summaryrefslogtreecommitdiff
path: root/libs/raylib/src/raymath.h
blob: 18b154c22cd224ebab0af6b748a9bfc755526394 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
/**********************************************************************************************
*
*   raymath v1.2 - Math functions to work with Vector3, Matrix and Quaternions
*
*   CONFIGURATION:
*
*   #define RAYMATH_IMPLEMENTATION
*       Generates the implementation of the library into the included file.
*       If not defined, the library is in header only mode and can be included in other headers
*       or source files without problems. But only ONE file should hold the implementation.
*
*   #define RAYMATH_HEADER_ONLY
*       Define static inline functions code, so #include header suffices for use.
*       This may use up lots of memory.
*
*   #define RAYMATH_STANDALONE
*       Avoid raylib.h header inclusion in this file.
*       Vector3 and Matrix data types are defined internally in raymath module.
*
*
*   LICENSE: zlib/libpng
*
*   Copyright (c) 2015-2020 Ramon Santamaria (@raysan5)
*
*   This software is provided "as-is", without any express or implied warranty. In no event
*   will the authors be held liable for any damages arising from the use of this software.
*
*   Permission is granted to anyone to use this software for any purpose, including commercial
*   applications, and to alter it and redistribute it freely, subject to the following restrictions:
*
*     1. The origin of this software must not be misrepresented; you must not claim that you
*     wrote the original software. If you use this software in a product, an acknowledgment
*     in the product documentation would be appreciated but is not required.
*
*     2. Altered source versions must be plainly marked as such, and must not be misrepresented
*     as being the original software.
*
*     3. This notice may not be removed or altered from any source distribution.
*
**********************************************************************************************/

#ifndef RAYMATH_H
#define RAYMATH_H

//#define RAYMATH_STANDALONE      // NOTE: To use raymath as standalone lib, just uncomment this line
//#define RAYMATH_HEADER_ONLY     // NOTE: To compile functions as static inline, uncomment this line

#ifndef RAYMATH_STANDALONE
    #include "raylib.h"           // Required for structs: Vector3, Matrix
#endif

#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_HEADER_ONLY)
    #error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_HEADER_ONLY is contradictory"
#endif

#if defined(RAYMATH_IMPLEMENTATION)
    #if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
        #define RMDEF __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll).
    #elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
        #define RMDEF __declspec(dllimport)         // We are using raylib as a Win32 shared library (.dll)
    #else
        #define RMDEF extern inline // Provide external definition
    #endif
#elif defined(RAYMATH_HEADER_ONLY)
    #define RMDEF static inline // Functions may be inlined, no external out-of-line definition
#else
    #if defined(__TINYC__)
        #define RMDEF static inline // plain inline not supported by tinycc (See issue #435)
    #else
        #define RMDEF inline        // Functions may be inlined or external definition used
    #endif
#endif

//----------------------------------------------------------------------------------
// Defines and Macros
//----------------------------------------------------------------------------------
#ifndef PI
    #define PI 3.14159265358979323846
#endif

#ifndef DEG2RAD
    #define DEG2RAD (PI/180.0f)
#endif

#ifndef RAD2DEG
    #define RAD2DEG (180.0f/PI)
#endif

// Return float vector for Matrix
#ifndef MatrixToFloat
    #define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
#endif

// Return float vector for Vector3
#ifndef Vector3ToFloat
    #define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
#endif

//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------

#if defined(RAYMATH_STANDALONE)
    // Vector2 type
    typedef struct Vector2 {
        float x;
        float y;
    } Vector2;

    // Vector3 type
    typedef struct Vector3 {
        float x;
        float y;
        float z;
    } Vector3;

    // Quaternion type
    typedef struct Quaternion {
        float x;
        float y;
        float z;
        float w;
    } Quaternion;

    // Matrix type (OpenGL style 4x4 - right handed, column major)
    typedef struct Matrix {
        float m0, m4, m8, m12;
        float m1, m5, m9, m13;
        float m2, m6, m10, m14;
        float m3, m7, m11, m15;
    } Matrix;
#endif

// NOTE: Helper types to be used instead of array return types for *ToFloat functions
typedef struct float3 { float v[3]; } float3;
typedef struct float16 { float v[16]; } float16;

#include <math.h>       // Required for: sinf(), cosf(), tan(), fabs()

//----------------------------------------------------------------------------------
// Module Functions Definition - Utils math
//----------------------------------------------------------------------------------

