needed;
+ char* mempool;
+ jar_xm_context_t* ctx;
+
+#if JAR_XM_DEFENSIVE
+ if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) {
+ DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret);
+ return 1;
+ }
+#endif
+
+ bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length);
+ mempool = JARXM_MALLOC(bytes_needed);
+ if(mempool == NULL && bytes_needed > 0) {
+ /* JARXM_MALLOC() failed, trouble ahead */
+ DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool);
+ return 2;
+ }
+
+ /* Initialize most of the fields to 0, 0.f, NULL or false depending on type */
+ memset(mempool, 0, bytes_needed);
+
+ ctx = (*ctxp = (jar_xm_context_t *)mempool);
+ ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */
+ mempool += sizeof(jar_xm_context_t);
+
+ ctx->rate = rate;
+ mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool);
+ mempool = ALIGN_PTR(mempool, 16);
+
+ ctx->channels = (jar_xm_channel_context_t*)mempool;
+ mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t);
+ mempool = ALIGN_PTR(mempool, 16);
+
+ ctx->global_volume = 1.f;
+ ctx->amplification = .25f; /* XXX: some bad modules may still clip. Find out something better. */
+
+#if JAR_XM_RAMPING
+ ctx->volume_ramp = (1.f / 128.f);
+ ctx->panning_ramp = (1.f / 128.f);
+#endif
+
+ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
+ jar_xm_channel_context_t* ch = ctx->channels + i;
+
+ ch->ping = true;
+ ch->vibrato_waveform = jar_xm_SINE_WAVEFORM;
+ ch->vibrato_waveform_retrigger = true;
+ ch->tremolo_waveform = jar_xm_SINE_WAVEFORM;
+ ch->tremolo_waveform_retrigger = true;
+
+ ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f;
+ ch->panning = ch->panning_envelope_panning = .5f;
+ ch->actual_volume = .0f;
+ ch->actual_panning = .5f;
+ }
+
+ mempool = ALIGN_PTR(mempool, 16);
+ ctx->row_loop_count = (uint8_t*)mempool;
+ mempool += MAX_NUM_ROWS * sizeof(uint8_t);
+
+#if JAR_XM_DEFENSIVE
+ if((ret = jar_xm_check_sanity_postload(ctx))) {
+ DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret);
+ jar_xm_free_context(ctx);
+ return 1;
+ }
+#endif
+
+ return 0;
+}
+
+void jar_xm_free_context(jar_xm_context_t* ctx) {
+ JARXM_FREE(ctx->allocated_memory);
+}
+
+void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt) {
+ ctx->max_loop_count = loopcnt;
+}
+
+uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx) {
+ return ctx->loop_count;
+}
+
+bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t channel, bool mute) {
+ bool old = ctx->channels[channel - 1].muted;
+ ctx->channels[channel - 1].muted = mute;
+ return old;
+}
+
+bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t instr, bool mute) {
+ bool old = ctx->module.instruments[instr - 1].muted;
+ ctx->module.instruments[instr - 1].muted = mute;
+ return old;
+}
+
+
+
+const char* jar_xm_get_module_name(jar_xm_context_t* ctx) {
+ return ctx->module.name;
+}
+
+const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx) {
+ return ctx->module.trackername;
+}
+
+
+
+uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx) {
+ return ctx->module.num_channels;
+}
+
+uint16_t jar_xm_get_module_length(jar_xm_context_t* ctx) {
+ return ctx->module.length;
+}
+
+uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx) {
+ return ctx->module.num_patterns;
+}
+
+uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t pattern) {
+ return ctx->module.patterns[pattern].num_rows;
+}
+
+uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx) {
+ return ctx->module.num_instruments;
+}
+
+uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t instrument) {
+ return ctx->module.instruments[instrument - 1].num_samples;
+}
+
+
+
+void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo) {
+ if(bpm) *bpm = ctx->bpm;
+ if(tempo) *tempo = ctx->tempo;
+}
+
+void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples) {
+ if(pattern_index) *pattern_index = ctx->current_table_index;
+ if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index];
+ if(row) *row = ctx->current_row;
+ if(samples) *samples = ctx->generated_samples;
+}
+
+uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t instr) {
+ return ctx->module.instruments[instr - 1].latest_trigger;
+}
+
+uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample) {
+ return ctx->module.instruments[instr - 1].samples[sample].latest_trigger;
+}
+
+uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t chn) {
+ return ctx->channels[chn - 1].latest_trigger;
+}
+
+/* .xm files are little-endian. (XXX: Are they really?) */
+
+/* Bounded reader macros.
+ * If we attempt to read the buffer out-of-bounds, pretend that the buffer is
+ * infinitely padded with zeroes.
+ */
+#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0)
+#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8))
+#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16))
+#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset)
+
+static void memcpy_pad(void* dst, size_t dst_len, const void* src, size_t src_len, size_t offset) {
+ uint8_t* dst_c = dst;
+ const uint8_t* src_c = src;
+
+ /* how many bytes can be copied without overrunning `src` */
+ size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0;
+ copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes;
+
+ memcpy(dst_c, src_c + offset, copy_bytes);
+ /* padded bytes */
+ memset(dst_c + copy_bytes, 0, dst_len - copy_bytes);
+}
+
+#if JAR_XM_DEFENSIVE
+
+int jar_xm_check_sanity_preload(const char* module, size_t module_length) {
+ if(module_length < 60) {
+ return 4;
+ }
+
+ if(memcmp("Extended Module: ", module, 17) != 0) {
+ return 1;
+ }
+
+ if(module[37] != 0x1A) {
+ return 2;
+ }
+
+ if(module[59] != 0x01 || module[58] != 0x04) {
+ /* Not XM 1.04 */
+ return 3;
+ }
+
+ return 0;
+}
+
+int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) {
+ /* @todo: plenty of stuff to do here… */
+
+ /* Check the POT */
+ for(uint8_t i = 0; i < ctx->module.length; ++i) {
+ if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) {
+ if(i+1 == ctx->module.length && ctx->module.length > 1) {
+ /* Cheap fix */
+ --ctx->module.length;
+ DEBUG("trimming invalid POT at pos %X", i);
+ } else {
+ DEBUG("module has invalid POT, pos %X references nonexistent pattern %X",
+ i,
+ ctx->module.pattern_table[i]);
+ return 1;
+ }
+ }
+ }
+
+ return 0;
+}
+
+#endif
+
+size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) {
+ size_t memory_needed = 0;
+ size_t offset = 60; /* Skip the first header */
+ uint16_t num_channels;
+ uint16_t num_patterns;
+ uint16_t num_instruments;
+
+ /* Read the module header */
+ num_channels = READ_U16(offset + 8);
+
+ num_patterns = READ_U16(offset + 10);
+ memory_needed += num_patterns * sizeof(jar_xm_pattern_t);
+ memory_needed = ALIGN(memory_needed, 16);
+
+ num_instruments = READ_U16(offset + 12);
+ memory_needed += num_instruments * sizeof(jar_xm_instrument_t);
+ memory_needed = ALIGN(memory_needed, 16);
+
+ memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */
+
+ /* Header size */
+ offset += READ_U32(offset);
+
+ /* Read pattern headers */
+ for(uint16_t i = 0; i < num_patterns; ++i) {
+ uint16_t num_rows;
+
+ num_rows = READ_U16(offset + 5);
+ memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t);
+
+ /* Pattern header length + packed pattern data size */
+ offset += READ_U32(offset) + READ_U16(offset + 7);
+ }
+ memory_needed = ALIGN(memory_needed, 16);
+
+ /* Read instrument headers */
+ for(uint16_t i = 0; i < num_instruments; ++i) {
+ uint16_t num_samples;
+ uint32_t sample_header_size = 0;
+ uint32_t sample_size_aggregate = 0;
+
+ num_samples = READ_U16(offset + 27);
