summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/YAMLTraits.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/llvm-project/YAMLTraits.cpp')
-rw-r--r--third_party/llvm-project/YAMLTraits.cpp1087
1 files changed, 1087 insertions, 0 deletions
diff --git a/third_party/llvm-project/YAMLTraits.cpp b/third_party/llvm-project/YAMLTraits.cpp
new file mode 100644
index 000000000..5f0cedc71
--- /dev/null
+++ b/third_party/llvm-project/YAMLTraits.cpp
@@ -0,0 +1,1087 @@
+//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Support/YAMLTraits.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Errc.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/LineIterator.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/Unicode.h"
+#include "llvm/Support/YAMLParser.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <string>
+#include <vector>
+
+using namespace llvm;
+using namespace yaml;
+
+//===----------------------------------------------------------------------===//
+// IO
+//===----------------------------------------------------------------------===//
+
+IO::IO(void *Context) : Ctxt(Context) {}
+
+IO::~IO() = default;
+
+void *IO::getContext() const {
+ return Ctxt;
+}
+
+void IO::setContext(void *Context) {
+ Ctxt = Context;
+}
+
+//===----------------------------------------------------------------------===//
+// Input
+//===----------------------------------------------------------------------===//
+
+Input::Input(StringRef InputContent, void *Ctxt,
+ SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
+ : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
+ if (DiagHandler)
+ SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
+ DocIterator = Strm->begin();
+}
+
+Input::Input(MemoryBufferRef Input, void *Ctxt,
+ SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
+ : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
+ if (DiagHandler)
+ SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
+ DocIterator = Strm->begin();
+}
+
+Input::~Input() = default;
+
+std::error_code Input::error() { return EC; }
+
+// Pin the vtables to this file.
+void Input::HNode::anchor() {}
+void Input::EmptyHNode::anchor() {}
+void Input::ScalarHNode::anchor() {}
+void Input::MapHNode::anchor() {}
+void Input::SequenceHNode::anchor() {}
+
+bool Input::outputting() const {
+ return false;
+}
+
+bool Input::setCurrentDocument() {
+ if (DocIterator != Strm->end()) {
+ Node *N = DocIterator->getRoot();
+ if (!N) {
+ EC = make_error_code(errc::invalid_argument);
+ return false;
+ }
+
+ if (isa<NullNode>(N)) {
+ // Empty files are allowed and ignored
+ ++DocIterator;
+ return setCurrentDocument();
+ }
+ TopNode = createHNodes(N);
+ CurrentNode = TopNode.get();
+ return true;
+ }
+ return false;
+}
+
+bool Input::nextDocument() {
+ return ++DocIterator != Strm->end();
+}
+
+const Node *Input::getCurrentNode() const {
+ return CurrentNode ? CurrentNode->_node : nullptr;
+}
+
+bool Input::mapTag(StringRef Tag, bool Default) {
+ // CurrentNode can be null if setCurrentDocument() was unable to
+ // parse the document because it was invalid or empty.
+ if (!CurrentNode)
+ return false;
+
+ std::string foundTag = CurrentNode->_node->getVerbatimTag();
+ if (foundTag.empty()) {
+ // If no tag found and 'Tag' is the default, say it was found.
+ return Default;
+ }
+ // Return true iff found tag matches supplied tag.
+ return Tag.equals(foundTag);
+}
+
+void Input::beginMapping() {
+ if (EC)
+ return;
+ // CurrentNode can be null if the document is empty.
+ MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
+ if (MN) {
+ MN->ValidKeys.clear();
+ }
+}
+
+std::vector<StringRef> Input::keys() {
+ MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
+ std::vector<StringRef> Ret;
+ if (!MN) {
+ setError(CurrentNode, "not a mapping");
+ return Ret;
+ }
+ for (auto &P : MN->Mapping)
+ Ret.push_back(P.first());
+ return Ret;
+}
+
+bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
+ void *&SaveInfo) {
+ UseDefault = false;
+ if (EC)
+ return false;
+
+ // CurrentNode is null for empty documents, which is an error in case required
+ // nodes are present.