// Clamp float value
RMDEF float Clamp(float value, float min, float max)
{
    const float res = value < min ? min : value;
    return res > max ? max : res;
}

// Calculate linear interpolation between two floats
RMDEF float Lerp(float start, float end, float amount)
{
    return start + amount*(end - start);
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Vector2 math
//----------------------------------------------------------------------------------

// Vector with components value 0.0f
RMDEF Vector2 Vector2Zero(void)
{
    Vector2 result = { 0.0f, 0.0f };
    return result;
}

// Vector with components value 1.0f
RMDEF Vector2 Vector2One(void)
{
    Vector2 result = { 1.0f, 1.0f };
    return result;
}

// Add two vectors (v1 + v2)
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x + v2.x, v1.y + v2.y };
    return result;
}

// Subtract two vectors (v1 - v2)
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x - v2.x, v1.y - v2.y };
    return result;
}

// Calculate vector length
RMDEF float Vector2Length(Vector2 v)
{
    float result = sqrtf((v.x*v.x) + (v.y*v.y));
    return result;
}

// Calculate two vectors dot product
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
{
    float result = (v1.x*v2.x + v1.y*v2.y);
    return result;
}

// Calculate distance between two vectors
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
{
    float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
    return result;
}

// Calculate angle from two vectors in X-axis
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
{
    float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
    if (result < 0) result += 360.0f;
    return result;
}

// Scale vector (multiply by value)
RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
{
    Vector2 result = { v.x*scale, v.y*scale };
    return result;
}

// Multiply vector by vector
RMDEF Vector2 Vector2MultiplyV(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x*v2.x, v1.y*v2.y };
    return result;
}

// Negate vector
RMDEF Vector2 Vector2Negate(Vector2 v)
{
    Vector2 result = { -v.x, -v.y };
    return result;
}

// Divide vector by a float value
RMDEF Vector2 Vector2Divide(Vector2 v, float div)
{
    Vector2 result = { v.x/div, v.y/div };
    return result;
}

// Divide vector by vector
RMDEF Vector2 Vector2DivideV(Vector2 v1, Vector2 v2)
{
    Vector2 result = { v1.x/v2.x, v1.y/v2.y };
    return result;
}

// Normalize provided vector
RMDEF Vector2 Vector2Normalize(Vector2 v)
{
    Vector2 result = Vector2Divide(v, Vector2Length(v));
    return result;
}

// Calculate linear interpolation between two vectors
RMDEF Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount)
{
    Vector2 result = { 0 };

    result.x = v1.x + amount*(v2.x - v1.x);
    result.y = v1.y + amount*(v2.y - v1.y);

    return result;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Vector3 math
//----------------------------------------------------------------------------------

// Vector with components value 0.0f
RMDEF Vector3 Vector3Zero(void)
{
    Vector3 result = { 0.0f, 0.0f, 0.0f };
    return result;
}

// Vector with components value 1.0f
RMDEF Vector3 Vector3One(void)
{
    Vector3 result = { 1.0f, 1.0f, 1.0f };
    return result;
}

// Add two vectors
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
    return result;
}

// Subtract two vectors
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
    return result;
}

// Multiply vector by scalar
RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar)
{
    Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
    return result;
}

// Multiply vector by vector
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
    return result;
}

// Calculate two vectors cross product
RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
    return result;
}

// Calculate one vector perpendicular vector
RMDEF Vector3 Vector3Perpendicular(Vector3 v)
{
    Vector3 result = { 0 };

    float min = (float) fabs(v.x);
    Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};

    if (fabs(v.y) < min)
    {
        min = (float) fabs(v.y);
        Vector3 tmp = {0.0f, 1.0f, 0.0f};
        cardinalAxis = tmp;
    }

    if (fabs(v.z) < min)
    {
        Vector3 tmp = {0.0f, 0.0f, 1.0f};
        cardinalAxis = tmp;
    }

    result = Vector3CrossProduct(v, cardinalAxis);

    return result;
}

// Calculate vector length
RMDEF float Vector3Length(const Vector3 v)
{
    float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
    return result;
}

// Calculate two vectors dot product
RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
{
    float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
    return result;
}

// Calculate distance between two vectors
RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
{
    float dx = v2.x - v1.x;
    float dy = v2.y - v1.y;
    float dz = v2.z - v1.z;
    float result = sqrtf(dx*dx + dy*dy + dz*dz);
    return result;
}