+ memory_needed += num_samples * sizeof(jar_xm_sample_t);
+
+ if(num_samples > 0) {
+ sample_header_size = READ_U32(offset + 29);
+ }
+
+ /* Instrument header size */
+ offset += READ_U32(offset);
+
+ for(uint16_t j = 0; j < num_samples; ++j) {
+ uint32_t sample_size;
+ uint8_t flags;
+
+ sample_size = READ_U32(offset);
+ flags = READ_U8(offset + 14);
+ sample_size_aggregate += sample_size;
+
+ if(flags & (1 << 4)) {
+ /* 16 bit sample */
+ memory_needed += sample_size * (sizeof(float) >> 1);
+ } else {
+ /* 8 bit sample */
+ memory_needed += sample_size * sizeof(float);
+ }
+
+ offset += sample_header_size;
+ }
+
+ offset += sample_size_aggregate;
+ }
+
+ memory_needed += num_channels * sizeof(jar_xm_channel_context_t);
+ memory_needed += sizeof(jar_xm_context_t);
+
+ return memory_needed;
+}
+
+char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) {
+ size_t offset = 0;
+ jar_xm_module_t* mod = &(ctx->module);
+
+ /* Read XM header */
+ READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH);
+ READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH);
+ offset += 60;
+
+ /* Read module header */
+ uint32_t header_size = READ_U32(offset);
+
+ mod->length = READ_U16(offset + 4);
+ mod->restart_position = READ_U16(offset + 6);
+ mod->num_channels = READ_U16(offset + 8);
+ mod->num_patterns = READ_U16(offset + 10);
+ mod->num_instruments = READ_U16(offset + 12);
+
+ mod->patterns = (jar_xm_pattern_t*)mempool;
+ mempool += mod->num_patterns * sizeof(jar_xm_pattern_t);
+ mempool = ALIGN_PTR(mempool, 16);
+
+ mod->instruments = (jar_xm_instrument_t*)mempool;
+ mempool += mod->num_instruments * sizeof(jar_xm_instrument_t);
+ mempool = ALIGN_PTR(mempool, 16);
+
+ uint16_t flags = READ_U32(offset + 14);
+ mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES;
+
+ ctx->tempo = READ_U16(offset + 16);
+ ctx->bpm = READ_U16(offset + 18);
+
+ READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH);
+ offset += header_size;
+
+ /* Read patterns */
+ for(uint16_t i = 0; i < mod->num_patterns; ++i) {
+ uint16_t packed_patterndata_size = READ_U16(offset + 7);
+ jar_xm_pattern_t* pat = mod->patterns + i;
+
+ pat->num_rows = READ_U16(offset + 5);
+
+ pat->slots = (jar_xm_pattern_slot_t*)mempool;
+ mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t);
+
+ /* Pattern header length */
+ offset += READ_U32(offset);
+
+ if(packed_patterndata_size == 0) {
+ /* No pattern data is present */
+ memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels);
+ } else {
+ /* This isn't your typical for loop */
+ for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) {
+ uint8_t note = READ_U8(offset + j);
+ jar_xm_pattern_slot_t* slot = pat->slots + k;
+
+ if(note & (1 << 7)) {
+ /* MSB is set, this is a compressed packet */
+ ++j;
+
+ if(note & (1 << 0)) {
+ /* Note follows */
+ slot->note = READ_U8(offset + j);
+ ++j;
+ } else {
+ slot->note = 0;
+ }
+
+ if(note & (1 << 1)) {
+ /* Instrument follows */
+ slot->instrument = READ_U8(offset + j);
+ ++j;
+ } else {
+ slot->instrument = 0;
+ }
+
+ if(note & (1 << 2)) {
+ /* Volume column follows */
+ slot->volume_column = READ_U8(offset + j);
+ ++j;
+ } else {
+ slot->volume_column = 0;
+ }
+
+ if(note & (1 << 3)) {
+ /* Effect follows */
+ slot->effect_type = READ_U8(offset + j);
+ ++j;
+ } else {
+ slot->effect_type = 0;
+ }
+
+ if(note & (1 << 4)) {
+ /* Effect parameter follows */
+ slot->effect_param = READ_U8(offset + j);
+ ++j;
+ } else {
+ slot->effect_param = 0;
+ }
+ } else {
+ /* Uncompressed packet */
+ slot->note = note;
+ slot->instrument = READ_U8(offset + j + 1);
+ slot->volume_column = READ_U8(offset + j + 2);
+ slot->effect_type = READ_U8(offset + j + 3);
+ slot->effect_param = READ_U8(offset + j + 4);
+ j += 5;
+ }
+ }
+ }
+
+ offset += packed_patterndata_size;
+ }
+ mempool = ALIGN_PTR(mempool, 16);
+
+ /* Read instruments */
+ for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) {
+ uint32_t sample_header_size = 0;
+ jar_xm_instrument_t* instr = mod->instruments + i;
+
+ READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH);
+ instr->num_samples = READ_U16(offset + 27);
+
+ if(instr->num_samples > 0) {
+ /* Read extra header properties */
+ sample_header_size = READ_U32(offset + 29);
+ READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES);
+
+ instr->volume_envelope.num_points = READ_U8(offset + 225);
+ instr->panning_envelope.num_points = READ_U8(offset + 226);
+
+ for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) {
+ instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j);
+ instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2);
+ }
+
+ for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) {
+ instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j);
+ instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2);
+ }
+
+ instr->volume_envelope.sustain_point = READ_U8(offset + 227);
+ instr->volume_envelope.loop_start_point = READ_U8(offset + 228);
+ instr->volume_envelope.loop_end_point = READ_U8(offset + 229);
+
+ instr->panning_envelope.sustain_point = READ_U8(offset + 230);
+ instr->panning_envelope.loop_start_point = READ_U8(offset + 231);
+ instr->panning_envelope.loop_end_point = READ_U8(offset + 232);
+
+ uint8_t flags = READ_U8(offset + 233);
+ instr->volume_envelope.enabled = flags & (1 << 0);
+ instr->volume_envelope.sustain_enabled = flags & (1 << 1);
+ instr->volume_envelope.loop_enabled = flags & (1 << 2);
+
+ flags = READ_U8(offset + 234);
+ instr->panning_envelope.enabled = flags & (1 << 0);
+ instr->panning_envelope.sustain_enabled = flags & (1 << 1);
+ instr->panning_envelope.loop_enabled = flags & (1 << 2);
+
+ instr->vibrato_type = READ_U8(offset + 235);
+ if(instr->vibrato_type == 2) {
+ instr->vibrato_type = 1;
+ } else if(instr->vibrato_type == 1) {
+ instr->vibrato_type = 2;
+ }
+ instr->vibrato_sweep = READ_U8(offset + 236);
+ instr->vibrato_depth = READ_U8(offset + 237);
+ instr->vibrato_rate = READ_U8(offset + 238);
+ instr->volume_fadeout = READ_U16(offset + 239);
+
+ instr->samples = (jar_xm_sample_t*)mempool;
+ mempool += instr->num_samples * sizeof(jar_xm_sample_t);
+ } else {
+ instr->samples = NULL;
+ }
+
+ /* Instrument header size */
+ offset += READ_U32(offset);
+
+ for(uint16_t j = 0; j < instr->num_samples; ++j) {
+ /* Read sample header */
+ jar_xm_sample_t* sample = instr->samples + j;
+
+ sample->length = READ_U32(offset);
+ sample->loop_start = READ_U32(offset + 4);
+ sample->loop_length = READ_U32(offset + 8);
+ sample->loop_end = sample->loop_start + sample->loop_length;
+ sample->volume = (float)READ_U8(offset + 12) / (float)0x40;
+ sample->finetune = (int8_t)READ_U8(offset + 13);
+
+ uint8_t flags = READ_U8(offset + 14);
+ if((flags & 3) == 0) {
+ sample->loop_type = jar_xm_NO_LOOP;
+ } else if((flags & 3) == 1) {
+ sample->loop_type = jar_xm_FORWARD_LOOP;
+ } else {
+ sample->loop_type = jar_xm_PING_PONG_LOOP;
+ }
+
+ sample->bits = (flags & (1 << 4)) ? 16 : 8;
+
+ sample->panning = (float)READ_U8(offset + 15) / (float)0xFF;
+ sample->relative_note = (int8_t)READ_U8(offset + 16);
+ READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH);
+ sample->data = (float*)mempool;
+
+ if(sample->bits == 16) {
+ /* 16 bit sample */
+ mempool += sample->length * (sizeof(float) >> 1);
+ sample->loop_start >>= 1;
+ sample->loop_length >>= 1;
+ sample->loop_end >>= 1;
+ sample->length >>= 1;
+ } else {
+ /* 8 bit sample */
+ mempool += sample->length * sizeof(float);
+ }
+
+ offset += sample_header_size;
+ }
+
+ for(uint16_t j = 0; j < instr->num_samples; ++j) {
+ /* Read sample data */