+ if (!CurrentNode) {
+ if (Required)
+ EC = make_error_code(errc::invalid_argument);
+ return false;
+ }
+
+ MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
+ if (!MN) {
+ if (Required || !isa<EmptyHNode>(CurrentNode))
+ setError(CurrentNode, "not a mapping");
+ return false;
+ }
+ MN->ValidKeys.push_back(Key);
+ HNode *Value = MN->Mapping[Key].get();
+ if (!Value) {
+ if (Required)
+ setError(CurrentNode, Twine("missing required key '") + Key + "'");
+ else
+ UseDefault = true;
+ return false;
+ }
+ SaveInfo = CurrentNode;
+ CurrentNode = Value;
+ return true;
+}
+
+void Input::postflightKey(void *saveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(saveInfo);
+}
+
+void Input::endMapping() {
+ if (EC)
+ return;
+ // CurrentNode can be null if the document is empty.
+ MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
+ if (!MN)
+ return;
+ for (const auto &NN : MN->Mapping) {
+ if (!is_contained(MN->ValidKeys, NN.first())) {
+ setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
+ break;
+ }
+ }
+}
+
+void Input::beginFlowMapping() { beginMapping(); }
+
+void Input::endFlowMapping() { endMapping(); }
+
+unsigned Input::beginSequence() {
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
+ return SQ->Entries.size();
+ if (isa<EmptyHNode>(CurrentNode))
+ return 0;
+ // Treat case where there's a scalar "null" value as an empty sequence.
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ if (isNull(SN->value()))
+ return 0;
+ }
+ // Any other type of HNode is an error.
+ setError(CurrentNode, "not a sequence");
+ return 0;
+}
+
+void Input::endSequence() {
+}
+
+bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[Index].get();
+ return true;
+ }
+ return false;
+}
+
+void Input::postflightElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
+}
+
+unsigned Input::beginFlowSequence() { return beginSequence(); }
+
+bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ SaveInfo = CurrentNode;
+ CurrentNode = SQ->Entries[index].get();
+ return true;
+ }
+ return false;
+}
+
+void Input::postflightFlowElement(void *SaveInfo) {
+ CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
+}
+
+void Input::endFlowSequence() {
+}
+
+void Input::beginEnumScalar() {
+ ScalarMatchFound = false;
+}
+
+bool Input::matchEnumScalar(const char *Str, bool) {
+ if (ScalarMatchFound)
+ return false;
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ if (SN->value().equals(Str)) {
+ ScalarMatchFound = true;
+ return true;
+ }
+ }
+ return false;
+}
+
+bool Input::matchEnumFallback() {
+ if (ScalarMatchFound)
+ return false;
+ ScalarMatchFound = true;
+ return true;
+}
+
+void Input::endEnumScalar() {
+ if (!ScalarMatchFound) {
+ setError(CurrentNode, "unknown enumerated scalar");
+ }
+}
+
+bool Input::beginBitSetScalar(bool &DoClear) {
+ BitValuesUsed.clear();
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
+ } else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ DoClear = true;
+ return true;
+}
+
+bool Input::bitSetMatch(const char *Str, bool) {
+ if (EC)
+ return false;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ unsigned Index = 0;
+ for (auto &N : SQ->Entries) {
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
+ if (SN->value().equals(Str)) {
+ BitValuesUsed[Index] = true;
+ return true;
+ }
+ } else {
+ setError(CurrentNode, "unexpected scalar in sequence of bit values");
+ }
+ ++Index;
+ }
+ } else {
+ setError(CurrentNode, "expected sequence of bit values");
+ }
+ return false;
+}
+
+void Input::endBitSetScalar() {
+ if (EC)
+ return;
+ if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
+ assert(BitValuesUsed.size() == SQ->Entries.size());
+ for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
+ if (!BitValuesUsed[i]) {
+ setError(SQ->Entries[i].get(), "unknown bit value");
+ return;
+ }
+ }
+ }
+}
+
+void Input::scalarString(StringRef &S, QuotingType) {
+ if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
+ S = SN->value();
+ } else {
+ setError(CurrentNode, "unexpected scalar");
+ }
+}
+
