summaryrefslogtreecommitdiff
path: root/libs/raylib/src/models.c
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/models.c')
-rw-r--r--libs/raylib/src/models.c3678
1 files changed, 3678 insertions, 0 deletions
diff --git a/libs/raylib/src/models.c b/libs/raylib/src/models.c
new file mode 100644
index 0000000..ba913e0
--- /dev/null
+++ b/libs/raylib/src/models.c
@@ -0,0 +1,3678 @@
+/**********************************************************************************************
+*
+* raylib.models - Basic functions to deal with 3d shapes and 3d models
+*
+* CONFIGURATION:
+*
+* #define SUPPORT_FILEFORMAT_OBJ
+* #define SUPPORT_FILEFORMAT_MTL
+* #define SUPPORT_FILEFORMAT_IQM
+* #define SUPPORT_FILEFORMAT_GLTF
+* Selected desired fileformats to be supported for model data loading.
+*
+* #define SUPPORT_MESH_GENERATION
+* Support procedural mesh generation functions, uses external par_shapes.h library
+* NOTE: Some generated meshes DO NOT include generated texture coordinates
+*
+*
+* LICENSE: zlib/libpng
+*
+* Copyright (c) 2013-2020 Ramon Santamaria (@raysan5)
+*
+* This software is provided "as-is", without any express or implied warranty. In no event
+* will the authors be held liable for any damages arising from the use of this software.
+*
+* Permission is granted to anyone to use this software for any purpose, including commercial
+* applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+* 1. The origin of this software must not be misrepresented; you must not claim that you
+* wrote the original software. If you use this software in a product, an acknowledgment
+* in the product documentation would be appreciated but is not required.
+*
+* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
+* as being the original software.
+*
+* 3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#include "raylib.h" // Declares module functions
+
+// Check if config flags have been externally provided on compilation line
+#if !defined(EXTERNAL_CONFIG_FLAGS)
+ #include "config.h" // Defines module configuration flags
+#endif
+
+#include "utils.h" // Required for: fopen() Android mapping
+
+#include <stdio.h> // Required for: FILE, fopen(), fclose(), fscanf(), feof(), rewind(), fgets()
+#include <stdlib.h> // Required for: malloc(), free()
+#include <string.h> // Required for: strcmp()
+#include <math.h> // Required for: sin(), cos()
+
+#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
+
+#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
+ #define TINYOBJ_LOADER_C_IMPLEMENTATION
+ #include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+ #define CGLTF_IMPLEMENTATION
+ #include "external/cgltf.h" // glTF file format loading
+ #include "external/stb_image.h" // glTF texture images loading
+#endif
+
+#if defined(SUPPORT_MESH_GENERATION)
+ #define PAR_SHAPES_IMPLEMENTATION
+ #include "external/par_shapes.h" // Shapes 3d parametric generation
+#endif
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#define MAX_MESH_VBO 7 // Maximum number of vbo per mesh
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Declaration
+//----------------------------------------------------------------------------------
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
+#endif
+#if defined(SUPPORT_FILEFORMAT_IQM)
+static Model LoadIQM(const char *fileName); // Load IQM mesh data
+#endif
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
+#endif
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition
+//----------------------------------------------------------------------------------
+
+// Draw a line in 3D world space
+void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
+{
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+ rlVertex3f(startPos.x, startPos.y, startPos.z);
+ rlVertex3f(endPos.x, endPos.y, endPos.z);
+ rlEnd();
+}
+
+// Draw a point in 3D space--actually a small line.
+void DrawPoint3D(Vector3 position, Color color)
+{
+ if (rlCheckBufferLimit(8)) rlglDraw();
+
+ rlPushMatrix();
+ rlTranslatef(position.x, position.y, position.z);
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+ rlVertex3f(0.0,0.0,0.0);
+ rlVertex3f(0.0,0.0,0.1);
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw a circle in 3D world space
+void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
+{
+ if (rlCheckBufferLimit(2*36)) rlglDraw();
+
+ rlPushMatrix();
+ rlTranslatef(center.x, center.y, center.z);
+ rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
+
+ rlBegin(RL_LINES);
+ for (int i = 0; i < 360; i += 10)
+ {
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
+ rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
+ }
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw cube
+// NOTE: Cube position is the center position
+void DrawCube(Vector3 position, float width, float height, float length, Color color)
+{
+ float x = 0.0f;
+ float y = 0.0f;
+ float z = 0.0f;
+
+ if (rlCheckBufferLimit(36)) rlglDraw();
+
+ rlPushMatrix();
+ // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
+ rlTranslatef(position.x, position.y, position.z);
+ //rlRotatef(45, 0, 1, 0);
+ //rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
+
+ rlBegin(RL_TRIANGLES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ // Front face
+ rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
+ rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
+ rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
+
+ rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
+ rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
+ rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
+
+ // Back face
+ rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
+ rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
+ rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
+
+ rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
+ rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
+ rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
+
+ // Top face
+ rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
+ rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
+ rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
+
+ rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
+ rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
+ rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
+
+ // Bottom face
+ rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
+ rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
+ rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
+
+ rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
+ rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
+ rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
+
+ // Right face
+ rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
+ rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
+ rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
+
+ rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
+ rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
+ rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
+
+ // Left face
+ rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
+ rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
+ rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
+
+ rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
+ rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
+ rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw cube (Vector version)
+void DrawCubeV(Vector3 position, Vector3 size, Color color)
+{
+ DrawCube(position, size.x, size.y, size.z, color);
+}
+
+// Draw cube wires
+void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
+{
+ float x = 0.0f;
+ float y = 0.0f;
+ float z = 0.0f;
+
+ if (rlCheckBufferLimit(36)) rlglDraw();
+
+ rlPushMatrix();
+ rlTranslatef(position.x, position.y, position.z);
+
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ // Front Face -----------------------------------------------------
+ // Bottom Line
+ rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
+ rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
+
+ // Left Line
+ rlVertex3f(x+width/2, y-height/2, z+length/2); // Bottom Right
+ rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
+
+ // Top Line
+ rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right
+ rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
+
+ // Right Line
+ rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left
+ rlVertex3f(x-width/2, y-height/2, z+length/2); // Bottom Left
+
+ // Back Face ------------------------------------------------------
+ // Bottom Line
+ rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
+ rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
+
+ // Left Line
+ rlVertex3f(x+width/2, y-height/2, z-length/2); // Bottom Right
+ rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
+
+ // Top Line
+ rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right
+ rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
+
+ // Right Line
+ rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left
+ rlVertex3f(x-width/2, y-height/2, z-length/2); // Bottom Left
+
+ // Top Face -------------------------------------------------------
+ // Left Line
+ rlVertex3f(x-width/2, y+height/2, z+length/2); // Top Left Front
+ rlVertex3f(x-width/2, y+height/2, z-length/2); // Top Left Back
+
+ // Right Line
+ rlVertex3f(x+width/2, y+height/2, z+length/2); // Top Right Front
+ rlVertex3f(x+width/2, y+height/2, z-length/2); // Top Right Back
+
+ // Bottom Face ---------------------------------------------------
+ // Left Line
+ rlVertex3f(x-width/2, y-height/2, z+length/2); // Top Left Front
+ rlVertex3f(x-width/2, y-height/2, z-length/2); // Top Left Back
+
+ // Right Line
+ rlVertex3f(x+width/2, y-height/2, z+length/2); // Top Right Front
+ rlVertex3f(x+width/2, y-height/2, z-length/2); // Top Right Back
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw cube wires (vector version)
+void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
+{
+ DrawCubeWires(position, size.x, size.y, size.z, color);
+}
+
+// Draw cube
+// NOTE: Cube position is the center position
+void DrawCubeTexture(Texture2D texture, Vector3 position, float width, float height, float length, Color color)
+{
+ float x = position.x;
+ float y = position.y;
+ float z = position.z;
+
+ if (rlCheckBufferLimit(36)) rlglDraw();
+
+ rlEnableTexture(texture.id);
+
+ //rlPushMatrix();
+ // NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
+ //rlTranslatef(2.0f, 0.0f, 0.0f);
+ //rlRotatef(45, 0, 1, 0);
+ //rlScalef(2.0f, 2.0f, 2.0f);
+
+ rlBegin(RL_QUADS);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+ // Front Face
+ rlNormal3f(0.0f, 0.0f, 1.0f); // Normal Pointing Towards Viewer
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
+ // Back Face
+ rlNormal3f(0.0f, 0.0f, - 1.0f); // Normal Pointing Away From Viewer
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
+ // Top Face
+ rlNormal3f(0.0f, 1.0f, 0.0f); // Normal Pointing Up
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left Of The Texture and Quad
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right Of The Texture and Quad
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
+ // Bottom Face
+ rlNormal3f(0.0f, - 1.0f, 0.0f); // Normal Pointing Down
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Right Of The Texture and Quad
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Left Of The Texture and Quad
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
+ // Right face
+ rlNormal3f(1.0f, 0.0f, 0.0f); // Normal Pointing Right
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right Of The Texture and Quad
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right Of The Texture and Quad
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left Of The Texture and Quad
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left Of The Texture and Quad
+ // Left Face
+ rlNormal3f( - 1.0f, 0.0f, 0.0f); // Normal Pointing Left
+ rlTexCoord2f(0.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left Of The Texture and Quad
+ rlTexCoord2f(1.0f, 0.0f); rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Right Of The Texture and Quad
+ rlTexCoord2f(1.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Right Of The Texture and Quad
+ rlTexCoord2f(0.0f, 1.0f); rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left Of The Texture and Quad
+ rlEnd();
+ //rlPopMatrix();
+
+ rlDisableTexture();
+}
+
+// Draw sphere
+void DrawSphere(Vector3 centerPos, float radius, Color color)
+{
+ DrawSphereEx(centerPos, radius, 16, 16, color);
+}
+
+// Draw sphere with extended parameters
+void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
+{
+ int numVertex = (rings + 2)*slices*6;
+ if (rlCheckBufferLimit(numVertex)) rlglDraw();
+
+ rlPushMatrix();
+ // NOTE: Transformation is applied in inverse order (scale -> translate)
+ rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+ rlScalef(radius, radius, radius);
+
+ rlBegin(RL_TRIANGLES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ for (int i = 0; i < (rings + 2); i++)
+ {
+ for (int j = 0; j < slices; j++)
+ {
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*sinf(DEG2RAD*((j+1)*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i)))*cosf(DEG2RAD*((j+1)*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+ }
+ }
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw sphere wires
+void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
+{
+ int numVertex = (rings + 2)*slices*6;
+ if (rlCheckBufferLimit(numVertex)) rlglDraw();
+
+ rlPushMatrix();
+ // NOTE: Transformation is applied in inverse order (scale -> translate)
+ rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+ rlScalef(radius, radius, radius);
+
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ for (int i = 0; i < (rings + 2); i++)
+ {
+ for (int j = 0; j < slices; j++)
+ {
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*((j+1)*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*((j+1)*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*(i+1))),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*(i+1)))*cosf(DEG2RAD*(j*360/slices)));
+ rlVertex3f(cosf(DEG2RAD*(270+(180/(rings + 1))*i))*sinf(DEG2RAD*(j*360/slices)),
+ sinf(DEG2RAD*(270+(180/(rings + 1))*i)),
+ cosf(DEG2RAD*(270+(180/(rings + 1))*i))*cosf(DEG2RAD*(j*360/slices)));
+ }
+ }
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw a cylinder
+// NOTE: It could be also used for pyramid and cone
+void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
+{
+ if (sides < 3) sides = 3;
+
+ int numVertex = sides*6;
+ if (rlCheckBufferLimit(numVertex)) rlglDraw();
+
+ rlPushMatrix();
+ rlTranslatef(position.x, position.y, position.z);
+
+ rlBegin(RL_TRIANGLES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ if (radiusTop > 0)
+ {
+ // Draw Body -------------------------------------------------------------------------------------
+ for (int i = 0; i < 360; i += 360/sides)
+ {
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom); //Bottom Right
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
+
+ rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop); //Top Left
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom); //Bottom Left
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop); //Top Right
+ }
+
+ // Draw Cap --------------------------------------------------------------------------------------
+ for (int i = 0; i < 360; i += 360/sides)
+ {
+ rlVertex3f(0, height, 0);
+ rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+ }
+ }
+ else
+ {
+ // Draw Cone -------------------------------------------------------------------------------------
+ for (int i = 0; i < 360; i += 360/sides)
+ {
+ rlVertex3f(0, height, 0);
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+ }
+ }
+
+ // Draw Base -----------------------------------------------------------------------------------------
+ for (int i = 0; i < 360; i += 360/sides)
+ {
+ rlVertex3f(0, 0, 0);
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+ }
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw a wired cylinder
+// NOTE: It could be also used for pyramid and cone
+void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
+{
+ if (sides < 3) sides = 3;
+
+ int numVertex = sides*8;
+ if (rlCheckBufferLimit(numVertex)) rlglDraw();
+
+ rlPushMatrix();
+ rlTranslatef(position.x, position.y, position.z);
+
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ for (int i = 0; i < 360; i += 360/sides)
+ {
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusBottom, 0, cosf(DEG2RAD*(i + 360/sides))*radiusBottom);
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+
+ rlVertex3f(sinf(DEG2RAD*(i + 360/sides))*radiusTop, height, cosf(DEG2RAD*(i + 360/sides))*radiusTop);
+ rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+
+ rlVertex3f(sinf(DEG2RAD*i)*radiusTop, height, cosf(DEG2RAD*i)*radiusTop);
+ rlVertex3f(sinf(DEG2RAD*i)*radiusBottom, 0, cosf(DEG2RAD*i)*radiusBottom);
+ }
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw a plane
+void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
+{
+ if (rlCheckBufferLimit(4)) rlglDraw();
+
+ // NOTE: Plane is always created on XZ ground
+ rlPushMatrix();
+ rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
+ rlScalef(size.x, 1.0f, size.y);
+
+ rlBegin(RL_QUADS);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+ rlNormal3f(0.0f, 1.0f, 0.0f);
+
+ rlVertex3f(-0.5f, 0.0f, -0.5f);
+ rlVertex3f(-0.5f, 0.0f, 0.5f);
+ rlVertex3f(0.5f, 0.0f, 0.5f);
+ rlVertex3f(0.5f, 0.0f, -0.5f);
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Draw a ray line
+void DrawRay(Ray ray, Color color)
+{
+ float scale = 10000;
+
+ rlBegin(RL_LINES);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+ rlColor4ub(color.r, color.g, color.b, color.a);
+
+ rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
+ rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
+ rlEnd();
+}
+
+// Draw a grid centered at (0, 0, 0)
+void DrawGrid(int slices, float spacing)
+{
+ int halfSlices = slices/2;
+
+ if (rlCheckBufferLimit(slices*4)) rlglDraw();
+
+ rlBegin(RL_LINES);
+ for (int i = -halfSlices; i <= halfSlices; i++)
+ {
+ if (i == 0)
+ {
+ rlColor3f(0.5f, 0.5f, 0.5f);
+ rlColor3f(0.5f, 0.5f, 0.5f);
+ rlColor3f(0.5f, 0.5f, 0.5f);
+ rlColor3f(0.5f, 0.5f, 0.5f);
+ }
+ else
+ {
+ rlColor3f(0.75f, 0.75f, 0.75f);
+ rlColor3f(0.75f, 0.75f, 0.75f);
+ rlColor3f(0.75f, 0.75f, 0.75f);
+ rlColor3f(0.75f, 0.75f, 0.75f);
+ }
+
+ rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
+ rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
+
+ rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
+ rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
+ }
+ rlEnd();
+}
+
+// Draw gizmo
+void DrawGizmo(Vector3 position)
+{
+ // NOTE: RGB = XYZ
+ float length = 1.0f;
+
+ rlPushMatrix();
+ rlTranslatef(position.x, position.y, position.z);
+ rlScalef(length, length, length);
+
+ rlBegin(RL_LINES);
+ rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
+ rlColor3f(1.0f, 0.0f, 0.0f); rlVertex3f(1.0f, 0.0f, 0.0f);
+
+ rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
+ rlColor3f(0.0f, 1.0f, 0.0f); rlVertex3f(0.0f, 1.0f, 0.0f);
+
+ rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 0.0f);
+ rlColor3f(0.0f, 0.0f, 1.0f); rlVertex3f(0.0f, 0.0f, 1.0f);
+ rlEnd();
+ rlPopMatrix();
+}
+
+// Load model from files (mesh and material)
+Model LoadModel(const char *fileName)
+{
+ Model model = { 0 };
+
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+ if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
+#endif
+#if defined(SUPPORT_FILEFORMAT_IQM)
+ if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
+#endif
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+ if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName);
+#endif
+
+ // Make sure model transform is set to identity matrix!
