summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/YAMLTraits.cpp
diff options
context:
space:
mode:
authorAlon Zakai <azakai@google.com>2019-12-19 09:04:08 -0800
committerGitHub <noreply@github.com>2019-12-19 09:04:08 -0800
commit4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6 (patch)
tree91bffc2d47b1fe4bba01e7ada77006ef340bd138 /third_party/llvm-project/YAMLTraits.cpp
parent0048f5b004ddf50e750aa335d0be314a73852058 (diff)
downloadbinaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.gz
binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.bz2
binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.zip
DWARF parsing and writing support using LLVM (#2520)
This imports LLVM code for DWARF handling. That code has the Apache 2 license like us. It's also the same code used to emit DWARF in the common toolchain, so it seems like a safe choice. This adds two passes: --dwarfdump which runs the same code LLVM runs for llvm-dwarfdump. This shows we can parse it ok, and will be useful for debugging. And --dwarfupdate writes out the DWARF sections (unchanged from what we read, so it just roundtrips - for updating we need #2515). This puts LLVM in thirdparty which is added here. All the LLVM code is behind USE_LLVM_DWARF, which is on by default, but off in JS for now, as it increases code size by 20%. This current approach imports the LLVM files directly. This is not how they are intended to be used, so it required a bunch of local changes - more than I expected actually, for the platform-specific stuff. For now this seems to work, so it may be good enough, but in the long term we may want to switch to linking against libllvm. A downside to doing that is that binaryen users would need to have an LLVM build, and even in the waterfall builds we'd have a problem - while we ship LLVM there anyhow, we constantly update it, which means that binaryen would need to be on latest llvm all the time too (which otherwise, given DWARF is quite stable, we might not need to constantly update). An even larger issue is that as I did this work I learned about how DWARF works in LLVM, and while the reading code is easy to reuse, the writing code is trickier. The main code path is heavily integrated with the MC layer, which we don't have - we might want to create a "fake MC layer" for that, but it sounds hard. Instead, there is the YAML path which is used mostly for testing, and which can convert DWARF to and from YAML and from binary. Using the non-YAML parts there, we can convert binary DWARF to the YAML layer's nice Info data, then convert that to binary. This works, however, this is not the path LLVM uses normally, and it supports only some basic DWARF sections - I had to add ranges support, in fact. So if we need more complex things, we may end up needing to use the MC layer approach, or consider some other DWARF library. However, hopefully that should not affect the core binaryen code which just calls a library for DWARF stuff. Helps #2400
Diffstat (limited to 'third_party/llvm-project/YAMLTraits.cpp')
-rw-r--r--third_party/llvm-project/YAMLTraits.cpp1087
1 files changed, 1087 insertions, 0 deletions
diff --git a/third_party/llvm-project/YAMLTraits.cpp b/third_party/llvm-project/YAMLTraits.cpp
new file mode 100644
index 000000000..5f0cedc71
--- /dev/null
+++ b/third_party/llvm-project/YAMLTraits.cpp
@@ -0,0 +1,1087 @@
+//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/YAMLTraits.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Unicode.h"
+#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+using namespace yaml;
+
+//===----------------------------------------------------------------------===//
+// IO
+//===----------------------------------------------------------------------===//
+
+IO::IO(void *Context) : Ctxt(Context) {}
+
+IO::~IO() = default;
+
+void *IO::getContext() const {
+ return Ctxt;
+}
+
+void IO::setContext(void *Context) {
+ Ctxt = Context;
+}
+
+//===----------------------------------------------------------------------===//
+// Input
+//===----------------------------------------------------------------------===//
+
+Input::Input(StringRef InputContent, void *Ctxt,
+ SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
+ : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
+ if (DiagHandler)
+ SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
+ DocIterator = Strm->begin();
+}
+
+Input::Input(MemoryBufferRef Input, void *Ctxt,
+ SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
+ : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
+ if (DiagHandler)
+ SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
+ DocIterator = Strm->begin();
+}
+
+Input::~Input() = default;
+
+std::error_code Input::error() { return EC; }
+
+// Pin the vtables to this file.
