summaryrefslogtreecommitdiff
path: root/libs/raylib/src/rmem.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/rmem.h')
-rw-r--r--libs/raylib/src/rmem.h710
1 files changed, 337 insertions, 373 deletions
diff --git a/libs/raylib/src/rmem.h b/libs/raylib/src/rmem.h
index 8f92003..dbf417f 100644
--- a/libs/raylib/src/rmem.h
+++ b/libs/raylib/src/rmem.h
@@ -2,7 +2,7 @@
*
* rmem - raylib memory pool and objects pool
*
-* A quick, efficient, and minimal free list and stack-based allocator
+* A quick, efficient, and minimal free list and arena-based allocator
*
* PURPOSE:
* - A quicker, efficient memory allocator alternative to 'malloc' and friends.
@@ -55,6 +55,8 @@
#define RMEMAPI // We are building or using library as a static library (or Linux shared library)
#endif
+#define RMEM_VERSION "v1.3" // changelog at bottom of header.
+
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
@@ -66,39 +68,45 @@ struct MemNode {
MemNode *next, *prev;
};
+// Freelist implementation
typedef struct AllocList {
MemNode *head, *tail;
- size_t len, maxNodes;
- bool autoDefrag : 1;
+ size_t len;
} AllocList;
-typedef struct Stack {
- uint8_t *mem, *base;
+// Arena allocator.
+typedef struct Arena {
+ uintptr_t mem, offs;
size_t size;
-} Stack;
+} Arena;
+
-#define MEMPOOL_BUCKET_SIZE 8
-#define MEMPOOL_BUCKET_BITS 3
+enum {
+ MEMPOOL_BUCKET_SIZE = 8,
+ MEMPOOL_BUCKET_BITS = (sizeof(uintptr_t) >> 1) + 1,
+ MEM_SPLIT_THRESHOLD = sizeof(uintptr_t) * 4
+};
typedef struct MemPool {
- AllocList freeList;
- Stack stack;
- MemNode *buckets[MEMPOOL_BUCKET_SIZE];
+ AllocList large, buckets[MEMPOOL_BUCKET_SIZE];
+ Arena arena;
} MemPool;
+
// Object Pool
typedef struct ObjPool {
- Stack stack;
- size_t objSize, freeBlocks;
+ uintptr_t mem, offs;
+ size_t objSize, freeBlocks, memSize;
} ObjPool;
// Double-Ended Stack aka Deque
typedef struct BiStack {
- uint8_t *mem, *front, *back;
+ uintptr_t mem, front, back;
size_t size;
} BiStack;
+
#if defined(__cplusplus)
extern "C" { // Prevents name mangling of functions
#endif
@@ -115,10 +123,7 @@ RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
RMEMAPI void MemPoolReset(MemPool *mempool);
-RMEMAPI bool MemPoolDefrag(MemPool *mempool);
-
RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
-RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool);
//------------------------------------------------------------------------------------
// Functions Declaration - Object Pool
@@ -161,7 +166,9 @@ RMEMAPI intptr_t BiStackMargins(BiStack destack);
#if defined(RMEM_IMPLEMENTATION)
-#include <stdio.h> // Required for: malloc(), calloc(), free()
+#include <stdio.h> // Required for:
+#include <stdlib.h> // Required for:
+#include <string.h> // Required for:
//----------------------------------------------------------------------------------
// Defines and Macros
@@ -188,6 +195,145 @@ static inline size_t __AlignSize(const size_t size, const size_t align)
return (size + (align - 1)) & -align;
}
+static MemNode *__SplitMemNode(MemNode *const node, const size_t bytes)
+{
+ uintptr_t n = ( uintptr_t )node;
+ MemNode *const r = ( MemNode* )(n + (node->size - bytes));
+ node->size -= bytes;
+ r->size = bytes;
+ return r;
+}
+
+static void __InsertMemNodeBefore(AllocList *const list, MemNode *const insert, MemNode *const curr)
+{