+void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
+
+void Input::scalarTag(std::string &Tag) {
+ Tag = CurrentNode->_node->getVerbatimTag();
+}
+
+void Input::setError(HNode *hnode, const Twine &message) {
+ assert(hnode && "HNode must not be NULL");
+ setError(hnode->_node, message);
+}
+
+NodeKind Input::getNodeKind() {
+ if (isa<ScalarHNode>(CurrentNode))
+ return NodeKind::Scalar;
+ else if (isa<MapHNode>(CurrentNode))
+ return NodeKind::Map;
+ else if (isa<SequenceHNode>(CurrentNode))
+ return NodeKind::Sequence;
+ llvm_unreachable("Unsupported node kind");
+}
+
+void Input::setError(Node *node, const Twine &message) {
+ Strm->printError(node, message);
+ EC = make_error_code(errc::invalid_argument);
+}
+
+std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
+ SmallString<128> StringStorage;
+ if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
+ StringRef KeyStr = SN->getValue(StringStorage);
+ if (!StringStorage.empty()) {
+ // Copy string to permanent storage
+ KeyStr = StringStorage.str().copy(StringAllocator);
+ }
+ return std::make_unique<ScalarHNode>(N, KeyStr);
+ } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
+ StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
+ return std::make_unique<ScalarHNode>(N, ValueCopy);
+ } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
+ auto SQHNode = std::make_unique<SequenceHNode>(N);
+ for (Node &SN : *SQ) {
+ auto Entry = createHNodes(&SN);
+ if (EC)
+ break;
+ SQHNode->Entries.push_back(std::move(Entry));
+ }
+ return std::move(SQHNode);
+ } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
+ auto mapHNode = std::make_unique<MapHNode>(N);
+ for (KeyValueNode &KVN : *Map) {
+ Node *KeyNode = KVN.getKey();
+ ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
+ Node *Value = KVN.getValue();
+ if (!Key || !Value) {
+ if (!Key)
+ setError(KeyNode, "Map key must be a scalar");
+ if (!Value)
+ setError(KeyNode, "Map value must not be empty");
+ break;
+ }
+ StringStorage.clear();
+ StringRef KeyStr = Key->getValue(StringStorage);
+ if (!StringStorage.empty()) {
+ // Copy string to permanent storage
+ KeyStr = StringStorage.str().copy(StringAllocator);
+ }
+ auto ValueHNode = createHNodes(Value);
+ if (EC)
+ break;
+ mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
+ }
+ return std::move(mapHNode);
+ } else if (isa<NullNode>(N)) {
+ return std::make_unique<EmptyHNode>(N);
+ } else {
+ setError(N, "unknown node kind");
+ return nullptr;
+ }
+}
+
+void Input::setError(const Twine &Message) {
+ setError(CurrentNode, Message);
+}
+
+bool Input::canElideEmptySequence() {
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// Output
+//===----------------------------------------------------------------------===//
+
+Output::Output(raw_ostream &yout, void *context, int WrapColumn)
+ : IO(context), Out(yout), WrapColumn(WrapColumn) {}
+
+Output::~Output() = default;
+
+bool Output::outputting() const {
+ return true;
+}
+
+void Output::beginMapping() {
+ StateStack.push_back(inMapFirstKey);
+ PaddingBeforeContainer = Padding;
+ Padding = "\n";
+}
+
+bool Output::mapTag(StringRef Tag, bool Use) {
+ if (Use) {
+ // If this tag is being written inside a sequence we should write the start
+ // of the sequence before writing the tag, otherwise the tag won't be
+ // attached to the element in the sequence, but rather the sequence itself.
+ bool SequenceElement = false;
+ if (StateStack.size() > 1) {
+ auto &E = StateStack[StateStack.size() - 2];
+ SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
+ }
+ if (SequenceElement && StateStack.back() == inMapFirstKey) {
+ newLineCheck();
+ } else {
+ output(" ");
+ }
+ output(Tag);
+ if (SequenceElement) {
+ // If we're writing the tag during the first element of a map, the tag
+ // takes the place of the first element in the sequence.
+ if (StateStack.back() == inMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inMapOtherKey);
+ }
+ // Tags inside maps in sequences should act as keys in the map from a
+ // formatting perspective, so we always want a newline in a sequence.