// Scale provided vector
RMDEF Vector3 Vector3Scale(Vector3 v, float scale)
{
    Vector3 result = { v.x*scale, v.y*scale, v.z*scale };
    return result;
}

// Negate provided vector (invert direction)
RMDEF Vector3 Vector3Negate(Vector3 v)
{
    Vector3 result = { -v.x, -v.y, -v.z };
    return result;
}

// Divide vector by a float value
RMDEF Vector3 Vector3Divide(Vector3 v, float div)
{
    Vector3 result = { v.x / div, v.y / div, v.z / div };
    return result;
}

// Divide vector by vector
RMDEF Vector3 Vector3DivideV(Vector3 v1, Vector3 v2)
{
    Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z };
    return result;
}

// Normalize provided vector
RMDEF Vector3 Vector3Normalize(Vector3 v)
{
    Vector3 result = v;

    float length, ilength;
    length = Vector3Length(v);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;

    result.x *= ilength;
    result.y *= ilength;
    result.z *= ilength;

    return result;
}

// Orthonormalize provided vectors
// Makes vectors normalized and orthogonal to each other
// Gram-Schmidt function implementation
RMDEF void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2)
{
    *v1 = Vector3Normalize(*v1);
    Vector3 vn = Vector3CrossProduct(*v1, *v2);
    vn = Vector3Normalize(vn);
    *v2 = Vector3CrossProduct(vn, *v1);
}

// Transforms a Vector3 by a given Matrix
RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
{
    Vector3 result = { 0 };
    float x = v.x;
    float y = v.y;
    float z = v.z;

    result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
    result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
    result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;

    return result;
}

// Transform a vector by quaternion rotation
RMDEF Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q)
{
    Vector3 result = { 0 };

    result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y);
    result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z);
    result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z);

    return result;
}

// Calculate linear interpolation between two vectors
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
{
    Vector3 result = { 0 };

    result.x = v1.x + amount*(v2.x - v1.x);
    result.y = v1.y + amount*(v2.y - v1.y);
    result.z = v1.z + amount*(v2.z - v1.z);

    return result;
}

// Calculate reflected vector to normal
RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
{
    // I is the original vector
    // N is the normal of the incident plane
    // R = I - (2*N*( DotProduct[ I,N] ))

    Vector3 result = { 0 };

    float dotProduct = Vector3DotProduct(v, normal);

    result.x = v.x - (2.0f*normal.x)*dotProduct;
    result.y = v.y - (2.0f*normal.y)*dotProduct;
    result.z = v.z - (2.0f*normal.z)*dotProduct;

    return result;
}

// Return min value for each pair of components
RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    result.x = fminf(v1.x, v2.x);
    result.y = fminf(v1.y, v2.y);
    result.z = fminf(v1.z, v2.z);

    return result;
}

// Return max value for each pair of components
RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
{
    Vector3 result = { 0 };

    result.x = fmaxf(v1.x, v2.x);
    result.y = fmaxf(v1.y, v2.y);
    result.z = fmaxf(v1.z, v2.z);

    return result;
}

// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c)
// NOTE: Assumes P is on the plane of the triangle
RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
{
    //Vector v0 = b - a, v1 = c - a, v2 = p - a;

    Vector3 v0 = Vector3Subtract(b, a);
    Vector3 v1 = Vector3Subtract(c, a);
    Vector3 v2 = Vector3Subtract(p, a);
    float d00 = Vector3DotProduct(v0, v0);
    float d01 = Vector3DotProduct(v0, v1);
    float d11 = Vector3DotProduct(v1, v1);
    float d20 = Vector3DotProduct(v2, v0);
    float d21 = Vector3DotProduct(v2, v1);

    float denom = d00*d11 - d01*d01;

    Vector3 result = { 0 };

    result.y = (d11*d20 - d01*d21)/denom;
    result.z = (d00*d21 - d01*d20)/denom;
    result.x = 1.0f - (result.z + result.y);

    return result;
}

// Returns Vector3 as float array
RMDEF float3 Vector3ToFloatV(Vector3 v)
{
    float3 buffer = { 0 };

    buffer.v[0] = v.x;
    buffer.v[1] = v.y;
    buffer.v[2] = v.z;

    return buffer;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Matrix math
//----------------------------------------------------------------------------------

// Compute matrix determinant
RMDEF float MatrixDeterminant(Matrix mat)
{
    float result = { 0 };

