summaryrefslogtreecommitdiff
path: root/libs/raylib/src/physac.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/physac.h')
-rw-r--r--libs/raylib/src/physac.h2063
1 files changed, 0 insertions, 2063 deletions
diff --git a/libs/raylib/src/physac.h b/libs/raylib/src/physac.h
deleted file mode 100644
index d9b534b..0000000
--- a/libs/raylib/src/physac.h
+++ /dev/null
@@ -1,2063 +0,0 @@
-/**********************************************************************************************
-*
-* Physac v1.0 - 2D Physics library for videogames
-*
-* DESCRIPTION:
-*
-* Physac is a small 2D physics engine written in pure C. The engine uses a fixed time-step thread loop
-* to simluate physics. A physics step contains the following phases: get collision information,
-* apply dynamics, collision solving and position correction. It uses a very simple struct for physic
-* bodies with a position vector to be used in any 3D rendering API.
-*
-* CONFIGURATION:
-*
-* #define PHYSAC_IMPLEMENTATION
-* Generates the implementation of the library into the included file.
-* If not defined, the library is in header only mode and can be included in other headers
-* or source files without problems. But only ONE file should hold the implementation.
-*
-* #define PHYSAC_STATIC (defined by default)
-* The generated implementation will stay private inside implementation file and all
-* internal symbols and functions will only be visible inside that file.
-*
-* #define PHYSAC_NO_THREADS
-* The generated implementation won't include pthread library and user must create a secondary thread to call PhysicsThread().
-* It is so important that the thread where PhysicsThread() is called must not have v-sync or any other CPU limitation.
-*
-* #define PHYSAC_STANDALONE
-* Avoid raylib.h header inclusion in this file. Data types defined on raylib are defined
-* internally in the library and input management and drawing functions must be provided by
-* the user (check library implementation for further details).
-*
-* #define PHYSAC_DEBUG
-* Traces log messages when creating and destroying physics bodies and detects errors in physics
-* calculations and reference exceptions; it is useful for debug purposes
-*
-* #define PHYSAC_MALLOC()
-* #define PHYSAC_FREE()
-* You can define your own malloc/free implementation replacing stdlib.h malloc()/free() functions.
-* Otherwise it will include stdlib.h and use the C standard library malloc()/free() function.
-*
-*
-* NOTE 1: Physac requires multi-threading, when InitPhysics() a second thread is created to manage physics calculations.
-* NOTE 2: Physac requires static C library linkage to avoid dependency on MinGW DLL (-static -lpthread)
-*
-* Use the following code to compile:
-* gcc -o $(NAME_PART).exe $(FILE_NAME) -s -static -lraylib -lpthread -lopengl32 -lgdi32 -lwinmm -std=c99
-*
-* VERY THANKS TO:
-* Ramon Santamaria (github: @raysan5)
-*
-*
-* LICENSE: zlib/libpng
-*
-* Copyright (c) 2016-2018 Victor Fisac (github: @victorfisac)
-*
-* This software is provided "as-is", without any express or implied warranty. In no event
-* will the authors be held liable for any damages arising from the use of this software.
-*
-* Permission is granted to anyone to use this software for any purpose, including commercial
-* applications, and to alter it and redistribute it freely, subject to the following restrictions:
-*
-* 1. The origin of this software must not be misrepresented; you must not claim that you
-* wrote the original software. If you use this software in a product, an acknowledgment
-* in the product documentation would be appreciated but is not required.
-*
-* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
-* as being the original software.
-*
-* 3. This notice may not be removed or altered from any source distribution.
-*
-**********************************************************************************************/
-
-#if !defined(PHYSAC_H)
-#define PHYSAC_H
-
-#if defined(PHYSAC_STATIC)
- #define PHYSACDEF static // Functions just visible to module including this file
-#else
- #if defined(__cplusplus)
- #define PHYSACDEF extern "C" // Functions visible from other files (no name mangling of functions in C++)
- #else
- #define PHYSACDEF extern // Functions visible from other files
- #endif
-#endif
-
-// Allow custom memory allocators
-#ifndef PHYSAC_MALLOC
- #define PHYSAC_MALLOC(size) malloc(size)
-#endif
-#ifndef PHYSAC_FREE
- #define PHYSAC_FREE(ptr) free(ptr)
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#define PHYSAC_MAX_BODIES 64
-#define PHYSAC_MAX_MANIFOLDS 4096
-#define PHYSAC_MAX_VERTICES 24
-#define PHYSAC_CIRCLE_VERTICES 24
-
-#define PHYSAC_COLLISION_ITERATIONS 100
-#define PHYSAC_PENETRATION_ALLOWANCE 0.05f
-#define PHYSAC_PENETRATION_CORRECTION 0.4f
-
-#define PHYSAC_PI 3.14159265358979323846
-#define PHYSAC_DEG2RAD (PHYSAC_PI/180.0f)
-
-//----------------------------------------------------------------------------------
-// Types and Structures Definition
-// NOTE: Below types are required for PHYSAC_STANDALONE usage
-//----------------------------------------------------------------------------------
-#if defined(PHYSAC_STANDALONE)
- // Boolean type
- #if defined(__STDC__) && __STDC_VERSION__ >= 199901L
- #include <stdbool.h>
- #elif !defined(__cplusplus) && !defined(bool)
- typedef enum { false, true } bool;
- #endif
-
- // Vector2 type
- typedef struct Vector2 {
- float x;
- float y;
- } Vector2;
-#endif
-
-typedef enum PhysicsShapeType { PHYSICS_CIRCLE, PHYSICS_POLYGON } PhysicsShapeType;
-
-// Previously defined to be used in PhysicsShape struct as circular dependencies
-typedef struct PhysicsBodyData *PhysicsBody;
-
-#if defined(__cplusplus)
-extern "C" { // Prevents name mangling of functions
-#endif
-
-//----------------------------------------------------------------------------------
-// Module Functions Declaration
-//----------------------------------------------------------------------------------
-PHYSACDEF void InitPhysics(void); // Initializes physics values, pointers and creates physics loop thread
-PHYSACDEF void RunPhysicsStep(void); // Run physics step, to be used if PHYSICS_NO_THREADS is set in your main loop
-PHYSACDEF void SetPhysicsTimeStep(double delta); // Sets physics fixed time step in milliseconds. 1.666666 by default
-PHYSACDEF bool IsPhysicsEnabled(void); // Returns true if physics thread is currently enabled
-PHYSACDEF void SetPhysicsGravity(float x, float y); // Sets physics global gravity force
-PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density); // Creates a new circle physics body with generic parameters
-PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density); // Creates a new rectangle physics body with generic parameters
-PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density); // Creates a new polygon physics body with generic parameters
-PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force); // Adds a force to a physics body
-PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount); // Adds an angular force to a physics body
-PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force); // Shatters a polygon shape physics body to little physics bodies with explosion force
-PHYSACDEF int GetPhysicsBodiesCount(void); // Returns the current amount of created physics bodies
-PHYSACDEF PhysicsBody GetPhysicsBody(int index); // Returns a physics body of the bodies pool at a specific index
-PHYSACDEF int GetPhysicsShapeType(int index); // Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
-PHYSACDEF int GetPhysicsShapeVerticesCount(int index); // Returns the amount of vertices of a physics body shape
-PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex); // Returns transformed position of a body shape (body position + vertex transformed position)
-PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians); // Sets physics body shape transform based on radians parameter
-PHYSACDEF void DestroyPhysicsBody(PhysicsBody body); // Unitializes and destroy a physics body
-PHYSACDEF void ResetPhysics(void); // Destroys created physics bodies and manifolds and resets global values
-PHYSACDEF void ClosePhysics(void); // Unitializes physics pointers and closes physics loop thread
-
-#if defined(__cplusplus)
-}
-#endif
-
-#endif // PHYSAC_H
-
-/***********************************************************************************
-*
-* PHYSAC IMPLEMENTATION
-*
-************************************************************************************/
-
-#if defined(PHYSAC_IMPLEMENTATION)
-
-#if !defined(PHYSAC_NO_THREADS)
- #include <pthread.h> // Required for: pthread_t, pthread_create()
-#endif
-
-#if defined(PHYSAC_DEBUG)
-
-#endif
-
-// Support TRACELOG macros
-#if defined(PHYSAC_DEBUG)
- #include <stdio.h> // Required for: printf()
- #define TRACELOG(...) printf(__VA_ARGS__)
-#else
- #define TRACELOG(...) (void)0
-#endif
-
-#include <stdlib.h> // Required for: malloc(), free(), srand(), rand()
-#include <math.h> // Required for: cosf(), sinf(), fabs(), sqrtf()
-
-#if !defined(PHYSAC_STANDALONE)
- #include "raymath.h" // Required for: Vector2Add(), Vector2Subtract()
-#endif
-
-// Time management functionality
-#include <time.h> // Required for: time(), clock_gettime()
-#if defined(_WIN32)
- // Functions required to query time on Windows
- int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount);
- int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency);
-#elif defined(__linux__)
- #if _POSIX_C_SOURCE < 199309L
- #undef _POSIX_C_SOURCE
- #define _POSIX_C_SOURCE 199309L // Required for CLOCK_MONOTONIC if compiled with c99 without gnu ext.