+ jar_xm_sample_t* sample = instr->samples + j;
+ uint32_t length = sample->length;
+
+ if(sample->bits == 16) {
+ int16_t v = 0;
+ for(uint32_t k = 0; k < length; ++k) {
+ v = v + (int16_t)READ_U16(offset + (k << 1));
+ sample->data[k] = (float)v / (float)(1 << 15);
+ }
+ offset += sample->length << 1;
+ } else {
+ int8_t v = 0;
+ for(uint32_t k = 0; k < length; ++k) {
+ v = v + (int8_t)READ_U8(offset + k);
+ sample->data[k] = (float)v / (float)(1 << 7);
+ }
+ offset += sample->length;
+ }
+ }
+ }
+
+ return mempool;
+}
+
+//-------------------------------------------------------------------------------
+//THE FOLLOWING IS FOR PLAYING
+//-------------------------------------------------------------------------------
+
+/* ----- Static functions ----- */
+
+static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t);
+static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*);
+static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
+static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
+static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t);
+static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*);
+static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float);
+static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t);
+static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t);
+
+static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t);
+static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*);
+static void jar_xm_envelopes(jar_xm_channel_context_t*);
+
+static float jar_xm_linear_period(float);
+static float jar_xm_linear_frequency(float);
+static float jar_xm_amiga_period(float);
+static float jar_xm_amiga_frequency(float);
+static float jar_xm_period(jar_xm_context_t*, float);
+static float jar_xm_frequency(jar_xm_context_t*, float, float);
+static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*);
+
+static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*);
+static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags);
+static void jar_xm_cut_note(jar_xm_channel_context_t*);
+static void jar_xm_key_off(jar_xm_channel_context_t*);
+
+static void jar_xm_post_pattern_change(jar_xm_context_t*);
+static void jar_xm_row(jar_xm_context_t*);
+static void jar_xm_tick(jar_xm_context_t*);
+
+static float jar_xm_next_of_sample(jar_xm_channel_context_t*);
+static void jar_xm_sample(jar_xm_context_t*, float*, float*);
+
+/* ----- Other oddities ----- */
+
+#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0)
+#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1)
+#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2)
+
+static const uint16_t amiga_frequencies[] = {
+ 1712, 1616, 1525, 1440, /* C-2, C#2, D-2, D#2 */
+ 1357, 1281, 1209, 1141, /* E-2, F-2, F#2, G-2 */
+ 1077, 1017, 961, 907, /* G#2, A-2, A#2, B-2 */
+ 856, /* C-3 */
+};
+
+static const float multi_retrig_add[] = {
+ 0.f, -1.f, -2.f, -4.f, /* 0, 1, 2, 3 */
+ -8.f, -16.f, 0.f, 0.f, /* 4, 5, 6, 7 */
+ 0.f, 1.f, 2.f, 4.f, /* 8, 9, A, B */
+ 8.f, 16.f, 0.f, 0.f /* C, D, E, F */
+};
+
+static const float multi_retrig_multiply[] = {
+ 1.f, 1.f, 1.f, 1.f, /* 0, 1, 2, 3 */
+ 1.f, 1.f, .6666667f, .5f, /* 4, 5, 6, 7 */
+ 1.f, 1.f, 1.f, 1.f, /* 8, 9, A, B */
+ 1.f, 1.f, 1.5f, 2.f /* C, D, E, F */
+};
+
+#define jar_xm_CLAMP_UP1F(vol, limit) do { \
+ if((vol) > (limit)) (vol) = (limit); \
+ } while(0)
+#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f)
+
+#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \
+ if((vol) < (limit)) (vol) = (limit); \
+ } while(0)
+#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f)
+
+#define jar_xm_CLAMP2F(vol, up, down) do { \
+ if((vol) > (up)) (vol) = (up); \
+ else if((vol) < (down)) (vol) = (down); \
+ } while(0)
+#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f)
+
+#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \
+ if((val) > (goal)) { \
+ (val) -= (incr); \
+ jar_xm_CLAMP_DOWN1F((val), (goal)); \
+ } else if((val) < (goal)) { \
+ (val) += (incr); \
+ jar_xm_CLAMP_UP1F((val), (goal)); \
+ } \
+ } while(0)
+
+#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u)))
+#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u)))
+
+#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \
+ || (s)->effect_type == 5 \
+ || ((s)->volume_column >> 4) == 0xF)
+#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \
+ && (s)->effect_param != 0)
+#define HAS_VIBRATO(s) ((s)->effect_type == 4 \
+ || (s)->effect_param == 6 \
+ || ((s)->volume_column >> 4) == 0xB)
+#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97)
+
+/* ----- Function definitions ----- */
+
+static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) {
+ static unsigned int next_rand = 24492;
+ step %= 0x40;
+
+ switch(waveform) {
+
+ case jar_xm_SINE_WAVEFORM:
+ /* Why not use a table? For saving space, and because there's
+ * very very little actual performance gain. */
+ return -sinf(2.f * 3.141592f * (float)step / (float)0x40);
+
+ case jar_xm_RAMP_DOWN_WAVEFORM:
+ /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */
+ return (float)(0x20 - step) / 0x20;
+
+ case jar_xm_SQUARE_WAVEFORM:
+ /* Square with a 50% duty */
+ return (step >= 0x20) ? 1.f : -1.f;
+
+ case jar_xm_RANDOM_WAVEFORM:
+ /* Use the POSIX.1-2001 example, just to be deterministic
+ * across different machines */
+ next_rand = next_rand * 1103515245 + 12345;
+ return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f;
+
+ case jar_xm_RAMP_UP_WAVEFORM:
+ /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */
+ return (float)(step - 0x20) / 0x20;
+
+ default:
+ break;
+
+ }
+
+ return .0f;
+}
+
+static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
+ if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return;
+ jar_xm_instrument_t* instr = ch->instrument;
+ float sweep = 1.f;
+
+ if(ch->autovibrato_ticks < instr->vibrato_sweep) {
+ /* No idea if this is correct, but it sounds close enough… */
+ sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep);
+ }
+
+ unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2;
+ ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step)
+ * (float)instr->vibrato_depth / (float)0xF * sweep;
+ jar_xm_update_frequency(ctx, ch);
+}
+
+static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
+ unsigned int step = pos * (param >> 4);
+ ch->vibrato_note_offset =
+ 2.f
+ * jar_xm_waveform(ch->vibrato_waveform, step)
+ * (float)(param & 0x0F) / (float)0xF;
+ jar_xm_update_frequency(ctx, ch);
+}
+
+static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) {
+ unsigned int step = pos * (param >> 4);
+ /* Not so sure about this, it sounds correct by ear compared with
+ * MilkyTracker, but it could come from other bugs */
+ ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step)
+ * (float)(param & 0x0F) / (float)0xF;
+}
+
+static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) {
+ switch(tick % 3) {
+ case 0:
+ ch->arp_in_progress = false;
+ ch->arp_note_offset = 0;
+ break;
+ case 2:
+ ch->arp_in_progress = true;
+ ch->arp_note_offset = param >> 4;
+ break;
+ case 1:
+ ch->arp_in_progress = true;
+ ch->arp_note_offset = param & 0x0F;
+ break;
+ }
+
+ jar_xm_update_frequency(ctx, ch);
+}
+
+static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
+ /* 3xx called without a note, wait until we get an actual
+ * target note. */
+ if(ch->tone_portamento_target_period == 0.f) return;
+
+ if(ch->period != ch->tone_portamento_target_period) {
+ jar_xm_SLIDE_TOWARDS(ch->period,
+ ch->tone_portamento_target_period,
+ (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ?