    // Cache the matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;

    result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 +
             a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 +
             a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 +
             a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 +
             a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 +
             a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33;

    return result;
}

// Returns the trace of the matrix (sum of the values along the diagonal)
RMDEF float MatrixTrace(Matrix mat)
{
    float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
    return result;
}

// Transposes provided matrix
RMDEF Matrix MatrixTranspose(Matrix mat)
{
    Matrix result = { 0 };

    result.m0 = mat.m0;
    result.m1 = mat.m4;
    result.m2 = mat.m8;
    result.m3 = mat.m12;
    result.m4 = mat.m1;
    result.m5 = mat.m5;
    result.m6 = mat.m9;
    result.m7 = mat.m13;
    result.m8 = mat.m2;
    result.m9 = mat.m6;
    result.m10 = mat.m10;
    result.m11 = mat.m14;
    result.m12 = mat.m3;
    result.m13 = mat.m7;
    result.m14 = mat.m11;
    result.m15 = mat.m15;

    return result;
}

// Invert provided matrix
RMDEF Matrix MatrixInvert(Matrix mat)
{
    Matrix result = { 0 };

    // Cache the matrix values (speed optimization)
    float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
    float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
    float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
    float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;

    float b00 = a00*a11 - a01*a10;
    float b01 = a00*a12 - a02*a10;
    float b02 = a00*a13 - a03*a10;
    float b03 = a01*a12 - a02*a11;
    float b04 = a01*a13 - a03*a11;
    float b05 = a02*a13 - a03*a12;
    float b06 = a20*a31 - a21*a30;
    float b07 = a20*a32 - a22*a30;
    float b08 = a20*a33 - a23*a30;
    float b09 = a21*a32 - a22*a31;
    float b10 = a21*a33 - a23*a31;
    float b11 = a22*a33 - a23*a32;

    // Calculate the invert determinant (inlined to avoid double-caching)
    float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);

    result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
    result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
    result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
    result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
    result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
    result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
    result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
    result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
    result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
    result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
    result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
    result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
    result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
    result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
    result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
    result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;

    return result;
}

// Normalize provided matrix
RMDEF Matrix MatrixNormalize(Matrix mat)
{
    Matrix result = { 0 };

    float det = MatrixDeterminant(mat);

    result.m0 = mat.m0/det;
    result.m1 = mat.m1/det;
    result.m2 = mat.m2/det;
    result.m3 = mat.m3/det;
    result.m4 = mat.m4/det;
    result.m5 = mat.m5/det;
    result.m6 = mat.m6/det;
    result.m7 = mat.m7/det;
    result.m8 = mat.m8/det;
    result.m9 = mat.m9/det;
    result.m10 = mat.m10/det;
    result.m11 = mat.m11/det;
    result.m12 = mat.m12/det;
    result.m13 = mat.m13/det;
    result.m14 = mat.m14/det;
    result.m15 = mat.m15/det;

    return result;
}

// Returns identity matrix
RMDEF Matrix MatrixIdentity(void)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f,
                      0.0f, 1.0f, 0.0f, 0.0f,
                      0.0f, 0.0f, 1.0f, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Add two matrices
RMDEF Matrix MatrixAdd(Matrix left, Matrix right)
{
    Matrix result = MatrixIdentity();

    result.m0 = left.m0 + right.m0;
    result.m1 = left.m1 + right.m1;
    result.m2 = left.m2 + right.m2;
    result.m3 = left.m3 + right.m3;
    result.m4 = left.m4 + right.m4;
    result.m5 = left.m5 + right.m5;
    result.m6 = left.m6 + right.m6;
    result.m7 = left.m7 + right.m7;
    result.m8 = left.m8 + right.m8;
    result.m9 = left.m9 + right.m9;
    result.m10 = left.m10 + right.m10;
    result.m11 = left.m11 + right.m11;
    result.m12 = left.m12 + right.m12;
    result.m13 = left.m13 + right.m13;
    result.m14 = left.m14 + right.m14;
    result.m15 = left.m15 + right.m15;

    return result;
}

// Subtract two matrices (left - right)
RMDEF Matrix MatrixSubtract(Matrix left, Matrix right)
{
    Matrix result = MatrixIdentity();