+void Input::HNode::anchor() {}
+void Input::EmptyHNode::anchor() {}
+void Input::ScalarHNode::anchor() {}
+void Input::MapHNode::anchor() {}
+void Input::SequenceHNode::anchor() {}
+
+bool Input::outputting() const {
+ return false;
+}
+
+bool Input::setCurrentDocument() {
+ if (DocIterator != Strm->end()) {
+ Node *N = DocIterator->getRoot();
+ if (!N) {
+ EC = make_error_code(errc::invalid_argument);
+ return false;
+ }
+
+ if (isa<NullNode>(N)) {
+ // Empty files are allowed and ignored
+ ++DocIterator;
+ return setCurrentDocument();
+ }
+ TopNode = createHNodes(N);
+ CurrentNode = TopNode.get();
+ return true;
+ }
+ return false;
+}
+
+bool Input::nextDocument() {
+ return ++DocIterator != Strm->end();
+}
+
+const Node *Input::getCurrentNode() const {
+ return CurrentNode ? CurrentNode->_node : nullptr;
+}
+
+bool Input::mapTag(StringRef Tag, bool Default) {
+ // CurrentNode can be null if setCurrentDocument() was unable to
+ // parse the document because it was invalid or empty.
+ if (!CurrentNode)
+ return false;
+
+ std::string foundTag = CurrentNode->_node->getVerbatimTag();
+ if (foundTag.empty()) {
+ // If no tag found and 'Tag' is the default, say it was found.
+ return Default;
+ }
+ // Return true iff found tag matches supplied tag.
+ return Tag.equals(foundTag);
+}
+
+void Input::beginMapping() {
+ if (EC)
+ return;
+ // CurrentNode can be null if the document is empty.
+ MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
+ if (MN) {
+ MN->ValidKeys.clear();
+ }
+}
+
+std::vector<StringRef> Input::keys() {
+ MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
+ std::vector<StringRef> Ret;
+ if (!MN) {
+ setError(CurrentNode, "not a mapping");
+ return Ret;
+ }
+ for (auto &P : MN->Mapping)
+ Ret.push_back(P.first());
+ return Ret;
+}
+
+bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
+ void *&SaveInfo) {
+ UseDefault = false;
+ if (EC)
+ return false;
+
+ // CurrentNode is null for empty documents, which is an error in case required
+ // nodes are present.
+ if (!CurrentNode) {
+ if (Required)
+ EC = make_error_code(errc::invalid_argument);
+ return false;
+ }
+
+ MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
+ if (!MN) {
+ if (Required || !isa<EmptyHNode>(CurrentNode))
+ setError(CurrentNode, "not a mapping");
+ return false;
+ }
+ MN->ValidKeys.push_back(Key);
+ HNode *Value = MN->Mapping[Key].get();
+ if (!Value) {
+ if (Required)
+ setError(CurrentNode, Twine("missing required key '") + Key + "'");
+ else
+ UseDefault = true;
+ return false;
+ }
+ SaveInfo = CurrentNode;
+ CurrentNode = Value;
+ return true;
+}
+
+void Input::postflightKey(void *saveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(saveInfo);
+}
+
+void Input::endMapping() {
+ if (EC)
+ return;
+ // CurrentNode can be null if the document is empty.
+ MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
+ if (!MN)
+ return;
+ for (const auto &NN : MN->Mapping) {
+ if (!is_contained(MN->ValidKeys, NN.first())) {
+ setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
+ break;
+ }
+ }
+}
+
+void Input::beginFlowMapping() { beginMapping(); }
+
+void Input::endFlowMapping() { endMapping(); }
+
+unsigned Input::beginSequence() {
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
+ return SQ->Entries.size();
+ if (isa<EmptyHNode>(CurrentNode))
+ return 0;
+ // Treat case where there's a scalar "null" value as an empty sequence.