- #endif
- #include <sys/time.h> // Required for: timespec
-#elif defined(__APPLE__) // macOS also defines __MACH__
- #include <mach/mach_time.h> // Required for: mach_absolute_time()
-#endif
-
-//----------------------------------------------------------------------------------
-// Defines and Macros
-//----------------------------------------------------------------------------------
-#define min(a,b) (((a)<(b))?(a):(b))
-#define max(a,b) (((a)>(b))?(a):(b))
-#define PHYSAC_FLT_MAX 3.402823466e+38f
-#define PHYSAC_EPSILON 0.000001f
-#define PHYSAC_K 1.0f/3.0f
-#define PHYSAC_VECTOR_ZERO (Vector2){ 0.0f, 0.0f }
-
-//----------------------------------------------------------------------------------
-// Data Types Structure Definition
-//----------------------------------------------------------------------------------
-
-// Matrix2x2 type (used for polygon shape rotation matrix)
-typedef struct Matrix2x2 {
- float m00;
- float m01;
- float m10;
- float m11;
-} Matrix2x2;
-
-typedef struct PolygonData {
- unsigned int vertexCount; // Current used vertex and normals count
- Vector2 positions[PHYSAC_MAX_VERTICES]; // Polygon vertex positions vectors
- Vector2 normals[PHYSAC_MAX_VERTICES]; // Polygon vertex normals vectors
-} PolygonData;
-
-typedef struct PhysicsShape {
- PhysicsShapeType type; // Physics shape type (circle or polygon)
- PhysicsBody body; // Shape physics body reference
- float radius; // Circle shape radius (used for circle shapes)
- Matrix2x2 transform; // Vertices transform matrix 2x2
- PolygonData vertexData; // Polygon shape vertices position and normals data (just used for polygon shapes)
-} PhysicsShape;
-
-typedef struct PhysicsBodyData {
- unsigned int id; // Reference unique identifier
- bool enabled; // Enabled dynamics state (collisions are calculated anyway)
- Vector2 position; // Physics body shape pivot
- Vector2 velocity; // Current linear velocity applied to position
- Vector2 force; // Current linear force (reset to 0 every step)
- float angularVelocity; // Current angular velocity applied to orient
- float torque; // Current angular force (reset to 0 every step)
- float orient; // Rotation in radians
- float inertia; // Moment of inertia
- float inverseInertia; // Inverse value of inertia
- float mass; // Physics body mass
- float inverseMass; // Inverse value of mass
- float staticFriction; // Friction when the body has not movement (0 to 1)
- float dynamicFriction; // Friction when the body has movement (0 to 1)
- float restitution; // Restitution coefficient of the body (0 to 1)
- bool useGravity; // Apply gravity force to dynamics
- bool isGrounded; // Physics grounded on other body state
- bool freezeOrient; // Physics rotation constraint
- PhysicsShape shape; // Physics body shape information (type, radius, vertices, normals)
-} PhysicsBodyData;
-
-typedef struct PhysicsManifoldData {
- unsigned int id; // Reference unique identifier
- PhysicsBody bodyA; // Manifold first physics body reference
- PhysicsBody bodyB; // Manifold second physics body reference
- float penetration; // Depth of penetration from collision
- Vector2 normal; // Normal direction vector from 'a' to 'b'
- Vector2 contacts[2]; // Points of contact during collision
- unsigned int contactsCount; // Current collision number of contacts
- float restitution; // Mixed restitution during collision
- float dynamicFriction; // Mixed dynamic friction during collision
- float staticFriction; // Mixed static friction during collision
-} PhysicsManifoldData, *PhysicsManifold;
-
-//----------------------------------------------------------------------------------
-// Global Variables Definition
-//----------------------------------------------------------------------------------
-#if !defined(PHYSAC_NO_THREADS)
-static pthread_t physicsThreadId; // Physics thread id
-#endif
-static unsigned int usedMemory = 0; // Total allocated dynamic memory
-static bool physicsThreadEnabled = false; // Physics thread enabled state
-static double baseTime = 0.0; // Offset time for MONOTONIC clock
-static double startTime = 0.0; // Start time in milliseconds
-static double deltaTime = 1.0/60.0/10.0 * 1000; // Delta time used for physics steps, in milliseconds
-static double currentTime = 0.0; // Current time in milliseconds
-static unsigned long long int frequency = 0; // Hi-res clock frequency
-
-static double accumulator = 0.0; // Physics time step delta time accumulator
-static unsigned int stepsCount = 0; // Total physics steps processed
-static Vector2 gravityForce = { 0.0f, 9.81f }; // Physics world gravity force
-static PhysicsBody bodies[PHYSAC_MAX_BODIES]; // Physics bodies pointers array
-static unsigned int physicsBodiesCount = 0; // Physics world current bodies counter
-static PhysicsManifold contacts[PHYSAC_MAX_MANIFOLDS]; // Physics bodies pointers array
-static unsigned int physicsManifoldsCount = 0; // Physics world current manifolds counter
-
-//----------------------------------------------------------------------------------
-// Module Internal Functions Declaration
-//----------------------------------------------------------------------------------
-static int FindAvailableBodyIndex(); // Finds a valid index for a new physics body initialization
-static PolygonData CreateRandomPolygon(float radius, int sides); // Creates a random polygon shape with max vertex distance from polygon pivot
-static PolygonData CreateRectanglePolygon(Vector2 pos, Vector2 size); // Creates a rectangle polygon shape based on a min and max positions
-static void *PhysicsLoop(void *arg); // Physics loop thread function
-static void PhysicsStep(void); // Physics steps calculations (dynamics, collisions and position corrections)
-static int FindAvailableManifoldIndex(); // Finds a valid index for a new manifold initialization
-static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b); // Creates a new physics manifold to solve collision
-static void DestroyPhysicsManifold(PhysicsManifold manifold); // Unitializes and destroys a physics manifold
-static void SolvePhysicsManifold(PhysicsManifold manifold); // Solves a created physics manifold between two physics bodies
-static void SolveCircleToCircle(PhysicsManifold manifold); // Solves collision between two circle shape physics bodies
-static void SolveCircleToPolygon(PhysicsManifold manifold); // Solves collision between a circle to a polygon shape physics bodies
-static void SolvePolygonToCircle(PhysicsManifold manifold); // Solves collision between a polygon to a circle shape physics bodies
-static void SolvePolygonToPolygon(PhysicsManifold manifold); // Solves collision between two polygons shape physics bodies
-static void IntegratePhysicsForces(PhysicsBody body); // Integrates physics forces into velocity
-static void InitializePhysicsManifolds(PhysicsManifold manifold); // Initializes physics manifolds to solve collisions
-static void IntegratePhysicsImpulses(PhysicsManifold manifold); // Integrates physics collisions impulses to solve collisions
-static void IntegratePhysicsVelocity(PhysicsBody body); // Integrates physics velocity into position and forces
-static void CorrectPhysicsPositions(PhysicsManifold manifold); // Corrects physics bodies positions based on manifolds collision information
-static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB); // Finds polygon shapes axis least penetration
-static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index); // Finds two polygon shapes incident face
-static int Clip(Vector2 normal, float clip, Vector2 *faceA, Vector2 *faceB); // Calculates clipping based on a normal and two faces
-static bool BiasGreaterThan(float valueA, float valueB); // Check if values are between bias range
-static Vector2 TriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3); // Returns the barycenter of a triangle given by 3 points
-
-static void InitTimer(void); // Initializes hi-resolution MONOTONIC timer
-static unsigned long long int GetTimeCount(void); // Get hi-res MONOTONIC time measure in mseconds
-static double GetCurrentTime(void); // Get current time measure in milliseconds
-
-// Math functions
-static Vector2 MathCross(float value, Vector2 vector); // Returns the cross product of a vector and a value
-static float MathCrossVector2(Vector2 v1, Vector2 v2); // Returns the cross product of two vectors
-static float MathLenSqr(Vector2 vector); // Returns the len square root of a vector
-static float MathDot(Vector2 v1, Vector2 v2); // Returns the dot product of two vectors
-static inline float DistSqr(Vector2 v1, Vector2 v2); // Returns the square root of distance between two vectors
-static void MathNormalize(Vector2 *vector); // Returns the normalized values of a vector
-#if defined(PHYSAC_STANDALONE)
-static Vector2 Vector2Add(Vector2 v1, Vector2 v2); // Returns the sum of two given vectors