    result.m0 = left.m0 - right.m0;
    result.m1 = left.m1 - right.m1;
    result.m2 = left.m2 - right.m2;
    result.m3 = left.m3 - right.m3;
    result.m4 = left.m4 - right.m4;
    result.m5 = left.m5 - right.m5;
    result.m6 = left.m6 - right.m6;
    result.m7 = left.m7 - right.m7;
    result.m8 = left.m8 - right.m8;
    result.m9 = left.m9 - right.m9;
    result.m10 = left.m10 - right.m10;
    result.m11 = left.m11 - right.m11;
    result.m12 = left.m12 - right.m12;
    result.m13 = left.m13 - right.m13;
    result.m14 = left.m14 - right.m14;
    result.m15 = left.m15 - right.m15;

    return result;
}

// Returns translation matrix
RMDEF Matrix MatrixTranslate(float x, float y, float z)
{
    Matrix result = { 1.0f, 0.0f, 0.0f, x,
                      0.0f, 1.0f, 0.0f, y,
                      0.0f, 0.0f, 1.0f, z,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Create rotation matrix from axis and angle
// NOTE: Angle should be provided in radians
RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
{
    Matrix result = { 0 };

    float x = axis.x, y = axis.y, z = axis.z;

    float length = sqrtf(x*x + y*y + z*z);

    if ((length != 1.0f) && (length != 0.0f))
    {
        length = 1.0f/length;
        x *= length;
        y *= length;
        z *= length;
    }

    float sinres = sinf(angle);
    float cosres = cosf(angle);
    float t = 1.0f - cosres;

    result.m0  = x*x*t + cosres;
    result.m1  = y*x*t + z*sinres;
    result.m2  = z*x*t - y*sinres;
    result.m3  = 0.0f;

    result.m4  = x*y*t - z*sinres;
    result.m5  = y*y*t + cosres;
    result.m6  = z*y*t + x*sinres;
    result.m7  = 0.0f;

    result.m8  = x*z*t + y*sinres;
    result.m9  = y*z*t - x*sinres;
    result.m10 = z*z*t + cosres;
    result.m11 = 0.0f;

    result.m12 = 0.0f;
    result.m13 = 0.0f;
    result.m14 = 0.0f;
    result.m15 = 1.0f;

    return result;
}

// Returns xyz-rotation matrix (angles in radians)
RMDEF Matrix MatrixRotateXYZ(Vector3 ang)
{
    Matrix result = MatrixIdentity();

    float cosz = cosf(-ang.z);
    float sinz = sinf(-ang.z);
    float cosy = cosf(-ang.y);
    float siny = sinf(-ang.y);
    float cosx = cosf(-ang.x);
    float sinx = sinf(-ang.x);

    result.m0 = cosz * cosy;
    result.m4 = (cosz * siny * sinx) - (sinz * cosx);
    result.m8 = (cosz * siny * cosx) + (sinz * sinx);

    result.m1 = sinz * cosy;
    result.m5 = (sinz * siny * sinx) + (cosz * cosx);
    result.m9 = (sinz * siny * cosx) - (cosz * sinx);

    result.m2 = -siny;
    result.m6 = cosy * sinx;
    result.m10= cosy * cosx;

    return result;
}

// Returns x-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateX(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m5 = cosres;
    result.m6 = -sinres;
    result.m9 = sinres;
    result.m10 = cosres;

    return result;
}

// Returns y-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateY(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m0 = cosres;
    result.m2 = sinres;
    result.m8 = -sinres;
    result.m10 = cosres;

    return result;
}

// Returns z-rotation matrix (angle in radians)
RMDEF Matrix MatrixRotateZ(float angle)
{
    Matrix result = MatrixIdentity();

    float cosres = cosf(angle);
    float sinres = sinf(angle);

    result.m0 = cosres;
    result.m1 = -sinres;
    result.m4 = sinres;
    result.m5 = cosres;

    return result;
}

// Returns scaling matrix
RMDEF Matrix MatrixScale(float x, float y, float z)
{
    Matrix result = { x, 0.0f, 0.0f, 0.0f,
                      0.0f, y, 0.0f, 0.0f,
                      0.0f, 0.0f, z, 0.0f,
                      0.0f, 0.0f, 0.0f, 1.0f };

    return result;
}

// Returns two matrix multiplication
// NOTE: When multiplying matrices... the order matters!
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
{
    Matrix result = { 0 };

    result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
    result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
    result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14;
    result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15;
    result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12;
    result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13;
    result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14;
    result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15;
    result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12;
    result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13;
    result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14;
    result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15;
    result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12;
    result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13;
    result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14;
    result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15;

    return result;
}

// Returns perspective projection matrix
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
{
    Matrix result = { 0 };