+ 4.f : 1.f) * ch->tone_portamento_param
+ );
+ jar_xm_update_frequency(ctx, ch);
+ }
+}
+
+static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) {
+ /* Don't ask about the 4.f coefficient. I found mention of it
+ * nowhere. Found by ear™. */
+ if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {
+ period_offset *= 4.f;
+ }
+
+ ch->period += period_offset;
+ jar_xm_CLAMP_DOWN(ch->period);
+ /* XXX: upper bound of period ? */
+
+ jar_xm_update_frequency(ctx, ch);
+}
+
+static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
+ float f;
+
+ if((rawval & 0xF0) && (rawval & 0x0F)) {
+ /* Illegal state */
+ return;
+ }
+
+ if(rawval & 0xF0) {
+ /* Slide right */
+ f = (float)(rawval >> 4) / (float)0xFF;
+ ch->panning += f;
+ jar_xm_CLAMP_UP(ch->panning);
+ } else {
+ /* Slide left */
+ f = (float)(rawval & 0x0F) / (float)0xFF;
+ ch->panning -= f;
+ jar_xm_CLAMP_DOWN(ch->panning);
+ }
+}
+
+static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) {
+ float f;
+
+ if((rawval & 0xF0) && (rawval & 0x0F)) {
+ /* Illegal state */
+ return;
+ }
+
+ if(rawval & 0xF0) {
+ /* Slide up */
+ f = (float)(rawval >> 4) / (float)0x40;
+ ch->volume += f;
+ jar_xm_CLAMP_UP(ch->volume);
+ } else {
+ /* Slide down */
+ f = (float)(rawval & 0x0F) / (float)0x40;
+ ch->volume -= f;
+ jar_xm_CLAMP_DOWN(ch->volume);
+ }
+}
+
+static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) {
+ /* Linear interpolation between two envelope points */
+ if(pos <= a->frame) return a->value;
+ else if(pos >= b->frame) return b->value;
+ else {
+ float p = (float)(pos - a->frame) / (float)(b->frame - a->frame);
+ return a->value * (1 - p) + b->value * p;
+ }
+}
+
+static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) {
+ /* Loop if necessary */
+ if(ctx->current_table_index >= ctx->module.length) {
+ ctx->current_table_index = ctx->module.restart_position;
+ }
+}
+
+static float jar_xm_linear_period(float note) {
+ return 7680.f - note * 64.f;
+}
+
+static float jar_xm_linear_frequency(float period) {
+ return 8363.f * powf(2.f, (4608.f - period) / 768.f);
+}
+
+static float jar_xm_amiga_period(float note) {
+ unsigned int intnote = note;
+ uint8_t a = intnote % 12;
+ int8_t octave = note / 12.f - 2;
+ uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1];
+
+ if(octave > 0) {
+ p1 >>= octave;
+ p2 >>= octave;
+ } else if(octave < 0) {
+ p1 <<= (-octave);
+ p2 <<= (-octave);
+ }
+
+ return jar_xm_LERP(p1, p2, note - intnote);
+}
+
+static float jar_xm_amiga_frequency(float period) {
+ if(period == .0f) return .0f;
+
+ /* This is the PAL value. No reason to choose this one over the
+ * NTSC value. */
+ return 7093789.2f / (period * 2.f);
+}
+
+static float jar_xm_period(jar_xm_context_t* ctx, float note) {
+ switch(ctx->module.frequency_type) {
+ case jar_xm_LINEAR_FREQUENCIES:
+ return jar_xm_linear_period(note);
+ case jar_xm_AMIGA_FREQUENCIES:
+ return jar_xm_amiga_period(note);
+ }
+ return .0f;
+}
+
+static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) {
+ uint8_t a;
+ int8_t octave;
+ float note;
+ uint16_t p1, p2;
+
+ switch(ctx->module.frequency_type) {
+
+ case jar_xm_LINEAR_FREQUENCIES:
+ return jar_xm_linear_frequency(period - 64.f * note_offset);
+
+ case jar_xm_AMIGA_FREQUENCIES:
+ if(note_offset == 0) {
+ /* A chance to escape from insanity */
+ return jar_xm_amiga_frequency(period);
+ }
+
+ /* FIXME: this is very crappy at best */
+ a = octave = 0;
+
+ /* Find the octave of the current period */
+ if(period > amiga_frequencies[0]) {
+ --octave;
+ while(period > (amiga_frequencies[0] << (-octave))) --octave;
+ } else if(period < amiga_frequencies[12]) {
+ ++octave;
+ while(period < (amiga_frequencies[12] >> octave)) ++octave;
+ }
+
+ /* Find the smallest note closest to the current period */
+ for(uint8_t i = 0; i < 12; ++i) {
+ p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1];
+
+ if(octave > 0) {
+ p1 >>= octave;
+ p2 >>= octave;
+ } else if(octave < 0) {
+ p1 <<= (-octave);
+ p2 <<= (-octave);
+ }
+
+ if(p2 <= period && period <= p1) {
+ a = i;
+ break;
+ }
+ }
+
+ if(JAR_XM_DEBUG && (p1 < period || p2 > period)) {
+ DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1);
+ }
+
+ note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period);
+
+ return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset));
+
+ }
+
+ return .0f;
+}
+
+static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) {
+ ch->frequency = jar_xm_frequency(
+ ctx, ch->period,
+ (ch->arp_note_offset > 0 ? ch->arp_note_offset : (
+ ch->vibrato_note_offset + ch->autovibrato_note_offset
+ ))
+ );
+ ch->step = ch->frequency / ctx->rate;
+}
+
+static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch,
+ jar_xm_pattern_slot_t* s) {
+ if(s->instrument > 0) {
+ if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) {
+ /* Tone portamento in effect, unclear stuff happens */
+ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
+ } else if(s->instrument > ctx->module.num_instruments) {
+ /* Invalid instrument, Cut current note */
+ jar_xm_cut_note(ch);
+ ch->instrument = NULL;
+ ch->sample = NULL;
+ } else {
+ ch->instrument = ctx->module.instruments + (s->instrument - 1);
+ if(s->note == 0 && ch->sample != NULL) {
+ /* Ghost instrument, trigger note */
+ /* Sample position is kept, but envelopes are reset */
+ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION);
+ }
+ }
+ }
+
+ if(NOTE_IS_VALID(s->note)) {
+ /* Yes, the real note number is s->note -1. Try finding
+ * THAT in any of the specs! :-) */
+
+ jar_xm_instrument_t* instr = ch->instrument;
+
+ if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) {
+ /* Tone portamento in effect */
+ ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f;
+ ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note);
+ } else if(instr == NULL || ch->instrument->num_samples == 0) {
+ /* Bad instrument */
+ jar_xm_cut_note(ch);
+ } else {
+ if(instr->sample_of_notes[s->note - 1] < instr->num_samples) {
+#if JAR_XM_RAMPING
+ for(unsigned int z = 0; z < jar_xm_SAMPLE_RAMPING_POINTS; ++z) {
+ ch->end_of_previous_sample[z] = jar_xm_next_of_sample(ch);
+ }
+ ch->frame_count = 0;
+#endif
+ ch->sample = instr->samples + instr->sample_of_notes[s->note - 1];
+ ch->orig_note = ch->note = s->note + ch->sample->relative_note
+ + ch->sample->finetune / 128.f - 1.f;
+ if(s->instrument > 0) {
+ jar_xm_trigger_note(ctx, ch, 0);
+ } else {
+ /* Ghost note: keep old volume */
+ jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME);
+ }
+ } else {
+ /* Bad sample */
+ jar_xm_cut_note(ch);