-static Vector2 Vector2Subtract(Vector2 v1, Vector2 v2); // Returns the subtract of two given vectors
-#endif
-
-static Matrix2x2 Mat2Radians(float radians); // Creates a matrix 2x2 from a given radians value
-static void Mat2Set(Matrix2x2 *matrix, float radians); // Set values from radians to a created matrix 2x2
-static inline Matrix2x2 Mat2Transpose(Matrix2x2 matrix); // Returns the transpose of a given matrix 2x2
-static inline Vector2 Mat2MultiplyVector2(Matrix2x2 matrix, Vector2 vector); // Multiplies a vector by a matrix 2x2
-
-//----------------------------------------------------------------------------------
-// Module Functions Definition
-//----------------------------------------------------------------------------------
-// Initializes physics values, pointers and creates physics loop thread
-PHYSACDEF void InitPhysics(void)
-{
- #if !defined(PHYSAC_NO_THREADS)
- // NOTE: if defined, user will need to create a thread for PhysicsThread function manually
- // Create physics thread using POSIXS thread libraries
- pthread_create(&physicsThreadId, NULL, &PhysicsLoop, NULL);
- #endif
-
- // Initialize high resolution timer
- InitTimer();
-
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] physics module initialized successfully\n");
- #endif
-
- accumulator = 0.0;
-}
-
-// Returns true if physics thread is currently enabled
-PHYSACDEF bool IsPhysicsEnabled(void)
-{
- return physicsThreadEnabled;
-}
-
-// Sets physics global gravity force
-PHYSACDEF void SetPhysicsGravity(float x, float y)
-{
- gravityForce.x = x;
- gravityForce.y = y;
-}
-
-// Creates a new circle physics body with generic parameters
-PHYSACDEF PhysicsBody CreatePhysicsBodyCircle(Vector2 pos, float radius, float density)
-{
- PhysicsBody newBody = CreatePhysicsBodyPolygon(pos, radius, PHYSAC_CIRCLE_VERTICES, density);
- return newBody;
-}
-
-// Creates a new rectangle physics body with generic parameters
-PHYSACDEF PhysicsBody CreatePhysicsBodyRectangle(Vector2 pos, float width, float height, float density)
-{
- PhysicsBody newBody = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
- usedMemory += sizeof(PhysicsBodyData);
-
- int newId = FindAvailableBodyIndex();
- if (newId != -1)
- {
- // Initialize new body with generic values
- newBody->id = newId;
- newBody->enabled = true;
- newBody->position = pos;
- newBody->velocity = (Vector2){ 0.0f };
- newBody->force = (Vector2){ 0.0f };
- newBody->angularVelocity = 0.0f;
- newBody->torque = 0.0f;
- newBody->orient = 0.0f;
- newBody->shape.type = PHYSICS_POLYGON;
- newBody->shape.body = newBody;
- newBody->shape.radius = 0.0f;
- newBody->shape.transform = Mat2Radians(0.0f);
- newBody->shape.vertexData = CreateRectanglePolygon(pos, (Vector2){ width, height });
-
- // Calculate centroid and moment of inertia
- Vector2 center = { 0.0f, 0.0f };
- float area = 0.0f;
- float inertia = 0.0f;
-
- for (int i = 0; i < newBody->shape.vertexData.vertexCount; i++)
- {
- // Triangle vertices, third vertex implied as (0, 0)
- Vector2 p1 = newBody->shape.vertexData.positions[i];
- int nextIndex = (((i + 1) < newBody->shape.vertexData.vertexCount) ? (i + 1) : 0);
- Vector2 p2 = newBody->shape.vertexData.positions[nextIndex];
-
- float D = MathCrossVector2(p1, p2);
- float triangleArea = D/2;
-
- area += triangleArea;
-
- // Use area to weight the centroid average, not just vertex position
- center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
- center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
-
- float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
- float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
- inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
- }
-
- center.x *= 1.0f/area;
- center.y *= 1.0f/area;
-
- // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
- // Note: this is not really necessary
- for (int i = 0; i < newBody->shape.vertexData.vertexCount; i++)
- {
- newBody->shape.vertexData.positions[i].x -= center.x;
- newBody->shape.vertexData.positions[i].y -= center.y;
- }
-
- newBody->mass = density*area;
- newBody->inverseMass = ((newBody->mass != 0.0f) ? 1.0f/newBody->mass : 0.0f);
- newBody->inertia = density*inertia;
- newBody->inverseInertia = ((newBody->inertia != 0.0f) ? 1.0f/newBody->inertia : 0.0f);
- newBody->staticFriction = 0.4f;
- newBody->dynamicFriction = 0.2f;
- newBody->restitution = 0.0f;
- newBody->useGravity = true;
- newBody->isGrounded = false;
- newBody->freezeOrient = false;
-
- // Add new body to bodies pointers array and update bodies count
- bodies[physicsBodiesCount] = newBody;
- physicsBodiesCount++;
-
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] created polygon physics body id %i\n", newBody->id);
- #endif
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] new physics body creation failed because there is any available id to use\n");
- #endif
-
- return newBody;
-}
-
-// Creates a new polygon physics body with generic parameters
-PHYSACDEF PhysicsBody CreatePhysicsBodyPolygon(Vector2 pos, float radius, int sides, float density)
-{
- PhysicsBody newBody = (PhysicsBody)PHYSAC_MALLOC(sizeof(PhysicsBodyData));
- usedMemory += sizeof(PhysicsBodyData);
-
- int newId = FindAvailableBodyIndex();
- if (newId != -1)
- {
- // Initialize new body with generic values
- newBody->id = newId;
- newBody->enabled = true;
- newBody->position = pos;
- newBody->velocity = PHYSAC_VECTOR_ZERO;
- newBody->force = PHYSAC_VECTOR_ZERO;
- newBody->angularVelocity = 0.0f;
- newBody->torque = 0.0f;
- newBody->orient = 0.0f;
- newBody->shape.type = PHYSICS_POLYGON;
- newBody->shape.body = newBody;
- newBody->shape.transform = Mat2Radians(0.0f);
- newBody->shape.vertexData = CreateRandomPolygon(radius, sides);
-
- // Calculate centroid and moment of inertia
- Vector2 center = { 0.0f, 0.0f };
- float area = 0.0f;
- float inertia = 0.0f;
-
- for (int i = 0; i < newBody->shape.vertexData.vertexCount; i++)
- {
- // Triangle vertices, third vertex implied as (0, 0)
- Vector2 position1 = newBody->shape.vertexData.positions[i];
- int nextIndex = (((i + 1) < newBody->shape.vertexData.vertexCount) ? (i + 1) : 0);
- Vector2 position2 = newBody->shape.vertexData.positions[nextIndex];
-
- float cross = MathCrossVector2(position1, position2);
- float triangleArea = cross/2;
-
- area += triangleArea;
-
- // Use area to weight the centroid average, not just vertex position
- center.x += triangleArea*PHYSAC_K*(position1.x + position2.x);
- center.y += triangleArea*PHYSAC_K*(position1.y + position2.y);
-
- float intx2 = position1.x*position1.x + position2.x*position1.x + position2.x*position2.x;
- float inty2 = position1.y*position1.y + position2.y*position1.y + position2.y*position2.y;
- inertia += (0.25f*PHYSAC_K*cross)*(intx2 + inty2);
- }
-
- center.x *= 1.0f/area;
- center.y *= 1.0f/area;
-
- // Translate vertices to centroid (make the centroid (0, 0) for the polygon in model space)
- // Note: this is not really necessary
- for (int i = 0; i < newBody->shape.vertexData.vertexCount; i++)
- {
- newBody->shape.vertexData.positions[i].x -= center.x;
- newBody->shape.vertexData.positions[i].y -= center.y;
- }
-
- newBody->mass = density*area;
- newBody->inverseMass = ((newBody->mass != 0.0f) ? 1.0f/newBody->mass : 0.0f);
- newBody->inertia = density*inertia;
- newBody->inverseInertia = ((newBody->inertia != 0.0f) ? 1.0f/newBody->inertia : 0.0f);
- newBody->staticFriction = 0.4f;
- newBody->dynamicFriction = 0.2f;
- newBody->restitution = 0.0f;
- newBody->useGravity = true;
- newBody->isGrounded = false;
- newBody->freezeOrient = false;
-
- // Add new body to bodies pointers array and update bodies count
- bodies[physicsBodiesCount] = newBody;
- physicsBodiesCount++;
-
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] created polygon physics body id %i\n", newBody->id);
- #endif
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] new physics body creation failed because there is any available id to use\n");
- #endif
-
- return newBody;
-}
-
-// Adds a force to a physics body
-PHYSACDEF void PhysicsAddForce(PhysicsBody body, Vector2 force)
-{
- if (body != NULL) body->force = Vector2Add(body->force, force);
-}
-
-// Adds an angular force to a physics body
-PHYSACDEF void PhysicsAddTorque(PhysicsBody body, float amount)
-{
- if (body != NULL) body->torque += amount;
-}
-
-// Shatters a polygon shape physics body to little physics bodies with explosion force
-PHYSACDEF void PhysicsShatter(PhysicsBody body, Vector2 position, float force)
-{
- if (body != NULL)
- {
- if (body->shape.type == PHYSICS_POLYGON)
- {
- PolygonData vertexData = body->shape.vertexData;
- bool collision = false;
-
- for (int i = 0; i < vertexData.vertexCount; i++)
- {
- Vector2 positionA = body->position;
- Vector2 positionB = Mat2MultiplyVector2(body->shape.transform, Vector2Add(body->position, vertexData.positions[i]));