    float rl = (float)(right - left);
    float tb = (float)(top - bottom);
    float fn = (float)(far - near);

    result.m0 = ((float) near*2.0f)/rl;
    result.m1 = 0.0f;
    result.m2 = 0.0f;
    result.m3 = 0.0f;

    result.m4 = 0.0f;
    result.m5 = ((float) near*2.0f)/tb;
    result.m6 = 0.0f;
    result.m7 = 0.0f;

    result.m8 = ((float)right + (float)left)/rl;
    result.m9 = ((float)top + (float)bottom)/tb;
    result.m10 = -((float)far + (float)near)/fn;
    result.m11 = -1.0f;

    result.m12 = 0.0f;
    result.m13 = 0.0f;
    result.m14 = -((float)far*(float)near*2.0f)/fn;
    result.m15 = 0.0f;

    return result;
}

// Returns perspective projection matrix
// NOTE: Angle should be provided in radians
RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double far)
{
    double top = near*tan(fovy*0.5);
    double right = top*aspect;
    Matrix result = MatrixFrustum(-right, right, -top, top, near, far);

    return result;
}

// Returns orthographic projection matrix
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
{
    Matrix result = { 0 };

    float rl = (float)(right - left);
    float tb = (float)(top - bottom);
    float fn = (float)(far - near);

    result.m0 = 2.0f/rl;
    result.m1 = 0.0f;
    result.m2 = 0.0f;
    result.m3 = 0.0f;
    result.m4 = 0.0f;
    result.m5 = 2.0f/tb;
    result.m6 = 0.0f;
    result.m7 = 0.0f;
    result.m8 = 0.0f;
    result.m9 = 0.0f;
    result.m10 = -2.0f/fn;
    result.m11 = 0.0f;
    result.m12 = -((float)left + (float)right)/rl;
    result.m13 = -((float)top + (float)bottom)/tb;
    result.m14 = -((float)far + (float)near)/fn;
    result.m15 = 1.0f;

    return result;
}

// Returns camera look-at matrix (view matrix)
RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
{
    Matrix result = { 0 };

    Vector3 z = Vector3Subtract(eye, target);
    z = Vector3Normalize(z);
    Vector3 x = Vector3CrossProduct(up, z);
    x = Vector3Normalize(x);
    Vector3 y = Vector3CrossProduct(z, x);
    y = Vector3Normalize(y);

    result.m0 = x.x;
    result.m1 = x.y;
    result.m2 = x.z;
    result.m3 = 0.0f;
    result.m4 = y.x;
    result.m5 = y.y;
    result.m6 = y.z;
    result.m7 = 0.0f;
    result.m8 = z.x;
    result.m9 = z.y;
    result.m10 = z.z;
    result.m11 = 0.0f;
    result.m12 = eye.x;
    result.m13 = eye.y;
    result.m14 = eye.z;
    result.m15 = 1.0f;

    result = MatrixInvert(result);

    return result;
}

// Returns float array of matrix data
RMDEF float16 MatrixToFloatV(Matrix mat)
{
    float16 buffer = { 0 };

    buffer.v[0] = mat.m0;
    buffer.v[1] = mat.m1;
    buffer.v[2] = mat.m2;
    buffer.v[3] = mat.m3;
    buffer.v[4] = mat.m4;
    buffer.v[5] = mat.m5;
    buffer.v[6] = mat.m6;
    buffer.v[7] = mat.m7;
    buffer.v[8] = mat.m8;
    buffer.v[9] = mat.m9;
    buffer.v[10] = mat.m10;
    buffer.v[11] = mat.m11;
    buffer.v[12] = mat.m12;
    buffer.v[13] = mat.m13;
    buffer.v[14] = mat.m14;
    buffer.v[15] = mat.m15;

    return buffer;
}

//----------------------------------------------------------------------------------
// Module Functions Definition - Quaternion math
//----------------------------------------------------------------------------------

// Returns identity quaternion
RMDEF Quaternion QuaternionIdentity(void)
{
    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
    return result;
}

// Computes the length of a quaternion
RMDEF float QuaternionLength(Quaternion q)
{
    float result = (float)sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
    return result;
}