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ if (isNull(SN->value()))
+ return 0;
+ }
+ // Any other type of HNode is an error.
+ setError(CurrentNode, "not a sequence");
+ return 0;
+}
+
+void Input::endSequence() {
+}
+
+bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[Index].get();
+ return true;
+ }
+ return false;
+}
+
+void Input::postflightElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
+}
+
+unsigned Input::beginFlowSequence() { return beginSequence(); }
+
+bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[index].get();
+ return true;
+ }
+ return false;
+}
+
+void Input::postflightFlowElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
+}
+
+void Input::endFlowSequence() {
+}
+
+void Input::beginEnumScalar() {
+ ScalarMatchFound = false;
+}
+
+bool Input::matchEnumScalar(const char *Str, bool) {
+ if (ScalarMatchFound)
+ return false;
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ if (SN->value().equals(Str)) {
+ ScalarMatchFound = true;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool Input::matchEnumFallback() {
+ if (ScalarMatchFound)
+ return false;
+ ScalarMatchFound = true;
+ return true;
+}
+
+void Input::endEnumScalar() {
+ if (!ScalarMatchFound) {
+ setError(CurrentNode, "unknown enumerated scalar");
+ }
+}
+
+bool Input::beginBitSetScalar(bool &DoClear) {
+ BitValuesUsed.clear();
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
+ } else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ DoClear = true;
+ return true;
+}
+
+bool Input::bitSetMatch(const char *Str, bool) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ unsigned Index = 0;
+ for (auto &N : SQ->Entries) {
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
+ if (SN->value().equals(Str)) {
+ BitValuesUsed[Index] = true;
+ return true;
+ }
+ } else {
+ setError(CurrentNode, "unexpected scalar in sequence of bit values");
+ }
+ ++Index;
+ }
+ } else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ return false;
+}
+
+void Input::endBitSetScalar() {
+ if (EC)
+ return;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ assert(BitValuesUsed.size() == SQ->Entries.size());
+ for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
+ if (!BitValuesUsed[i]) {
+ setError(SQ->Entries[i].get(), "unknown bit value");
+ return;
+ }
+ }
+ }
+}
+
+void Input::scalarString(StringRef &S, QuotingType) {
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ S = SN->value();
+ } else {
+ setError(CurrentNode, "unexpected scalar");
+ }
+}
+
+void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
+
+void Input::scalarTag(std::string &Tag) {
+ Tag = CurrentNode->_node->getVerbatimTag();
+}
+
+void Input::setError(HNode *hnode, const Twine &message) {
+ assert(hnode && "HNode must not be NULL");
+ setError(hnode->_node, message);
+}
+
+NodeKind Input::getNodeKind() {
+ if (isa<ScalarHNode>(CurrentNode))
+ return NodeKind::Scalar;
+ else if (isa<MapHNode>(CurrentNode))
+ return NodeKind::Map;
+ else if (isa<SequenceHNode>(CurrentNode))
+ return NodeKind::Sequence;
+ llvm_unreachable("Unsupported node kind");
+}
+
+void Input::setError(Node *node, const Twine &message) {
+ Strm->printError(node, message);
+ EC = make_error_code(errc::invalid_argument);
+}
+
+std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
