diff options
author | Alon Zakai <azakai@google.com> | 2019-12-19 09:04:08 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-12-19 09:04:08 -0800 |
commit | 4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6 (patch) | |
tree | 91bffc2d47b1fe4bba01e7ada77006ef340bd138 /third_party/llvm-project/include/llvm/ADT/SmallVector.h | |
parent | 0048f5b004ddf50e750aa335d0be314a73852058 (diff) | |
download | binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.gz binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.tar.bz2 binaryen-4d28d3f32e7f213e300b24bc61c3f0ac9d6e1ab6.zip |
DWARF parsing and writing support using LLVM (#2520)
This imports LLVM code for DWARF handling. That code has the
Apache 2 license like us. It's also the same code used to
emit DWARF in the common toolchain, so it seems like a safe choice.
This adds two passes: --dwarfdump which runs the same code LLVM
runs for llvm-dwarfdump. This shows we can parse it ok, and will
be useful for debugging. And --dwarfupdate writes out the DWARF
sections (unchanged from what we read, so it just roundtrips - for
updating we need #2515).
This puts LLVM in thirdparty which is added here.
All the LLVM code is behind USE_LLVM_DWARF, which is on
by default, but off in JS for now, as it increases code size by 20%.
This current approach imports the LLVM files directly. This is not
how they are intended to be used, so it required a bunch of
local changes - more than I expected actually, for the platform-specific
stuff. For now this seems to work, so it may be good enough, but
in the long term we may want to switch to linking against libllvm.
A downside to doing that is that binaryen users would need to
have an LLVM build, and even in the waterfall builds we'd have a
problem - while we ship LLVM there anyhow, we constantly update
it, which means that binaryen would need to be on latest llvm all
the time too (which otherwise, given DWARF is quite stable, we
might not need to constantly update).
An even larger issue is that as I did this work I learned about how
DWARF works in LLVM, and while the reading code is easy to
reuse, the writing code is trickier. The main code path is heavily
integrated with the MC layer, which we don't have - we might want
to create a "fake MC layer" for that, but it sounds hard. Instead,
there is the YAML path which is used mostly for testing, and which
can convert DWARF to and from YAML and from binary. Using
the non-YAML parts there, we can convert binary DWARF to
the YAML layer's nice Info data, then convert that to binary. This
works, however, this is not the path LLVM uses normally, and it
supports only some basic DWARF sections - I had to add ranges
support, in fact. So if we need more complex things, we may end
up needing to use the MC layer approach, or consider some other
DWARF library. However, hopefully that should not affect the core
binaryen code which just calls a library for DWARF stuff.
Helps #2400
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/SmallVector.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/ADT/SmallVector.h | 930 |
1 files changed, 930 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallVector.h b/third_party/llvm-project/include/llvm/ADT/SmallVector.h new file mode 100644 index 000000000..17586904d --- /dev/null +++ b/third_party/llvm-project/include/llvm/ADT/SmallVector.h @@ -0,0 +1,930 @@ +//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the SmallVector class. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_SMALLVECTOR_H +#define LLVM_ADT_SMALLVECTOR_H + +#include "llvm/ADT/iterator_range.h" +#include "llvm/Support/AlignOf.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/MemAlloc.h" +#include "llvm/Support/type_traits.h" +#include "llvm/Support/ErrorHandling.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdlib> +#include <cstring> +#include <initializer_list> +#include <iterator> +#include <memory> +#include <new> +#include <type_traits> +#include <utility> + +namespace llvm { + +/// This is all the non-templated stuff common to all SmallVectors. +class SmallVectorBase { +protected: + void *BeginX; + unsigned Size = 0, Capacity; + + SmallVectorBase() = delete; + SmallVectorBase(void *FirstEl, size_t TotalCapacity) + : BeginX(FirstEl), Capacity(TotalCapacity) {} + + /// This is an implementation of the grow() method which only works + /// on POD-like data types and is out of line to reduce code duplication. + void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize); + +public: + size_t size() const { return Size; } + size_t capacity() const { return Capacity; } + + LLVM_NODISCARD bool empty() const { return !Size; } + + /// Set the array size to \p N, which the current array must have enough + /// capacity for. + /// + /// This does not construct or destroy any elements in the vector. + /// + /// Clients can use this in conjunction with capacity() to write past the end + /// of the buffer when they know that more elements are available, and only + /// update the size later. This avoids the cost