// Normalize provided quaternion
RMDEF Quaternion QuaternionNormalize(Quaternion q)
{
    Quaternion result = { 0 };

    float length, ilength;
    length = QuaternionLength(q);
    if (length == 0.0f) length = 1.0f;
    ilength = 1.0f/length;

    result.x = q.x*ilength;
    result.y = q.y*ilength;
    result.z = q.z*ilength;
    result.w = q.w*ilength;

    return result;
}

// Invert provided quaternion
RMDEF Quaternion QuaternionInvert(Quaternion q)
{
    Quaternion result = q;
    float length = QuaternionLength(q);
    float lengthSq = length*length;

    if (lengthSq != 0.0)
    {
        float i = 1.0f/lengthSq;

        result.x *= -i;
        result.y *= -i;
        result.z *= -i;
        result.w *= i;
    }

    return result;
}

// Calculate two quaternion multiplication
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
{
    Quaternion result = { 0 };

    float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
    float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;

    result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby;
    result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz;
    result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx;
    result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz;

    return result;
}

// Calculate linear interpolation between two quaternions
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = { 0 };

    result.x = q1.x + amount*(q2.x - q1.x);
    result.y = q1.y + amount*(q2.y - q1.y);
    result.z = q1.z + amount*(q2.z - q1.z);
    result.w = q1.w + amount*(q2.w - q1.w);

    return result;
}

// Calculate slerp-optimized interpolation between two quaternions
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = QuaternionLerp(q1, q2, amount);
    result = QuaternionNormalize(result);

    return result;
}

// Calculates spherical linear interpolation between two quaternions
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
{
    Quaternion result = { 0 };

    float cosHalfTheta =  q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;

    if (fabs(cosHalfTheta) >= 1.0f) result = q1;
    else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount);
    else
    {
        float halfTheta = (float) acos(cosHalfTheta);
        float sinHalfTheta = (float) sqrt(1.0f - cosHalfTheta*cosHalfTheta);

        if (fabs(sinHalfTheta) < 0.001f)
        {
            result.x = (q1.x*0.5f + q2.x*0.5f);
            result.y = (q1.y*0.5f + q2.y*0.5f);
            result.z = (q1.z*0.5f + q2.z*0.5f);
            result.w = (q1.w*0.5f + q2.w*0.5f);
        }
        else
        {
            float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta;
            float ratioB = sinf(amount*halfTheta)/sinHalfTheta;

            result.x = (q1.x*ratioA + q2.x*ratioB);
            result.y = (q1.y*ratioA + q2.y*ratioB);
            result.z = (q1.z*ratioA + q2.z*ratioB);
            result.w = (q1.w*ratioA + q2.w*ratioB);
        }
    }

    return result;
}

// Calculate quaternion based on the rotation from one vector to another
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
{
    Quaternion result = { 0 };

    float cos2Theta = Vector3DotProduct(from, to);
    Vector3 cross = Vector3CrossProduct(from, to);

    result.x = cross.x;
    result.y = cross.y;
    result.z = cross.y;
    result.w = 1.0f + cos2Theta;     // NOTE: Added QuaternioIdentity()

    // Normalize to essentially nlerp the original and identity to 0.5
    result = QuaternionNormalize(result);

    // Above lines are equivalent to:
    //Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);

    return result;
}

// Returns a quaternion for a given rotation matrix
RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
{
    Quaternion result = { 0 };

    float trace = MatrixTrace(mat);

    if (trace > 0.0f)
    {
        float s = (float)sqrt(trace + 1)*2.0f;
        float invS = 1.0f/s;

        result.w = s*0.25f;
        result.x = (mat.m6 - mat.m9)*invS;
        result.y = (mat.m8 - mat.m2)*invS;
        result.z = (mat.m1 - mat.m4)*invS;
    }
    else
    {
        float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;

        if (m00 > m11 && m00 > m22)
        {
            float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
            float invS = 1.0f/s;

            result.w = (mat.m6 - mat.m9)*invS;
            result.x = s*0.25f;
            result.y = (mat.m4 + mat.m1)*invS;
            result.z = (mat.m8 + mat.m2)*invS;
        }
        else if (m11 > m22)
        {
            float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f;
            float invS = 1.0f/s;

            result.w = (mat.m8 - mat.m2)*invS;
            result.x = (mat.m4 + mat.m1)*invS;
            result.y = s*0.25f;
            result.z = (mat.m9 + mat.m6)*invS;
        }
        else
        {
            float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f;
            float invS = 1.0f/s;

            result.w = (mat.m1 - mat.m4)*invS;
            result.x = (mat.m8 + mat.m2)*invS;
            result.y = (mat.m9 + mat.m6)*invS;
            result.z = s*0.25f;
        }
    }