+ model.transform = MatrixIdentity();
+
+ if (model.meshCount == 0)
+ {
+ model.meshCount = 1;
+ model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+#if defined(SUPPORT_MESH_GENERATION)
+ TraceLog(LOG_WARNING, "[%s] No meshes can be loaded, default to cube mesh", fileName);
+ model.meshes[0] = GenMeshCube(1.0f, 1.0f, 1.0f);
+#else
+ TraceLog(LOG_WARNING, "[%s] No meshes can be loaded, and can't create a default mesh. The raylib mesh generation is not supported (SUPPORT_MESH_GENERATION).", fileName);
+#endif
+ }
+ else
+ {
+ // Upload vertex data to GPU (static mesh)
+ for (int i = 0; i < model.meshCount; i++) rlLoadMesh(&model.meshes[i], false);
+ }
+
+ if (model.materialCount == 0)
+ {
+ TraceLog(LOG_WARNING, "[%s] No materials can be loaded, default to white material", fileName);
+
+ model.materialCount = 1;
+ model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+ model.materials[0] = LoadMaterialDefault();
+
+ if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+ }
+
+ return model;
+}
+
+// Load model from generated mesh
+// WARNING: A shallow copy of mesh is generated, passed by value,
+// as long as struct contains pointers to data and some values, we get a copy
+// of mesh pointing to same data as original version... be careful!
+Model LoadModelFromMesh(Mesh mesh)
+{
+ Model model = { 0 };
+
+ model.transform = MatrixIdentity();
+
+ model.meshCount = 1;
+ model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+ model.meshes[0] = mesh;
+
+ model.materialCount = 1;
+ model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+ model.materials[0] = LoadMaterialDefault();
+
+ model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+ model.meshMaterial[0] = 0; // First material index
+
+ return model;
+}
+
+// Unload model from memory (RAM and/or VRAM)
+void UnloadModel(Model model)
+{
+ for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
+
+ // As the user could be sharing shaders and textures between models,
+ // we don't unload the material but just free it's maps, the user
+ // is responsible for freeing models shaders and textures
+ for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
+
+ RL_FREE(model.meshes);
+ RL_FREE(model.materials);
+ RL_FREE(model.meshMaterial);
+
+ // Unload animation data
+ RL_FREE(model.bones);
+ RL_FREE(model.bindPose);
+
+ TraceLog(LOG_INFO, "Unloaded model data from RAM and VRAM");
+}
+
+// Load meshes from model file
+Mesh *LoadMeshes(const char *fileName, int *meshCount)
+{
+ Mesh *meshes = NULL;
+ int count = 0;
+
+ // TODO: Load meshes from file (OBJ, IQM, GLTF)
+
+ *meshCount = count;
+ return meshes;
+}
+
+// Unload mesh from memory (RAM and/or VRAM)
+void UnloadMesh(Mesh mesh)
+{
+ rlUnloadMesh(mesh);
+ RL_FREE(mesh.vboId);
+}
+
+// Export mesh data to file
+void ExportMesh(Mesh mesh, const char *fileName)
+{
+ bool success = false;
+
+ if (IsFileExtension(fileName, ".obj"))
+ {
+ FILE *objFile = fopen(fileName, "wt");
+
+ fprintf(objFile, "# //////////////////////////////////////////////////////////////////////////////////\n");
+ fprintf(objFile, "# // //\n");
+ fprintf(objFile, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
+ fprintf(objFile, "# // //\n");
+ fprintf(objFile, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
+ fprintf(objFile, "# // feedback and support: ray[at]raylib.com //\n");
+ fprintf(objFile, "# // //\n");
+ fprintf(objFile, "# // Copyright (c) 2018 Ramon Santamaria (@raysan5) //\n");
+ fprintf(objFile, "# // //\n");
+ fprintf(objFile, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
+ fprintf(objFile, "# Vertex Count: %i\n", mesh.vertexCount);
+ fprintf(objFile, "# Triangle Count: %i\n\n", mesh.triangleCount);
+
+ fprintf(objFile, "g mesh\n");
+
+ for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
+ {
+ fprintf(objFile, "v %.2f %.2f %.2f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
+ }
+
+ for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
+ {
+ fprintf(objFile, "vt %.2f %.2f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
+ }
+
+ for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
+ {
+ fprintf(objFile, "vn %.2f %.2f %.2f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
+ }
+
+ for (int i = 0; i < mesh.triangleCount; i += 3)
+ {
+ fprintf(objFile, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", i, i, i, i + 1, i + 1, i + 1, i + 2, i + 2, i + 2);
+ }
+
+ fprintf(objFile, "\n");
+
+ fclose(objFile);
+
+ success = true;
+ }
+ else if (IsFileExtension(fileName, ".raw")) { } // TODO: Support additional file formats to export mesh vertex data
+
+ if (success) TraceLog(LOG_INFO, "Mesh exported successfully: %s", fileName);
+ else TraceLog(LOG_WARNING, "Mesh could not be exported.");
+}
+
+// Load materials from model file
+Material *LoadMaterials(const char *fileName, int *materialCount)
+{
+ Material *materials = NULL;
+ unsigned int count = 0;
+
+ // TODO: Support IQM and GLTF for materials parsing
+
+#if defined(SUPPORT_FILEFORMAT_MTL)
+ if (IsFileExtension(fileName, ".mtl"))
+ {
+ tinyobj_material_t *mats;
+
+ int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
+ if (result != TINYOBJ_SUCCESS) {
+ TraceLog(LOG_WARNING, "[%s] Could not parse Materials file", fileName);
+ }
+
+ // TODO: Process materials to return
+
+ tinyobj_materials_free(mats, count);
+ }
+#else
+ TraceLog(LOG_WARNING, "[%s] Materials file not supported", fileName);
+#endif
+
+ // Set materials shader to default (DIFFUSE, SPECULAR, NORMAL)
+ for (int i = 0; i < count; i++) materials[i].shader = GetShaderDefault();
+
+ *materialCount = count;
+ return materials;
+}
+
+// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
+Material LoadMaterialDefault(void)
+{
+ Material material = { 0 };
+ material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
+
+ material.shader = GetShaderDefault();
+ material.maps[MAP_DIFFUSE].texture = GetTextureDefault(); // White texture (1x1 pixel)
+ //material.maps[MAP_NORMAL].texture; // NOTE: By default, not set
+ //material.maps[MAP_SPECULAR].texture; // NOTE: By default, not set
+
+ material.maps[MAP_DIFFUSE].color = WHITE; // Diffuse color
+ material.maps[MAP_SPECULAR].color = WHITE; // Specular color
+
+ return material;
+}
+
+// Unload material from memory
+void UnloadMaterial(Material material)
+{
+ // Unload material shader (avoid unloading default shader, managed by raylib)
+ if (material.shader.id != GetShaderDefault().id) UnloadShader(material.shader);
+
+ // Unload loaded texture maps (avoid unloading default texture, managed by raylib)
+ for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
+ {
+ if (material.maps[i].texture.id != GetTextureDefault().id) rlDeleteTextures(material.maps[i].texture.id);
+ }
+
+ RL_FREE(material.maps);
+}
+
+// Set texture for a material map type (MAP_DIFFUSE, MAP_SPECULAR...)
+// NOTE: Previous texture should be manually unloaded
+void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
+{
+ material->maps[mapType].texture = texture;
+}
+
+// Set the material for a mesh
+void SetModelMeshMaterial(Model *model, int meshId, int materialId)
+{
+ if (meshId >= model->meshCount) TraceLog(LOG_WARNING, "Mesh id greater than mesh count");
+ else if (materialId >= model->materialCount) TraceLog(LOG_WARNING,"Material id greater than material count");
+ else model->meshMaterial[meshId] = materialId;
+}
+
+// Load model animations from file
+ModelAnimation *LoadModelAnimations(const char *filename, int *animCount)
+{
+ #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
+ #define IQM_VERSION 2 // only IQM version 2 supported
+
+ typedef struct IQMHeader {
+ char magic[16];
+ unsigned int version;
+ unsigned int filesize;
+ unsigned int flags;
+ unsigned int num_text, ofs_text;
+ unsigned int num_meshes, ofs_meshes;
+ unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
+ unsigned int num_triangles, ofs_triangles, ofs_adjacency;
+ unsigned int num_joints, ofs_joints;
+ unsigned int num_poses, ofs_poses;
+ unsigned int num_anims, ofs_anims;
+ unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
+ unsigned int num_comment, ofs_comment;
+ unsigned int num_extensions, ofs_extensions;
+ } IQMHeader;
+
+ typedef struct IQMPose {
+ int parent;
+ unsigned int mask;
+ float channeloffset[10];
+ float channelscale[10];
+ } IQMPose;
+
+ typedef struct IQMAnim {
+ unsigned int name;
+ unsigned int first_frame, num_frames;
+ float framerate;
+ unsigned int flags;
+ } IQMAnim;
+
+ FILE *iqmFile;
+ IQMHeader iqm;
+
+ iqmFile = fopen(filename,"rb");
+
+ if (!iqmFile)
+ {
+ TraceLog(LOG_ERROR, "[%s] Unable to open file", filename);
+ }
+
+ // Read IQM header
+ fread(&iqm, sizeof(IQMHeader), 1, iqmFile);
+
+ if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
+ {
+ TraceLog(LOG_ERROR, "Magic Number \"%s\"does not match.", iqm.magic);
+ fclose(iqmFile);
+
+ return NULL;
+ }
+
+ if (iqm.version != IQM_VERSION)
+ {
+ TraceLog(LOG_ERROR, "IQM version %i is incorrect.", iqm.version);
+ fclose(iqmFile);
+
+ return NULL;
+ }
+
+ // Get bones data
+ IQMPose *poses = RL_MALLOC(iqm.num_poses*sizeof(IQMPose));
+ fseek(iqmFile, iqm.ofs_poses, SEEK_SET);
+ fread(poses, iqm.num_poses*sizeof(IQMPose), 1, iqmFile);
+
+ // Get animations data
+ *animCount = iqm.num_anims;
+ IQMAnim *anim = RL_MALLOC(iqm.num_anims*sizeof(IQMAnim));
+ fseek(iqmFile, iqm.ofs_anims, SEEK_SET);
+ fread(anim, iqm.num_anims*sizeof(IQMAnim), 1, iqmFile);
+ ModelAnimation *animations = RL_MALLOC(iqm.num_anims*sizeof(ModelAnimation));
+
+ // frameposes
+ unsigned short *framedata = RL_MALLOC(iqm.num_frames*iqm.num_framechannels*sizeof(unsigned short));
+ fseek(iqmFile, iqm.ofs_frames, SEEK_SET);
+ fread(framedata, iqm.num_frames*iqm.num_framechannels*sizeof(unsigned short), 1, iqmFile);
+
+ for (int a = 0; a < iqm.num_anims; a++)
+ {
+ animations[a].frameCount = anim[a].num_frames;
+ animations[a].boneCount = iqm.num_poses;
+ animations[a].bones = RL_MALLOC(iqm.num_poses*sizeof(BoneInfo));
+ animations[a].framePoses = RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
+ //animations[a].framerate = anim.framerate; // TODO: Use framerate?