+ }
+ }
+ } else if(s->note == 97) {
+ /* Key Off */
+ jar_xm_key_off(ch);
+ }
+
+ switch(s->volume_column >> 4) {
+
+ case 0x5:
+ if(s->volume_column > 0x50) break;
+ case 0x1:
+ case 0x2:
+ case 0x3:
+ case 0x4:
+ /* Set volume */
+ ch->volume = (float)(s->volume_column - 0x10) / (float)0x40;
+ break;
+
+ case 0x8: /* Fine volume slide down */
+ jar_xm_volume_slide(ch, s->volume_column & 0x0F);
+ break;
+
+ case 0x9: /* Fine volume slide up */
+ jar_xm_volume_slide(ch, s->volume_column << 4);
+ break;
+
+ case 0xA: /* Set vibrato speed */
+ ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((s->volume_column & 0x0F) << 4);
+ break;
+
+ case 0xC: /* Set panning */
+ ch->panning = (float)(
+ ((s->volume_column & 0x0F) << 4) | (s->volume_column & 0x0F)
+ ) / (float)0xFF;
+ break;
+
+ case 0xF: /* Tone portamento */
+ if(s->volume_column & 0x0F) {
+ ch->tone_portamento_param = ((s->volume_column & 0x0F) << 4)
+ | (s->volume_column & 0x0F);
+ }
+ break;
+
+ default:
+ break;
+
+ }
+
+ switch(s->effect_type) {
+
+ case 1: /* 1xx: Portamento up */
+ if(s->effect_param > 0) {
+ ch->portamento_up_param = s->effect_param;
+ }
+ break;
+
+ case 2: /* 2xx: Portamento down */
+ if(s->effect_param > 0) {
+ ch->portamento_down_param = s->effect_param;
+ }
+ break;
+
+ case 3: /* 3xx: Tone portamento */
+ if(s->effect_param > 0) {
+ ch->tone_portamento_param = s->effect_param;
+ }
+ break;
+
+ case 4: /* 4xy: Vibrato */
+ if(s->effect_param & 0x0F) {
+ /* Set vibrato depth */
+ ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F);
+ }
+ if(s->effect_param >> 4) {
+ /* Set vibrato speed */
+ ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F);
+ }
+ break;
+
+ case 5: /* 5xy: Tone portamento + Volume slide */
+ if(s->effect_param > 0) {
+ ch->volume_slide_param = s->effect_param;
+ }
+ break;
+
+ case 6: /* 6xy: Vibrato + Volume slide */
+ if(s->effect_param > 0) {
+ ch->volume_slide_param = s->effect_param;
+ }
+ break;
+
+ case 7: /* 7xy: Tremolo */
+ if(s->effect_param & 0x0F) {
+ /* Set tremolo depth */
+ ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F);
+ }
+ if(s->effect_param >> 4) {
+ /* Set tremolo speed */
+ ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F);
+ }
+ break;
+
+ case 8: /* 8xx: Set panning */
+ ch->panning = (float)s->effect_param / (float)0xFF;
+ break;
+
+ case 9: /* 9xx: Sample offset */
+ if(ch->sample != NULL && NOTE_IS_VALID(s->note)) {
+ uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8);
+ if(final_offset >= ch->sample->length) {
+ /* Pretend the sample dosen't loop and is done playing */
+ ch->sample_position = -1;
+ break;
+ }
+ ch->sample_position = final_offset;
+ }
+ break;
+
+ case 0xA: /* Axy: Volume slide */
+ if(s->effect_param > 0) {
+ ch->volume_slide_param = s->effect_param;
+ }
+ break;
+
+ case 0xB: /* Bxx: Position jump */
+ if(s->effect_param < ctx->module.length) {
+ ctx->position_jump = true;
+ ctx->jump_dest = s->effect_param;
+ }
+ break;
+
+ case 0xC: /* Cxx: Set volume */
+ ch->volume = (float)((s->effect_param > 0x40)
+ ? 0x40 : s->effect_param) / (float)0x40;
+ break;
+
+ case 0xD: /* Dxx: Pattern break */
+ /* Jump after playing this line */
+ ctx->pattern_break = true;
+ ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F);
+ break;
+
+ case 0xE: /* EXy: Extended command */
+ switch(s->effect_param >> 4) {
+
+ case 1: /* E1y: Fine portamento up */
+ if(s->effect_param & 0x0F) {
+ ch->fine_portamento_up_param = s->effect_param & 0x0F;
+ }
+ jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param);
+ break;
+
+ case 2: /* E2y: Fine portamento down */
+ if(s->effect_param & 0x0F) {
+ ch->fine_portamento_down_param = s->effect_param & 0x0F;
+ }
+ jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param);
+ break;
+
+ case 4: /* E4y: Set vibrato control */
+ ch->vibrato_waveform = s->effect_param & 3;
+ ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1);
+ break;
+
+ case 5: /* E5y: Set finetune */
+ if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) {
+ ch->note = ch->current->note + ch->sample->relative_note +
+ (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f;
+ ch->period = jar_xm_period(ctx, ch->note);
+ jar_xm_update_frequency(ctx, ch);
+ }
+ break;
+
+ case 6: /* E6y: Pattern loop */
+ if(s->effect_param & 0x0F) {
+ if((s->effect_param & 0x0F) == ch->pattern_loop_count) {
+ /* Loop is over */
+ ch->pattern_loop_count = 0;
+ break;
+ }
+
+ /* Jump to the beginning of the loop */
+ ch->pattern_loop_count++;
+ ctx->position_jump = true;
+ ctx->jump_row = ch->pattern_loop_origin;
+ ctx->jump_dest = ctx->current_table_index;
+ } else {
+ /* Set loop start point */
+ ch->pattern_loop_origin = ctx->current_row;
+ /* Replicate FT2 E60 bug */
+ ctx->jump_row = ch->pattern_loop_origin;
+ }
+ break;
+
+ case 7: /* E7y: Set tremolo control */
+ ch->tremolo_waveform = s->effect_param & 3;
+ ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1);
+ break;
+
+ case 0xA: /* EAy: Fine volume slide up */
+ if(s->effect_param & 0x0F) {
+ ch->fine_volume_slide_param = s->effect_param & 0x0F;
+ }
+ jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4);
+ break;
+
+ case 0xB: /* EBy: Fine volume slide down */
+ if(s->effect_param & 0x0F) {
+ ch->fine_volume_slide_param = s->effect_param & 0x0F;
+ }
+ jar_xm_volume_slide(ch, ch->fine_volume_slide_param);
+ break;
+
+ case 0xD: /* EDy: Note delay */
+ /* XXX: figure this out better. EDx triggers
+ * the note even when there no note and no
+ * instrument. But ED0 acts like like a ghost
+ * note, EDx (x ≠ 0) does not. */
+ if(s->note == 0 && s->instrument == 0) {
+ unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME;
+
+ if(ch->current->effect_param & 0x0F) {
+ ch->note = ch->orig_note;
+ jar_xm_trigger_note(ctx, ch, flags);
+ } else {
+ jar_xm_trigger_note(
+ ctx, ch,
+ flags
+ | jar_xm_TRIGGER_KEEP_PERIOD
+ | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION
+ );
+ }
+ }
+ break;
+
+ case 0xE: /* EEy: Pattern delay */
+ ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo;
+ break;
+
+ default:
+ break;
+
+ }
+ break;
+
+ case 0xF: /* Fxx: Set tempo/BPM */
+ if(s->effect_param > 0) {
+ if(s->effect_param <= 0x1F) {
+ ctx->tempo = s->effect_param;
+ } else {
+ ctx->bpm = s->effect_param;
+ }
+ }
+ break;
+
+ case 16: /* Gxx: Set global volume */
+ ctx->global_volume = (float)((s->effect_param > 0x40)
+ ? 0x40 : s->effect_param) / (float)0x40;
+ break;
+
+ case 17: /* Hxy: Global volume slide */
+ if(s->effect_param > 0) {
+ ch->global_volume_slide_param = s->effect_param;