- int nextIndex = (((i + 1) < vertexData.vertexCount) ? (i + 1) : 0);
- Vector2 positionC = Mat2MultiplyVector2(body->shape.transform, Vector2Add(body->position, vertexData.positions[nextIndex]));
-
- // Check collision between each triangle
- float alpha = ((positionB.y - positionC.y)*(position.x - positionC.x) + (positionC.x - positionB.x)*(position.y - positionC.y))/
- ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
-
- float beta = ((positionC.y - positionA.y)*(position.x - positionC.x) + (positionA.x - positionC.x)*(position.y - positionC.y))/
- ((positionB.y - positionC.y)*(positionA.x - positionC.x) + (positionC.x - positionB.x)*(positionA.y - positionC.y));
-
- float gamma = 1.0f - alpha - beta;
-
- if ((alpha > 0.0f) && (beta > 0.0f) & (gamma > 0.0f))
- {
- collision = true;
- break;
- }
- }
-
- if (collision)
- {
- int count = vertexData.vertexCount;
- Vector2 bodyPos = body->position;
- Vector2 *vertices = (Vector2 *)PHYSAC_MALLOC(sizeof(Vector2)*count);
- Matrix2x2 trans = body->shape.transform;
- for (int i = 0; i < count; i++) vertices[i] = vertexData.positions[i];
-
- // Destroy shattered physics body
- DestroyPhysicsBody(body);
-
- for (int i = 0; i < count; i++)
- {
- int nextIndex = (((i + 1) < count) ? (i + 1) : 0);
- Vector2 center = TriangleBarycenter(vertices[i], vertices[nextIndex], PHYSAC_VECTOR_ZERO);
- center = Vector2Add(bodyPos, center);
- Vector2 offset = Vector2Subtract(center, bodyPos);
-
- PhysicsBody newBody = CreatePhysicsBodyPolygon(center, 10, 3, 10); // Create polygon physics body with relevant values
-
- PolygonData newData = { 0 };
- newData.vertexCount = 3;
-
- newData.positions[0] = Vector2Subtract(vertices[i], offset);
- newData.positions[1] = Vector2Subtract(vertices[nextIndex], offset);
- newData.positions[2] = Vector2Subtract(position, center);
-
- // Separate vertices to avoid unnecessary physics collisions
- newData.positions[0].x *= 0.95f;
- newData.positions[0].y *= 0.95f;
- newData.positions[1].x *= 0.95f;
- newData.positions[1].y *= 0.95f;
- newData.positions[2].x *= 0.95f;
- newData.positions[2].y *= 0.95f;
-
- // Calculate polygon faces normals
- for (int j = 0; j < newData.vertexCount; j++)
- {
- int nextVertex = (((j + 1) < newData.vertexCount) ? (j + 1) : 0);
- Vector2 face = Vector2Subtract(newData.positions[nextVertex], newData.positions[j]);
-
- newData.normals[j] = (Vector2){ face.y, -face.x };
- MathNormalize(&newData.normals[j]);
- }
-
- // Apply computed vertex data to new physics body shape
- newBody->shape.vertexData = newData;
- newBody->shape.transform = trans;
-
- // Calculate centroid and moment of inertia
- center = PHYSAC_VECTOR_ZERO;
- float area = 0.0f;
- float inertia = 0.0f;
-
- for (int j = 0; j < newBody->shape.vertexData.vertexCount; j++)
- {
- // Triangle vertices, third vertex implied as (0, 0)
- Vector2 p1 = newBody->shape.vertexData.positions[j];
- int nextVertex = (((j + 1) < newBody->shape.vertexData.vertexCount) ? (j + 1) : 0);
- Vector2 p2 = newBody->shape.vertexData.positions[nextVertex];
-
- float D = MathCrossVector2(p1, p2);
- float triangleArea = D/2;
-
- area += triangleArea;
-
- // Use area to weight the centroid average, not just vertex position
- center.x += triangleArea*PHYSAC_K*(p1.x + p2.x);
- center.y += triangleArea*PHYSAC_K*(p1.y + p2.y);
-
- float intx2 = p1.x*p1.x + p2.x*p1.x + p2.x*p2.x;
- float inty2 = p1.y*p1.y + p2.y*p1.y + p2.y*p2.y;
- inertia += (0.25f*PHYSAC_K*D)*(intx2 + inty2);
- }
-
- center.x *= 1.0f/area;
- center.y *= 1.0f/area;
-
- newBody->mass = area;
- newBody->inverseMass = ((newBody->mass != 0.0f) ? 1.0f/newBody->mass : 0.0f);
- newBody->inertia = inertia;
- newBody->inverseInertia = ((newBody->inertia != 0.0f) ? 1.0f/newBody->inertia : 0.0f);
-
- // Calculate explosion force direction
- Vector2 pointA = newBody->position;
- Vector2 pointB = Vector2Subtract(newData.positions[1], newData.positions[0]);
- pointB.x /= 2.0f;
- pointB.y /= 2.0f;
- Vector2 forceDirection = Vector2Subtract(Vector2Add(pointA, Vector2Add(newData.positions[0], pointB)), newBody->position);
- MathNormalize(&forceDirection);
- forceDirection.x *= force;
- forceDirection.y *= force;
-
- // Apply force to new physics body
- PhysicsAddForce(newBody, forceDirection);
- }
-
- PHYSAC_FREE(vertices);
- }
- }
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error when trying to shatter a null reference physics body");
- #endif
-}
-
-// Returns the current amount of created physics bodies
-PHYSACDEF int GetPhysicsBodiesCount(void)
-{
- return physicsBodiesCount;
-}
-
-// Returns a physics body of the bodies pool at a specific index
-PHYSACDEF PhysicsBody GetPhysicsBody(int index)
-{
- PhysicsBody body = NULL;
-
- if (index < physicsBodiesCount)
- {
- body = bodies[index];
-
- if (body == NULL)
- {
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] error when trying to get a null reference physics body");
- #endif
- }
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] physics body index is out of bounds");
- #endif
-
- return body;
-}
-
-// Returns the physics body shape type (PHYSICS_CIRCLE or PHYSICS_POLYGON)
-PHYSACDEF int GetPhysicsShapeType(int index)
-{
- int result = -1;
-
- if (index < physicsBodiesCount)
- {
- PhysicsBody body = bodies[index];
-
- if (body != NULL) result = body->shape.type;
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error when trying to get a null reference physics body");
- #endif
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] physics body index is out of bounds");
- #endif
-
- return result;
-}
-
-// Returns the amount of vertices of a physics body shape
-PHYSACDEF int GetPhysicsShapeVerticesCount(int index)
-{
- int result = 0;
-
- if (index < physicsBodiesCount)
- {
- PhysicsBody body = bodies[index];
-
- if (body != NULL)
- {
- switch (body->shape.type)
- {
- case PHYSICS_CIRCLE: result = PHYSAC_CIRCLE_VERTICES; break;
- case PHYSICS_POLYGON: result = body->shape.vertexData.vertexCount; break;
- default: break;
- }
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error when trying to get a null reference physics body");
- #endif
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] physics body index is out of bounds");
- #endif
-
- return result;
-}
-
-// Returns transformed position of a body shape (body position + vertex transformed position)
-PHYSACDEF Vector2 GetPhysicsShapeVertex(PhysicsBody body, int vertex)
-{
- Vector2 position = { 0.0f, 0.0f };
-
- if (body != NULL)
- {
- switch (body->shape.type)
- {
- case PHYSICS_CIRCLE:
- {
- position.x = body->position.x + cosf(360.0f/PHYSAC_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
- position.y = body->position.y + sinf(360.0f/PHYSAC_CIRCLE_VERTICES*vertex*PHYSAC_DEG2RAD)*body->shape.radius;
- } break;
- case PHYSICS_POLYGON:
- {
- PolygonData vertexData = body->shape.vertexData;
- position = Vector2Add(body->position, Mat2MultiplyVector2(body->shape.transform, vertexData.positions[vertex]));
- } break;
- default: break;
- }
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error when trying to get a null reference physics body");
- #endif
-
- return position;
-}
-
-// Sets physics body shape transform based on radians parameter
-PHYSACDEF void SetPhysicsBodyRotation(PhysicsBody body, float radians)
-{
- if (body != NULL)
- {
- body->orient = radians;
-
- if (body->shape.type == PHYSICS_POLYGON) body->shape.transform = Mat2Radians(radians);
- }
-}
-
-// Unitializes and destroys a physics body
-PHYSACDEF void DestroyPhysicsBody(PhysicsBody body)
-{
- if (body != NULL)
- {
- int id = body->id;
- int index = -1;
-
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- if (bodies[i]->id == id)
- {
- index = i;
- break;
- }
- }
-
- if (index == -1)
- {
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] Not possible to find body id %i in pointers array\n", id);
- #endif
- return; // Prevent access to index -1
- }
-
- // Free body allocated memory
- PHYSAC_FREE(body);
- usedMemory -= sizeof(PhysicsBodyData);
- bodies[index] = NULL;
-
- // Reorder physics bodies pointers array and its catched index
- for (int i = index; i < physicsBodiesCount; i++)
- {
- if ((i + 1) < physicsBodiesCount) bodies[i] = bodies[i + 1];
- }
-
- // Update physics bodies count
- physicsBodiesCount--;
-
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] destroyed physics body id %i\n", id);
- #endif
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error trying to destroy a null referenced body\n");
- #endif
-}
-
-// Destroys created physics bodies and manifolds and resets global values
-PHYSACDEF void ResetPhysics(void)
-{
- // Unitialize physics bodies dynamic memory allocations
- for (int i = physicsBodiesCount - 1; i >= 0; i--)
- {
- PhysicsBody body = bodies[i];
-
- if (body != NULL)
- {
- PHYSAC_FREE(body);
- bodies[i] = NULL;
- usedMemory -= sizeof(PhysicsBodyData);
- }