+ Padding = "\n";
+ }
+ }
+ return Use;
+}
+
+void Output::endMapping() {
+ // If we did not map anything, we should explicitly emit an empty map
+ if (StateStack.back() == inMapFirstKey) {
+ Padding = PaddingBeforeContainer;
+ newLineCheck();
+ output("{}");
+ Padding = "\n";
+ }
+ StateStack.pop_back();
+}
+
+std::vector<StringRef> Output::keys() {
+ report_fatal_error("invalid call");
+}
+
+bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
+ bool &UseDefault, void *&) {
+ UseDefault = false;
+ if (Required || !SameAsDefault || WriteDefaultValues) {
+ auto State = StateStack.back();
+ if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
+ flowKey(Key);
+ } else {
+ newLineCheck();
+ paddedKey(Key);
+ }
+ return true;
+ }
+ return false;
+}
+
+void Output::postflightKey(void *) {
+ if (StateStack.back() == inMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inMapOtherKey);
+ } else if (StateStack.back() == inFlowMapFirstKey) {
+ StateStack.pop_back();
+ StateStack.push_back(inFlowMapOtherKey);
+ }
+}
+
+void Output::beginFlowMapping() {
+ StateStack.push_back(inFlowMapFirstKey);
+ newLineCheck();
+ ColumnAtMapFlowStart = Column;
+ output("{ ");
+}
+
+void Output::endFlowMapping() {
+ StateStack.pop_back();
+ outputUpToEndOfLine(" }");
+}
+
+void Output::beginDocuments() {
+ outputUpToEndOfLine("---");
+}
+
+bool Output::preflightDocument(unsigned index) {
+ if (index > 0)
+ outputUpToEndOfLine("\n---");
+ return true;
+}
+
+void Output::postflightDocument() {
+}
+
+void Output::endDocuments() {
+ output("\n...\n");
+}
+
+unsigned Output::beginSequence() {
+ StateStack.push_back(inSeqFirstElement);
+ PaddingBeforeContainer = Padding;
+ Padding = "\n";
+ return 0;
+}
+
+void Output::endSequence() {
+ // If we did not emit anything, we should explicitly emit an empty sequence
+ if (StateStack.back() == inSeqFirstElement) {
+ Padding = PaddingBeforeContainer;
+ newLineCheck();
+ output("[]");
+ Padding = "\n";
+ }
+ StateStack.pop_back();
+}
+
+bool Output::preflightElement(unsigned, void *&) {
+ return true;
+}
+
+void Output::postflightElement(void *) {
+ if (StateStack.back() == inSeqFirstElement) {
+ StateStack.pop_back();
+ StateStack.push_back(inSeqOtherElement);
+ } else if (StateStack.back() == inFlowSeqFirstElement) {
+ StateStack.pop_back();
+ StateStack.push_back(inFlowSeqOtherElement);
+ }
+}
+
+unsigned Output::beginFlowSequence() {
+ StateStack.push_back(inFlowSeqFirstElement);
+ newLineCheck();
+ ColumnAtFlowStart = Column;
+ output("[ ");
+ NeedFlowSequenceComma = false;
+ return 0;
+}
+
+void Output::endFlowSequence() {
+ StateStack.pop_back();
+ outputUpToEndOfLine(" ]");
+}
+
+bool Output::preflightFlowElement(unsigned, void *&) {
+ if (NeedFlowSequenceComma)
+ output(", ");
+ if (WrapColumn && Column > WrapColumn) {
+ output("\n");
+ for (int i = 0; i < ColumnAtFlowStart; ++i)
+ output(" ");
+ Column = ColumnAtFlowStart;
+ output(" ");
+ }
+ return true;
+}
+
+void Output::postflightFlowElement(void *) {
+ NeedFlowSequenceComma = true;
+}
+
+void Output::beginEnumScalar() {
+ EnumerationMatchFound = false;
+}
+
+bool Output::matchEnumScalar(const char *Str, bool Match) {
+ if (Match && !EnumerationMatchFound) {
+ newLineCheck();
+ outputUpToEndOfLine(Str);
+ EnumerationMatchFound = true;
+ }
+ return false;
+}
+
+bool Output::matchEnumFallback() {
+ if (EnumerationMatchFound)
+ return false;
+ EnumerationMatchFound = true;
+ return true;
+}
+
+void Output::endEnumScalar() {
+ if (!EnumerationMatchFound)
+ llvm_unreachable("bad runtime enum value");
+}
+
+bool Output::beginBitSetScalar(bool &DoClear) {
+ newLineCheck();
+ output("[ ");
+ NeedBitValueComma = false;
+ DoClear = false;
+ return true;
+}
+
+bool Output::bitSetMatch(const char *Str, bool Matches) {
+ if (Matches) {
+ if (NeedBitValueComma)
+ output(", ");
+ output(Str);
+ NeedBitValueComma = true;
+ }
+ return false;
+}
+
+void Output::endBitSetScalar() {
+ outputUpToEndOfLine(" ]");
+}
+
+void Output::scalarString(StringRef &S, QuotingType MustQuote) {
+ newLineCheck();
+ if (S.empty()) {
+ // Print '' for the empty string because leaving the field empty is not
+ // allowed.