+ insert->next = curr;
+ if (curr->prev==NULL) list->head = insert;
+ else
+ {
+ insert->prev = curr->prev;
+ curr->prev->next = insert;
+ }
+ curr->prev = insert;
+}
+
+static void __ReplaceMemNode(MemNode *const old, MemNode *const replace)
+{
+ replace->prev = old->prev;
+ replace->next = old->next;
+ if( old->prev != NULL )
+ old->prev->next = replace;
+ if( old->next != NULL )
+ old->next->prev = replace;
+}
+
+
+static MemNode *__RemoveMemNode(AllocList *const list, MemNode *const node)
+{
+ if (node->prev != NULL) node->prev->next = node->next;
+ else
+ {
+ list->head = node->next;
+ if (list->head != NULL) list->head->prev = NULL;
+ else list->tail = NULL;
+ }
+
+ if (node->next != NULL) node->next->prev = node->prev;
+ else
+ {
+ list->tail = node->prev;
+ if (list->tail != NULL) list->tail->next = NULL;
+ else list->head = NULL;
+ }
+ list->len--;
+ return node;
+}
+
+static MemNode *__FindMemNode(AllocList *const list, const size_t bytes)
+{
+ for (MemNode *node = list->head; node != NULL; node = node->next)
+ {
+ if (node->size < bytes) continue;
+ // close in size - reduce fragmentation by not splitting.
+ else if (node->size <= bytes + MEM_SPLIT_THRESHOLD) return __RemoveMemNode(list, node);
+ else return __SplitMemNode(node, bytes);
+ }
+ return NULL;
+}
+
+static void __InsertMemNode(MemPool *const mempool, AllocList *const list, MemNode *const node, const bool is_bucket)
+{
+ if (list->head == NULL)
+ {
+ list->head = node;
+ list->len++;
+ }
+ else
+ {
+ for (MemNode *iter = list->head; iter != NULL; iter = iter->next)
+ {
+ if (( uintptr_t )iter == mempool->arena.offs)
+ {
+ mempool->arena.offs += iter->size;
+ __RemoveMemNode(list, iter);
+ iter = list->head;
+ }
+ const uintptr_t inode = ( uintptr_t )node;
+ const uintptr_t iiter = ( uintptr_t )iter;
+ const uintptr_t iter_end = iiter + iter->size;
+ const uintptr_t node_end = inode + node->size;
+ if (iter==node) return;
+ else if (iter < node)
+ {
+ // node was coalesced prior.
+ if (iter_end > inode) return;
+ else if (iter_end==inode && !is_bucket)
+ {
+ // if we can coalesce, do so.
+ iter->size += node->size;
+ return;
+ }
+ }
+ else if (iter > node)
+ {
+ // Address sort, lowest to highest aka ascending order.
+ if (iiter < node_end) return;
+ else if (iter==list->head && !is_bucket)
+ {
+ if (iter_end==inode) iter->size += node->size;
+ else if (node_end==iiter)
+ {
+ node->size += list->head->size;
+ node->next = list->head->next;
+ node->prev = NULL;
+ list->head = node;
+ }
+ else
+ {
+ node->next = iter;
+ node->prev = NULL;
+ iter->prev = node;
+ list->head = node;
+ list->len++;
+ }
+ return;
+ }
+ else if (iter_end==inode && !is_bucket)
+ {
+ // if we can coalesce, do so.
+ iter->size += node->size;
+ return;
+ }
+ else
+ {
+ __InsertMemNodeBefore(list, iter, node);
+ list->len++;
+ return;
+ }
+ }
+ }
+ }
+}
+
//----------------------------------------------------------------------------------
// Module Functions Definition - Memory Pool
//----------------------------------------------------------------------------------
@@ -196,114 +342,77 @@ MemPool CreateMemPool(const size_t size)
{
MemPool mempool = { 0 };
- if (size == 0UL) return mempool;
+ if (size == 0) return mempool;
else
{
// Align the mempool size to at least the size of an alloc node.