+
+ for (int j = 0; j < iqm.num_poses; j++)
+ {
+ strcpy(animations[a].bones[j].name, "ANIMJOINTNAME");
+ animations[a].bones[j].parent = poses[j].parent;
+ }
+
+ for (int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = RL_MALLOC(iqm.num_poses*sizeof(Transform));
+
+ int dcounter = anim[a].first_frame*iqm.num_framechannels;
+
+ for (int frame = 0; frame < anim[a].num_frames; frame++)
+ {
+ for (int i = 0; i < iqm.num_poses; i++)
+ {
+ animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
+
+ if (poses[i].mask & 0x01)
+ {
+ animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
+
+ if (poses[i].mask & 0x02)
+ {
+ animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
+
+ if (poses[i].mask & 0x04)
+ {
+ animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
+
+ if (poses[i].mask & 0x08)
+ {
+ animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
+
+ if (poses[i].mask & 0x10)
+ {
+ animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
+
+ if (poses[i].mask & 0x20)
+ {
+ animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
+
+ if (poses[i].mask & 0x40)
+ {
+ animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
+
+ if (poses[i].mask & 0x80)
+ {
+ animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
+
+ if (poses[i].mask & 0x100)
+ {
+ animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
+
+ if (poses[i].mask & 0x200)
+ {
+ animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
+ dcounter++;
+ }
+
+ animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
+ }
+ }
+
+ // Build frameposes
+ for (int frame = 0; frame < anim[a].num_frames; frame++)
+ {
+ for (int i = 0; i < animations[a].boneCount; i++)
+ {
+ if (animations[a].bones[i].parent >= 0)
+ {
+ animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
+ animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
+ animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
+ animations[a].framePoses[frame][i].scale = Vector3MultiplyV(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
+ }
+ }
+ }
+ }
+
+ RL_FREE(framedata);
+ RL_FREE(poses);
+ RL_FREE(anim);
+
+ fclose(iqmFile);
+
+ return animations;
+}
+
+// Update model animated vertex data (positions and normals) for a given frame
+// NOTE: Updated data is uploaded to GPU
+void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
+{
+ if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
+ {
+ if (frame >= anim.frameCount) frame = frame%anim.frameCount;
+
+ for (int m = 0; m < model.meshCount; m++)
+ {
+ Vector3 animVertex = { 0 };
+ Vector3 animNormal = { 0 };
+
+ Vector3 inTranslation = { 0 };
+ Quaternion inRotation = { 0 };
+ Vector3 inScale = { 0 };
+
+ Vector3 outTranslation = { 0 };
+ Quaternion outRotation = { 0 };
+ Vector3 outScale = { 0 };
+
+ int vCounter = 0;
+ int boneCounter = 0;
+ int boneId = 0;
+
+ for (int i = 0; i < model.meshes[m].vertexCount; i++)
+ {
+ boneId = model.meshes[m].boneIds[boneCounter];
+ inTranslation = model.bindPose[boneId].translation;
+ inRotation = model.bindPose[boneId].rotation;
+ inScale = model.bindPose[boneId].scale;
+ outTranslation = anim.framePoses[frame][boneId].translation;
+ outRotation = anim.framePoses[frame][boneId].rotation;
+ outScale = anim.framePoses[frame][boneId].scale;
+
+ // Vertices processing
+ // NOTE: We use meshes.vertices (default vertex position) to calculate meshes.animVertices (animated vertex position)
+ animVertex = (Vector3){ model.meshes[m].vertices[vCounter], model.meshes[m].vertices[vCounter + 1], model.meshes[m].vertices[vCounter + 2] };
+ animVertex = Vector3MultiplyV(animVertex, outScale);
+ animVertex = Vector3Subtract(animVertex, inTranslation);
+ animVertex = Vector3RotateByQuaternion(animVertex, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
+ animVertex = Vector3Add(animVertex, outTranslation);
+ model.meshes[m].animVertices[vCounter] = animVertex.x;
+ model.meshes[m].animVertices[vCounter + 1] = animVertex.y;
+ model.meshes[m].animVertices[vCounter + 2] = animVertex.z;
+
+ // Normals processing
+ // NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
+ animNormal = (Vector3){ model.meshes[m].normals[vCounter], model.meshes[m].normals[vCounter + 1], model.meshes[m].normals[vCounter + 2] };
+ animNormal = Vector3RotateByQuaternion(animNormal, QuaternionMultiply(outRotation, QuaternionInvert(inRotation)));
+ model.meshes[m].animNormals[vCounter] = animNormal.x;
+ model.meshes[m].animNormals[vCounter + 1] = animNormal.y;
+ model.meshes[m].animNormals[vCounter + 2] = animNormal.z;
+ vCounter += 3;
+
+ boneCounter += 4;
+ }
+
+ // Upload new vertex data to GPU for model drawing
+ rlUpdateBuffer(model.meshes[m].vboId[0], model.meshes[m].animVertices, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex position
+ rlUpdateBuffer(model.meshes[m].vboId[2], model.meshes[m].animNormals, model.meshes[m].vertexCount*3*sizeof(float)); // Update vertex normals
+ }
+ }
+}
+
+// Unload animation data
+void UnloadModelAnimation(ModelAnimation anim)
+{
+ for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
+
+ RL_FREE(anim.bones);
+ RL_FREE(anim.framePoses);
+}
+
+// Check model animation skeleton match
+// NOTE: Only number of bones and parent connections are checked
+bool IsModelAnimationValid(Model model, ModelAnimation anim)
+{
+ int result = true;
+
+ if (model.boneCount != anim.boneCount) result = false;
+ else
+ {
+ for (int i = 0; i < model.boneCount; i++)
+ {
+ if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
+ }
+ }
+
+ return result;
+}
+
+#if defined(SUPPORT_MESH_GENERATION)
+// Generate polygonal mesh
+Mesh GenMeshPoly(int sides, float radius)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+ int vertexCount = sides*3;
+
+ // Vertices definition
+ Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+ for (int i = 0, v = 0; i < 360; i += 360/sides, v += 3)
+ {
+ vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
+ vertices[v + 1] = (Vector3){ sinf(DEG2RAD*i)*radius, 0.0f, cosf(DEG2RAD*i)*radius };
+ vertices[v + 2] = (Vector3){ sinf(DEG2RAD*(i + 360/sides))*radius, 0.0f, cosf(DEG2RAD*(i + 360/sides))*radius };
+ }
+
+ // Normals definition
+ Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+ for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
+
+ // TexCoords definition
+ Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
+ for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
+
+ mesh.vertexCount = vertexCount;
+ mesh.triangleCount = sides;
+ mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+
+ // Mesh vertices position array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.vertices[3*i] = vertices[i].x;
+ mesh.vertices[3*i + 1] = vertices[i].y;
+ mesh.vertices[3*i + 2] = vertices[i].z;
+ }
+
+ // Mesh texcoords array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.texcoords[2*i] = texcoords[i].x;
+ mesh.texcoords[2*i + 1] = texcoords[i].y;
+ }
+
+ // Mesh normals array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.normals[3*i] = normals[i].x;
+ mesh.normals[3*i + 1] = normals[i].y;
+ mesh.normals[3*i + 2] = normals[i].z;
+ }
+
+ RL_FREE(vertices);
+ RL_FREE(normals);
+ RL_FREE(texcoords);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate plane mesh (with subdivisions)
+Mesh GenMeshPlane(float width, float length, int resX, int resZ)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+#define CUSTOM_MESH_GEN_PLANE
+#if defined(CUSTOM_MESH_GEN_PLANE)
+ resX++;
+ resZ++;
+
+ // Vertices definition
+ int vertexCount = resX*resZ; // vertices get reused for the faces
+
+ Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+ for (int z = 0; z < resZ; z++)
+ {
+ // [-length/2, length/2]
+ float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
+ for (int x = 0; x < resX; x++)
+ {
+ // [-width/2, width/2]
+ float xPos = ((float)x/(resX - 1) - 0.5f)*width;
+ vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
+ }
+ }
+
+ // Normals definition
+ Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
+ for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
+
+ // TexCoords definition
+ Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
+ for (int v = 0; v < resZ; v++)
+ {
+ for (int u = 0; u < resX; u++)
+ {
+ texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
+ }
+ }
+
+ // Triangles definition (indices)
+ int numFaces = (resX - 1)*(resZ - 1);
+ int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
+ int t = 0;
+ for (int face = 0; face < numFaces; face++)
+ {
+ // Retrieve lower left corner from face ind
+ int i = face % (resX - 1) + (face/(resZ - 1)*resX);
+
+ triangles[t++] = i + resX;
+ triangles[t++] = i + 1;
+ triangles[t++] = i;
+
+ triangles[t++] = i + resX;
+ triangles[t++] = i + resX + 1;
+ triangles[t++] = i + 1;
+ }
+
+ mesh.vertexCount = vertexCount;
+ mesh.triangleCount = numFaces*2;
+ mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
+
+ // Mesh vertices position array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.vertices[3*i] = vertices[i].x;
+ mesh.vertices[3*i + 1] = vertices[i].y;
+ mesh.vertices[3*i + 2] = vertices[i].z;
+ }
+
+ // Mesh texcoords array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.texcoords[2*i] = texcoords[i].x;
+ mesh.texcoords[2*i + 1] = texcoords[i].y;
+ }
+
+ // Mesh normals array
+ for (int i = 0; i < mesh.vertexCount; i++)
+ {
+ mesh.normals[3*i] = normals[i].x;
+ mesh.normals[3*i + 1] = normals[i].y;
+ mesh.normals[3*i + 2] = normals[i].z;
+ }
+
+ // Mesh indices array initialization
+ for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
+
+ RL_FREE(vertices);
+ RL_FREE(normals);
+ RL_FREE(texcoords);
+ RL_FREE(triangles);
+
+#else // Use par_shapes library to generate plane mesh
+
+ par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
+ par_shapes_scale(plane, width, length, 1.0f);
+ par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
+ par_shapes_translate(plane, -width/2, 0.0f, length/2);
+
+ mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ mesh.vertexCount = plane->ntriangles*3;
+ mesh.triangleCount = plane->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
+ mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(plane);
+#endif
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generated cuboid mesh
+Mesh GenMeshCube(float width, float height, float length)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+#define CUSTOM_MESH_GEN_CUBE
+#if defined(CUSTOM_MESH_GEN_CUBE)
+ float vertices[] = {
+ -width/2, -height/2, length/2,
+ width/2, -height/2, length/2,
+ width/2, height/2, length/2,
+ -width/2, height/2, length/2,
+ -width/2, -height/2, -length/2,
+ -width/2, height/2, -length/2,
+ width/2, height/2, -length/2,
+ width/2, -height/2, -length/2,
+ -width/2, height/2, -length/2,
+ -width/2, height/2, length/2,
+ width/2, height/2, length/2,
+ width/2, height/2, -length/2,
+ -width/2, -height/2, -length/2,
+ width/2, -height/2, -length/2,
+ width/2, -height/2, length/2,
+ -width/2, -height/2, length/2,
+ width/2, -height/2, -length/2,
+ width/2, height/2, -length/2,
+ width/2, height/2, length/2,
+ width/2, -height/2, length/2,
+ -width/2, -height/2, -length/2,
+ -width/2, -height/2, length/2,
+ -width/2, height/2, length/2,
+ -width/2, height/2, -length/2
+ };
+
+ float texcoords[] = {
+ 0.0f, 0.0f,
+ 1.0f, 0.0f,
+ 1.0f, 1.0f,
+ 0.0f, 1.0f,
+ 1.0f, 0.0f,
+ 1.0f, 1.0f,
+ 0.0f, 1.0f,
+ 0.0f, 0.0f,
+ 0.0f, 1.0f,
+ 0.0f, 0.0f,
+ 1.0f, 0.0f,
+ 1.0f, 1.0f,
+ 1.0f, 1.0f,
+ 0.0f, 1.0f,
+ 0.0f, 0.0f,
+ 1.0f, 0.0f,
+ 1.0f, 0.0f,
+ 1.0f, 1.0f,
+ 0.0f, 1.0f,
+ 0.0f, 0.0f,
+ 0.0f, 0.0f,
+ 1.0f, 0.0f,
+ 1.0f, 1.0f,
+ 0.0f, 1.0f
+ };
+
+ float normals[] = {
+ 0.0f, 0.0f, 1.0f,
+ 0.0f, 0.0f, 1.0f,
+ 0.0f, 0.0f, 1.0f,
+ 0.0f, 0.0f, 1.0f,
+ 0.0f, 0.0f,-1.0f,
+ 0.0f, 0.0f,-1.0f,
+ 0.0f, 0.0f,-1.0f,
+ 0.0f, 0.0f,-1.0f,
+ 0.0f, 1.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f,
+ 0.0f, 1.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f,
+ 0.0f,-1.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f,
+ 1.0f, 0.0f, 0.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, 0.0f, 0.0f,
+ -1.0f, 0.0f, 0.0f
+ };
+
+ mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
+ memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
+
+ mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
+ memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
+
+ mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
+ memcpy(mesh.normals, normals, 24*3*sizeof(float));
+
+ mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
+
+ int k = 0;
+
+ // Indices can be initialized right now
+ for (int i = 0; i < 36; i+=6)
+ {
+ mesh.indices[i] = 4*k;
+ mesh.indices[i+1] = 4*k+1;
+ mesh.indices[i+2] = 4*k+2;
+ mesh.indices[i+3] = 4*k;
+ mesh.indices[i+4] = 4*k+2;
+ mesh.indices[i+5] = 4*k+3;
+
+ k++;
+ }
+
+ mesh.vertexCount = 24;
+ mesh.triangleCount = 12;
+
+#else // Use par_shapes library to generate cube mesh
+/*
+// Platonic solids:
+par_shapes_mesh* par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
+par_shapes_mesh* par_shapes_create_cube(); // 6 sides polyhedron (cube)
+par_shapes_mesh* par_shapes_create_octahedron(); // 8 sides polyhedron (dyamond)
+par_shapes_mesh* par_shapes_create_dodecahedron(); // 12 sides polyhedron
+par_shapes_mesh* par_shapes_create_icosahedron(); // 20 sides polyhedron
+*/
+ // Platonic solid generation: cube (6 sides)
+ // NOTE: No normals/texcoords generated by default
+ par_shapes_mesh *cube = par_shapes_create_cube();
+ cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
+ for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
+ par_shapes_scale(cube, width, height, length);
+ par_shapes_translate(cube, -width/2, 0.0f, -length/2);
+ par_shapes_compute_normals(cube);
+
+ mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = cube->ntriangles*3;
+ mesh.triangleCount = cube->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
+ mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(cube);
+#endif
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate sphere mesh (standard sphere)
+RLAPI Mesh GenMeshSphere(float radius, int rings, int slices)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
+ par_shapes_scale(sphere, radius, radius, radius);
+ // NOTE: Soft normals are computed internally
+
+ mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = sphere->ntriangles*3;
+ mesh.triangleCount = sphere->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
+ mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(sphere);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate hemi-sphere mesh (half sphere, no bottom cap)
+RLAPI Mesh GenMeshHemiSphere(float radius, int rings, int slices)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
+ par_shapes_scale(sphere, radius, radius, radius);
+ // NOTE: Soft normals are computed internally
+
+ mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = sphere->ntriangles*3;
+ mesh.triangleCount = sphere->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
+ mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(sphere);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate cylinder mesh
+Mesh GenMeshCylinder(float radius, float height, int slices)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ // Instance a cylinder that sits on the Z=0 plane using the given tessellation
+ // levels across the UV domain. Think of "slices" like a number of pizza
+ // slices, and "stacks" like a number of stacked rings.
+ // Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
+ par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
+ par_shapes_scale(cylinder, radius, radius, height);
+ par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
+
+ // Generate an orientable disk shape (top cap)
+ par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
+ capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
+ for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
+ par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
+ par_shapes_translate(capTop, 0, height, 0);
+
+ // Generate an orientable disk shape (bottom cap)
+ par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
+ capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
+ for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
+ par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
+
+ par_shapes_merge_and_free(cylinder, capTop);
+ par_shapes_merge_and_free(cylinder, capBottom);
+
+ mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = cylinder->ntriangles*3;
+ mesh.triangleCount = cylinder->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
+ mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(cylinder);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate torus mesh
+Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ if (radius > 1.0f) radius = 1.0f;
+ else if (radius < 0.1f) radius = 0.1f;
+
+ // Create a donut that sits on the Z=0 plane with the specified inner radius
+ // The outer radius can be controlled with par_shapes_scale
+ par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
+ par_shapes_scale(torus, size/2, size/2, size/2);
+
+ mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = torus->ntriangles*3;
+ mesh.triangleCount = torus->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
+ mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(torus);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate trefoil knot mesh
+Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ if (radius > 3.0f) radius = 3.0f;
+ else if (radius < 0.5f) radius = 0.5f;
+
+ par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
+ par_shapes_scale(knot, size, size, size);
+
+ mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
+
+ mesh.vertexCount = knot->ntriangles*3;
+ mesh.triangleCount = knot->ntriangles;
+
+ for (int k = 0; k < mesh.vertexCount; k++)
+ {
+ mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
+ mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
+ mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
+
+ mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
+ mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
+ mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
+
+ mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
+ mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
+ }
+
+ par_shapes_free_mesh(knot);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate a mesh from heightmap
+// NOTE: Vertex data is uploaded to GPU
+Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
+{
+ #define GRAY_VALUE(c) ((c.r+c.g+c.b)/3)
+
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ int mapX = heightmap.width;
+ int mapZ = heightmap.height;
+
+ Color *pixels = GetImageData(heightmap);
+
+ // NOTE: One vertex per pixel
+ mesh.triangleCount = (mapX-1)*(mapZ-1)*2; // One quad every four pixels
+
+ mesh.vertexCount = mesh.triangleCount*3;
+
+ mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+ mesh.colors = NULL;
+
+ int vCounter = 0; // Used to count vertices float by float
+ int tcCounter = 0; // Used to count texcoords float by float
+ int nCounter = 0; // Used to count normals float by float
+
+ int trisCounter = 0;
+
+ Vector3 scaleFactor = { size.x/mapX, size.y/255.0f, size.z/mapZ };
+
+ for (int z = 0; z < mapZ-1; z++)
+ {
+ for (int x = 0; x < mapX-1; x++)
+ {
+ // Fill vertices array with data
+ //----------------------------------------------------------
+
+ // one triangle - 3 vertex
+ mesh.vertices[vCounter] = (float)x*scaleFactor.x;
+ mesh.vertices[vCounter + 1] = (float)GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
+ mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
+
+ mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
+ mesh.vertices[vCounter + 4] = (float)GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
+ mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
+
+ mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
+ mesh.vertices[vCounter + 7] = (float)GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
+ mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
+
+ // another triangle - 3 vertex
+ mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
+ mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
+ mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
+
+ mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
+ mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
+ mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
+
+ mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
+ mesh.vertices[vCounter + 16] = (float)GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
+ mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
+ vCounter += 18; // 6 vertex, 18 floats
+
+ // Fill texcoords array with data
+ //--------------------------------------------------------------
+ mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
+ mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
+
+ mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
+ mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
+
+ mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
+ mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
+
+ mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
+ mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
+
+ mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
+ mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
+
+ mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
+ mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
+ tcCounter += 12; // 6 texcoords, 12 floats
+
+ // Fill normals array with data
+ //--------------------------------------------------------------
+ for (int i = 0; i < 18; i += 3)
+ {
+ mesh.normals[nCounter + i] = 0.0f;
+ mesh.normals[nCounter + i + 1] = 1.0f;
+ mesh.normals[nCounter + i + 2] = 0.0f;
+ }
+
+ // TODO: Calculate normals in an efficient way
+
+ nCounter += 18; // 6 vertex, 18 floats
+ trisCounter += 2;
+ }
+ }
+
+ RL_FREE(pixels);
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+
+// Generate a cubes mesh from pixel data
+// NOTE: Vertex data is uploaded to GPU
+Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
+{
+ Mesh mesh = { 0 };
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ Color *cubicmapPixels = GetImageData(cubicmap);
+
+ int mapWidth = cubicmap.width;
+ int mapHeight = cubicmap.height;
+
+ // NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
+ int maxTriangles = cubicmap.width*cubicmap.height*12;
+
+ int vCounter = 0; // Used to count vertices
+ int tcCounter = 0; // Used to count texcoords
+ int nCounter = 0; // Used to count normals
+
+ float w = cubeSize.x;
+ float h = cubeSize.z;
+ float h2 = cubeSize.y;
+
+ Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
+ Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
+ Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
+
+ // Define the 6 normals of the cube, we will combine them accordingly later...
+ Vector3 n1 = { 1.0f, 0.0f, 0.0f };
+ Vector3 n2 = { -1.0f, 0.0f, 0.0f };
+ Vector3 n3 = { 0.0f, 1.0f, 0.0f };
+ Vector3 n4 = { 0.0f, -1.0f, 0.0f };
+ Vector3 n5 = { 0.0f, 0.0f, 1.0f };
+ Vector3 n6 = { 0.0f, 0.0f, -1.0f };
+
+ // NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
+ typedef struct RectangleF {
+ float x;
+ float y;
+ float width;
+ float height;
+ } RectangleF;
+
+ RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
+ RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
+ RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
+ RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
+ RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
+ RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
+
+ for (int z = 0; z < mapHeight; ++z)
+ {
+ for (int x = 0; x < mapWidth; ++x)
+ {
+ // Define the 8 vertex of the cube, we will combine them accordingly later...
+ Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
+ Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
+ Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
+ Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
+ Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
+ Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
+ Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
+ Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
+
+ // We check pixel color to be WHITE, we will full cubes
+ if ((cubicmapPixels[z*cubicmap.width + x].r == 255) &&
+ (cubicmapPixels[z*cubicmap.width + x].g == 255) &&
+ (cubicmapPixels[z*cubicmap.width + x].b == 255))
+ {
+ // Define triangles (Checking Collateral Cubes!)
+ //----------------------------------------------
+
+ // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
+ mapVertices[vCounter] = v1;
+ mapVertices[vCounter + 1] = v2;
+ mapVertices[vCounter + 2] = v3;
+ mapVertices[vCounter + 3] = v1;
+ mapVertices[vCounter + 4] = v3;
+ mapVertices[vCounter + 5] = v4;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n3;
+ mapNormals[nCounter + 1] = n3;
+ mapNormals[nCounter + 2] = n3;
+ mapNormals[nCounter + 3] = n3;
+ mapNormals[nCounter + 4] = n3;
+ mapNormals[nCounter + 5] = n3;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+ mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+ mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
+ tcCounter += 6;
+
+ // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
+ mapVertices[vCounter] = v6;
+ mapVertices[vCounter + 1] = v8;
+ mapVertices[vCounter + 2] = v7;
+ mapVertices[vCounter + 3] = v6;
+ mapVertices[vCounter + 4] = v5;
+ mapVertices[vCounter + 5] = v8;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n4;
+ mapNormals[nCounter + 1] = n4;
+ mapNormals[nCounter + 2] = n4;
+ mapNormals[nCounter + 3] = n4;
+ mapNormals[nCounter + 4] = n4;
+ mapNormals[nCounter + 5] = n4;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
+ mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
+ mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+ tcCounter += 6;
+
+ if (((z < cubicmap.height - 1) &&
+ (cubicmapPixels[(z + 1)*cubicmap.width + x].r == 0) &&
+ (cubicmapPixels[(z + 1)*cubicmap.width + x].g == 0) &&
+ (cubicmapPixels[(z + 1)*cubicmap.width + x].b == 0)) || (z == cubicmap.height - 1))
+ {
+ // Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
+ // NOTE: Collateral occluded faces are not generated
+ mapVertices[vCounter] = v2;
+ mapVertices[vCounter + 1] = v7;
+ mapVertices[vCounter + 2] = v3;
+ mapVertices[vCounter + 3] = v3;
+ mapVertices[vCounter + 4] = v7;
+ mapVertices[vCounter + 5] = v8;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n6;
+ mapNormals[nCounter + 1] = n6;
+ mapNormals[nCounter + 2] = n6;
+ mapNormals[nCounter + 3] = n6;
+ mapNormals[nCounter + 4] = n6;
+ mapNormals[nCounter + 5] = n6;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
+ mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
+ mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
+ tcCounter += 6;
+ }
+
+ if (((z > 0) &&
+ (cubicmapPixels[(z - 1)*cubicmap.width + x].r == 0) &&
+ (cubicmapPixels[(z - 1)*cubicmap.width + x].g == 0) &&
+ (cubicmapPixels[(z - 1)*cubicmap.width + x].b == 0)) || (z == 0))
+ {
+ // Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
+ // NOTE: Collateral occluded faces are not generated
+ mapVertices[vCounter] = v1;
+ mapVertices[vCounter + 1] = v5;
+ mapVertices[vCounter + 2] = v6;
+ mapVertices[vCounter + 3] = v1;
+ mapVertices[vCounter + 4] = v4;
+ mapVertices[vCounter + 5] = v5;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n5;
+ mapNormals[nCounter + 1] = n5;
+ mapNormals[nCounter + 2] = n5;
+ mapNormals[nCounter + 3] = n5;
+ mapNormals[nCounter + 4] = n5;
+ mapNormals[nCounter + 5] = n5;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
+ mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
+ mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
+ tcCounter += 6;
+ }
+
+ if (((x < cubicmap.width - 1) &&
+ (cubicmapPixels[z*cubicmap.width + (x + 1)].r == 0) &&
+ (cubicmapPixels[z*cubicmap.width + (x + 1)].g == 0) &&
+ (cubicmapPixels[z*cubicmap.width + (x + 1)].b == 0)) || (x == cubicmap.width - 1))
+ {
+ // Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
+ // NOTE: Collateral occluded faces are not generated
+ mapVertices[vCounter] = v3;
+ mapVertices[vCounter + 1] = v8;
+ mapVertices[vCounter + 2] = v4;
+ mapVertices[vCounter + 3] = v4;
+ mapVertices[vCounter + 4] = v8;
+ mapVertices[vCounter + 5] = v5;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n1;
+ mapNormals[nCounter + 1] = n1;
+ mapNormals[nCounter + 2] = n1;
+ mapNormals[nCounter + 3] = n1;
+ mapNormals[nCounter + 4] = n1;
+ mapNormals[nCounter + 5] = n1;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
+ mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
+ mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
+ tcCounter += 6;
+ }
+