+ outputUpToEndOfLine("''");
+ return;
+ }
+ if (MustQuote == QuotingType::None) {
+ // Only quote if we must.
+ outputUpToEndOfLine(S);
+ return;
+ }
+
+ const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
+ output(Quote); // Starting quote.
+
+ // When using double-quoted strings (and only in that case), non-printable characters may be
+ // present, and will be escaped using a variety of unicode-scalar and special short-form
+ // escapes. This is handled in yaml::escape.
+ if (MustQuote == QuotingType::Double) {
+ output(yaml::escape(S, /* EscapePrintable= */ false));
+ outputUpToEndOfLine(Quote);
+ return;
+ }
+
+ unsigned i = 0;
+ unsigned j = 0;
+ unsigned End = S.size();
+ const char *Base = S.data();
+
+ // When using single-quoted strings, any single quote ' must be doubled to be escaped.
+ while (j < End) {
+ if (S[j] == '\'') { // Escape quotes.
+ output(StringRef(&Base[i], j - i)); // "flush".
+ output(StringLiteral("''")); // Print it as ''
+ i = j + 1;
+ }
+ ++j;
+ }
+ output(StringRef(&Base[i], j - i));
+ outputUpToEndOfLine(Quote); // Ending quote.
+}
+
+void Output::blockScalarString(StringRef &S) {
+ if (!StateStack.empty())
+ newLineCheck();
+ output(" |");
+ outputNewLine();
+
+ unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
+
+ auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
+ for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
+ for (unsigned I = 0; I < Indent; ++I) {
+ output(" ");
+ }
+ output(*Lines);
+ outputNewLine();
+ }
+}
+
+void Output::scalarTag(std::string &Tag) {
+ if (Tag.empty())
+ return;
+ newLineCheck();
+ output(Tag);
+ output(" ");
+}
+
+void Output::setError(const Twine &message) {
+}
+
+bool Output::canElideEmptySequence() {
+ // Normally, with an optional key/value where the value is an empty sequence,
+ // the whole key/value can be not written. But, that produces wrong yaml
+ // if the key/value is the only thing in the map and the map is used in
+ // a sequence. This detects if the this sequence is the first key/value
+ // in map that itself is embedded in a sequnce.
+ if (StateStack.size() < 2)
+ return true;
+ if (StateStack.back() != inMapFirstKey)
+ return true;
+ return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
+}
+
+void Output::output(StringRef s) {
+ Column += s.size();
+ Out << s;
+}
+
+void Output::outputUpToEndOfLine(StringRef s) {
+ output(s);
+ if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
+ !inFlowMapAnyKey(StateStack.back())))
+ Padding = "\n";
+}
+
+void Output::outputNewLine() {
+ Out << "\n";
+ Column = 0;
+}
+
+// if seq at top, indent as if map, then add "- "
+// if seq in middle, use "- " if firstKey, else use " "
+//
+
+void Output::newLineCheck() {
+ if (Padding != "\n") {
+ output(Padding);
+ Padding = {};
+ return;
+ }
+ outputNewLine();
+ Padding = {};
+
+ if (StateStack.size() == 0)
+ return;
+
+ unsigned Indent = StateStack.size() - 1;
+ bool OutputDash = false;
+
+ if (StateStack.back() == inSeqFirstElement ||
+ StateStack.back() == inSeqOtherElement) {
+ OutputDash = true;
+ } else if ((StateStack.size() > 1) &&
+ ((StateStack.back() == inMapFirstKey) ||
+ inFlowSeqAnyElement(StateStack.back()) ||
+ (StateStack.back() == inFlowMapFirstKey)) &&
+ inSeqAnyElement(StateStack[StateStack.size() - 2])) {
+ --Indent;
+ OutputDash = true;
+ }
+
+ for (unsigned i = 0; i < Indent; ++i) {
+ output(" ");
+ }
+ if (OutputDash) {
+ output("- ");
+ }
+
+}
+
+void Output::paddedKey(StringRef key) {
+ output(key);
+ output(":");
+ const char *spaces = " ";
+ if (key.size() < strlen(spaces))
+ Padding = &spaces[key.size()];
+ else
+ Padding = " ";
+}
+
+void Output::flowKey(StringRef Key) {
+ if (StateStack.back() == inFlowMapOtherKey)
+ output(", ");
+ if (WrapColumn && Column > WrapColumn) {
+ output("\n");
+ for (int I = 0; I < ColumnAtMapFlowStart; ++I)
+ output(" ");
+ Column = ColumnAtMapFlowStart;
+ output(" ");
+ }
+ output(Key);
+ output(": ");
+}
+
+NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
+
+bool Output::inSeqAnyElement(InState State) {
+ return State == inSeqFirstElement || State == inSeqOtherElement;
+}
+
+bool Output::inFlowSeqAnyElement(InState State) {