+ SmallString<128> StringStorage;
+ if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
+ StringRef KeyStr = SN->getValue(StringStorage);
+ if (!StringStorage.empty()) {
+ // Copy string to permanent storage
+ KeyStr = StringStorage.str().copy(StringAllocator);
+ }
+ return std::make_unique<ScalarHNode>(N, KeyStr);
+ } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
+ StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
+ return std::make_unique<ScalarHNode>(N, ValueCopy);
+ } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
+ auto SQHNode = std::make_unique<SequenceHNode>(N);
+ for (Node &SN : *SQ) {
+ auto Entry = createHNodes(&SN);
+ if (EC)
+ break;
+ SQHNode->Entries.push_back(std::move(Entry));
+ }
+ return std::move(SQHNode);
+ } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
+ auto mapHNode = std::make_unique<MapHNode>(N);
+ for (KeyValueNode &KVN : *Map) {
+ Node *KeyNode = KVN.getKey();
+ ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
+ Node *Value = KVN.getValue();
+ if (!Key || !Value) {
+ if (!Key)
+ setError(KeyNode, "Map key must be a scalar");
+ if (!Value)
+ setError(KeyNode, "Map value must not be empty");
+ break;
+ }
+ StringStorage.clear();
+ StringRef KeyStr = Key->getValue(StringStorage);
+ if (!StringStorage.empty()) {
+ // Copy string to permanent storage
+ KeyStr = StringStorage.str().copy(StringAllocator);
+ }
+ auto ValueHNode = createHNodes(Value);
+ if (EC)
+ break;
+ mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
+ }
+ return std::move(mapHNode);
+ } else if (isa<NullNode>(N)) {
+ return std::make_unique<EmptyHNode>(N);
+ } else {
+ setError(N, "unknown node kind");
+ return nullptr;
+ }
+}
+
+void Input::setError(const Twine &Message) {
+ setError(CurrentNode, Message);
+}
+
+bool Input::canElideEmptySequence() {
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Output
+//===----------------------------------------------------------------------===//
+
+Output::Output(raw_ostream &yout, void *context, int WrapColumn)
+ : IO(context), Out(yout), WrapColumn(WrapColumn) {}
+
+Output::~Output() = default;
+
+bool Output::outputting() const {
+ return true;
+}
+
+void Output::beginMapping() {
+ StateStack.push_back(inMapFirstKey);
+ PaddingBeforeContainer = Padding;
+ Padding = "\n";
+}
+
+bool Output::mapTag(StringRef Tag, bool Use) {
+ if (Use) {
+ // If this tag is being written inside a sequence we should write the start
+ // of the sequence before writing the tag, otherwise the tag won't be
+ // attached to the element in the sequence, but rather the sequence itself.
+ bool SequenceElement = false;
+ if (StateStack.size() > 1) {
+ auto &E = StateStack[StateStack.size() - 2];
+ SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
+ }
+ if (SequenceElement && StateStack.back() == inMapFirstKey) {
+ newLineCheck();
+ } else {
+ output(" ");
+ }
+ output(Tag);
+ if (SequenceElement) {
+ // If we're writing the tag during the first element of a map, the tag
+ // takes the place of the first element in the sequence.
+ if (StateStack.back() == inMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inMapOtherKey);
+ }
+ // Tags inside maps in sequences should act as keys in the map from a
+ // formatting perspective, so we always want a newline in a sequence.