- mempool.stack.size = size;
- mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem);
-
- if (mempool.stack.mem == NULL)
- {
- mempool.stack.size = 0UL;
- return mempool;
- }
+ uint8_t *const restrict buf = malloc(size*sizeof *buf);
+ if (buf==NULL) return mempool;
else
{
- mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+ mempool.arena.size = size;
+ mempool.arena.mem = ( uintptr_t )buf;
+ mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
return mempool;
}
}
}
-MemPool CreateMemPoolFromBuffer(void *buf, const size_t size)
+MemPool CreateMemPoolFromBuffer(void *const restrict buf, const size_t size)
{
MemPool mempool = { 0 };
-
- if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
+ if ((size == 0) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
else
{
- mempool.stack.size = size;
- mempool.stack.mem = buf;
- mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+ mempool.arena.size = size;
+ mempool.arena.mem = ( uintptr_t )buf;
+ mempool.arena.offs = mempool.arena.mem + mempool.arena.size;
return mempool;
}
}
-void DestroyMemPool(MemPool *const mempool)
+void DestroyMemPool(MemPool *const restrict mempool)
{
- if ((mempool == NULL) || (mempool->stack.mem == NULL)) return;
+ if (mempool->arena.mem == 0) return;
else
{
- free(mempool->stack.mem);
+ void *const restrict ptr = ( void* )mempool->arena.mem;
+ free(ptr);
*mempool = (MemPool){ 0 };
}
}
void *MemPoolAlloc(MemPool *const mempool, const size_t size)
{
- if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL;
+ if ((size == 0) || (size > mempool->arena.size)) return NULL;
else
{
MemNode *new_mem = NULL;
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
- const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
+ const size_t BUCKET_SLOT = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
// If the size is small enough, let's check if our buckets has a fitting memory block.
- if ((BUCKET_INDEX < MEMPOOL_BUCKET_SIZE) &&
- (mempool->buckets[BUCKET_INDEX] != NULL) &&
- (mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE))
+ if (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE)
{
- new_mem = mempool->buckets[BUCKET_INDEX];
- mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next;
- if( mempool->buckets[BUCKET_INDEX] != NULL )
- mempool->buckets[BUCKET_INDEX]->prev = NULL;
+ new_mem = __FindMemNode(&mempool->buckets[BUCKET_SLOT], ALLOC_SIZE);
}
- else if (mempool->freeList.head != NULL)
+ else if (mempool->large.head != NULL)
{
- const size_t MEM_SPLIT_THRESHOLD = 16;
-
- // If the freelist is valid, let's allocate FROM the freelist then!
- for (MemNode *inode = mempool->freeList.head; inode != NULL; inode = inode->next)
- {
- if (inode->size < ALLOC_SIZE) continue;
- else if (inode->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD))
- {
- // Close in size - reduce fragmentation by not splitting.
- new_mem = inode;
- (inode->prev != NULL)? (inode->prev->next = inode->next) : (mempool->freeList.head = inode->next);
- (inode->next != NULL)? (inode->next->prev = inode->prev) : (mempool->freeList.tail = inode->prev);
-
- if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
- else mempool->freeList.tail = NULL;
-
- if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
- mempool->freeList.len--;
- break;
- }
- else
- {
- // Split the memory chunk.
- new_mem = (MemNode *)((uint8_t *)inode + (inode->size - ALLOC_SIZE));
- inode->size -= ALLOC_SIZE;
- new_mem->size = ALLOC_SIZE;
- break;
- }
- }
+ new_mem = __FindMemNode(&mempool->large, ALLOC_SIZE);
}
if (new_mem == NULL)
{
// not enough memory to support the size!