    return result;
}

// Returns a matrix for a given quaternion
RMDEF Matrix QuaternionToMatrix(Quaternion q)
{
    Matrix result = { 0 };

    float x = q.x, y = q.y, z = q.z, w = q.w;

    float x2 = x + x;
    float y2 = y + y;
    float z2 = z + z;

    float length = QuaternionLength(q);
    float lengthSquared = length*length;

    float xx = x*x2/lengthSquared;
    float xy = x*y2/lengthSquared;
    float xz = x*z2/lengthSquared;

    float yy = y*y2/lengthSquared;
    float yz = y*z2/lengthSquared;
    float zz = z*z2/lengthSquared;

    float wx = w*x2/lengthSquared;
    float wy = w*y2/lengthSquared;
    float wz = w*z2/lengthSquared;

    result.m0 = 1.0f - (yy + zz);
    result.m1 = xy - wz;
    result.m2 = xz + wy;
    result.m3 = 0.0f;
    result.m4 = xy + wz;
    result.m5 = 1.0f - (xx + zz);
    result.m6 = yz - wx;
    result.m7 = 0.0f;
    result.m8 = xz - wy;
    result.m9 = yz + wx;
    result.m10 = 1.0f - (xx + yy);
    result.m11 = 0.0f;
    result.m12 = 0.0f;
    result.m13 = 0.0f;
    result.m14 = 0.0f;
    result.m15 = 1.0f;

    return result;
}

// Returns rotation quaternion for an angle and axis
// NOTE: angle must be provided in radians
RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
{
    Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };

    if (Vector3Length(axis) != 0.0f)

    angle *= 0.5f;

    axis = Vector3Normalize(axis);

    float sinres = sinf(angle);
    float cosres = cosf(angle);

    result.x = axis.x*sinres;
    result.y = axis.y*sinres;
    result.z = axis.z*sinres;
    result.w = cosres;

    result = QuaternionNormalize(result);

    return result;
}

// Returns the rotation angle and axis for a given quaternion
RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
{
    if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);

    Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
    float resAngle = 0.0f;

    resAngle = 2.0f*(float)acos(q.w);
    float den = (float)sqrt(1.0f - q.w*q.w);

    if (den > 0.0001f)
    {
        resAxis.x = q.x/den;
        resAxis.y = q.y/den;
        resAxis.z = q.z/den;
    }
    else
    {
        // This occurs when the angle is zero.
        // Not a problem: just set an arbitrary normalized axis.
        resAxis.x = 1.0f;
    }

    *outAxis = resAxis;
    *outAngle = resAngle;
}

// Returns he quaternion equivalent to Euler angles
RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
{
    Quaternion q = { 0 };

    float x0 = cosf(roll*0.5f);
    float x1 = sinf(roll*0.5f);
    float y0 = cosf(pitch*0.5f);
    float y1 = sinf(pitch*0.5f);
    float z0 = cosf(yaw*0.5f);
    float z1 = sinf(yaw*0.5f);

    q.x = x1*y0*z0 - x0*y1*z1;
    q.y = x0*y1*z0 + x1*y0*z1;
    q.z = x0*y0*z1 - x1*y1*z0;
    q.w = x0*y0*z0 + x1*y1*z1;

    return q;
}

// Return the Euler angles equivalent to quaternion (roll, pitch, yaw)
// NOTE: Angles are returned in a Vector3 struct in degrees
RMDEF Vector3 QuaternionToEuler(Quaternion q)
{
    Vector3 result = { 0 };

    // roll (x-axis rotation)
    float x0 = 2.0f*(q.w*q.x + q.y*q.z);
    float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
    result.x = atan2f(x0, x1)*RAD2DEG;

    // pitch (y-axis rotation)
    float y0 = 2.0f*(q.w*q.y - q.z*q.x);
    y0 = y0 > 1.0f ? 1.0f : y0;
    y0 = y0 < -1.0f ? -1.0f : y0;
    result.y = asinf(y0)*RAD2DEG;

    // yaw (z-axis rotation)
    float z0 = 2.0f*(q.w*q.z + q.x*q.y);
    float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
    result.z = atan2f(z0, z1)*RAD2DEG;

    return result;
}

// Transform a quaternion given a transformation matrix
RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
{
    Quaternion result = { 0 };

    result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
    result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
    result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
    result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;

    return result;
}

#endif  // RAYMATH_H