+ Padding = "\n";
+ }
+ }
+ return Use;
+}
+
+void Output::endMapping() {
+ // If we did not map anything, we should explicitly emit an empty map
+ if (StateStack.back() == inMapFirstKey) {
+ Padding = PaddingBeforeContainer;
+ newLineCheck();
+ output("{}");
+ Padding = "\n";
+ }
+ StateStack.pop_back();
+}
+
+std::vector<StringRef> Output::keys() {
+ report_fatal_error("invalid call");
+}
+
+bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
+ bool &UseDefault, void *&) {
+ UseDefault = false;
+ if (Required || !SameAsDefault || WriteDefaultValues) {
+ auto State = StateStack.back();
+ if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
+ flowKey(Key);
+ } else {
+ newLineCheck();
+ paddedKey(Key);
+ }
+ return true;
+ }
+ return false;
+}
+
+void Output::postflightKey(void *) {
+ if (StateStack.back() == inMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inMapOtherKey);
+ } else if (StateStack.back() == inFlowMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inFlowMapOtherKey);
+ }
+}
+
+void Output::beginFlowMapping() {
+ StateStack.push_back(inFlowMapFirstKey);
+ newLineCheck();
+ ColumnAtMapFlowStart = Column;
+ output("{ ");
+}
+
+void Output::endFlowMapping() {
+ StateStack.pop_back();
+ outputUpToEndOfLine(" }");
+}
+
+void Output::beginDocuments() {
+ outputUpToEndOfLine("---");
+}
+
+bool Output::preflightDocument(unsigned index) {
+ if (index > 0)
+ outputUpToEndOfLine("\n---");
+ return true;
+}
+
+void Output::postflightDocument() {
+}
+
+void Output::endDocuments() {
+ output("\n...\n");
+}
+
+unsigned Output::beginSequence() {
+ StateStack.push_back(inSeqFirstElement);
+ PaddingBeforeContainer = Padding;
+ Padding = "\n";
+ return 0;
+}
+
+void Output::endSequence() {
+ // If we did not emit anything, we should explicitly emit an empty sequence
+ if (StateStack.back() == inSeqFirstElement) {
+ Padding = PaddingBeforeContainer;
+ newLineCheck();
+ output("[]");
+ Padding = "\n";
+ }
+ StateStack.pop_back();
+}
+
+bool Output::preflightElement(unsigned, void *&) {
+ return true;
+}
+
+void Output::postflightElement(void *) {
+ if (StateStack.back() == inSeqFirstElement) {
+ StateStack.pop_back();
+ StateStack.push_back(inSeqOtherElement);
+ } else if (StateStack.back() == inFlowSeqFirstElement) {
+ StateStack.pop_back();
+ StateStack.push_back(inFlowSeqOtherElement);
+ }
+}
+
+unsigned Output::beginFlowSequence() {
+ StateStack.push_back(inFlowSeqFirstElement);
+ newLineCheck();
+ ColumnAtFlowStart = Column;
+ output("[ ");
+ NeedFlowSequenceComma = false;
+ return 0;
+}
+
+void Output::endFlowSequence() {
+ StateStack.pop_back();
+ outputUpToEndOfLine(" ]");
+}
+
+bool Output::preflightFlowElement(unsigned, void *&) {
+ if (NeedFlowSequenceComma)
+ output(", ");
+ if (WrapColumn && Column > WrapColumn) {
+ output("\n");
+ for (int i = 0; i < ColumnAtFlowStart; ++i)
+ output(" ");
+ Column = ColumnAtFlowStart;
+ output(" ");
+ }
+ return true;
+}
+
+void Output::postflightFlowElement(void *) {
+ NeedFlowSequenceComma = true;
+}
+
+void Output::beginEnumScalar() {
+ EnumerationMatchFound = false;
+}
+
+bool Output::matchEnumScalar(const char *Str, bool Match) {
+ if (Match && !EnumerationMatchFound) {
+ newLineCheck();
+ outputUpToEndOfLine(Str);
+ EnumerationMatchFound = true;
+ }
+ return false;
+}
+
+bool Output::matchEnumFallback() {
+ if (EnumerationMatchFound)
+ return false;
+ EnumerationMatchFound = true;
+ return true;
+}
+
+void Output::endEnumScalar() {
+ if (!EnumerationMatchFound)
+ llvm_unreachable("bad runtime enum value");
+}
+
+bool Output::beginBitSetScalar(bool &DoClear) {
+ newLineCheck();
+ output("[ ");
+ NeedBitValueComma = false;
+ DoClear = false;
+ return true;
+}
+
+bool Output::bitSetMatch(const char *Str, bool Matches) {
+ if (Matches) {
+ if (NeedBitValueComma)
+ output(", ");
+ output(Str);
+ NeedBitValueComma = true;
+ }
+ return false;
+}
+
+void Output::endBitSetScalar() {
+ outputUpToEndOfLine(" ]");
+}
+
+void Output::scalarString(StringRef &S, QuotingType MustQuote) {
+ newLineCheck();
+ if (S.empty()) {
+ // Print '' for the empty string because leaving the field empty is not
+ // allowed.