+ if (((x > 0) &&
+ (cubicmapPixels[z*cubicmap.width + (x - 1)].r == 0) &&
+ (cubicmapPixels[z*cubicmap.width + (x - 1)].g == 0) &&
+ (cubicmapPixels[z*cubicmap.width + (x - 1)].b == 0)) || (x == 0))
+ {
+ // Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
+ // NOTE: Collateral occluded faces are not generated
+ mapVertices[vCounter] = v1;
+ mapVertices[vCounter + 1] = v7;
+ mapVertices[vCounter + 2] = v2;
+ mapVertices[vCounter + 3] = v1;
+ mapVertices[vCounter + 4] = v6;
+ mapVertices[vCounter + 5] = v7;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n2;
+ mapNormals[nCounter + 1] = n2;
+ mapNormals[nCounter + 2] = n2;
+ mapNormals[nCounter + 3] = n2;
+ mapNormals[nCounter + 4] = n2;
+ mapNormals[nCounter + 5] = n2;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
+ mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
+ mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
+ tcCounter += 6;
+ }
+ }
+ // We check pixel color to be BLACK, we will only draw floor and roof
+ else if ((cubicmapPixels[z*cubicmap.width + x].r == 0) &&
+ (cubicmapPixels[z*cubicmap.width + x].g == 0) &&
+ (cubicmapPixels[z*cubicmap.width + x].b == 0))
+ {
+ // Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
+ mapVertices[vCounter] = v1;
+ mapVertices[vCounter + 1] = v3;
+ mapVertices[vCounter + 2] = v2;
+ mapVertices[vCounter + 3] = v1;
+ mapVertices[vCounter + 4] = v4;
+ mapVertices[vCounter + 5] = v3;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n4;
+ mapNormals[nCounter + 1] = n4;
+ mapNormals[nCounter + 2] = n4;
+ mapNormals[nCounter + 3] = n4;
+ mapNormals[nCounter + 4] = n4;
+ mapNormals[nCounter + 5] = n4;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
+ mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
+ mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
+ tcCounter += 6;
+
+ // Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
+ mapVertices[vCounter] = v6;
+ mapVertices[vCounter + 1] = v7;
+ mapVertices[vCounter + 2] = v8;
+ mapVertices[vCounter + 3] = v6;
+ mapVertices[vCounter + 4] = v8;
+ mapVertices[vCounter + 5] = v5;
+ vCounter += 6;
+
+ mapNormals[nCounter] = n3;
+ mapNormals[nCounter + 1] = n3;
+ mapNormals[nCounter + 2] = n3;
+ mapNormals[nCounter + 3] = n3;
+ mapNormals[nCounter + 4] = n3;
+ mapNormals[nCounter + 5] = n3;
+ nCounter += 6;
+
+ mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+ mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
+ mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+ mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
+ mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
+ mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
+ tcCounter += 6;
+ }
+ }
+ }
+
+ // Move data from mapVertices temp arays to vertices float array
+ mesh.vertexCount = vCounter;
+ mesh.triangleCount = vCounter/3;
+
+ mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
+ mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
+ mesh.colors = NULL;
+
+ int fCounter = 0;
+
+ // Move vertices data
+ for (int i = 0; i < vCounter; i++)
+ {
+ mesh.vertices[fCounter] = mapVertices[i].x;
+ mesh.vertices[fCounter + 1] = mapVertices[i].y;
+ mesh.vertices[fCounter + 2] = mapVertices[i].z;
+ fCounter += 3;
+ }
+
+ fCounter = 0;
+
+ // Move normals data
+ for (int i = 0; i < nCounter; i++)
+ {
+ mesh.normals[fCounter] = mapNormals[i].x;
+ mesh.normals[fCounter + 1] = mapNormals[i].y;
+ mesh.normals[fCounter + 2] = mapNormals[i].z;
+ fCounter += 3;
+ }
+
+ fCounter = 0;
+
+ // Move texcoords data
+ for (int i = 0; i < tcCounter; i++)
+ {
+ mesh.texcoords[fCounter] = mapTexcoords[i].x;
+ mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
+ fCounter += 2;
+ }
+
+ RL_FREE(mapVertices);
+ RL_FREE(mapNormals);
+ RL_FREE(mapTexcoords);
+
+ RL_FREE(cubicmapPixels); // Free image pixel data
+
+ // Upload vertex data to GPU (static mesh)
+ rlLoadMesh(&mesh, false);
+
+ return mesh;
+}
+#endif // SUPPORT_MESH_GENERATION
+
+// Compute mesh bounding box limits
+// NOTE: minVertex and maxVertex should be transformed by model transform matrix
+BoundingBox MeshBoundingBox(Mesh mesh)
+{
+ // Get min and max vertex to construct bounds (AABB)
+ Vector3 minVertex = { 0 };
+ Vector3 maxVertex = { 0 };
+
+ if (mesh.vertices != NULL)
+ {
+ minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
+ maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
+
+ for (int i = 1; i < mesh.vertexCount; i++)
+ {
+ minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
+ maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
+ }
+ }
+
+ // Create the bounding box
+ BoundingBox box = { 0 };
+ box.min = minVertex;
+ box.max = maxVertex;
+
+ return box;
+}
+
+// Compute mesh tangents
+// NOTE: To calculate mesh tangents and binormals we need mesh vertex positions and texture coordinates
+// Implementation base don: https://answers.unity.com/questions/7789/calculating-tangents-vector4.html
+void MeshTangents(Mesh *mesh)
+{
+ if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
+ else TraceLog(LOG_WARNING, "Mesh tangents already exist");
+
+ Vector3 *tan1 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
+ Vector3 *tan2 = (Vector3 *)RL_MALLOC(mesh->vertexCount*sizeof(Vector3));
+
+ for (int i = 0; i < mesh->vertexCount; i += 3)
+ {
+ // Get triangle vertices
+ Vector3 v1 = { mesh->vertices[(i + 0)*3 + 0], mesh->vertices[(i + 0)*3 + 1], mesh->vertices[(i + 0)*3 + 2] };
+ Vector3 v2 = { mesh->vertices[(i + 1)*3 + 0], mesh->vertices[(i + 1)*3 + 1], mesh->vertices[(i + 1)*3 + 2] };
+ Vector3 v3 = { mesh->vertices[(i + 2)*3 + 0], mesh->vertices[(i + 2)*3 + 1], mesh->vertices[(i + 2)*3 + 2] };
+
+ // Get triangle texcoords
+ Vector2 uv1 = { mesh->texcoords[(i + 0)*2 + 0], mesh->texcoords[(i + 0)*2 + 1] };
+ Vector2 uv2 = { mesh->texcoords[(i + 1)*2 + 0], mesh->texcoords[(i + 1)*2 + 1] };
+ Vector2 uv3 = { mesh->texcoords[(i + 2)*2 + 0], mesh->texcoords[(i + 2)*2 + 1] };
+
+ float x1 = v2.x - v1.x;
+ float y1 = v2.y - v1.y;
+ float z1 = v2.z - v1.z;
+ float x2 = v3.x - v1.x;
+ float y2 = v3.y - v1.y;
+ float z2 = v3.z - v1.z;
+
+ float s1 = uv2.x - uv1.x;
+ float t1 = uv2.y - uv1.y;
+ float s2 = uv3.x - uv1.x;
+ float t2 = uv3.y - uv1.y;
+
+ float div = s1*t2 - s2*t1;
+ float r = (div == 0.0f)? 0.0f : 1.0f/div;
+
+ Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
+ Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
+
+ tan1[i + 0] = sdir;
+ tan1[i + 1] = sdir;
+ tan1[i + 2] = sdir;
+
+ tan2[i + 0] = tdir;
+ tan2[i + 1] = tdir;
+ tan2[i + 2] = tdir;
+ }
+
+ // Compute tangents considering normals
+ for (int i = 0; i < mesh->vertexCount; ++i)
+ {
+ Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
+ Vector3 tangent = tan1[i];
+
+ // TODO: Review, not sure if tangent computation is right, just used reference proposed maths...
+ #if defined(COMPUTE_TANGENTS_METHOD_01)
+ Vector3 tmp = Vector3Subtract(tangent, Vector3Multiply(normal, Vector3DotProduct(normal, tangent)));
+ tmp = Vector3Normalize(tmp);
+ mesh->tangents[i*4 + 0] = tmp.x;
+ mesh->tangents[i*4 + 1] = tmp.y;
+ mesh->tangents[i*4 + 2] = tmp.z;
+ mesh->tangents[i*4 + 3] = 1.0f;
+ #else
+ Vector3OrthoNormalize(&normal, &tangent);
+ mesh->tangents[i*4 + 0] = tangent.x;
+ mesh->tangents[i*4 + 1] = tangent.y;
+ mesh->tangents[i*4 + 2] = tangent.z;
+ mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, tangent), tan2[i]) < 0.0f)? -1.0f : 1.0f;
+ #endif
+ }
+
+ RL_FREE(tan1);
+ RL_FREE(tan2);
+
+ // Load a new tangent attributes buffer
+ mesh->vboId[LOC_VERTEX_TANGENT] = rlLoadAttribBuffer(mesh->vaoId, LOC_VERTEX_TANGENT, mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
+
+ TraceLog(LOG_INFO, "Tangents computed for mesh");
+}
+
+// Compute mesh binormals (aka bitangent)
+void MeshBinormals(Mesh *mesh)
+{
+ for (int i = 0; i < mesh->vertexCount; i++)
+ {
+ Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
+ Vector3 tangent = { mesh->tangents[i*4 + 0], mesh->tangents[i*4 + 1], mesh->tangents[i*4 + 2] };
+ Vector3 binormal = Vector3Multiply(Vector3CrossProduct(normal, tangent), mesh->tangents[i*4 + 3]);
+
+ // TODO: Register computed binormal in mesh->binormal?
+ }
+}
+
+// Draw a model (with texture if set)
+void DrawModel(Model model, Vector3 position, float scale, Color tint)
+{
+ Vector3 vScale = { scale, scale, scale };
+ Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
+
+ DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
+}
+
+// Draw a model with extended parameters
+void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
+{
+ // Calculate transformation matrix from function parameters
+ // Get transform matrix (rotation -> scale -> translation)
+ Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
+ Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
+ Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
+
+ Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
+
+ // Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
+ model.transform = MatrixMultiply(model.transform, matTransform);
+
+ for (int i = 0; i < model.meshCount; i++)
+ {
+ // TODO: Review color + tint premultiplication mechanism
+ Color color = model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color;
+
+ Color colorTint = WHITE;
+ colorTint.r = (((float)color.r/255.0)*((float)tint.r/255.0))*255;
+ colorTint.g = (((float)color.g/255.0)*((float)tint.g/255.0))*255;
+ colorTint.b = (((float)color.b/255.0)*((float)tint.b/255.0))*255;
+ colorTint.a = (((float)color.a/255.0)*((float)tint.a/255.0))*255;
+
+ model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color = colorTint;
+ rlDrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
+ model.materials[model.meshMaterial[i]].maps[MAP_DIFFUSE].color = color;
+ }
+}
+
+// Draw a model wires (with texture if set)
+void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
+{
+ rlEnableWireMode();
+
+ DrawModel(model, position, scale, tint);
+
+ rlDisableWireMode();
+}
+
+// Draw a model wires (with texture if set) with extended parameters
+void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
+{
+ rlEnableWireMode();
+
+ DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
+
+ rlDisableWireMode();
+}
+
+// Draw a billboard
+void DrawBillboard(Camera camera, Texture2D texture, Vector3 center, float size, Color tint)
+{
+ Rectangle sourceRec = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
+
+ DrawBillboardRec(camera, texture, sourceRec, center, size, tint);
+}
+
+// Draw a billboard (part of a texture defined by a rectangle)
+void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle sourceRec, Vector3 center, float size, Color tint)
+{
+ // NOTE: Billboard size will maintain sourceRec aspect ratio, size will represent billboard width
+ Vector2 sizeRatio = { size, size*(float)sourceRec.height/sourceRec.width };
+
+ Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
+
+ Vector3 right = { matView.m0, matView.m4, matView.m8 };
+ //Vector3 up = { matView.m1, matView.m5, matView.m9 };
+
+ // NOTE: Billboard locked on axis-Y
+ Vector3 up = { 0.0f, 1.0f, 0.0f };
+/*
+ a-------b
+ | |
+ | * |
+ | |
+ d-------c
+*/
+ right = Vector3Scale(right, sizeRatio.x/2);
+ up = Vector3Scale(up, sizeRatio.y/2);
+
+ Vector3 p1 = Vector3Add(right, up);
+ Vector3 p2 = Vector3Subtract(right, up);
+
+ Vector3 a = Vector3Subtract(center, p2);
+ Vector3 b = Vector3Add(center, p1);
+ Vector3 c = Vector3Add(center, p2);
+ Vector3 d = Vector3Subtract(center, p1);
+
+ if (rlCheckBufferLimit(4)) rlglDraw();
+
+ rlEnableTexture(texture.id);
+
+ rlBegin(RL_QUADS);
+ rlColor4ub(tint.r, tint.g, tint.b, tint.a);
+
+ // Bottom-left corner for texture and quad
+ rlTexCoord2f((float)sourceRec.x/texture.width, (float)sourceRec.y/texture.height);
+ rlVertex3f(a.x, a.y, a.z);
+
+ // Top-left corner for texture and quad
+ rlTexCoord2f((float)sourceRec.x/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
+ rlVertex3f(d.x, d.y, d.z);
+
+ // Top-right corner for texture and quad
+ rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)(sourceRec.y + sourceRec.height)/texture.height);
+ rlVertex3f(c.x, c.y, c.z);
+
+ // Bottom-right corner for texture and quad
+ rlTexCoord2f((float)(sourceRec.x + sourceRec.width)/texture.width, (float)sourceRec.y/texture.height);
+ rlVertex3f(b.x, b.y, b.z);
+ rlEnd();
+
+ rlDisableTexture();
+}
+
+// Draw a bounding box with wires
+void DrawBoundingBox(BoundingBox box, Color color)
+{
+ Vector3 size;
+
+ size.x = (float)fabs(box.max.x - box.min.x);
+ size.y = (float)fabs(box.max.y - box.min.y);
+ size.z = (float)fabs(box.max.z - box.min.z);
+
+ Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
+
+ DrawCubeWires(center, size.x, size.y, size.z, color);
+}
+
+// Detect collision between two spheres
+bool CheckCollisionSpheres(Vector3 centerA, float radiusA, Vector3 centerB, float radiusB)
+{
+ bool collision = false;
+
+ // Simple way to check for collision, just checking distance between two points
+ // Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
+ /*
+ float dx = centerA.x - centerB.x; // X distance between centers
+ float dy = centerA.y - centerB.y; // Y distance between centers
+ float dz = centerA.z - centerB.z; // Z distance between centers
+
+ float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
+
+ if (distance <= (radiusA + radiusB)) collision = true;
+ */
+
+ // Check for distances squared to avoid sqrtf()