- }
-
- physicsBodiesCount = 0;
-
- // Unitialize physics manifolds dynamic memory allocations
- for (int i = physicsManifoldsCount - 1; i >= 0; i--)
- {
- PhysicsManifold manifold = contacts[i];
-
- if (manifold != NULL)
- {
- PHYSAC_FREE(manifold);
- contacts[i] = NULL;
- usedMemory -= sizeof(PhysicsManifoldData);
- }
- }
-
- physicsManifoldsCount = 0;
-
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] physics module reset successfully\n");
- #endif
-}
-
-// Unitializes physics pointers and exits physics loop thread
-PHYSACDEF void ClosePhysics(void)
-{
- // Exit physics loop thread
- physicsThreadEnabled = false;
-
- #if !defined(PHYSAC_NO_THREADS)
- pthread_join(physicsThreadId, NULL);
- #endif
-
- // Unitialize physics manifolds dynamic memory allocations
- for (int i = physicsManifoldsCount - 1; i >= 0; i--) DestroyPhysicsManifold(contacts[i]);
-
- // Unitialize physics bodies dynamic memory allocations
- for (int i = physicsBodiesCount - 1; i >= 0; i--) DestroyPhysicsBody(bodies[i]);
-
- #if defined(PHYSAC_DEBUG)
- if (physicsBodiesCount > 0 || usedMemory != 0) TRACELOG("[PHYSAC] physics module closed with %i still allocated bodies [MEMORY: %i bytes]\n", physicsBodiesCount, usedMemory);
- else if (physicsManifoldsCount > 0 || usedMemory != 0) TRACELOG("[PHYSAC] physics module closed with %i still allocated manifolds [MEMORY: %i bytes]\n", physicsManifoldsCount, usedMemory);
- else TRACELOG("[PHYSAC] physics module closed successfully\n");
- #endif
-}
-
-//----------------------------------------------------------------------------------
-// Module Internal Functions Definition
-//----------------------------------------------------------------------------------
-// Finds a valid index for a new physics body initialization
-static int FindAvailableBodyIndex()
-{
- int index = -1;
- for (int i = 0; i < PHYSAC_MAX_BODIES; i++)
- {
- int currentId = i;
-
- // Check if current id already exist in other physics body
- for (int k = 0; k < physicsBodiesCount; k++)
- {
- if (bodies[k]->id == currentId)
- {
- currentId++;
- break;
- }
- }
-
- // If it is not used, use it as new physics body id
- if (currentId == i)
- {
- index = i;
- break;
- }
- }
-
- return index;
-}
-
-// Creates a random polygon shape with max vertex distance from polygon pivot
-static PolygonData CreateRandomPolygon(float radius, int sides)
-{
- PolygonData data = { 0 };
- data.vertexCount = sides;
-
- // Calculate polygon vertices positions
- for (int i = 0; i < data.vertexCount; i++)
- {
- data.positions[i].x = cosf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
- data.positions[i].y = sinf(360.0f/sides*i*PHYSAC_DEG2RAD)*radius;
- }
-
- // Calculate polygon faces normals
- for (int i = 0; i < data.vertexCount; i++)
- {
- int nextIndex = (((i + 1) < sides) ? (i + 1) : 0);
- Vector2 face = Vector2Subtract(data.positions[nextIndex], data.positions[i]);
-
- data.normals[i] = (Vector2){ face.y, -face.x };
- MathNormalize(&data.normals[i]);
- }
-
- return data;
-}
-
-// Creates a rectangle polygon shape based on a min and max positions
-static PolygonData CreateRectanglePolygon(Vector2 pos, Vector2 size)
-{
- PolygonData data = { 0 };
- data.vertexCount = 4;
-
- // Calculate polygon vertices positions
- data.positions[0] = (Vector2){ pos.x + size.x/2, pos.y - size.y/2 };
- data.positions[1] = (Vector2){ pos.x + size.x/2, pos.y + size.y/2 };
- data.positions[2] = (Vector2){ pos.x - size.x/2, pos.y + size.y/2 };
- data.positions[3] = (Vector2){ pos.x - size.x/2, pos.y - size.y/2 };
-
- // Calculate polygon faces normals
- for (int i = 0; i < data.vertexCount; i++)
- {
- int nextIndex = (((i + 1) < data.vertexCount) ? (i + 1) : 0);
- Vector2 face = Vector2Subtract(data.positions[nextIndex], data.positions[i]);
-
- data.normals[i] = (Vector2){ face.y, -face.x };
- MathNormalize(&data.normals[i]);
- }
-
- return data;
-}
-
-// Physics loop thread function
-static void *PhysicsLoop(void *arg)
-{
-#if !defined(PHYSAC_NO_THREADS)
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] physics thread created successfully\n");
- #endif
-
- // Initialize physics loop thread values
- physicsThreadEnabled = true;
-
- // Physics update loop
- while (physicsThreadEnabled)
- {
- RunPhysicsStep();
- }
-#endif
-
- return NULL;
-}
-
-// Physics steps calculations (dynamics, collisions and position corrections)
-static void PhysicsStep(void)
-{
- // Update current steps count
- stepsCount++;
-
- // Clear previous generated collisions information
- for (int i = physicsManifoldsCount - 1; i >= 0; i--)
- {
- PhysicsManifold manifold = contacts[i];
- if (manifold != NULL) DestroyPhysicsManifold(manifold);
- }
-
- // Reset physics bodies grounded state
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- PhysicsBody body = bodies[i];
- body->isGrounded = false;
- }
-
- // Generate new collision information
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- PhysicsBody bodyA = bodies[i];
-
- if (bodyA != NULL)
- {
- for (int j = i + 1; j < physicsBodiesCount; j++)
- {
- PhysicsBody bodyB = bodies[j];
-
- if (bodyB != NULL)
- {
- if ((bodyA->inverseMass == 0) && (bodyB->inverseMass == 0)) continue;
-
- PhysicsManifold manifold = CreatePhysicsManifold(bodyA, bodyB);
- SolvePhysicsManifold(manifold);
-
- if (manifold->contactsCount > 0)
- {
- // Create a new manifold with same information as previously solved manifold and add it to the manifolds pool last slot
- PhysicsManifold newManifold = CreatePhysicsManifold(bodyA, bodyB);
- newManifold->penetration = manifold->penetration;
- newManifold->normal = manifold->normal;
- newManifold->contacts[0] = manifold->contacts[0];
- newManifold->contacts[1] = manifold->contacts[1];
- newManifold->contactsCount = manifold->contactsCount;
- newManifold->restitution = manifold->restitution;
- newManifold->dynamicFriction = manifold->dynamicFriction;
- newManifold->staticFriction = manifold->staticFriction;
- }
- }
- }
- }
- }
-
- // Integrate forces to physics bodies
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- PhysicsBody body = bodies[i];
- if (body != NULL) IntegratePhysicsForces(body);
- }
-
- // Initialize physics manifolds to solve collisions
- for (int i = 0; i < physicsManifoldsCount; i++)
- {
- PhysicsManifold manifold = contacts[i];
- if (manifold != NULL) InitializePhysicsManifolds(manifold);
- }
-
- // Integrate physics collisions impulses to solve collisions
- for (int i = 0; i < PHYSAC_COLLISION_ITERATIONS; i++)
- {
- for (int j = 0; j < physicsManifoldsCount; j++)
- {
- PhysicsManifold manifold = contacts[i];
- if (manifold != NULL) IntegratePhysicsImpulses(manifold);
- }
- }
-
- // Integrate velocity to physics bodies
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- PhysicsBody body = bodies[i];
- if (body != NULL) IntegratePhysicsVelocity(body);
- }
-
- // Correct physics bodies positions based on manifolds collision information
- for (int i = 0; i < physicsManifoldsCount; i++)
- {
- PhysicsManifold manifold = contacts[i];
- if (manifold != NULL) CorrectPhysicsPositions(manifold);
- }
-
- // Clear physics bodies forces
- for (int i = 0; i < physicsBodiesCount; i++)
- {
- PhysicsBody body = bodies[i];
- if (body != NULL)
- {
- body->force = PHYSAC_VECTOR_ZERO;
- body->torque = 0.0f;
- }
- }
-}
-
-// Wrapper to ensure PhysicsStep is run with at a fixed time step
-PHYSACDEF void RunPhysicsStep(void)
-{
- // Calculate current time
- currentTime = GetCurrentTime();
-
- // Calculate current delta time
- const double delta = currentTime - startTime;
-
- // Store the time elapsed since the last frame began
- accumulator += delta;
-
- // Fixed time stepping loop
- while (accumulator >= deltaTime)
- {
-#ifdef PHYSAC_DEBUG
- //TRACELOG("currentTime %f, startTime %f, accumulator-pre %f, accumulator-post %f, delta %f, deltaTime %f\n",
- // currentTime, startTime, accumulator, accumulator-deltaTime, delta, deltaTime);
-#endif
- PhysicsStep();
- accumulator -= deltaTime;
- }
-
- // Record the starting of this frame
- startTime = currentTime;
-}
-
-PHYSACDEF void SetPhysicsTimeStep(double delta)
-{
- deltaTime = delta;
-}
-
-// Finds a valid index for a new manifold initialization
-static int FindAvailableManifoldIndex()
-{
- int index = -1;
- for (int i = 0; i < PHYSAC_MAX_MANIFOLDS; i++)
- {
- int currentId = i;
-
- // Check if current id already exist in other physics body
- for (int k = 0; k < physicsManifoldsCount; k++)
- {
- if (contacts[k]->id == currentId)
- {
- currentId++;
- break;
- }
- }
-
- // If it is not used, use it as new physics body id
- if (currentId == i)
- {
- index = i;
- break;
- }
- }
-
- return index;
-}
-
-// Creates a new physics manifold to solve collision
-static PhysicsManifold CreatePhysicsManifold(PhysicsBody a, PhysicsBody b)
-{
- PhysicsManifold newManifold = (PhysicsManifold)PHYSAC_MALLOC(sizeof(PhysicsManifoldData));