- if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL;
+ if ((mempool->arena.offs - ALLOC_SIZE) < mempool->arena.mem) return NULL;
else
{
// Couldn't allocate from a freelist, allocate from available mempool.
// Subtract allocation size from the mempool.
- mempool->stack.base -= ALLOC_SIZE;
+ mempool->arena.offs -= ALLOC_SIZE;
// Use the available mempool space as the new node.
- new_mem = (MemNode *)mempool->stack.base;
+ new_mem = ( MemNode* )mempool->arena.offs;
new_mem->size = ALLOC_SIZE;
}
}
@@ -313,33 +422,32 @@ void *MemPoolAlloc(MemPool *const mempool, const size_t size)
// | mem size | lowest addr of block
// | next node | 12 byte (32-bit) header
// | prev node | 24 byte (64-bit) header
- // --------------
+ // |------------|
// | alloc'd |
// | memory |
// | space | highest addr of block
// --------------
new_mem->next = new_mem->prev = NULL;
- uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
+ uint8_t *const restrict final_mem = ( uint8_t* )new_mem + sizeof *new_mem;
return memset(final_mem, 0, new_mem->size - sizeof *new_mem);
}
}
-void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size)
+void *MemPoolRealloc(MemPool *const restrict mempool, void *const ptr, const size_t size)
{
- if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
+ if (size > mempool->arena.size) return NULL;
// NULL ptr should make this work like regular Allocation.
else if (ptr == NULL) return MemPoolAlloc(mempool, size);
- else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL;
+ else if ((uintptr_t)ptr - sizeof(MemNode) < mempool->arena.mem) return NULL;
else
{
- MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node);
+ MemNode *const node = ( MemNode* )(( uint8_t* )ptr - sizeof *node);
const size_t NODE_SIZE = sizeof *node;
uint8_t *const resized_block = MemPoolAlloc(mempool, size);
-
if (resized_block == NULL) return NULL;
else
{
- MemNode *const resized = (MemNode *)(resized_block - sizeof *resized);
+ MemNode *const resized = ( MemNode* )(resized_block - sizeof *resized);
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
MemPoolFree(mempool, ptr);
return resized_block;
@@ -347,72 +455,39 @@ void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t si
}
}
-void MemPoolFree(MemPool *const restrict mempool, void *ptr)
+void MemPoolFree(MemPool *const restrict mempool, void *const ptr)
{
- if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return;
+ const uintptr_t p = ( uintptr_t )ptr;
+ if ((ptr == NULL) || (p - sizeof(MemNode) < mempool->arena.mem)) return;
else
{
// Behind the actual pointer data is the allocation info.
- MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
- const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
+ const uintptr_t block = p - sizeof(MemNode);
+ MemNode *const mem_node = ( MemNode* )block;
+ const size_t BUCKET_SLOT = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
// Make sure the pointer data is valid.
- if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
- (((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) ||
- (mem_node->size == 0UL) ||
- (mem_node->size > mempool->stack.size)) return;
- // If the mem_node is right at the stack base ptr, then add it to the stack.
- else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base)
+ if ((block < mempool->arena.offs) ||
+ ((block - mempool->arena.mem) > mempool->arena.size) ||
+ (mem_node->size == 0) ||
+ (mem_node->size > mempool->arena.size)) return;
+ // If the mem_node is right at the arena offs, then merge it back to the arena.
+ else if (block == mempool->arena.offs)
{
- mempool->stack.base += mem_node->size;
+ mempool->arena.offs += mem_node->size;
}
- // attempted stack merge failed, try to place it into the memnode buckets
- else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE)
- {
- if (mempool->buckets[BUCKET_INDEX] == NULL) mempool->buckets[BUCKET_INDEX] = mem_node;
- else
- {
- for (MemNode *n = mempool->buckets[BUCKET_INDEX]; n != NULL; n = n->next) if( n==mem_node ) return;
- mempool->buckets[BUCKET_INDEX]->prev = mem_node;
- mem_node->next = mempool->buckets[BUCKET_INDEX];
- mempool->buckets[BUCKET_INDEX] = mem_node;
- }
- }
- // Otherwise, we add it to the free list.