+ return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
+}
+
+bool Output::inMapAnyKey(InState State) {
+ return State == inMapFirstKey || State == inMapOtherKey;
+}
+
+bool Output::inFlowMapAnyKey(InState State) {
+ return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
+}
+
+//===----------------------------------------------------------------------===//
+// traits for built-in types
+//===----------------------------------------------------------------------===//
+
+void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
+ Out << (Val ? "true" : "false");
+}
+
+StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
+ if (Scalar.equals("true")) {
+ Val = true;
+ return StringRef();
+ } else if (Scalar.equals("false")) {
+ Val = false;
+ return StringRef();
+ }
+ return "invalid boolean";
+}
+
+void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
+ StringRef &Val) {
+ Val = Scalar;
+ return StringRef();
+}
+
+void ScalarTraits<std::string>::output(const std::string &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
+ std::string &Val) {
+ Val = Scalar.str();
+ return StringRef();
+}
+
+void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
+ raw_ostream &Out) {
+ // use temp uin32_t because ostream thinks uint8_t is a character
+ uint32_t Num = Val;
+ Out << Num;
+}
+
+StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFF)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
+ uint16_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFFFF)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
+ uint32_t &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid number";
+ if (n > 0xFFFFFFFFUL)
+ return "out of range number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
+ uint64_t &Val) {
+ unsigned long long N;
+ if (getAsUnsignedInteger(Scalar, 0, N))
+ return "invalid number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
+ // use temp in32_t because ostream thinks int8_t is a character
+ int32_t Num = Val;
+ Out << Num;
+}
+
+StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > 127) || (N < -128))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > INT16_MAX) || (N < INT16_MIN))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ if ((N > INT32_MAX) || (N < INT32_MIN))
+ return "out of range number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
+ raw_ostream &Out) {
+ Out << Val;
+}
+
+StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
+ long long N;
+ if (getAsSignedInteger(Scalar, 0, N))
+ return "invalid number";
+ Val = N;
+ return StringRef();
+}
+
+void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
+ Out << format("%g", Val);
+}
+
+StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
+ if (to_float(Scalar, Val))
+ return StringRef();
+ return "invalid floating point number";
+}
+
+void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
+ Out << format("%g", Val);
+}
+
+StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
+ if (to_float(Scalar, Val))
+ return StringRef();
+ return "invalid floating point number";
+}
+
+void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
+ uint8_t Num = Val;
+ Out << format("0x%02X", Num);
+}
+
+StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex8 number";
+ if (n > 0xFF)
+ return "out of range hex8 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
+ uint16_t Num = Val;
+ Out << format("0x%04X", Num);
+}
+
+StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex16 number";
+ if (n > 0xFFFF)
+ return "out of range hex16 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
+ uint32_t Num = Val;
+ Out << format("0x%08X", Num);
+}
+
+StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
+ unsigned long long n;
+ if (getAsUnsignedInteger(Scalar, 0, n))
+ return "invalid hex32 number";
+ if (n > 0xFFFFFFFFUL)
+ return "out of range hex32 number";
+ Val = n;
+ return StringRef();
+}
+
+void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
+ uint64_t Num = Val;
+ Out << format("0x%016llX", Num);
+}
+
+StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
+ unsigned long long Num;
+ if (getAsUnsignedInteger(Scalar, 0, Num))
+ return "invalid hex64 number";
+ Val = Num;
+ return StringRef();
+}