+ outputUpToEndOfLine("''");
+ return;
+ }
+ if (MustQuote == QuotingType::None) {
+ // Only quote if we must.
+ outputUpToEndOfLine(S);
+ return;
+ }
+
+ const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
+ output(Quote); // Starting quote.
+
+ // When using double-quoted strings (and only in that case), non-printable characters may be
+ // present, and will be escaped using a variety of unicode-scalar and special short-form
+ // escapes. This is handled in yaml::escape.
+ if (MustQuote == QuotingType::Double) {
+ output(yaml::escape(S, /* EscapePrintable= */ false));
+ outputUpToEndOfLine(Quote);
+ return;
+ }
+
+ unsigned i = 0;
+ unsigned j = 0;
+ unsigned End = S.size();
+ const char *Base = S.data();
+
+ // When using single-quoted strings, any single quote ' must be doubled to be escaped.
+ while (j < End) {
+ if (S[j] == '\'') { // Escape quotes.
+ output(StringRef(&Base[i], j - i)); // "flush".
+ output(StringLiteral("''")); // Print it as ''
+ i = j + 1;
+ }
+ ++j;
+ }
+ output(StringRef(&Base[i], j - i));
+ outputUpToEndOfLine(Quote); // Ending quote.
+}
+
+void Output::blockScalarString(StringRef &S) {
+ if (!StateStack.empty())
+ newLineCheck();
+ output(" |");
+ outputNewLine();
+
+ unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
+
+ auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
+ for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
+ for (unsigned I = 0; I < Indent; ++I) {
+ output(" ");
+ }
+ output(*Lines);
+ outputNewLine();
+ }
+}
+
+void Output::scalarTag(std::string &Tag) {
+ if (Tag.empty())
+ return;
+ newLineCheck();
+ output(Tag);
+ output(" ");
+}
+
+void Output::setError(const Twine &message) {
+}
+
+bool Output::canElideEmptySequence() {
+ // Normally, with an optional key/value where the value is an empty sequence,
+ // the whole key/value can be not written. But, that produces wrong yaml
+ // if the key/value is the only thing in the map and the map is used in
+ // a sequence. This detects if the this sequence is the first key/value
+ // in map that itself is embedded in a sequnce.
+ if (StateStack.size() < 2)
+ return true;
+ if (StateStack.back() != inMapFirstKey)
+ return true;
+ return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
+}
+
+void Output::output(StringRef s) {
+ Column += s.size();
+ Out << s;
+}
+
+void Output::outputUpToEndOfLine(StringRef s) {
+ output(s);
+ if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
+ !inFlowMapAnyKey(StateStack.back())))
+ Padding = "\n";
+}
+
+void Output::outputNewLine() {
+ Out << "\n";
+ Column = 0;
+}
+
+// if seq at top, indent as if map, then add "- "
+// if seq in middle, use "- " if firstKey, else use " "
+//
+
+void Output::newLineCheck() {
+ if (Padding != "\n") {
+ output(Padding);
+ Padding = {};
+ return;
+ }
+ outputNewLine();
+ Padding = {};
+
+ if (StateStack.size() == 0)
+ return;
+
+ unsigned Indent = StateStack.size() - 1;
+ bool OutputDash = false;
+
+ if (StateStack.back() == inSeqFirstElement ||
+ StateStack.back() == inSeqOtherElement) {
+ OutputDash = true;
+ } else if ((StateStack.size() > 1) &&
+ ((StateStack.back() == inMapFirstKey) ||
+ inFlowSeqAnyElement(StateStack.back()) ||
+ (StateStack.back() == inFlowMapFirstKey)) &&
+ inSeqAnyElement(StateStack[StateStack.size() - 2])) {
+ --Indent;
+ OutputDash = true;
+ }
+
+ for (unsigned i = 0; i < Indent; ++i) {
+ output(" ");
+ }
+ if (OutputDash) {
+ output("- ");
+ }
+
+}
+
+void Output::paddedKey(StringRef key) {
+ output(key);
+ output(":");
+ const char *spaces = " ";
+ if (key.size() < strlen(spaces))
+ Padding = &spaces[key.size()];
+ else
+ Padding = " ";
+}
+
+void Output::flowKey(StringRef Key) {
+ if (StateStack.back() == inFlowMapOtherKey)
+ output(", ");
+ if (WrapColumn && Column > WrapColumn) {
+ output("\n");
+ for (int I = 0; I < ColumnAtMapFlowStart; ++I)
+ output(" ");
+ Column = ColumnAtMapFlowStart;
+ output(" ");
+ }
+ output(Key);
+ output(": ");