- // We also check if the freelist already has the pointer so we can prevent double frees.
- else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/
+ else
{
- for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
-
- // This code insertion sorts where largest size is last.
- if (mempool->freeList.head == NULL)
- {
- mempool->freeList.head = mempool->freeList.tail = mem_node;
- mempool->freeList.len++;
- }
- else if (mempool->freeList.head->size >= mem_node->size)
- {
- mem_node->next = mempool->freeList.head;
- mem_node->next->prev = mem_node;
- mempool->freeList.head = mem_node;
- mempool->freeList.len++;
- }
- else //if (mempool->freeList.tail->size <= mem_node->size)
- {
- mem_node->prev = mempool->freeList.tail;
- mempool->freeList.tail->next = mem_node;
- mempool->freeList.tail = mem_node;
- mempool->freeList.len++;
- }
-
- if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
+ // try to place it into bucket or large freelist.
+ struct AllocList *const l = (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE) ? &mempool->buckets[BUCKET_SLOT] : &mempool->large;
+ __InsertMemNode(mempool, l, mem_node, (BUCKET_SLOT < MEMPOOL_BUCKET_SIZE));
}
}
}
-void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
+void MemPoolCleanUp(MemPool *const restrict mempool, void **const ptrref)
{
- if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+ if ((ptrref == NULL) || (*ptrref == NULL)) return;
else
{
MemPoolFree(mempool, *ptrref);
@@ -422,264 +497,127 @@ void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
size_t GetMemPoolFreeMemory(const MemPool mempool)
{
- size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
+ size_t total_remaining = mempool.arena.offs - mempool.arena.mem;
- for (MemNode *n = mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
+ for (MemNode *n=mempool.large.head; n != NULL; n = n->next) total_remaining += n->size;
- for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size;
+ for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i].head; n != NULL; n = n->next) total_remaining += n->size;
return total_remaining;
}
void MemPoolReset(MemPool *const mempool)
{
- if (mempool == NULL) return;
- mempool->freeList.head = mempool->freeList.tail = NULL;
- mempool->freeList.len = 0;
- for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL;
- mempool->stack.base = mempool->stack.mem + mempool->stack.size;
-}
-
-bool MemPoolDefrag(MemPool *const mempool)
-{
- if (mempool == NULL) return false;
- else
+ mempool->large.head = mempool->large.tail = NULL;
+ mempool->large.len = 0;
+ for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
{
- // If the memory pool has been entirely released, fully defrag it.
- if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
- {
- MemPoolReset(mempool);
- return true;
- }
- else
- {
- for (int i = 0; i < MEMPOOL_BUCKET_SIZE; i++)
- {
- while (mempool->buckets[i] != NULL)
- {
- if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base)
- {
- mempool->stack.base += mempool->buckets[i]->size;
- mempool->buckets[i]->size = 0;
- mempool->buckets[i] = mempool->buckets[i]->next;
- if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL;
- }
- else break;
- }
- }
-
- const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
- MemNode **node = &mempool->freeList.head;
-
- while (*node != NULL)
- {
- if ((uintptr_t)*node == (uintptr_t)mempool->stack.base)
- {
- // If node is right at the stack, merge it back into the stack.
- mempool->stack.base += (*node)->size;
- (*node)->size = 0UL;
- ((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (mempool->freeList.head = (*node)->next);
- ((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (mempool->freeList.tail = (*node)->prev);
-
- if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
- else mempool->freeList.tail = NULL;
-
- if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
- mempool->freeList.len--;
- node = &mempool->freeList.head;
- }
- else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next)
- {
- // Next node is at a higher address.