+ if (Vector3DotProduct(Vector3Subtract(centerB, centerA), Vector3Subtract(centerB, centerA)) <= (radiusA + radiusB)*(radiusA + radiusB)) collision = true;
+
+ return collision;
+}
+
+// Detect collision between two boxes
+// NOTE: Boxes are defined by two points minimum and maximum
+bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
+{
+ bool collision = true;
+
+ if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
+ {
+ if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
+ if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
+ }
+ else collision = false;
+
+ return collision;
+}
+
+// Detect collision between box and sphere
+bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
+{
+ bool collision = false;
+
+ float dmin = 0;
+
+ if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
+ else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
+
+ if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
+ else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
+
+ if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
+ else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
+
+ if (dmin <= (radius*radius)) collision = true;
+
+ return collision;
+}
+
+// Detect collision between ray and sphere
+bool CheckCollisionRaySphere(Ray ray, Vector3 center, float radius)
+{
+ bool collision = false;
+
+ Vector3 raySpherePos = Vector3Subtract(center, ray.position);
+ float distance = Vector3Length(raySpherePos);
+ float vector = Vector3DotProduct(raySpherePos, ray.direction);
+ float d = radius*radius - (distance*distance - vector*vector);
+
+ if (d >= 0.0f) collision = true;
+
+ return collision;
+}
+
+// Detect collision between ray and sphere with extended parameters and collision point detection
+bool CheckCollisionRaySphereEx(Ray ray, Vector3 center, float radius, Vector3 *collisionPoint)
+{
+ bool collision = false;
+
+ Vector3 raySpherePos = Vector3Subtract(center, ray.position);
+ float distance = Vector3Length(raySpherePos);
+ float vector = Vector3DotProduct(raySpherePos, ray.direction);
+ float d = radius*radius - (distance*distance - vector*vector);
+
+ if (d >= 0.0f) collision = true;
+
+ // Check if ray origin is inside the sphere to calculate the correct collision point
+ float collisionDistance = 0;
+
+ if (distance < radius) collisionDistance = vector + sqrtf(d);
+ else collisionDistance = vector - sqrtf(d);
+
+ // Calculate collision point
+ Vector3 cPoint = Vector3Add(ray.position, Vector3Scale(ray.direction, collisionDistance));
+
+ collisionPoint->x = cPoint.x;
+ collisionPoint->y = cPoint.y;
+ collisionPoint->z = cPoint.z;
+
+ return collision;
+}
+
+// Detect collision between ray and bounding box
+bool CheckCollisionRayBox(Ray ray, BoundingBox box)
+{
+ bool collision = false;
+
+ float t[8];
+ t[0] = (box.min.x - ray.position.x)/ray.direction.x;
+ t[1] = (box.max.x - ray.position.x)/ray.direction.x;
+ t[2] = (box.min.y - ray.position.y)/ray.direction.y;
+ t[3] = (box.max.y - ray.position.y)/ray.direction.y;
+ t[4] = (box.min.z - ray.position.z)/ray.direction.z;
+ t[5] = (box.max.z - ray.position.z)/ray.direction.z;
+ t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
+ t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
+
+ collision = !(t[7] < 0 || t[6] > t[7]);
+
+ return collision;
+}
+
+// Get collision info between ray and model
+RayHitInfo GetCollisionRayModel(Ray ray, Model model)
+{
+ RayHitInfo result = { 0 };
+
+ for (int m = 0; m < model.meshCount; m++)
+ {
+ // Check if meshhas vertex data on CPU for testing
+ if (model.meshes[m].vertices != NULL)
+ {
+ // model->mesh.triangleCount may not be set, vertexCount is more reliable
+ int triangleCount = model.meshes[m].vertexCount/3;
+
+ // Test against all triangles in mesh
+ for (int i = 0; i < triangleCount; i++)
+ {
+ Vector3 a, b, c;
+ Vector3 *vertdata = (Vector3 *)model.meshes[m].vertices;
+
+ if (model.meshes[m].indices)
+ {
+ a = vertdata[model.meshes[m].indices[i*3 + 0]];
+ b = vertdata[model.meshes[m].indices[i*3 + 1]];
+ c = vertdata[model.meshes[m].indices[i*3 + 2]];
+ }
+ else
+ {
+ a = vertdata[i*3 + 0];
+ b = vertdata[i*3 + 1];
+ c = vertdata[i*3 + 2];
+ }
+
+ a = Vector3Transform(a, model.transform);
+ b = Vector3Transform(b, model.transform);
+ c = Vector3Transform(c, model.transform);
+
+ RayHitInfo triHitInfo = GetCollisionRayTriangle(ray, a, b, c);
+
+ if (triHitInfo.hit)
+ {
+ // Save the closest hit triangle
+ if ((!result.hit) || (result.distance > triHitInfo.distance)) result = triHitInfo;
+ }
+ }
+ }
+ }
+
+ return result;
+}
+
+// Get collision info between ray and triangle
+// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
+RayHitInfo GetCollisionRayTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
+{
+ #define EPSILON 0.000001 // A small number
+
+ Vector3 edge1, edge2;
+ Vector3 p, q, tv;
+ float det, invDet, u, v, t;
+ RayHitInfo result = {0};
+
+ // Find vectors for two edges sharing V1
+ edge1 = Vector3Subtract(p2, p1);
+ edge2 = Vector3Subtract(p3, p1);
+
+ // Begin calculating determinant - also used to calculate u parameter
+ p = Vector3CrossProduct(ray.direction, edge2);
+
+ // If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
+ det = Vector3DotProduct(edge1, p);
+
+ // Avoid culling!
+ if ((det > -EPSILON) && (det < EPSILON)) return result;
+
+ invDet = 1.0f/det;
+
+ // Calculate distance from V1 to ray origin
+ tv = Vector3Subtract(ray.position, p1);
+
+ // Calculate u parameter and test bound
+ u = Vector3DotProduct(tv, p)*invDet;
+
+ // The intersection lies outside of the triangle
+ if ((u < 0.0f) || (u > 1.0f)) return result;
+
+ // Prepare to test v parameter
+ q = Vector3CrossProduct(tv, edge1);
+
+ // Calculate V parameter and test bound
+ v = Vector3DotProduct(ray.direction, q)*invDet;
+
+ // The intersection lies outside of the triangle
+ if ((v < 0.0f) || ((u + v) > 1.0f)) return result;
+
+ t = Vector3DotProduct(edge2, q)*invDet;
+
+ if (t > EPSILON)
+ {
+ // Ray hit, get hit point and normal
+ result.hit = true;
+ result.distance = t;
+ result.hit = true;
+ result.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
+ result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
+ }
+
+ return result;
+}
+
+// Get collision info between ray and ground plane (Y-normal plane)
+RayHitInfo GetCollisionRayGround(Ray ray, float groundHeight)
+{
+ #define EPSILON 0.000001 // A small number
+
+ RayHitInfo result = { 0 };
+
+ if (fabs(ray.direction.y) > EPSILON)
+ {
+ float distance = (ray.position.y - groundHeight)/-ray.direction.y;
+
+ if (distance >= 0.0)
+ {
+ result.hit = true;
+ result.distance = distance;
+ result.normal = (Vector3){ 0.0, 1.0, 0.0 };
+ result.position = Vector3Add(ray.position, Vector3Scale(ray.direction, distance));
+ }
+ }
+
+ return result;
+}
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Definition
+//----------------------------------------------------------------------------------
+
+#if defined(SUPPORT_FILEFORMAT_OBJ)
+// Load OBJ mesh data
+static Model LoadOBJ(const char *fileName)
+{
+ Model model = { 0 };
+
+ tinyobj_attrib_t attrib;
+ tinyobj_shape_t *meshes = NULL;
+ unsigned int meshCount = 0;
+
+ tinyobj_material_t *materials = NULL;
+ unsigned int materialCount = 0;
+
+ int dataLength = 0;
+ char *data = NULL;
+
+ // Load model data
+ FILE *objFile = fopen(fileName, "rb");
+
+ if (objFile != NULL)
+ {
+ fseek(objFile, 0, SEEK_END);
+ long length = ftell(objFile); // Get file size
+ fseek(objFile, 0, SEEK_SET); // Reset file pointer
+
+ data = (char *)RL_MALLOC(length);
+
+ fread(data, length, 1, objFile);
+ dataLength = length;
+ fclose(objFile);
+ }
+
+ if (data != NULL)
+ {
+ unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
+ int ret = tinyobj_parse_obj(&attrib, &meshes, &meshCount, &materials, &materialCount, data, dataLength, flags);
+
+ if (ret != TINYOBJ_SUCCESS) TraceLog(LOG_WARNING, "[%s] Model data could not be loaded", fileName);
+ else TraceLog(LOG_INFO, "[%s] Model data loaded successfully: %i meshes / %i materials", fileName, meshCount, materialCount);
+
+ // Init model meshes array
+ // TODO: Support multiple meshes... in the meantime, only one mesh is returned
+ //model.meshCount = meshCount;
+ model.meshCount = 1;
+ model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
+
+ // Init model materials array
+ if (materialCount > 0)
+ {
+ model.materialCount = materialCount;
+ model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
+ }
+
+ model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
+
+ /*
+ // Multiple meshes data reference
+ // NOTE: They are provided as a faces offset
+ typedef struct {
+ char *name; // group name or object name
+ unsigned int face_offset;
+ unsigned int length;
+ } tinyobj_shape_t;
+ */
+
+ // Init model meshes
+ for (int m = 0; m < 1; m++)
+ {
+ Mesh mesh = { 0 };
+ memset(&mesh, 0, sizeof(Mesh));
+ mesh.vertexCount = attrib.num_faces*3;
+ mesh.triangleCount = attrib.num_faces;
+ mesh.vertices = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
+ mesh.texcoords = (float *)RL_CALLOC(mesh.vertexCount*2, sizeof(float));
+ mesh.normals = (float *)RL_CALLOC(mesh.vertexCount*3, sizeof(float));
+ mesh.vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ int vCount = 0;
+ int vtCount = 0;
+ int vnCount = 0;
+
+ for (int f = 0; f < attrib.num_faces; f++)
+ {
+ // Get indices for the face
+ tinyobj_vertex_index_t idx0 = attrib.faces[3*f + 0];
+ tinyobj_vertex_index_t idx1 = attrib.faces[3*f + 1];
+ tinyobj_vertex_index_t idx2 = attrib.faces[3*f + 2];
+
+ // TraceLog(LOG_DEBUG, "Face %i index: v %i/%i/%i . vt %i/%i/%i . vn %i/%i/%i\n", f, idx0.v_idx, idx1.v_idx, idx2.v_idx, idx0.vt_idx, idx1.vt_idx, idx2.vt_idx, idx0.vn_idx, idx1.vn_idx, idx2.vn_idx);
+
+ // Fill vertices buffer (float) using vertex index of the face
+ for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx0.v_idx*3 + v]; } vCount +=3;
+ for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx1.v_idx*3 + v]; } vCount +=3;
+ for (int v = 0; v < 3; v++) { mesh.vertices[vCount + v] = attrib.vertices[idx2.v_idx*3 + v]; } vCount +=3;
+
+ // Fill texcoords buffer (float) using vertex index of the face
+ // NOTE: Y-coordinate must be flipped upside-down
+ mesh.texcoords[vtCount + 0] = attrib.texcoords[idx0.vt_idx*2 + 0];
+ mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx0.vt_idx*2 + 1]; vtCount += 2;
+ mesh.texcoords[vtCount + 0] = attrib.texcoords[idx1.vt_idx*2 + 0];
+ mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx1.vt_idx*2 + 1]; vtCount += 2;
+ mesh.texcoords[vtCount + 0] = attrib.texcoords[idx2.vt_idx*2 + 0];
+ mesh.texcoords[vtCount + 1] = 1.0f - attrib.texcoords[idx2.vt_idx*2 + 1]; vtCount += 2;
+
+ // Fill normals buffer (float) using vertex index of the face
+ for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx0.vn_idx*3 + v]; } vnCount +=3;
+ for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx1.vn_idx*3 + v]; } vnCount +=3;
+ for (int v = 0; v < 3; v++) { mesh.normals[vnCount + v] = attrib.normals[idx2.vn_idx*3 + v]; } vnCount +=3;
+ }
+
+ model.meshes[m] = mesh; // Assign mesh data to model
+
+ // Assign mesh material for current mesh
+ model.meshMaterial[m] = attrib.material_ids[m];
+
+ // Set unfound materials to default
+ if (model.meshMaterial[m] == -1) model.meshMaterial[m] = 0;
+ }
+
+ // Init model materials
+ for (int m = 0; m < materialCount; m++)
+ {
+ // Init material to default
+ // NOTE: Uses default shader, only MAP_DIFFUSE supported
+ model.materials[m] = LoadMaterialDefault();
+
+ /*
+ typedef struct {
+ char *name;
+
+ float ambient[3];
+ float diffuse[3];
+ float specular[3];
+ float transmittance[3];
+ float emission[3];
+ float shininess;
+ float ior; // index of refraction
+ float dissolve; // 1 == opaque; 0 == fully transparent
+ // illumination model (Ref: http://www.fileformat.info/format/material/)
+ int illum;
+
+ int pad0;
+
+ char *ambient_texname; // map_Ka
+ char *diffuse_texname; // map_Kd
+ char *specular_texname; // map_Ks
+ char *specular_highlight_texname; // map_Ns
+ char *bump_texname; // map_bump, bump
+ char *displacement_texname; // disp
+ char *alpha_texname; // map_d
+ } tinyobj_material_t;
+ */
+
+ model.materials[m].maps[MAP_DIFFUSE].texture = GetTextureDefault(); // Get default texture, in case no texture is defined
+
+ if (materials[m].diffuse_texname != NULL) model.materials[m].maps[MAP_DIFFUSE].texture = LoadTexture(materials[m].diffuse_texname); //char *diffuse_texname; // map_Kd
+ model.materials[m].maps[MAP_DIFFUSE].color = (Color){ (float)(materials[m].diffuse[0]*255.0f), (float)(materials[m].diffuse[1]*255.0f), (float)(materials[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
+ model.materials[m].maps[MAP_DIFFUSE].value = 0.0f;
+
+ if (materials[m].specular_texname != NULL) model.materials[m].maps[MAP_SPECULAR].texture = LoadTexture(materials[m].specular_texname); //char *specular_texname; // map_Ks
+ model.materials[m].maps[MAP_SPECULAR].color = (Color){ (float)(materials[m].specular[0]*255.0f), (float)(materials[m].specular[1]*255.0f), (float)(materials[m].specular[2]*255.0f), 255 }; //float specular[3];
+ model.materials[m].maps[MAP_SPECULAR].value = 0.0f;
+
+ if (materials[m].bump_texname != NULL) model.materials[m].maps[MAP_NORMAL].texture = LoadTexture(materials[m].bump_texname); //char *bump_texname; // map_bump, bump