+ }
+ break;
+
+ case 21: /* Lxx: Set envelope position */
+ ch->volume_envelope_frame_count = s->effect_param;
+ ch->panning_envelope_frame_count = s->effect_param;
+ break;
+
+ case 25: /* Pxy: Panning slide */
+ if(s->effect_param > 0) {
+ ch->panning_slide_param = s->effect_param;
+ }
+ break;
+
+ case 27: /* Rxy: Multi retrig note */
+ if(s->effect_param > 0) {
+ if((s->effect_param >> 4) == 0) {
+ /* Keep previous x value */
+ ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F);
+ } else {
+ ch->multi_retrig_param = s->effect_param;
+ }
+ }
+ break;
+
+ case 29: /* Txy: Tremor */
+ if(s->effect_param > 0) {
+ /* Tremor x and y params do not appear to be separately
+ * kept in memory, unlike Rxy */
+ ch->tremor_param = s->effect_param;
+ }
+ break;
+
+ case 33: /* Xxy: Extra stuff */
+ switch(s->effect_param >> 4) {
+ case 1: /* X1y: Extra fine portamento up */
+ if(s->effect_param & 0x0F) {
+ ch->extra_fine_portamento_up_param = s->effect_param & 0x0F;
+ }
+ jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param);
+ break;
+
+ case 2: /* X2y: Extra fine portamento down */
+ if(s->effect_param & 0x0F) {
+ ch->extra_fine_portamento_down_param = s->effect_param & 0x0F;
+ }
+ jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param);
+ break;
+
+ default:
+ break;
+
+ }
+ break;
+
+ default:
+ break;
+
+ }
+}
+
+static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) {
+ if(!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) {
+ ch->sample_position = 0.f;
+ ch->ping = true;
+ }
+
+ if(ch->sample != NULL) {
+ if(!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) {
+ ch->volume = ch->sample->volume;
+ }
+
+ ch->panning = ch->sample->panning;
+ }
+
+ ch->sustained = true;
+ ch->fadeout_volume = ch->volume_envelope_volume = 1.0f;
+ ch->panning_envelope_panning = .5f;
+ ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0;
+ ch->vibrato_note_offset = 0.f;
+ ch->tremolo_volume = 0.f;
+ ch->tremor_on = false;
+
+ ch->autovibrato_ticks = 0;
+
+ if(ch->vibrato_waveform_retrigger) {
+ ch->vibrato_ticks = 0; /* XXX: should the waveform itself also
+ * be reset to sine? */
+ }
+ if(ch->tremolo_waveform_retrigger) {
+ ch->tremolo_ticks = 0;
+ }
+
+ if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) {
+ ch->period = jar_xm_period(ctx, ch->note);
+ jar_xm_update_frequency(ctx, ch);
+ }
+
+ ch->latest_trigger = ctx->generated_samples;
+ if(ch->instrument != NULL) {
+ ch->instrument->latest_trigger = ctx->generated_samples;
+ }
+ if(ch->sample != NULL) {
+ ch->sample->latest_trigger = ctx->generated_samples;
+ }
+}
+
+static void jar_xm_cut_note(jar_xm_channel_context_t* ch) {
+ /* NB: this is not the same as Key Off */
+ ch->volume = .0f;
+}
+
+static void jar_xm_key_off(jar_xm_channel_context_t* ch) {
+ /* Key Off */
+ ch->sustained = false;
+
+ /* If no volume envelope is used, also cut the note */
+ if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) {
+ jar_xm_cut_note(ch);
+ }
+}
+
+static void jar_xm_row(jar_xm_context_t* ctx) {
+ if(ctx->position_jump) {
+ ctx->current_table_index = ctx->jump_dest;
+ ctx->current_row = ctx->jump_row;
+ ctx->position_jump = false;
+ ctx->pattern_break = false;
+ ctx->jump_row = 0;
+ jar_xm_post_pattern_change(ctx);
+ } else if(ctx->pattern_break) {
+ ctx->current_table_index++;
+ ctx->current_row = ctx->jump_row;
+ ctx->pattern_break = false;
+ ctx->jump_row = 0;
+ jar_xm_post_pattern_change(ctx);
+ }
+
+ jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index];
+ bool in_a_loop = false;
+
+ /* Read notes… */
+ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
+ jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i;
+ jar_xm_channel_context_t* ch = ctx->channels + i;
+
+ ch->current = s;
+
+ if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) {
+ jar_xm_handle_note_and_instrument(ctx, ch, s);
+ } else {
+ ch->note_delay_param = s->effect_param & 0x0F;
+ }
+
+ if(!in_a_loop && ch->pattern_loop_count > 0) {
+ in_a_loop = true;
+ }
+ }
+
+ if(!in_a_loop) {
+ /* No E6y loop is in effect (or we are in the first pass) */
+ ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++);
+ }
+
+ ctx->current_row++; /* Since this is an uint8, this line can
+ * increment from 255 to 0, in which case it
+ * is still necessary to go the next
+ * pattern. */
+ if(!ctx->position_jump && !ctx->pattern_break &&
+ (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) {
+ ctx->current_table_index++;
+ ctx->current_row = ctx->jump_row; /* This will be 0 most of
+ * the time, except when E60
+ * is used */
+ ctx->jump_row = 0;
+ jar_xm_post_pattern_change(ctx);
+ }
+}
+
+static void jar_xm_envelope_tick(jar_xm_channel_context_t* ch,
+ jar_xm_envelope_t* env,
+ uint16_t* counter,
+ float* outval) {
+ if(env->num_points < 2) {
+ /* Don't really know what to do… */
+ if(env->num_points == 1) {
+ /* XXX I am pulling this out of my ass */
+ *outval = (float)env->points[0].value / (float)0x40;
+ if(*outval > 1) {
+ *outval = 1;
+ }
+ }
+
+ return;
+ } else {
+ uint8_t j;
+
+ if(env->loop_enabled) {
+ uint16_t loop_start = env->points[env->loop_start_point].frame;
+ uint16_t loop_end = env->points[env->loop_end_point].frame;
+ uint16_t loop_length = loop_end - loop_start;
+
+ if(*counter >= loop_end) {
+ *counter -= loop_length;
+ }
+ }
+
+ for(j = 0; j < (env->num_points - 2); ++j) {
+ if(env->points[j].frame <= *counter &&
+ env->points[j+1].frame >= *counter) {
+ break;
+ }
+ }
+
+ *outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40;
+
+ /* Make sure it is safe to increment frame count */
+ if(!ch->sustained || !env->sustain_enabled ||
+ *counter != env->points[env->sustain_point].frame) {
+ (*counter)++;
+ }
+ }
+}
+
+static void jar_xm_envelopes(jar_xm_channel_context_t* ch) {
+ if(ch->instrument != NULL) {
+ if(ch->instrument->volume_envelope.enabled) {
+ if(!ch->sustained) {
+ ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f;
+ jar_xm_CLAMP_DOWN(ch->fadeout_volume);
+ }
+
+ jar_xm_envelope_tick(ch,
+ &(ch->instrument->volume_envelope),
+ &(ch->volume_envelope_frame_count),
+ &(ch->volume_envelope_volume));
+ }
+
+ if(ch->instrument->panning_envelope.enabled) {
+ jar_xm_envelope_tick(ch,
+ &(ch->instrument->panning_envelope),
+ &(ch->panning_envelope_frame_count),
+ &(ch->panning_envelope_panning));
+ }
+ }
+}
+
+static void jar_xm_tick(jar_xm_context_t* ctx) {
+ if(ctx->current_tick == 0) {
+ jar_xm_row(ctx);
+ }
+
+ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
+ jar_xm_channel_context_t* ch = ctx->channels + i;
+