- usedMemory += sizeof(PhysicsManifoldData);
-
- int newId = FindAvailableManifoldIndex();
- if (newId != -1)
- {
- // Initialize new manifold with generic values
- newManifold->id = newId;
- newManifold->bodyA = a;
- newManifold->bodyB = b;
- newManifold->penetration = 0;
- newManifold->normal = PHYSAC_VECTOR_ZERO;
- newManifold->contacts[0] = PHYSAC_VECTOR_ZERO;
- newManifold->contacts[1] = PHYSAC_VECTOR_ZERO;
- newManifold->contactsCount = 0;
- newManifold->restitution = 0.0f;
- newManifold->dynamicFriction = 0.0f;
- newManifold->staticFriction = 0.0f;
-
- // Add new body to bodies pointers array and update bodies count
- contacts[physicsManifoldsCount] = newManifold;
- physicsManifoldsCount++;
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] new physics manifold creation failed because there is any available id to use\n");
- #endif
-
- return newManifold;
-}
-
-// Unitializes and destroys a physics manifold
-static void DestroyPhysicsManifold(PhysicsManifold manifold)
-{
- if (manifold != NULL)
- {
- int id = manifold->id;
- int index = -1;
-
- for (int i = 0; i < physicsManifoldsCount; i++)
- {
- if (contacts[i]->id == id)
- {
- index = i;
- break;
- }
- }
-
- if (index == -1)
- {
- #if defined(PHYSAC_DEBUG)
- TRACELOG("[PHYSAC] Not possible to manifold id %i in pointers array\n", id);
- #endif
- return; // Prevent access to index -1
- }
-
- // Free manifold allocated memory
- PHYSAC_FREE(manifold);
- usedMemory -= sizeof(PhysicsManifoldData);
- contacts[index] = NULL;
-
- // Reorder physics manifolds pointers array and its catched index
- for (int i = index; i < physicsManifoldsCount; i++)
- {
- if ((i + 1) < physicsManifoldsCount) contacts[i] = contacts[i + 1];
- }
-
- // Update physics manifolds count
- physicsManifoldsCount--;
- }
- #if defined(PHYSAC_DEBUG)
- else TRACELOG("[PHYSAC] error trying to destroy a null referenced manifold\n");
- #endif
-}
-
-// Solves a created physics manifold between two physics bodies
-static void SolvePhysicsManifold(PhysicsManifold manifold)
-{
- switch (manifold->bodyA->shape.type)
- {
- case PHYSICS_CIRCLE:
- {
- switch (manifold->bodyB->shape.type)
- {
- case PHYSICS_CIRCLE: SolveCircleToCircle(manifold); break;
- case PHYSICS_POLYGON: SolveCircleToPolygon(manifold); break;
- default: break;
- }
- } break;
- case PHYSICS_POLYGON:
- {
- switch (manifold->bodyB->shape.type)
- {
- case PHYSICS_CIRCLE: SolvePolygonToCircle(manifold); break;
- case PHYSICS_POLYGON: SolvePolygonToPolygon(manifold); break;
- default: break;
- }
- } break;
- default: break;
- }
-
- // Update physics body grounded state if normal direction is down and grounded state is not set yet in previous manifolds
- if (!manifold->bodyB->isGrounded) manifold->bodyB->isGrounded = (manifold->normal.y < 0);
-}
-
-// Solves collision between two circle shape physics bodies
-static void SolveCircleToCircle(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- // Calculate translational vector, which is normal
- Vector2 normal = Vector2Subtract(bodyB->position, bodyA->position);
-
- float distSqr = MathLenSqr(normal);
- float radius = bodyA->shape.radius + bodyB->shape.radius;
-
- // Check if circles are not in contact
- if (distSqr >= radius*radius)
- {
- manifold->contactsCount = 0;
- return;
- }
-
- float distance = sqrtf(distSqr);
- manifold->contactsCount = 1;
-
- if (distance == 0.0f)
- {
- manifold->penetration = bodyA->shape.radius;
- manifold->normal = (Vector2){ 1.0f, 0.0f };
- manifold->contacts[0] = bodyA->position;
- }
- else
- {
- manifold->penetration = radius - distance;
- manifold->normal = (Vector2){ normal.x/distance, normal.y/distance }; // Faster than using MathNormalize() due to sqrt is already performed
- manifold->contacts[0] = (Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
- }
-
- // Update physics body grounded state if normal direction is down
- if (!bodyA->isGrounded) bodyA->isGrounded = (manifold->normal.y < 0);
-}
-
-// Solves collision between a circle to a polygon shape physics bodies
-static void SolveCircleToPolygon(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- manifold->contactsCount = 0;
-
- // Transform circle center to polygon transform space
- Vector2 center = bodyA->position;
- center = Mat2MultiplyVector2(Mat2Transpose(bodyB->shape.transform), Vector2Subtract(center, bodyB->position));
-
- // Find edge with minimum penetration
- // It is the same concept as using support points in SolvePolygonToPolygon
- float separation = -PHYSAC_FLT_MAX;
- int faceNormal = 0;
- PolygonData vertexData = bodyB->shape.vertexData;
-
- for (int i = 0; i < vertexData.vertexCount; i++)
- {
- float currentSeparation = MathDot(vertexData.normals[i], Vector2Subtract(center, vertexData.positions[i]));
-
- if (currentSeparation > bodyA->shape.radius) return;
-
- if (currentSeparation > separation)
- {
- separation = currentSeparation;
- faceNormal = i;
- }
- }
-
- // Grab face's vertices
- Vector2 v1 = vertexData.positions[faceNormal];
- int nextIndex = (((faceNormal + 1) < vertexData.vertexCount) ? (faceNormal + 1) : 0);
- Vector2 v2 = vertexData.positions[nextIndex];
-
- // Check to see if center is within polygon
- if (separation < PHYSAC_EPSILON)
- {
- manifold->contactsCount = 1;
- Vector2 normal = Mat2MultiplyVector2(bodyB->shape.transform, vertexData.normals[faceNormal]);
- manifold->normal = (Vector2){ -normal.x, -normal.y };
- manifold->contacts[0] = (Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
- manifold->penetration = bodyA->shape.radius;
- return;
- }
-
- // Determine which voronoi region of the edge center of circle lies within
- float dot1 = MathDot(Vector2Subtract(center, v1), Vector2Subtract(v2, v1));
- float dot2 = MathDot(Vector2Subtract(center, v2), Vector2Subtract(v1, v2));
- manifold->penetration = bodyA->shape.radius - separation;
-
- if (dot1 <= 0.0f) // Closest to v1
- {
- if (DistSqr(center, v1) > bodyA->shape.radius*bodyA->shape.radius) return;
-
- manifold->contactsCount = 1;
- Vector2 normal = Vector2Subtract(v1, center);
- normal = Mat2MultiplyVector2(bodyB->shape.transform, normal);
- MathNormalize(&normal);
- manifold->normal = normal;
- v1 = Mat2MultiplyVector2(bodyB->shape.transform, v1);
- v1 = Vector2Add(v1, bodyB->position);
- manifold->contacts[0] = v1;
- }
- else if (dot2 <= 0.0f) // Closest to v2
- {
- if (DistSqr(center, v2) > bodyA->shape.radius*bodyA->shape.radius) return;
-
- manifold->contactsCount = 1;
- Vector2 normal = Vector2Subtract(v2, center);
- v2 = Mat2MultiplyVector2(bodyB->shape.transform, v2);
- v2 = Vector2Add(v2, bodyB->position);
- manifold->contacts[0] = v2;
- normal = Mat2MultiplyVector2(bodyB->shape.transform, normal);
- MathNormalize(&normal);
- manifold->normal = normal;
- }
- else // Closest to face
- {
- Vector2 normal = vertexData.normals[faceNormal];
-
- if (MathDot(Vector2Subtract(center, v1), normal) > bodyA->shape.radius) return;
-
- normal = Mat2MultiplyVector2(bodyB->shape.transform, normal);
- manifold->normal = (Vector2){ -normal.x, -normal.y };
- manifold->contacts[0] = (Vector2){ manifold->normal.x*bodyA->shape.radius + bodyA->position.x, manifold->normal.y*bodyA->shape.radius + bodyA->position.y };
- manifold->contactsCount = 1;
- }
-}
-
-// Solves collision between a polygon to a circle shape physics bodies
-static void SolvePolygonToCircle(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- manifold->bodyA = bodyB;
- manifold->bodyB = bodyA;
- SolveCircleToPolygon(manifold);
-
- manifold->normal.x *= -1.0f;
- manifold->normal.y *= -1.0f;
-}
-
-// Solves collision between two polygons shape physics bodies
-static void SolvePolygonToPolygon(PhysicsManifold manifold)
-{
- if ((manifold->bodyA == NULL) || (manifold->bodyB == NULL)) return;
-
- PhysicsShape bodyA = manifold->bodyA->shape;
- PhysicsShape bodyB = manifold->bodyB->shape;
- manifold->contactsCount = 0;
-
- // Check for separating axis with A shape's face planes
- int faceA = 0;
- float penetrationA = FindAxisLeastPenetration(&faceA, bodyA, bodyB);
- if (penetrationA >= 0.0f) return;
-
- // Check for separating axis with B shape's face planes
- int faceB = 0;
- float penetrationB = FindAxisLeastPenetration(&faceB, bodyB, bodyA);
- if (penetrationB >= 0.0f) return;
-
- int referenceIndex = 0;
- bool flip = false; // Always point from A shape to B shape
-
- PhysicsShape refPoly; // Reference
- PhysicsShape incPoly; // Incident
-
- // Determine which shape contains reference face
- if (BiasGreaterThan(penetrationA, penetrationB))
- {
- refPoly = bodyA;
- incPoly = bodyB;
- referenceIndex = faceA;
- }
- else
- {
- refPoly = bodyB;
- incPoly = bodyA;
- referenceIndex = faceB;
- flip = true;
- }
-
- // World space incident face
- Vector2 incidentFace[2];
- FindIncidentFace(&incidentFace[0], &incidentFace[1], refPoly, incPoly, referenceIndex);
-
- // Setup reference face vertices