+ model.materials[m].maps[MAP_NORMAL].color = WHITE;
+ model.materials[m].maps[MAP_NORMAL].value = materials[m].shininess;
+
+ model.materials[m].maps[MAP_EMISSION].color = (Color){ (float)(materials[m].emission[0]*255.0f), (float)(materials[m].emission[1]*255.0f), (float)(materials[m].emission[2]*255.0f), 255 }; //float emission[3];
+
+ if (materials[m].displacement_texname != NULL) model.materials[m].maps[MAP_HEIGHT].texture = LoadTexture(materials[m].displacement_texname); //char *displacement_texname; // disp
+ }
+
+ tinyobj_attrib_free(&attrib);
+ tinyobj_shapes_free(meshes, meshCount);
+ tinyobj_materials_free(materials, materialCount);
+
+ RL_FREE(data);
+ }
+
+ // NOTE: At this point we have all model data loaded
+ TraceLog(LOG_INFO, "[%s] Model loaded successfully in RAM (CPU)", fileName);
+
+ return model;
+}
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_IQM)
+// Load IQM mesh data
+static Model LoadIQM(const char *fileName)
+{
+ #define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
+ #define IQM_VERSION 2 // only IQM version 2 supported
+
+ #define BONE_NAME_LENGTH 32 // BoneInfo name string length
+ #define MESH_NAME_LENGTH 32 // Mesh name string length
+
+ // IQM file structs
+ //-----------------------------------------------------------------------------------
+ typedef struct IQMHeader {
+ char magic[16];
+ unsigned int version;
+ unsigned int filesize;
+ unsigned int flags;
+ unsigned int num_text, ofs_text;
+ unsigned int num_meshes, ofs_meshes;
+ unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
+ unsigned int num_triangles, ofs_triangles, ofs_adjacency;
+ unsigned int num_joints, ofs_joints;
+ unsigned int num_poses, ofs_poses;
+ unsigned int num_anims, ofs_anims;
+ unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
+ unsigned int num_comment, ofs_comment;
+ unsigned int num_extensions, ofs_extensions;
+ } IQMHeader;
+
+ typedef struct IQMMesh {
+ unsigned int name;
+ unsigned int material;
+ unsigned int first_vertex, num_vertexes;
+ unsigned int first_triangle, num_triangles;
+ } IQMMesh;
+
+ typedef struct IQMTriangle {
+ unsigned int vertex[3];
+ } IQMTriangle;
+
+ typedef struct IQMJoint {
+ unsigned int name;
+ int parent;
+ float translate[3], rotate[4], scale[3];
+ } IQMJoint;
+
+ typedef struct IQMVertexArray {
+ unsigned int type;
+ unsigned int flags;
+ unsigned int format;
+ unsigned int size;
+ unsigned int offset;
+ } IQMVertexArray;
+
+ // NOTE: Below IQM structures are not used but listed for reference
+ /*
+ typedef struct IQMAdjacency {
+ unsigned int triangle[3];
+ } IQMAdjacency;
+
+ typedef struct IQMPose {
+ int parent;
+ unsigned int mask;
+ float channeloffset[10];
+ float channelscale[10];
+ } IQMPose;
+
+ typedef struct IQMAnim {
+ unsigned int name;
+ unsigned int first_frame, num_frames;
+ float framerate;
+ unsigned int flags;
+ } IQMAnim;
+
+ typedef struct IQMBounds {
+ float bbmin[3], bbmax[3];
+ float xyradius, radius;
+ } IQMBounds;
+ */
+ //-----------------------------------------------------------------------------------
+
+ // IQM vertex data types
+ typedef enum {
+ IQM_POSITION = 0,
+ IQM_TEXCOORD = 1,
+ IQM_NORMAL = 2,
+ IQM_TANGENT = 3, // NOTE: Tangents unused by default
+ IQM_BLENDINDEXES = 4,
+ IQM_BLENDWEIGHTS = 5,
+ IQM_COLOR = 6, // NOTE: Vertex colors unused by default
+ IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
+ } IQMVertexType;
+
+ Model model = { 0 };
+
+ FILE *iqmFile;
+ IQMHeader iqm;
+
+ IQMMesh *imesh;
+ IQMTriangle *tri;
+ IQMVertexArray *va;
+ IQMJoint *ijoint;
+
+ float *vertex = NULL;
+ float *normal = NULL;
+ float *text = NULL;
+ char *blendi = NULL;
+ unsigned char *blendw = NULL;
+
+ iqmFile = fopen(fileName, "rb");
+
+ if (iqmFile == NULL)
+ {
+ TraceLog(LOG_WARNING, "[%s] IQM file could not be opened", fileName);
+ return model;
+ }
+
+ fread(&iqm,sizeof(IQMHeader), 1, iqmFile); // Read IQM header
+
+ if (strncmp(iqm.magic, IQM_MAGIC, sizeof(IQM_MAGIC)))
+ {
+ TraceLog(LOG_WARNING, "[%s] IQM file does not seem to be valid", fileName);
+ fclose(iqmFile);
+ return model;
+ }
+
+ if (iqm.version != IQM_VERSION)
+ {
+ TraceLog(LOG_WARNING, "[%s] IQM file version is not supported (%i).", fileName, iqm.version);
+ fclose(iqmFile);
+ return model;
+ }
+
+ // Meshes data processing
+ imesh = RL_MALLOC(sizeof(IQMMesh)*iqm.num_meshes);
+ fseek(iqmFile, iqm.ofs_meshes, SEEK_SET);
+ fread(imesh, sizeof(IQMMesh)*iqm.num_meshes, 1, iqmFile);
+
+ model.meshCount = iqm.num_meshes;
+ model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
+
+ char name[MESH_NAME_LENGTH] = { 0 };
+
+ for (int i = 0; i < model.meshCount; i++)
+ {
+ fseek(iqmFile, iqm.ofs_text + imesh[i].name, SEEK_SET);
+ fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); // Mesh name not used...
+ model.meshes[i].vertexCount = imesh[i].num_vertexes;
+
+ model.meshes[i].vertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
+ model.meshes[i].normals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
+ model.meshes[i].texcoords = RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
+
+ model.meshes[i].boneIds = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
+ model.meshes[i].boneWeights = RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
+
+ model.meshes[i].triangleCount = imesh[i].num_triangles;
+ model.meshes[i].indices = RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
+
+ // Animated verted data, what we actually process for rendering
+ // NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
+ model.meshes[i].animVertices = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
+ model.meshes[i].animNormals = RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
+
+ model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+ }
+
+ // Triangles data processing
+ tri = RL_MALLOC(iqm.num_triangles*sizeof(IQMTriangle));
+ fseek(iqmFile, iqm.ofs_triangles, SEEK_SET);
+ fread(tri, iqm.num_triangles*sizeof(IQMTriangle), 1, iqmFile);
+
+ for (int m = 0; m < model.meshCount; m++)
+ {
+ int tcounter = 0;
+
+ for (int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
+ {
+ // IQM triangles are stored counter clockwise, but raylib sets opengl to clockwise drawing, so we swap them around
+ model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
+ model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
+ model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
+ tcounter += 3;
+ }
+ }
+
+ // Vertex arrays data processing
+ va = RL_MALLOC(iqm.num_vertexarrays*sizeof(IQMVertexArray));
+ fseek(iqmFile, iqm.ofs_vertexarrays, SEEK_SET);
+ fread(va, iqm.num_vertexarrays*sizeof(IQMVertexArray), 1, iqmFile);
+
+ for (int i = 0; i < iqm.num_vertexarrays; i++)
+ {
+ switch (va[i].type)
+ {
+ case IQM_POSITION:
+ {
+ vertex = RL_MALLOC(iqm.num_vertexes*3*sizeof(float));
+ fseek(iqmFile, va[i].offset, SEEK_SET);
+ fread(vertex, iqm.num_vertexes*3*sizeof(float), 1, iqmFile);
+
+ for (int m = 0; m < iqm.num_meshes; m++)
+ {
+ int vCounter = 0;
+ for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
+ {
+ model.meshes[m].vertices[vCounter] = vertex[i];
+ model.meshes[m].animVertices[vCounter] = vertex[i];
+ vCounter++;
+ }
+ }
+ } break;
+ case IQM_NORMAL:
+ {
+ normal = RL_MALLOC(iqm.num_vertexes*3*sizeof(float));
+ fseek(iqmFile, va[i].offset, SEEK_SET);
+ fread(normal, iqm.num_vertexes*3*sizeof(float), 1, iqmFile);
+
+ for (int m = 0; m < iqm.num_meshes; m++)
+ {
+ int vCounter = 0;
+ for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
+ {
+ model.meshes[m].normals[vCounter] = normal[i];
+ model.meshes[m].animNormals[vCounter] = normal[i];
+ vCounter++;
+ }
+ }
+ } break;
+ case IQM_TEXCOORD:
+ {
+ text = RL_MALLOC(iqm.num_vertexes*2*sizeof(float));
+ fseek(iqmFile, va[i].offset, SEEK_SET);
+ fread(text, iqm.num_vertexes*2*sizeof(float), 1, iqmFile);
+
+ for (int m = 0; m < iqm.num_meshes; m++)
+ {
+ int vCounter = 0;
+ for (int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
+ {
+ model.meshes[m].texcoords[vCounter] = text[i];
+ vCounter++;
+ }
+ }
+ } break;
+ case IQM_BLENDINDEXES:
+ {
+ blendi = RL_MALLOC(iqm.num_vertexes*4*sizeof(char));
+ fseek(iqmFile, va[i].offset, SEEK_SET);
+ fread(blendi, iqm.num_vertexes*4*sizeof(char), 1, iqmFile);
+
+ for (int m = 0; m < iqm.num_meshes; m++)
+ {
+ int boneCounter = 0;
+ for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
+ {
+ model.meshes[m].boneIds[boneCounter] = blendi[i];
+ boneCounter++;
+ }
+ }
+ } break;
+ case IQM_BLENDWEIGHTS:
+ {
+ blendw = RL_MALLOC(iqm.num_vertexes*4*sizeof(unsigned char));
+ fseek(iqmFile, va[i].offset, SEEK_SET);
+ fread(blendw, iqm.num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
+
+ for (int m = 0; m < iqm.num_meshes; m++)
+ {
+ int boneCounter = 0;
+ for (int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
+ {
+ model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
+ boneCounter++;
+ }
+ }
+ } break;
+ }
+ }
+
+ // Bones (joints) data processing
+ ijoint = RL_MALLOC(iqm.num_joints*sizeof(IQMJoint));
+ fseek(iqmFile, iqm.ofs_joints, SEEK_SET);
+ fread(ijoint, iqm.num_joints*sizeof(IQMJoint), 1, iqmFile);
+
+ model.boneCount = iqm.num_joints;
+ model.bones = RL_MALLOC(iqm.num_joints*sizeof(BoneInfo));
+ model.bindPose = RL_MALLOC(iqm.num_joints*sizeof(Transform));
+
+ for (int i = 0; i < iqm.num_joints; i++)
+ {
+ // Bones
+ model.bones[i].parent = ijoint[i].parent;
+ fseek(iqmFile, iqm.ofs_text + ijoint[i].name, SEEK_SET);
+ fread(model.bones[i].name, BONE_NAME_LENGTH*sizeof(char), 1, iqmFile);
+
+ // Bind pose (base pose)
+ model.bindPose[i].translation.x = ijoint[i].translate[0];
+ model.bindPose[i].translation.y = ijoint[i].translate[1];
+ model.bindPose[i].translation.z = ijoint[i].translate[2];
+
+ model.bindPose[i].rotation.x = ijoint[i].rotate[0];
+ model.bindPose[i].rotation.y = ijoint[i].rotate[1];
+ model.bindPose[i].rotation.z = ijoint[i].rotate[2];
+ model.bindPose[i].rotation.w = ijoint[i].rotate[3];
+
+ model.bindPose[i].scale.x = ijoint[i].scale[0];
+ model.bindPose[i].scale.y = ijoint[i].scale[1];
+ model.bindPose[i].scale.z = ijoint[i].scale[2];
+ }
+
+ // Build bind pose from parent joints
+ for (int i = 0; i < model.boneCount; i++)
+ {
+ if (model.bones[i].parent >= 0)
+ {
+ model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
+ model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
+ model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
+ model.bindPose[i].scale = Vector3MultiplyV(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
+ }
+ }
+
+ fclose(iqmFile);
+ RL_FREE(imesh);
+ RL_FREE(tri);
+ RL_FREE(va);
+ RL_FREE(vertex);
+ RL_FREE(normal);
+ RL_FREE(text);
+ RL_FREE(blendi);
+ RL_FREE(blendw);
+ RL_FREE(ijoint);
+
+ return model;
+}
+#endif
+
+#if defined(SUPPORT_FILEFORMAT_GLTF)
+
+static const unsigned char base64Table[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 62, 0, 0, 0, 63, 52, 53,
+ 54, 55, 56, 57, 58, 59, 60, 61, 0, 0,
+ 0, 0, 0, 0, 0, 0, 1, 2, 3, 4,
+ 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
+ 25, 0, 0, 0, 0, 0, 0, 26, 27, 28,
+ 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
+ 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
+ 49, 50, 51
+};
+
+static int GetSizeBase64(char *input)
+{
+ int size = 0;
+
+ for (int i = 0; input[4*i] != 0; i++)
+ {
+ if (input[4*i + 3] == '=')
+ {
+ if (input[4*i + 2] == '=') size += 1;
+ else size += 2;
+ }
+ else size += 3;
+ }
+
+ return size;
+}
+
+static unsigned char *DecodeBase64(char *input, int *size)
+{
+ *size = GetSizeBase64(input);
+
+ unsigned char *buf = (unsigned char *)RL_MALLOC(*size);
+ for (int i = 0; i < *size/3; i++)
+ {
+ unsigned char a = base64Table[(int)input[4*i]];
+ unsigned char b = base64Table[(int)input[4*i + 1]];
+ unsigned char c = base64Table[(int)input[4*i + 2]];
+ unsigned char d = base64Table[(int)input[4*i + 3]];
+
+ buf[3*i] = (a << 2) | (b >> 4);
+ buf[3*i + 1] = (b << 4) | (c >> 2);
+ buf[3*i + 2] = (c << 6) | d;
+ }
+
+ if (*size%3 == 1)
+ {
+ int n = *size/3;
+ unsigned char a = base64Table[(int)input[4*n]];
+ unsigned char b = base64Table[(int)input[4*n + 1]];
+ buf[*size - 1] = (a << 2) | (b >> 4);
+ }
+ else if (*size%3 == 2)
+ {
+ int n = *size/3;
+ unsigned char a = base64Table[(int)input[4*n]];
+ unsigned char b = base64Table[(int)input[4*n + 1]];
+ unsigned char c = base64Table[(int)input[4*n + 2]];
+ buf[*size - 2] = (a << 2) | (b >> 4);
+ buf[*size - 1] = (b << 4) | (c >> 2);
+ }
+ return buf;
+}
+
+// Load texture from cgltf_image
+static Texture LoadTextureFromCgltfImage(cgltf_image *image, const char *texPath, Color tint)
+{
+ Texture texture = { 0 };
+
+ if (image->uri)
+ {
+ if ((strlen(image->uri) > 5) &&
+ (image->uri[0] == 'd') &&
+ (image->uri[1] == 'a') &&
+ (image->uri[2] == 't') &&
+ (image->uri[3] == 'a') &&
+ (image->uri[4] == ':'))
+ {
+ // Data URI
+ // Format: data:<mediatype>;base64,<data>
+
+ // Find the comma
+ int i = 0;
+ while ((image->uri[i] != ',') && (image->uri[i] != 0)) i++;
+
+ if (image->uri[i] == 0) TraceLog(LOG_WARNING, "CGLTF Image: Invalid data URI");
+ else
+ {
+ int size;
+ unsigned char *data = DecodeBase64(image->uri + i + 1, &size);
+
+ int w, h;
+ unsigned char *raw = stbi_load_from_memory(data, size, &w, &h, NULL, 4);
+
+ Image rimage = LoadImagePro(raw, w, h, UNCOMPRESSED_R8G8B8A8);
+
+ // TODO: Tint shouldn't be applied here!