+ jar_xm_envelopes(ch);
+ jar_xm_autovibrato(ctx, ch);
+
+ if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) {
+ ch->arp_in_progress = false;
+ ch->arp_note_offset = 0;
+ jar_xm_update_frequency(ctx, ch);
+ }
+ if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) {
+ ch->vibrato_in_progress = false;
+ ch->vibrato_note_offset = 0.f;
+ jar_xm_update_frequency(ctx, ch);
+ }
+
+ switch(ch->current->volume_column >> 4) {
+
+ case 0x6: /* Volume slide down */
+ if(ctx->current_tick == 0) break;
+ jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F);
+ break;
+
+ case 0x7: /* Volume slide up */
+ if(ctx->current_tick == 0) break;
+ jar_xm_volume_slide(ch, ch->current->volume_column << 4);
+ break;
+
+ case 0xB: /* Vibrato */
+ if(ctx->current_tick == 0) break;
+ ch->vibrato_in_progress = false;
+ jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
+ break;
+
+ case 0xD: /* Panning slide left */
+ if(ctx->current_tick == 0) break;
+ jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F);
+ break;
+
+ case 0xE: /* Panning slide right */
+ if(ctx->current_tick == 0) break;
+ jar_xm_panning_slide(ch, ch->current->volume_column << 4);
+ break;
+
+ case 0xF: /* Tone portamento */
+ if(ctx->current_tick == 0) break;
+ jar_xm_tone_portamento(ctx, ch);
+ break;
+
+ default:
+ break;
+
+ }
+
+ switch(ch->current->effect_type) {
+
+ case 0: /* 0xy: Arpeggio */
+ if(ch->current->effect_param > 0) {
+ char arp_offset = ctx->tempo % 3;
+ switch(arp_offset) {
+ case 2: /* 0 -> x -> 0 -> y -> x -> … */
+ if(ctx->current_tick == 1) {
+ ch->arp_in_progress = true;
+ ch->arp_note_offset = ch->current->effect_param >> 4;
+ jar_xm_update_frequency(ctx, ch);
+ break;
+ }
+ /* No break here, this is intended */
+ case 1: /* 0 -> 0 -> y -> x -> … */
+ if(ctx->current_tick == 0) {
+ ch->arp_in_progress = false;
+ ch->arp_note_offset = 0;
+ jar_xm_update_frequency(ctx, ch);
+ break;
+ }
+ /* No break here, this is intended */
+ case 0: /* 0 -> y -> x -> … */
+ jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset);
+ default:
+ break;
+ }
+ }
+ break;
+
+ case 1: /* 1xx: Portamento up */
+ if(ctx->current_tick == 0) break;
+ jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param);
+ break;
+
+ case 2: /* 2xx: Portamento down */
+ if(ctx->current_tick == 0) break;
+ jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param);
+ break;
+
+ case 3: /* 3xx: Tone portamento */
+ if(ctx->current_tick == 0) break;
+ jar_xm_tone_portamento(ctx, ch);
+ break;
+
+ case 4: /* 4xy: Vibrato */
+ if(ctx->current_tick == 0) break;
+ ch->vibrato_in_progress = true;
+ jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
+ break;
+
+ case 5: /* 5xy: Tone portamento + Volume slide */
+ if(ctx->current_tick == 0) break;
+ jar_xm_tone_portamento(ctx, ch);
+ jar_xm_volume_slide(ch, ch->volume_slide_param);
+ break;
+
+ case 6: /* 6xy: Vibrato + Volume slide */
+ if(ctx->current_tick == 0) break;
+ ch->vibrato_in_progress = true;
+ jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++);
+ jar_xm_volume_slide(ch, ch->volume_slide_param);
+ break;
+
+ case 7: /* 7xy: Tremolo */
+ if(ctx->current_tick == 0) break;
+ jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++);
+ break;
+
+ case 0xA: /* Axy: Volume slide */
+ if(ctx->current_tick == 0) break;
+ jar_xm_volume_slide(ch, ch->volume_slide_param);
+ break;
+
+ case 0xE: /* EXy: Extended command */
+ switch(ch->current->effect_param >> 4) {
+
+ case 0x9: /* E9y: Retrigger note */
+ if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) {
+ if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) {
+ jar_xm_trigger_note(ctx, ch, 0);
+ jar_xm_envelopes(ch);
+ }
+ }
+ break;
+
+ case 0xC: /* ECy: Note cut */
+ if((ch->current->effect_param & 0x0F) == ctx->current_tick) {
+ jar_xm_cut_note(ch);
+ }
+ break;
+
+ case 0xD: /* EDy: Note delay */
+ if(ch->note_delay_param == ctx->current_tick) {
+ jar_xm_handle_note_and_instrument(ctx, ch, ch->current);
+ jar_xm_envelopes(ch);
+ }
+ break;
+
+ default:
+ break;
+
+ }
+ break;
+
+ case 17: /* Hxy: Global volume slide */
+ if(ctx->current_tick == 0) break;
+ if((ch->global_volume_slide_param & 0xF0) &&
+ (ch->global_volume_slide_param & 0x0F)) {
+ /* Illegal state */
+ break;
+ }
+ if(ch->global_volume_slide_param & 0xF0) {
+ /* Global slide up */
+ float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40;
+ ctx->global_volume += f;
+ jar_xm_CLAMP_UP(ctx->global_volume);
+ } else {
+ /* Global slide down */
+ float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40;
+ ctx->global_volume -= f;
+ jar_xm_CLAMP_DOWN(ctx->global_volume);
+ }
+ break;
+
+ case 20: /* Kxx: Key off */
+ /* Most documentations will tell you the parameter has no
+ * use. Don't be fooled. */
+ if(ctx->current_tick == ch->current->effect_param) {
+ jar_xm_key_off(ch);
+ }
+ break;
+
+ case 25: /* Pxy: Panning slide */
+ if(ctx->current_tick == 0) break;
+ jar_xm_panning_slide(ch, ch->panning_slide_param);
+ break;
+
+ case 27: /* Rxy: Multi retrig note */
+ if(ctx->current_tick == 0) break;
+ if(((ch->multi_retrig_param) & 0x0F) == 0) break;
+ if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) {
+ float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4]
+ + multi_retrig_add[ch->multi_retrig_param >> 4];
+ jar_xm_CLAMP(v);
+ jar_xm_trigger_note(ctx, ch, 0);
+ ch->volume = v;
+ }
+ break;
+
+ case 29: /* Txy: Tremor */
+ if(ctx->current_tick == 0) break;
+ ch->tremor_on = (
+ (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2)
+ >
+ (ch->tremor_param >> 4)
+ );
+ break;
+
+ default:
+ break;
+
+ }
+
+ float panning, volume;
+
+ panning = ch->panning +
+ (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f;
+
+ if(ch->tremor_on) {
+ volume = .0f;
+ } else {
+ volume = ch->volume + ch->tremolo_volume;
+ jar_xm_CLAMP(volume);
+ volume *= ch->fadeout_volume * ch->volume_envelope_volume;
+ }
+
+#if JAR_XM_RAMPING
+ ch->target_panning = panning;
+ ch->target_volume = volume;
+#else
+ ch->actual_panning = panning;
+ ch->actual_volume = volume;
+#endif
+ }
+
+ ctx->current_tick++;
+ if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) {
+ ctx->current_tick = 0;
+ ctx->extra_ticks = 0;
+ }
+
+ /* FT2 manual says number of ticks / second = BPM * 0.4 */
+ ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f);
+}
+
+static float jar_xm_next_of_sample(jar_xm_channel_context_t* ch) {
+ if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
+#if JAR_XM_RAMPING
+ if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