- (*node)->size += (*node)->next->size;
- (*node)->next->size = 0UL;
-
- // <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
- //
- // |--------------------|
- // <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
- if ((*node)->next->next != NULL) (*node)->next->next->prev = *node;
-
- // <-[P Curr N]-> <-[P NextNext N]->
- (*node)->next = (*node)->next->next;
-
- mempool->freeList.len--;
- node = &mempool->freeList.head;
- }
- else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL))
- {
- // Prev node is at a higher address.
- (*node)->size += (*node)->prev->size;
- (*node)->prev->size = 0UL;
-
- // <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
- //
- // |--------------------|
- // <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
- (*node)->prev->prev->next = *node;
-
- // <-[P PrevPrev N]-> <-[P Curr N]->
- (*node)->prev = (*node)->prev->prev;
-
- mempool->freeList.len--;
- node = &mempool->freeList.head;
- }
- else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next)
- {
- // Next node is at a lower address.
- (*node)->next->size += (*node)->size;
-
- (*node)->size = 0UL;
- (*node)->next->prev = (*node)->prev;
- (*node)->prev->next = (*node)->next;
- *node = (*node)->next;
-
- mempool->freeList.len--;
- node = &mempool->freeList.head;
- }
- else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev)
- {
- // Prev node is at a lower address.
- (*node)->prev->size += (*node)->size;
-
- (*node)->size = 0UL;
- (*node)->next->prev = (*node)->prev;
- (*node)->prev->next = (*node)->next;
- *node = (*node)->prev;
-
- mempool->freeList.len--;
- node = &mempool->freeList.head;
- }
- else
- {
- node = &(*node)->next;
- }
- }
-
- return PRE_DEFRAG_LEN > mempool->freeList.len;
- }
+ mempool->buckets[i].head = mempool->buckets[i].tail = NULL;
+ mempool->buckets[i].len = 0;
}
-}
-
-void ToggleMemPoolAutoDefrag(MemPool *const mempool)
-{
- if (mempool == NULL) return;
- else mempool->freeList.autoDefrag ^= true;
+ mempool->arena.offs = mempool->arena.mem + mempool->arena.size;
}
//----------------------------------------------------------------------------------
// Module Functions Definition - Object Pool
//----------------------------------------------------------------------------------
-union ObjInfo {
- uint8_t *const byte;
- size_t *const index;
-};
ObjPool CreateObjPool(const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
-
- if ((len == 0UL) || (objsize == 0UL)) return objpool;
+ if ((len == 0) || (objsize == 0)) return objpool;
else
{
- objpool.objSize = __AlignSize(objsize, sizeof(size_t));
- objpool.stack.size = objpool.freeBlocks = len;
- objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
-
- if (objpool.stack.mem == NULL)
+ const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
+ uint8_t *const restrict buf = calloc(len, aligned_size);
+ if (buf == NULL) return objpool;
+ objpool.objSize = aligned_size;
+ objpool.memSize = objpool.freeBlocks = len;
+ objpool.mem = ( uintptr_t )buf;
+
+ for (size_t i=0; i<objpool.freeBlocks; i++)
{
- objpool.stack.size = 0UL;
- return objpool;
+ size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
+ *index = i + 1;
}
- else
- {
- for (int i = 0; i < objpool.freeBlocks; i++)
- {
- union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
- *block.index = i + 1;
- }
- objpool.stack.base = objpool.stack.mem;
- return objpool;
- }
+ objpool.offs = objpool.mem;
+ return objpool;
}
}
-ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len)
+ObjPool CreateObjPoolFromBuffer(void *const restrict buf, const size_t objsize, const size_t len)
{
ObjPool objpool = { 0 };
// If the object size isn't large enough to align to a size_t, then we can't use it.