+ ImageColorTint(&rimage, tint);
+ texture = LoadTextureFromImage(rimage);
+ UnloadImage(rimage);
+ }
+ }
+ else
+ {
+ Image rimage = LoadImage(TextFormat("%s/%s", texPath, image->uri));
+
+ // TODO: Tint shouldn't be applied here!
+ ImageColorTint(&rimage, tint);
+ texture = LoadTextureFromImage(rimage);
+ UnloadImage(rimage);
+ }
+ }
+ else if (image->buffer_view)
+ {
+ unsigned char *data = RL_MALLOC(image->buffer_view->size);
+ int n = image->buffer_view->offset;
+ int stride = image->buffer_view->stride ? image->buffer_view->stride : 1;
+
+ for (int i = 0; i < image->buffer_view->size; i++)
+ {
+ data[i] = ((unsigned char *)image->buffer_view->buffer->data)[n];
+ n += stride;
+ }
+
+ int w, h;
+ unsigned char *raw = stbi_load_from_memory(data, image->buffer_view->size, &w, &h, NULL, 4);
+ free(data);
+
+ Image rimage = LoadImagePro(raw, w, h, UNCOMPRESSED_R8G8B8A8);
+ free(raw);
+
+ // TODO: Tint shouldn't be applied here!
+ ImageColorTint(&rimage, tint);
+ texture = LoadTextureFromImage(rimage);
+ UnloadImage(rimage);
+ }
+ else
+ {
+ Image rimage = LoadImageEx(&tint, 1, 1);
+ texture = LoadTextureFromImage(rimage);
+ UnloadImage(rimage);
+ }
+
+ return texture;
+}
+
+// Load glTF mesh data
+static Model LoadGLTF(const char *fileName)
+{
+ /***********************************************************************************
+
+ Function implemented by Wilhem Barbier (@wbrbr)
+
+ Features:
+ - Supports .gltf and .glb files
+ - Supports embedded (base64) or external textures
+ - Loads the albedo/diffuse texture (other maps could be added)
+ - Supports multiple mesh per model and multiple primitives per model
+
+ Some restrictions (not exhaustive):
+ - Triangle-only meshes
+ - Not supported node hierarchies or transforms
+ - Only loads the diffuse texture... but not too hard to support other maps (normal, roughness/metalness...)
+ - Only supports unsigned short indices (no byte/unsigned int)
+ - Only supports float for texture coordinates (no byte/unsigned short)
+
+ *************************************************************************************/
+
+ #define LOAD_ACCESSOR(type, nbcomp, acc, dst) \
+ { \
+ int n = 0; \
+ type* buf = (type*)acc->buffer_view->buffer->data+acc->buffer_view->offset/sizeof(type)+acc->offset/sizeof(type); \
+ for (int k = 0; k < acc->count; k++) {\
+ for (int l = 0; l < nbcomp; l++) {\
+ dst[nbcomp*k+l] = buf[n+l];\
+ }\
+ n += acc->stride/sizeof(type);\
+ }\
+ }
+
+ Model model = { 0 };
+
+ // glTF file loading
+ FILE *gltfFile = fopen(fileName, "rb");
+
+ if (gltfFile == NULL)
+ {
+ TraceLog(LOG_WARNING, "[%s] glTF file could not be opened", fileName);
+ return model;
+ }
+
+ fseek(gltfFile, 0, SEEK_END);
+ int size = ftell(gltfFile);
+ fseek(gltfFile, 0, SEEK_SET);
+
+ void *buffer = RL_MALLOC(size);
+ fread(buffer, size, 1, gltfFile);
+
+ fclose(gltfFile);
+
+ // glTF data loading
+ cgltf_options options = { 0 };
+ cgltf_data *data = NULL;
+ cgltf_result result = cgltf_parse(&options, buffer, size, &data);
+
+ if (result == cgltf_result_success)
+ {
+ TraceLog(LOG_INFO, "[%s][%s] Model meshes/materials: %i/%i", fileName, (data->file_type == 2)? "glb" : "gltf", data->meshes_count, data->materials_count);
+
+ // Read data buffers
+ result = cgltf_load_buffers(&options, data, fileName);
+ if (result != cgltf_result_success) TraceLog(LOG_INFO, "[%s][%s] Error loading mesh/material buffers", fileName, (data->file_type == 2)? "glb" : "gltf");
+
+ int primitivesCount = 0;
+
+ for (int i = 0; i < data->meshes_count; i++) primitivesCount += (int)data->meshes[i].primitives_count;
+
+ // Process glTF data and map to model
+ model.meshCount = primitivesCount;
+ model.meshes = RL_CALLOC(model.meshCount, sizeof(Mesh));
+ model.materialCount = data->materials_count + 1;
+ model.materials = RL_MALLOC(model.materialCount*sizeof(Material));
+ model.meshMaterial = RL_MALLOC(model.meshCount*sizeof(int));
+
+ for (int i = 0; i < model.meshCount; i++) model.meshes[i].vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VBO, sizeof(unsigned int));
+
+ //For each material
+ for (int i = 0; i < model.materialCount - 1; i++)
+ {
+ model.materials[i] = LoadMaterialDefault();
+ Color tint = (Color){ 255, 255, 255, 255 };
+ const char *texPath = GetDirectoryPath(fileName);
+
+ //Ensure material follows raylib support for PBR (metallic/roughness flow)
+ if (data->materials[i].has_pbr_metallic_roughness)
+ {
+ float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
+ float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
+
+ // NOTE: Material name not used for the moment
+ //if (model.materials[i].name && data->materials[i].name) strcpy(model.materials[i].name, data->materials[i].name);
+
+ // TODO: REview: shouldn't these be *255 ???
+ tint.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
+ tint.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
+ tint.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
+ tint.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
+
+ model.materials[i].maps[MAP_ROUGHNESS].color = tint;
+
+ if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
+ {
+ model.materials[i].maps[MAP_ALBEDO].texture = LoadTextureFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath, tint);
+ }
+
+ // NOTE: Tint isn't need for other textures.. pass null or clear?
+ // Just set as white, multiplying by white has no effect
+ tint = WHITE;
+
+ if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
+ {
+ model.materials[i].maps[MAP_ROUGHNESS].texture = LoadTextureFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath, tint);
+ }
+ model.materials[i].maps[MAP_ROUGHNESS].value = roughness;
+ model.materials[i].maps[MAP_METALNESS].value = metallic;
+
+ if (data->materials[i].normal_texture.texture)
+ {
+ model.materials[i].maps[MAP_NORMAL].texture = LoadTextureFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath, tint);
+ }
+
+ if (data->materials[i].occlusion_texture.texture)
+ {
+ model.materials[i].maps[MAP_OCCLUSION].texture = LoadTextureFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath, tint);
+ }
+ }
+ }
+
+ model.materials[model.materialCount - 1] = LoadMaterialDefault();
+
+ int primitiveIndex = 0;
+
+ for (int i = 0; i < data->meshes_count; i++)
+ {
+ for (int p = 0; p < data->meshes[i].primitives_count; p++)
+ {
+ for (int j = 0; j < data->meshes[i].primitives[p].attributes_count; j++)
+ {
+ if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_position)
+ {
+ cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+ model.meshes[primitiveIndex].vertexCount = acc->count;
+ model.meshes[primitiveIndex].vertices = RL_MALLOC(sizeof(float)*model.meshes[primitiveIndex].vertexCount*3);
+
+ LOAD_ACCESSOR(float, 3, acc, model.meshes[primitiveIndex].vertices)
+ }
+ else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_normal)
+ {
+ cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+ model.meshes[primitiveIndex].normals = RL_MALLOC(sizeof(float)*acc->count*3);
+
+ LOAD_ACCESSOR(float, 3, acc, model.meshes[primitiveIndex].normals)
+ }
+ else if (data->meshes[i].primitives[p].attributes[j].type == cgltf_attribute_type_texcoord)
+ {
+ cgltf_accessor *acc = data->meshes[i].primitives[p].attributes[j].data;
+
+ if (acc->component_type == cgltf_component_type_r_32f)
+ {
+ model.meshes[primitiveIndex].texcoords = RL_MALLOC(sizeof(float)*acc->count*2);
+ LOAD_ACCESSOR(float, 2, acc, model.meshes[primitiveIndex].texcoords)
+ }
+ else
+ {
+ // TODO: Support normalized unsigned byte/unsigned short texture coordinates
+ TraceLog(LOG_WARNING, "[%s] Texture coordinates must be float", fileName);
+ }
+ }
+ }
+
+ cgltf_accessor *acc = data->meshes[i].primitives[p].indices;
+
+ if (acc)
+ {
+ if (acc->component_type == cgltf_component_type_r_16u)
+ {
+ model.meshes[primitiveIndex].triangleCount = acc->count/3;
+ model.meshes[primitiveIndex].indices = RL_MALLOC(sizeof(unsigned short)*model.meshes[primitiveIndex].triangleCount*3);
+ LOAD_ACCESSOR(unsigned short, 1, acc, model.meshes[primitiveIndex].indices)
+ }
+ else
+ {
+ // TODO: Support unsigned byte/unsigned int
+ TraceLog(LOG_WARNING, "[%s] Indices must be unsigned short", fileName);
+ }
+ }
+ else
+ {
+ // Unindexed mesh
+ model.meshes[primitiveIndex].triangleCount = model.meshes[primitiveIndex].vertexCount/3;
+ }
+
+ if (data->meshes[i].primitives[p].material)
+ {
+ // Compute the offset
+ model.meshMaterial[primitiveIndex] = data->meshes[i].primitives[p].material - data->materials;
+ }
+ else
+ {
+ model.meshMaterial[primitiveIndex] = model.materialCount - 1;;
+ }
+
+ primitiveIndex++;
+ }
+ }
+
+ cgltf_free(data);
+ }
+ else TraceLog(LOG_WARNING, "[%s] glTF data could not be loaded", fileName);
+
+ RL_FREE(buffer);
+
+ return model;
+}
+#endif