- PolygonData refData = refPoly.vertexData;
- Vector2 v1 = refData.positions[referenceIndex];
- referenceIndex = (((referenceIndex + 1) < refData.vertexCount) ? (referenceIndex + 1) : 0);
- Vector2 v2 = refData.positions[referenceIndex];
-
- // Transform vertices to world space
- v1 = Mat2MultiplyVector2(refPoly.transform, v1);
- v1 = Vector2Add(v1, refPoly.body->position);
- v2 = Mat2MultiplyVector2(refPoly.transform, v2);
- v2 = Vector2Add(v2, refPoly.body->position);
-
- // Calculate reference face side normal in world space
- Vector2 sidePlaneNormal = Vector2Subtract(v2, v1);
- MathNormalize(&sidePlaneNormal);
-
- // Orthogonalize
- Vector2 refFaceNormal = { sidePlaneNormal.y, -sidePlaneNormal.x };
- float refC = MathDot(refFaceNormal, v1);
- float negSide = MathDot(sidePlaneNormal, v1)*-1;
- float posSide = MathDot(sidePlaneNormal, v2);
-
- // Clip incident face to reference face side planes (due to floating point error, possible to not have required points
- if (Clip((Vector2){ -sidePlaneNormal.x, -sidePlaneNormal.y }, negSide, &incidentFace[0], &incidentFace[1]) < 2) return;
- if (Clip(sidePlaneNormal, posSide, &incidentFace[0], &incidentFace[1]) < 2) return;
-
- // Flip normal if required
- manifold->normal = (flip ? (Vector2){ -refFaceNormal.x, -refFaceNormal.y } : refFaceNormal);
-
- // Keep points behind reference face
- int currentPoint = 0; // Clipped points behind reference face
- float separation = MathDot(refFaceNormal, incidentFace[0]) - refC;
- if (separation <= 0.0f)
- {
- manifold->contacts[currentPoint] = incidentFace[0];
- manifold->penetration = -separation;
- currentPoint++;
- }
- else manifold->penetration = 0.0f;
-
- separation = MathDot(refFaceNormal, incidentFace[1]) - refC;
-
- if (separation <= 0.0f)
- {
- manifold->contacts[currentPoint] = incidentFace[1];
- manifold->penetration += -separation;
- currentPoint++;
-
- // Calculate total penetration average
- manifold->penetration /= currentPoint;
- }
-
- manifold->contactsCount = currentPoint;
-}
-
-// Integrates physics forces into velocity
-static void IntegratePhysicsForces(PhysicsBody body)
-{
- if ((body == NULL) || (body->inverseMass == 0.0f) || !body->enabled) return;
-
- body->velocity.x += (body->force.x*body->inverseMass)*(deltaTime/2.0);
- body->velocity.y += (body->force.y*body->inverseMass)*(deltaTime/2.0);
-
- if (body->useGravity)
- {
- body->velocity.x += gravityForce.x*(deltaTime/1000/2.0);
- body->velocity.y += gravityForce.y*(deltaTime/1000/2.0);
- }
-
- if (!body->freezeOrient) body->angularVelocity += body->torque*body->inverseInertia*(deltaTime/2.0);
-}
-
-// Initializes physics manifolds to solve collisions
-static void InitializePhysicsManifolds(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- // Calculate average restitution, static and dynamic friction
- manifold->restitution = sqrtf(bodyA->restitution*bodyB->restitution);
- manifold->staticFriction = sqrtf(bodyA->staticFriction*bodyB->staticFriction);
- manifold->dynamicFriction = sqrtf(bodyA->dynamicFriction*bodyB->dynamicFriction);
-
- for (int i = 0; i < manifold->contactsCount; i++)
- {
- // Caculate radius from center of mass to contact
- Vector2 radiusA = Vector2Subtract(manifold->contacts[i], bodyA->position);
- Vector2 radiusB = Vector2Subtract(manifold->contacts[i], bodyB->position);
-
- Vector2 crossA = MathCross(bodyA->angularVelocity, radiusA);
- Vector2 crossB = MathCross(bodyB->angularVelocity, radiusB);
-
- Vector2 radiusV = { 0.0f, 0.0f };
- radiusV.x = bodyB->velocity.x + crossB.x - bodyA->velocity.x - crossA.x;
- radiusV.y = bodyB->velocity.y + crossB.y - bodyA->velocity.y - crossA.y;
-
- // Determine if we should perform a resting collision or not;
- // The idea is if the only thing moving this object is gravity, then the collision should be performed without any restitution
- if (MathLenSqr(radiusV) < (MathLenSqr((Vector2){ gravityForce.x*deltaTime/1000, gravityForce.y*deltaTime/1000 }) + PHYSAC_EPSILON)) manifold->restitution = 0;
- }
-}
-
-// Integrates physics collisions impulses to solve collisions
-static void IntegratePhysicsImpulses(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- // Early out and positional correct if both objects have infinite mass
- if (fabs(bodyA->inverseMass + bodyB->inverseMass) <= PHYSAC_EPSILON)
- {
- bodyA->velocity = PHYSAC_VECTOR_ZERO;
- bodyB->velocity = PHYSAC_VECTOR_ZERO;
- return;
- }
-
- for (int i = 0; i < manifold->contactsCount; i++)
- {
- // Calculate radius from center of mass to contact
- Vector2 radiusA = Vector2Subtract(manifold->contacts[i], bodyA->position);
- Vector2 radiusB = Vector2Subtract(manifold->contacts[i], bodyB->position);
-
- // Calculate relative velocity
- Vector2 radiusV = { 0.0f, 0.0f };
- radiusV.x = bodyB->velocity.x + MathCross(bodyB->angularVelocity, radiusB).x - bodyA->velocity.x - MathCross(bodyA->angularVelocity, radiusA).x;
- radiusV.y = bodyB->velocity.y + MathCross(bodyB->angularVelocity, radiusB).y - bodyA->velocity.y - MathCross(bodyA->angularVelocity, radiusA).y;
-
- // Relative velocity along the normal
- float contactVelocity = MathDot(radiusV, manifold->normal);
-
- // Do not resolve if velocities are separating
- if (contactVelocity > 0.0f) return;
-
- float raCrossN = MathCrossVector2(radiusA, manifold->normal);
- float rbCrossN = MathCrossVector2(radiusB, manifold->normal);
-
- float inverseMassSum = bodyA->inverseMass + bodyB->inverseMass + (raCrossN*raCrossN)*bodyA->inverseInertia + (rbCrossN*rbCrossN)*bodyB->inverseInertia;
-
- // Calculate impulse scalar value
- float impulse = -(1.0f + manifold->restitution)*contactVelocity;
- impulse /= inverseMassSum;
- impulse /= (float)manifold->contactsCount;
-
- // Apply impulse to each physics body
- Vector2 impulseV = { manifold->normal.x*impulse, manifold->normal.y*impulse };
-
- if (bodyA->enabled)
- {
- bodyA->velocity.x += bodyA->inverseMass*(-impulseV.x);
- bodyA->velocity.y += bodyA->inverseMass*(-impulseV.y);
- if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathCrossVector2(radiusA, (Vector2){ -impulseV.x, -impulseV.y });
- }
-
- if (bodyB->enabled)
- {
- bodyB->velocity.x += bodyB->inverseMass*(impulseV.x);
- bodyB->velocity.y += bodyB->inverseMass*(impulseV.y);
- if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathCrossVector2(radiusB, impulseV);
- }
-
- // Apply friction impulse to each physics body
- radiusV.x = bodyB->velocity.x + MathCross(bodyB->angularVelocity, radiusB).x - bodyA->velocity.x - MathCross(bodyA->angularVelocity, radiusA).x;
- radiusV.y = bodyB->velocity.y + MathCross(bodyB->angularVelocity, radiusB).y - bodyA->velocity.y - MathCross(bodyA->angularVelocity, radiusA).y;
-
- Vector2 tangent = { radiusV.x - (manifold->normal.x*MathDot(radiusV, manifold->normal)), radiusV.y - (manifold->normal.y*MathDot(radiusV, manifold->normal)) };
- MathNormalize(&tangent);
-
- // Calculate impulse tangent magnitude
- float impulseTangent = -MathDot(radiusV, tangent);
- impulseTangent /= inverseMassSum;
- impulseTangent /= (float)manifold->contactsCount;
-
- float absImpulseTangent = fabs(impulseTangent);
-
- // Don't apply tiny friction impulses
- if (absImpulseTangent <= PHYSAC_EPSILON) return;
-
- // Apply coulumb's law
- Vector2 tangentImpulse = { 0.0f, 0.0f };
- if (absImpulseTangent < impulse*manifold->staticFriction) tangentImpulse = (Vector2){ tangent.x*impulseTangent, tangent.y*impulseTangent };
- else tangentImpulse = (Vector2){ tangent.x*-impulse*manifold->dynamicFriction, tangent.y*-impulse*manifold->dynamicFriction };
-
- // Apply friction impulse
- if (bodyA->enabled)
- {
- bodyA->velocity.x += bodyA->inverseMass*(-tangentImpulse.x);
- bodyA->velocity.y += bodyA->inverseMass*(-tangentImpulse.y);
-
- if (!bodyA->freezeOrient) bodyA->angularVelocity += bodyA->inverseInertia*MathCrossVector2(radiusA, (Vector2){ -tangentImpulse.x, -tangentImpulse.y });
- }
-
- if (bodyB->enabled)
- {
- bodyB->velocity.x += bodyB->inverseMass*(tangentImpulse.x);
- bodyB->velocity.y += bodyB->inverseMass*(tangentImpulse.y);
-
- if (!bodyB->freezeOrient) bodyB->angularVelocity += bodyB->inverseInertia*MathCrossVector2(radiusB, tangentImpulse);
- }
- }
-}
-
-// Integrates physics velocity into position and forces
-static void IntegratePhysicsVelocity(PhysicsBody body)
-{
- if ((body == NULL) ||!body->enabled) return;
-
- body->position.x += body->velocity.x*deltaTime;
- body->position.y += body->velocity.y*deltaTime;
-
- if (!body->freezeOrient) body->orient += body->angularVelocity*deltaTime;
- Mat2Set(&body->shape.transform, body->orient);
-
- IntegratePhysicsForces(body);
-}
-
-// Corrects physics bodies positions based on manifolds collision information
-static void CorrectPhysicsPositions(PhysicsManifold manifold)
-{
- PhysicsBody bodyA = manifold->bodyA;
- PhysicsBody bodyB = manifold->bodyB;
-
- if ((bodyA == NULL) || (bodyB == NULL)) return;
-