+ return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], .0f,
+ (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ }
+#endif
+ return .0f;
+ }
+ if(ch->sample->length == 0) {
+ return .0f;
+ }
+
+ float u, v, t;
+ uint32_t a, b;
+ a = (uint32_t)ch->sample_position; /* This cast is fine,
+ * sample_position will not
+ * go above integer
+ * ranges */
+ if(JAR_XM_LINEAR_INTERPOLATION) {
+ b = a + 1;
+ t = ch->sample_position - a; /* Cheaper than fmodf(., 1.f) */
+ }
+ u = ch->sample->data[a];
+
+ switch(ch->sample->loop_type) {
+
+ case jar_xm_NO_LOOP:
+ if(JAR_XM_LINEAR_INTERPOLATION) {
+ v = (b < ch->sample->length) ? ch->sample->data[b] : .0f;
+ }
+ ch->sample_position += ch->step;
+ if(ch->sample_position >= ch->sample->length) {
+ ch->sample_position = -1;
+ }
+ break;
+
+ case jar_xm_FORWARD_LOOP:
+ if(JAR_XM_LINEAR_INTERPOLATION) {
+ v = ch->sample->data[
+ (b == ch->sample->loop_end) ? ch->sample->loop_start : b
+ ];
+ }
+ ch->sample_position += ch->step;
+ while(ch->sample_position >= ch->sample->loop_end) {
+ ch->sample_position -= ch->sample->loop_length;
+ }
+ break;
+
+ case jar_xm_PING_PONG_LOOP:
+ if(ch->ping) {
+ ch->sample_position += ch->step;
+ } else {
+ ch->sample_position -= ch->step;
+ }
+ /* XXX: this may not work for very tight ping-pong loops
+ * (ie switches direction more than once per sample */
+ if(ch->ping) {
+ if(JAR_XM_LINEAR_INTERPOLATION) {
+ v = (b >= ch->sample->loop_end) ? ch->sample->data[a] : ch->sample->data[b];
+ }
+ if(ch->sample_position >= ch->sample->loop_end) {
+ ch->ping = false;
+ ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position;
+ }
+ /* sanity checking */
+ if(ch->sample_position >= ch->sample->length) {
+ ch->ping = false;
+ ch->sample_position -= ch->sample->length - 1;
+ }
+ } else {
+ if(JAR_XM_LINEAR_INTERPOLATION) {
+ v = u;
+ u = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[a] : ch->sample->data[b - 2];
+ }
+ if(ch->sample_position <= ch->sample->loop_start) {
+ ch->ping = true;
+ ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position;
+ }
+ /* sanity checking */
+ if(ch->sample_position <= .0f) {
+ ch->ping = true;
+ ch->sample_position = .0f;
+ }
+ }
+ break;
+
+ default:
+ v = .0f;
+ break;
+ }
+
+ float endval = JAR_XM_LINEAR_INTERPOLATION ? jar_xm_LERP(u, v, t) : u;
+
+#if JAR_XM_RAMPING
+ if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) {
+ /* Smoothly transition between old and new sample. */
+ return jar_xm_LERP(ch->end_of_previous_sample[ch->frame_count], endval,
+ (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS);
+ }
+#endif
+
+ return endval;
+}
+
+static void jar_xm_sample(jar_xm_context_t* ctx, float* left, float* right) {
+ if(ctx->remaining_samples_in_tick <= 0) {
+ jar_xm_tick(ctx);
+ }
+ ctx->remaining_samples_in_tick--;
+
+ *left = 0.f;
+ *right = 0.f;
+
+ if(ctx->max_loop_count > 0 && ctx->loop_count >= ctx->max_loop_count) {
+ return;
+ }
+
+ for(uint8_t i = 0; i < ctx->module.num_channels; ++i) {
+ jar_xm_channel_context_t* ch = ctx->channels + i;
+
+ if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) {
+ continue;
+ }
+
+ const float fval = jar_xm_next_of_sample(ch);
+
+ if(!ch->muted && !ch->instrument->muted) {
+ *left += fval * ch->actual_volume * (1.f - ch->actual_panning);
+ *right += fval * ch->actual_volume * ch->actual_panning;
+ }
+
+#if JAR_XM_RAMPING
+ ch->frame_count++;
+ jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp);
+ jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp);
+#endif
+ }
+
+ const float fgvol = ctx->global_volume * ctx->amplification;
+ *left *= fgvol;
+ *right *= fgvol;
+
+#if JAR_XM_DEBUG
+ if(fabs(*left) > 1 || fabs(*right) > 1) {
+ DEBUG("clipping frame: %f %f, this is a bad module or a libxm bug", *left, *right);
+ }
+#endif
+}
+
+void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) {
+ if(ctx && output) {
+ ctx->generated_samples += numsamples;
+ for(size_t i = 0; i < numsamples; i++) {
+ jar_xm_sample(ctx, output + (2 * i), output + (2 * i + 1));
+ }
+ }
+}
+
+uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx)
+{
+ uint64_t total = 0;
+ uint8_t currentLoopCount = jar_xm_get_loop_count(ctx);
+ jar_xm_set_max_loop_count(ctx, 0);
+
+ while(jar_xm_get_loop_count(ctx) == currentLoopCount)
+ {
+ total += ctx->remaining_samples_in_tick;
+ ctx->remaining_samples_in_tick = 0;
+ jar_xm_tick(ctx);
+ }
+
+ ctx->loop_count = currentLoopCount;
+ return total;
+}
+
+//--------------------------------------------
+//FILE LOADER - TODO - NEEDS TO BE CLEANED UP
+//--------------------------------------------
+
+#undef DEBUG
+#define DEBUG(...) do { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ } while(0)
+
+#define DEBUG_ERR(...) do { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ } while(0)
+
+#define FATAL(...) do { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ exit(1); \
+ } while(0)
+
+#define FATAL_ERR(...) do { \
+ fprintf(stderr, __VA_ARGS__); \
+ fflush(stderr); \
+ exit(1); \
+ } while(0)
+
+
+int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) {
+ FILE* xmf;
+ int size;
+ int ret;
+
+ xmf = fopen(filename, "rb");
+ if(xmf == NULL) {
+ DEBUG_ERR("Could not open input file");
+ *ctx = NULL;
+ return 3;
+ }
+
+ fseek(xmf, 0, SEEK_END);
+ size = ftell(xmf);
+ rewind(xmf);
+ if(size == -1) {
+ fclose(xmf);
+ DEBUG_ERR("fseek() failed");
+ *ctx = NULL;
+ return 4;
+ }
+
+ char* data = JARXM_MALLOC(size + 1);
+ if(!data || fread(data, 1, size, xmf) < size) {
+ fclose(xmf);
+ DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed");
+ JARXM_FREE(data);
+ *ctx = NULL;
+ return 5;
+ }
+
+ fclose(xmf);
+
+ ret = jar_xm_create_context_safe(ctx, data, size, rate);
+ JARXM_FREE(data);
+
+ switch(ret) {
+ case 0:
+ break;
+
+ case 1:
+ DEBUG("could not create context: module is not sane\n");
+ *ctx = NULL;
+ return 1;
+ break;
+
+ case 2:
+ FATAL("could not create context: malloc failed\n");
+ return 2;
+ break;
+
+ default:
+ FATAL("could not create context: unknown error\n");
+ return 6;
+ break;
+
+ }
+
+ return 0;
+}
+
+// not part of the original library
+void jar_xm_reset(jar_xm_context_t* ctx)
+{
+ // I don't know what I am doing
+ // this is probably very broken
+ // but it kinda works
+ for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++)
+ {
+ jar_xm_cut_note(&ctx->channels[i]);
+ }
+ ctx->current_row = 0;
+ ctx->current_table_index = 0;
+ ctx->current_tick = 0;
+}
+
+
+#endif//end of JAR_XM_IMPLEMENTATION
+//-------------------------------------------------------------------------------
+
+#endif//end of INCLUDE_JAR_XM_H