+}
+
+NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
+
+bool Output::inSeqAnyElement(InState State) {
+ return State == inSeqFirstElement || State == inSeqOtherElement;
+}
+
+bool Output::inFlowSeqAnyElement(InState State) {
+ return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
+}
+
+bool Output::inMapAnyKey(InState State) {
+ return State == inMapFirstKey || State == inMapOtherKey;
+}
+
+bool Output::inFlowMapAnyKey(InState State) {
+ return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
+}
+
+//===----------------------------------------------------------------------===//
+// traits for built-in types
+//===----------------------------------------------------------------------===//
+
+void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
+ Out << (Val ? "true" : "false");
+}
+
+StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
+ if (Scalar.equals("true")) {
+ Val = true;
+ return StringRef();
+ } else if (Scalar.equals("false")) {
+ Val = false;
+ return StringRef();
+ }
+ return "invalid boolean";
+}
+
+void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
+ StringRef &Val) {
+ Val = Scalar;
+ return StringRef();
+}
+
+void ScalarTraits<std::string>::output(const std::string &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
+ std::string &Val) {
+ Val = Scalar.str();
+ return StringRef();
+}
+
+void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
+ raw_ostream &Out) {
+ // use temp uin32_t because ostream thinks uint8_t is a character
+ uint32_t Num = Val;
+ Out << Num;
+}
+
+StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFF)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
+ uint16_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFFFF)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
+ uint32_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFFFFFFFFUL)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
+ uint64_t &Val) {
+ unsigned long long N;
+ if (getAsUnsignedInteger(Scalar, 0, N))
+ return "invalid number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
+ // use temp in32_t because ostream thinks int8_t is a character
+ int32_t Num = Val;
+ Out << Num;
+}
+
+StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > 127) || (N < -128))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > INT16_MAX) || (N < INT16_MIN))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > INT32_MAX) || (N < INT32_MIN))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
+ Out << format("%g", Val);
+}
+
+StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
+ if (to_float(Scalar, Val))
+ return StringRef();
+ return "invalid floating point number";
+}
+
+void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
+ Out << format("%g", Val);
+}
+
+StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
+ if (to_float(Scalar, Val))
+ return StringRef();
+ return "invalid floating point number";
+}
+
+void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
+ uint8_t Num = Val;
+ Out << format("0x%02X", Num);
+}
+
+StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex8 number";
+ if (n > 0xFF)
+ return "out of range hex8 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
+ uint16_t Num = Val;
+ Out << format("0x%04X", Num);
+}
+
+StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex16 number";
+ if (n > 0xFFFF)
+ return "out of range hex16 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
+ uint32_t Num = Val;
+ Out << format("0x%08X", Num);
+}
+
+StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex32 number";
+ if (n > 0xFFFFFFFFUL)
+ return "out of range hex32 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
+ uint64_t Num = Val;
+ Out << format("0x%016llX", Num);
+}
+
+StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
+ unsigned long long Num;
+ if (getAsUnsignedInteger(Scalar, 0, Num))
+ return "invalid hex64 number";
+ Val = Num;
+ return StringRef();
+}