- if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool;
+ const size_t aligned_size = __AlignSize(objsize, sizeof(size_t));
+ if ((buf == NULL) || (len == 0) || (objsize < sizeof(size_t)) || (objsize*len != aligned_size*len)) return objpool;
else
{
- objpool.objSize = __AlignSize(objsize, sizeof(size_t));
- objpool.stack.size = objpool.freeBlocks = len;
- objpool.stack.mem = buf;
+ objpool.objSize = aligned_size;
+ objpool.memSize = objpool.freeBlocks = len;
+ objpool.mem = (uintptr_t)buf;
- for (int i = 0; i < objpool.freeBlocks; i++)
+ for (size_t i=0; i<objpool.freeBlocks; i++)
{
- union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
- *block.index = i + 1;
+ size_t *const restrict index = ( size_t* )(objpool.mem + (i*aligned_size));
+ *index = i + 1;
}
- objpool.stack.base = objpool.stack.mem;
+ objpool.offs = objpool.mem;
return objpool;
}
}
-void DestroyObjPool(ObjPool *const objpool)
+void DestroyObjPool(ObjPool *const restrict objpool)
{
- if ((objpool == NULL) || (objpool->stack.mem == NULL)) return;
+ if (objpool->mem == 0) return;
else
{
- free(objpool->stack.mem);
+ void *const restrict ptr = ( void* )objpool->mem;
+ free(ptr);
*objpool = (ObjPool){0};
}
}
void *ObjPoolAlloc(ObjPool *const objpool)
{
- if (objpool == NULL) return NULL;
- else
+ if (objpool->freeBlocks > 0)
{
- if (objpool->freeBlocks > 0UL)
- {
- // For first allocation, head points to the very first index.
- // Head = &pool[0];
- // ret = Head == ret = &pool[0];
- union ObjInfo ret = { .byte = objpool->stack.base };
- objpool->freeBlocks--;
-
- // after allocating, we set head to the address of the index that *Head holds.
- // Head = &pool[*Head * pool.objsize];
- objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL;
- memset(ret.byte, 0, objpool->objSize);
-
- return ret.byte;
- }
- else return NULL;
+ // For first allocation, head points to the very first index.
+ // Head = &pool[0];
+ // ret = Head == ret = &pool[0];
+ size_t *const restrict block = ( size_t* )objpool->offs;
+ objpool->freeBlocks--;
+
+ // after allocating, we set head to the address of the index that *Head holds.
+ // Head = &pool[*Head * pool.objsize];
+ objpool->offs = (objpool->freeBlocks != 0)? objpool->mem + (*block*objpool->objSize) : 0;
+ return memset(block, 0, objpool->objSize);
}
+ else return NULL;
}
-void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
+void ObjPoolFree(ObjPool *const restrict objpool, void *const ptr)
{
- union ObjInfo p = { .byte = ptr };
- if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return;
+ uintptr_t block = (uintptr_t)ptr;
+ if ((ptr == NULL) || (block < objpool->mem) || (block > objpool->mem + objpool->memSize*objpool->objSize)) return;
else
{
// When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
// *p = index of Head in relation to the buffer;
// Head = p;
- *p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
- objpool->stack.base = p.byte;
+ size_t *const restrict index = ( size_t* )block;
+ *index = (objpool->offs != 0)? (objpool->offs - objpool->mem)/objpool->objSize : objpool->memSize;
+ objpool->offs = block;
objpool->freeBlocks++;
}
}
-void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
+void ObjPoolCleanUp(ObjPool *const restrict objpool, void **const restrict ptrref)
{
- if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+ if (ptrref == NULL) return;
else
{
ObjPoolFree(objpool, *ptrref);
@@ -694,71 +632,85 @@ void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
BiStack CreateBiStack(const size_t len)
{
BiStack destack = { 0 };
- if (len == 0UL) return destack;
+ if (len == 0) return destack;
+ uint8_t *const buf = malloc(len*sizeof *buf);
+ if (buf==NULL) return destack;
destack.size = len;
- destack.mem = malloc(len*sizeof *destack.mem);