- Vector2 correction = { 0.0f, 0.0f };
- correction.x = (max(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.x*PHYSAC_PENETRATION_CORRECTION;
- correction.y = (max(manifold->penetration - PHYSAC_PENETRATION_ALLOWANCE, 0.0f)/(bodyA->inverseMass + bodyB->inverseMass))*manifold->normal.y*PHYSAC_PENETRATION_CORRECTION;
-
- if (bodyA->enabled)
- {
- bodyA->position.x -= correction.x*bodyA->inverseMass;
- bodyA->position.y -= correction.y*bodyA->inverseMass;
- }
-
- if (bodyB->enabled)
- {
- bodyB->position.x += correction.x*bodyB->inverseMass;
- bodyB->position.y += correction.y*bodyB->inverseMass;
- }
-}
-
-// Returns the extreme point along a direction within a polygon
-static Vector2 GetSupport(PhysicsShape shape, Vector2 dir)
-{
- float bestProjection = -PHYSAC_FLT_MAX;
- Vector2 bestVertex = { 0.0f, 0.0f };
- PolygonData data = shape.vertexData;
-
- for (int i = 0; i < data.vertexCount; i++)
- {
- Vector2 vertex = data.positions[i];
- float projection = MathDot(vertex, dir);
-
- if (projection > bestProjection)
- {
- bestVertex = vertex;
- bestProjection = projection;
- }
- }
-
- return bestVertex;
-}
-
-// Finds polygon shapes axis least penetration
-static float FindAxisLeastPenetration(int *faceIndex, PhysicsShape shapeA, PhysicsShape shapeB)
-{
- float bestDistance = -PHYSAC_FLT_MAX;
- int bestIndex = 0;
-
- PolygonData dataA = shapeA.vertexData;
- //PolygonData dataB = shapeB.vertexData;
-
- for (int i = 0; i < dataA.vertexCount; i++)
- {
- // Retrieve a face normal from A shape
- Vector2 normal = dataA.normals[i];
- Vector2 transNormal = Mat2MultiplyVector2(shapeA.transform, normal);
-
- // Transform face normal into B shape's model space
- Matrix2x2 buT = Mat2Transpose(shapeB.transform);
- normal = Mat2MultiplyVector2(buT, transNormal);
-
- // Retrieve support point from B shape along -n
- Vector2 support = GetSupport(shapeB, (Vector2){ -normal.x, -normal.y });
-
- // Retrieve vertex on face from A shape, transform into B shape's model space
- Vector2 vertex = dataA.positions[i];
- vertex = Mat2MultiplyVector2(shapeA.transform, vertex);
- vertex = Vector2Add(vertex, shapeA.body->position);
- vertex = Vector2Subtract(vertex, shapeB.body->position);
- vertex = Mat2MultiplyVector2(buT, vertex);
-
- // Compute penetration distance in B shape's model space
- float distance = MathDot(normal, Vector2Subtract(support, vertex));
-
- // Store greatest distance
- if (distance > bestDistance)
- {
- bestDistance = distance;
- bestIndex = i;
- }
- }
-
- *faceIndex = bestIndex;
- return bestDistance;
-}
-
-// Finds two polygon shapes incident face
-static void FindIncidentFace(Vector2 *v0, Vector2 *v1, PhysicsShape ref, PhysicsShape inc, int index)
-{
- PolygonData refData = ref.vertexData;
- PolygonData incData = inc.vertexData;
-
- Vector2 referenceNormal = refData.normals[index];
-
- // Calculate normal in incident's frame of reference
- referenceNormal = Mat2MultiplyVector2(ref.transform, referenceNormal); // To world space
- referenceNormal = Mat2MultiplyVector2(Mat2Transpose(inc.transform), referenceNormal); // To incident's model space
-
- // Find most anti-normal face on polygon
- int incidentFace = 0;
- float minDot = PHYSAC_FLT_MAX;
-
- for (int i = 0; i < incData.vertexCount; i++)
- {
- float dot = MathDot(referenceNormal, incData.normals[i]);
-
- if (dot < minDot)
- {
- minDot = dot;
- incidentFace = i;
- }
- }
-
- // Assign face vertices for incident face
- *v0 = Mat2MultiplyVector2(inc.transform, incData.positions[incidentFace]);
- *v0 = Vector2Add(*v0, inc.body->position);
- incidentFace = (((incidentFace + 1) < incData.vertexCount) ? (incidentFace + 1) : 0);
- *v1 = Mat2MultiplyVector2(inc.transform, incData.positions[incidentFace]);
- *v1 = Vector2Add(*v1, inc.body->position);
-}
-
-// Calculates clipping based on a normal and two faces
-static int Clip(Vector2 normal, float clip, Vector2 *faceA, Vector2 *faceB)
-{
- int sp = 0;
- Vector2 out[2] = { *faceA, *faceB };
-
- // Retrieve distances from each endpoint to the line
- float distanceA = MathDot(normal, *faceA) - clip;
- float distanceB = MathDot(normal, *faceB) - clip;
-
- // If negative (behind plane)
- if (distanceA <= 0.0f) out[sp++] = *faceA;
- if (distanceB <= 0.0f) out[sp++] = *faceB;
-
- // If the points are on different sides of the plane
- if ((distanceA*distanceB) < 0.0f)
- {
- // Push intersection point
- float alpha = distanceA/(distanceA - distanceB);
- out[sp] = *faceA;
- Vector2 delta = Vector2Subtract(*faceB, *faceA);
- delta.x *= alpha;
- delta.y *= alpha;
- out[sp] = Vector2Add(out[sp], delta);
- sp++;
- }
-
- // Assign the new converted values
- *faceA = out[0];
- *faceB = out[1];
-
- return sp;
-}
-
-// Check if values are between bias range
-static bool BiasGreaterThan(float valueA, float valueB)
-{
- return (valueA >= (valueB*0.95f + valueA*0.01f));
-}
-
-// Returns the barycenter of a triangle given by 3 points
-static Vector2 TriangleBarycenter(Vector2 v1, Vector2 v2, Vector2 v3)
-{
- Vector2 result = { 0.0f, 0.0f };
-
- result.x = (v1.x + v2.x + v3.x)/3;
- result.y = (v1.y + v2.y + v3.y)/3;
-
- return result;
-}
-
-// Initializes hi-resolution MONOTONIC timer
-static void InitTimer(void)
-{
- srand(time(NULL)); // Initialize random seed
-
-#if defined(_WIN32)
- QueryPerformanceFrequency((unsigned long long int *) &frequency);
-#endif
-
-#if defined(__EMSCRIPTEN__) || defined(__linux__)
- struct timespec now;
- if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) frequency = 1000000000;
-#endif
-
-#if defined(__APPLE__)
- mach_timebase_info_data_t timebase;
- mach_timebase_info(&timebase);
- frequency = (timebase.denom*1e9)/timebase.numer;
-#endif
-
- baseTime = GetTimeCount(); // Get MONOTONIC clock time offset
- startTime = GetCurrentTime(); // Get current time
-}
-
-// Get hi-res MONOTONIC time measure in seconds
-static unsigned long long int GetTimeCount(void)
-{
- unsigned long long int value = 0;
-
-#if defined(_WIN32)
- QueryPerformanceCounter((unsigned long long int *) &value);
-#endif
-
-#if defined(__linux__)
- struct timespec now;
- clock_gettime(CLOCK_MONOTONIC, &now);
- value = (unsigned long long int)now.tv_sec*(unsigned long long int)1000000000 + (unsigned long long int)now.tv_nsec;
-#endif
-
-#if defined(__APPLE__)
- value = mach_absolute_time();
-#endif
-
- return value;
-}
-
-// Get current time in milliseconds
-static double GetCurrentTime(void)
-{
- return (double)(GetTimeCount() - baseTime)/frequency*1000;
-}
-
-// Returns the cross product of a vector and a value
-static inline Vector2 MathCross(float value, Vector2 vector)
-{
- return (Vector2){ -value*vector.y, value*vector.x };
-}
-
-// Returns the cross product of two vectors
-static inline float MathCrossVector2(Vector2 v1, Vector2 v2)
-{
- return (v1.x*v2.y - v1.y*v2.x);
-}
-
-// Returns the len square root of a vector
-static inline float MathLenSqr(Vector2 vector)
-{
- return (vector.x*vector.x + vector.y*vector.y);
-}
-
-// Returns the dot product of two vectors
-static inline float MathDot(Vector2 v1, Vector2 v2)
-{
- return (v1.x*v2.x + v1.y*v2.y);
-}
-
-// Returns the square root of distance between two vectors
-static inline float DistSqr(Vector2 v1, Vector2 v2)
-{
- Vector2 dir = Vector2Subtract(v1, v2);
- return MathDot(dir, dir);
-}
-
-// Returns the normalized values of a vector
-static void MathNormalize(Vector2 *vector)
-{
- float length, ilength;
-
- Vector2 aux = *vector;
- length = sqrtf(aux.x*aux.x + aux.y*aux.y);
-
- if (length == 0) length = 1.0f;
-
- ilength = 1.0f/length;
-
- vector->x *= ilength;
- vector->y *= ilength;
-}
-
-#if defined(PHYSAC_STANDALONE)
-// Returns the sum of two given vectors
-static inline Vector2 Vector2Add(Vector2 v1, Vector2 v2)
-{
- return (Vector2){ v1.x + v2.x, v1.y + v2.y };
-}
-
-// Returns the subtract of two given vectors
-static inline Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
-{
- return (Vector2){ v1.x - v2.x, v1.y - v2.y };
-}
-#endif
-
-// Creates a matrix 2x2 from a given radians value
-static Matrix2x2 Mat2Radians(float radians)
-{
- float c = cosf(radians);
- float s = sinf(radians);
-
- return (Matrix2x2){ c, -s, s, c };
-}
-
-// Set values from radians to a created matrix 2x2
-static void Mat2Set(Matrix2x2 *matrix, float radians)
-{
- float cos = cosf(radians);
- float sin = sinf(radians);
-
- matrix->m00 = cos;
- matrix->m01 = -sin;
- matrix->m10 = sin;
- matrix->m11 = cos;
-}
-
-// Returns the transpose of a given matrix 2x2
-static inline Matrix2x2 Mat2Transpose(Matrix2x2 matrix)
-{
- return (Matrix2x2){ matrix.m00, matrix.m10, matrix.m01, matrix.m11 };
-}
-
-// Multiplies a vector by a matrix 2x2
-static inline Vector2 Mat2MultiplyVector2(Matrix2x2 matrix, Vector2 vector)
-{
- return (Vector2){ matrix.m00*vector.x + matrix.m01*vector.y, matrix.m10*vector.x + matrix.m11*vector.y };
-}
-
-#endif // PHYSAC_IMPLEMENTATION