- if (destack.mem==NULL) destack.size = 0UL;
- else
- {
- destack.front = destack.mem;
- destack.back = destack.mem + len;
- }
+ destack.mem = ( uintptr_t )buf;
+ destack.front = destack.mem;
+ destack.back = destack.mem + len;
return destack;
}
BiStack CreateBiStackFromBuffer(void *const buf, const size_t len)
{
BiStack destack = { 0 };
- if (len == 0UL || buf == NULL) return destack;
- destack.size = len;
- destack.mem = destack.front = buf;
- destack.back = destack.mem + len;
- return destack;
+ if (len == 0 || buf == NULL) return destack;
+ else
+ {
+ destack.size = len;
+ destack.mem = destack.front = ( uintptr_t )buf;
+ destack.back = destack.mem + len;
+ return destack;
+ }
}
-void DestroyBiStack(BiStack *const destack)
+void DestroyBiStack(BiStack *const restrict destack)
{
- if ((destack == NULL) || (destack->mem == NULL)) return;
- free(destack->mem);
- *destack = (BiStack){0};
+ if (destack->mem == 0) return;
+ else
+ {
+ uint8_t *const restrict buf = ( uint8_t* )destack->mem;
+ free(buf);
+ *destack = (BiStack){0};
+ }
}
-void *BiStackAllocFront(BiStack *const destack, const size_t len)
+void *BiStackAllocFront(BiStack *const restrict destack, const size_t len)
{
- if ((destack == NULL) || (destack->mem == NULL)) return NULL;
-
- const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
- // front end stack is too high!
- if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
-
- uint8_t *ptr = destack->front;
- destack->front += ALIGNED_LEN;
- return ptr;
+ if (destack->mem == 0) return NULL;
+ else
+ {
+ const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+ // front end arena is too high!
+ if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
+ else
+ {
+ uint8_t *const restrict ptr = ( uint8_t* )destack->front;
+ destack->front += ALIGNED_LEN;
+ return ptr;
+ }
+ }
}
-void *BiStackAllocBack(BiStack *const destack, const size_t len)
+void *BiStackAllocBack(BiStack *const restrict destack, const size_t len)
{
- if ((destack == NULL) || (destack->mem == NULL)) return NULL;
-
- const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
- // back end stack is too low
- if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
-
- destack->back -= ALIGNED_LEN;
- return destack->back;
+ if (destack->mem == 0) return NULL;
+ else
+ {
+ const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+ // back end arena is too low
+ if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
+ else
+ {
+ destack->back -= ALIGNED_LEN;
+ uint8_t *const restrict ptr = ( uint8_t* )destack->back;
+ return ptr;
+ }
+ }
}
void BiStackResetFront(BiStack *const destack)
{
- if ((destack == NULL) || (destack->mem == NULL)) return;
- destack->front = destack->mem;
+ if (destack->mem == 0) return;
+ else destack->front = destack->mem;
}
void BiStackResetBack(BiStack *const destack)
{
- if ((destack == NULL) || (destack->mem == NULL)) return;
- destack->back = destack->mem + destack->size;
+ if (destack->mem == 0) return;
+ else destack->back = destack->mem + destack->size;
}
void BiStackResetAll(BiStack *const destack)
@@ -767,9 +719,21 @@ void BiStackResetAll(BiStack *const destack)
BiStackResetFront(destack);
}
-intptr_t BiStackMargins(const BiStack destack)
+inline intptr_t BiStackMargins(const BiStack destack)
{
return destack.back - destack.front;
}
#endif // RMEM_IMPLEMENTATION
+
+/*******
+ * Changelog
+ * v1.0: First Creation.
+ * v1.1: bug patches for the mempool and addition of object pool.
+ * v1.2: addition of bidirectional arena.
+ * v1.3:
+ * optimizations of allocators.
+ * renamed 'Stack' to 'Arena'.
+ * replaced certain define constants with an anonymous enum.
+ * refactored MemPool to no longer require active or deferred defragging.
+ ********/