of value initializing elements + /// which will only be overwritten. + void set_size(size_t N) { + assert(N <= capacity()); + Size = N; + } +}; + +/// Figure out the offset of the first element. +template <class T, typename = void> struct SmallVectorAlignmentAndSize { + AlignedCharArrayUnion<SmallVectorBase> Base; + AlignedCharArrayUnion<T> FirstEl; +}; + +/// This is the part of SmallVectorTemplateBase which does not depend on whether +/// the type T is a POD. The extra dummy template argument is used by ArrayRef +/// to avoid unnecessarily requiring T to be complete. +template <typename T, typename = void> +class SmallVectorTemplateCommon : public SmallVectorBase { + /// Find the address of the first element. For this pointer math to be valid + /// with small-size of 0 for T with lots of alignment, it's important that + /// SmallVectorStorage is properly-aligned even for small-size of 0. + void *getFirstEl() const { + return const_cast<void *>(reinterpret_cast<const void *>( + reinterpret_cast<const char *>(this) + + offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); + } + // Space after 'FirstEl' is clobbered, do not add any instance vars after it. + +protected: + SmallVectorTemplateCommon(size_t Size) + : SmallVectorBase(getFirstEl(), Size) {} + + void grow_pod(size_t MinCapacity, size_t TSize) { + SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize); + } + + /// Return true if this is a smallvector which has not had dynamic + /// memory allocated for it. + bool isSmall() const { return BeginX == getFirstEl(); } + + /// Put this vector in a state of being small. + void resetToSmall() { + BeginX = getFirstEl(); + Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. + } + +public: + using size_type = size_t; + using difference_type = ptrdiff_t; + using value_type = T; + using iterator = T *; + using const_iterator = const T *; + + using const_reverse_iterator = std::reverse_iterator<const_iterator>; + using reverse_iterator = std::reverse_iterator<iterator>; + + using reference = T &; + using const_reference = const T &; + using pointer = T *; + using const_pointer = const T *; + + // forward iterator creation methods. + iterator begin() { return (iterator)this->BeginX; } + const_iterator begin() const { return (const_iterator)this->BeginX; } + iterator end() { return begin() + size(); } + const_iterator end() const { return begin() + size(); } + + // reverse iterator creation methods. + reverse_iterator rbegin() { return reverse_iterator(end()); } + const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } + reverse_iterator rend() { return reverse_iterator(begin()); } + const_reverse_iterator rend() const { return const_reverse_iterator(begin());} + + size_type size_in_bytes() const { return size() * sizeof(T); } + size_type max_size() const { return size_type(-1) / sizeof(T); } + + size_t capacity_in_bytes() const { return capacity() * sizeof(T); } + + /// Return a pointer to the vector's buffer, even if empty(). + pointer data() { return pointer(begin()); } + /// Return a pointer to the vector's buffer, even if empty(). + const_pointer data() const { return const_pointer(begin()); } + + reference operator[](size_type idx) { + assert(idx < size()); + return begin()[idx]; + } + const_reference operator[](size_type idx) const { + assert(idx < size()); + return begin()[idx]; + } + + reference front() { + assert(!empty()); + return begin()[0]; + } + const_reference front() const { + assert(!empty()); + return begin()[0]; + } + + reference back() { + assert(!empty()); + return end()[-1]; + } + const_reference back() const { + assert(!empty()); + return end()[-1]; + } +}; + +/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method +/// implementations that are designed to work with non-POD-like T's. +template <typename T, bool = is_trivially_copyable<T>::value> +class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { +protected: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} + + static void destroy_range(T *S, T *E) { + while (S != E) { + --E; + E->~T(); + } + } + + /// Move the range [I, E) into the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template<typename It1, typename It2> + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(std::make_move_iterator(I), + std::make_move_iterator(E), Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", + /// constructing elements as needed. + template<typename It1, typename It2> + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + std::uninitialized_copy(I, E, Dest); + } + + /// Grow the allocated memory (without initializing new elements), doubling + /// the size of the allocated memory. Guarantees space for at least one more + /// element, or MinSize more elements if specified. + void grow(size_t MinSize = 0); + +public: + void push_back(const T &Elt) { + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + ::new ((void*) this->end()) T(Elt); + this->set_size(this->size() + 1); + } + + void push_back(T &&Elt) { + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + ::new ((void*) this->end()) T(::std::move(Elt)); + this->set_size(this->size() + 1); + } + + void pop_back() { + this->set_size(this->size() - 1); + this->end()->~T(); + } +}; + +// Define this out-of-line to dissuade the C++ compiler from inlining it. +template <typename T, bool TriviallyCopyable> +void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { + if (MinSize > UINT32_MAX) + report_bad_alloc_error("SmallVector capacity overflow during allocation"); + + // Always grow, even from zero. + size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2)); + NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX)); + T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T))); + + // Move the elements over. + this->uninitialized_move(this->begin(), this->end(), NewElts); + + // Destroy the original elements. + destroy_range(this->begin(), this->end()); + + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + + this->BeginX = NewElts; + this->Capacity = NewCapacity; +} + +/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put +/// method implementations that are designed to work with POD-like T's. +template <typename T> +class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { +protected: + SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} + + // No need to do a destroy loop for POD's. + static void destroy_range(T *, T *) {} + + /// Move the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template<typename It1, typename It2> + static void uninitialized_move(It1 I, It1 E, It2 Dest) { + // Just do a copy. + uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template<typename It1, typename It2> + static void uninitialized_copy(It1 I, It1 E, It2 Dest) { + // Arbitrary iterator types; just use the basic implementation. + std::uninitialized_copy(I, E, Dest); + } + + /// Copy the range [I, E) onto the uninitialized memory + /// starting with "Dest", constructing elements into it as needed. + template <typename T1, typename T2> + static void uninitialized_copy( + T1 *I, T1 *E, T2 *Dest, + typename std::enable_if<std::is_same<typename std::remove_const<T1>::type, + T2>::value>::type * = nullptr) { + // Use memcpy for PODs iterated by pointers (which includes SmallVector + // iterators): std::uninitialized_copy optimizes to memmove, but we can + // use memcpy here. Note that I and E are iterators and thus might be + // invalid for memcpy if they are equal. + if (I != E) + memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); + } + + /// Double the size of the allocated memory, guaranteeing space for at + /// least one more element or MinSize if specified. + void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } + +public: + void push_back(const T &Elt) { + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T)); + this->set_size(this->size() + 1); + } + + void pop_back() { this->set_size(this->size() - 1); } +}; + +/// This class consists of common code factored out of the SmallVector class to +/// reduce code duplication based on the SmallVector 'N' template parameter. +template <typename T> +class SmallVectorImpl : public SmallVectorTemplateBase<T> { + using SuperClass = SmallVectorTemplateBase<T>; + +public: + using iterator = typename SuperClass::iterator; + using const_iterator = typename SuperClass::const_iterator; + using reference = typename SuperClass::reference; + using size_type = typename SuperClass::size_type; + +protected: + // Default ctor - Initialize to empty. + explicit SmallVectorImpl(unsigned N) + : SmallVectorTemplateBase<T>(N) {} + +public: + SmallVectorImpl(const SmallVectorImpl &) = delete; + + ~SmallVectorImpl() { + // Subclass has already destructed this vector's elements. + // If this wasn't grown from the inline copy, deallocate the old space. + if (!this->isSmall()) + free(this->begin()); + } + + void clear() { + this->destroy_range(this->begin(), this->end()); + this->Size = 0; + } + + void resize(size_type N) { + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->set_size(N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + for (auto I = this->end(), E = this->begin() + N; I != E; ++I) + new (&*I) T(); + this->set_size(N); + } + } + + void resize(size_type N, const T &NV) { + if (N < this->size()) { + this->destroy_range(this->begin()+N, this->end()); + this->set_size(N); + } else if (N > this->size()) { + if (this->capacity() < N) + this->grow(N); + std::uninitialized_fill(this->end(), this->begin()+N, NV); + this->set_size(N); + } + } + + void reserve(size_type N) { + if (this->capacity() < N) + this->grow(N); + } + + LLVM_NODISCARD T pop_back_val() { + T Result = ::std::move(this->back()); + this->pop_back(); + return Result; + } + + void swap(SmallVectorImpl &RHS); + + /// Add the specified range to the end of the SmallVector. + template <typename in_iter, + typename = typename std::enable_if<std::is_convertible< + typename std::iterator_traits<in_iter>::iterator_category, + std::input_iterator_tag>::value>::type> + void append(in_iter in_start, in_iter in_end) { + size_type NumInputs = std::distance(in_start, in_end); + if (NumInputs > this->capacity() - this->size()) + this->grow(this->size()+NumInputs); + + this->uninitialized_copy(in_start, in_end, this->end()); + this->set_size(this->size() + NumInputs); + } + + /// Append \p NumInputs copies of \p Elt to the end. + void append(size_type NumInputs, const T &Elt) { + if (NumInputs > this->capacity() - this->size()) + this->grow(this->size()+NumInputs); + + std::uninitialized_fill_n(this->end(), NumInputs, Elt); + this->set_size(this->size() + NumInputs); + } + + void append(std::initializer_list<T> IL) { + append(IL.begin(), IL.end()); + } + + // FIXME: Consider assigning over existing elements, rather than clearing & + // re-initializing them - for all assign(...) variants. + + void assign(size_type NumElts, const T &Elt) { + clear(); + if (this->capacity() < NumElts) + this->grow(NumElts); + this->set_size(NumElts); + std::uninitialized_fill(this->begin(), this->end(), Elt); + } + + template <typename in_iter, + typename = typename std::enable_if<std::is_convertible< + typename std::iterator_traits<in_iter>::iterator_category, + std::input_iterator_tag>::value>::type> + void assign(in_iter in_start, in_iter in_end) { + clear(); + append(in_start, in_end); + } + + void assign(std::initializer_list<T> IL) { + clear(); + append(IL); + } + + iterator erase(const_iterator CI) { + // Just cast away constness because this is a non-const member function. + iterator I = const_cast<iterator>(CI); + + assert(I >= this->begin() && "Iterator to erase is out of bounds."); + assert(I < this->end() && "Erasing at past-the-end iterator."); + + iterator N = I; + // Shift all elts down one. + std::move(I+1, this->end(), I); + // Drop the last elt. + this->pop_back(); + return(N); + } + + iterator erase(const_iterator CS, const_iterator CE) { + // Just cast away constness because this is a non-const member function. + iterator S = const_cast<iterator>(CS); + iterator E = const_cast<iterator>(CE); + + assert(S >= this->begin() && "Range to erase is out of bounds."); + assert(S <= E && "Trying to erase invalid range."); + assert(E <= this->end() && "Trying to erase past the end."); + + iterator N = S; + // Shift all elts down. + iterator I = std::move(E, this->end(), S); + // Drop the last elts. + this->destroy_range(I, this->end()); + this->set_size(I - this->begin()); + return(N); + } + + iterator insert(iterator I, T &&Elt) { + if (I == this->end()) { // Important special case for empty vector. + this->push_back(::std::move(Elt)); + return this->end()-1; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->size() >= this->capacity()) { + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + } + + ::new ((void*) this->end()) T(::std::move(this->back())); + // Push everything else over. + std::move_backward(I, this->end()-1, this->end()); + this->set_size(this->size() + 1); + + // If we just moved the element we're inserting, be sure to update + // the reference. + T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->end()) + ++EltPtr; + + *I = ::std::move(*EltPtr); + return I; + } + + iterator insert(iterator I, const T &Elt) { + if (I == this->end()) { // Important special case for empty vector. + this->push_back(Elt); + return this->end()-1; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + if (this->size() >= this->capacity()) { + size_t EltNo = I-this->begin(); + this->grow(); + I = this->begin()+EltNo; + } + ::new ((void*) this->end()) T(std::move(this->back())); + // Push everything else over. + std::move_backward(I, this->end()-1, this->end()); + this->set_size(this->size() + 1); + + // If we just moved the element we're inserting, be sure to update + // the reference. + const T *EltPtr = &Elt; + if (I <= EltPtr && EltPtr < this->end()) + ++EltPtr; + + *I = *EltPtr; + return I; + } + + iterator insert(iterator I, size_type NumToInsert, const T &Elt) { + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. + append(NumToInsert, Elt); + return this->begin()+InsertElt; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + // Ensure there is enough space. + reserve(this->size() + NumToInsert); + + // Uninvalidate the iterator. + I = this->begin()+InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(std::move_iterator<iterator>(this->end() - NumToInsert), + std::move_iterator<iterator>(this->end())); + + // Copy the existing elements that get replaced. + std::move_backward(I, OldEnd-NumToInsert, OldEnd); + + std::fill_n(I, NumToInsert, Elt); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->set_size(this->size() + NumToInsert); + size_t NumOverwritten = OldEnd-I; + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); + + // Replace the overwritten part. + std::fill_n(I, NumOverwritten, Elt); + + // Insert the non-overwritten middle part. + std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt); + return I; + } + + template <typename ItTy, + typename = typename std::enable_if<std::is_convertible< + typename std::iterator_traits<ItTy>::iterator_category, + std::input_iterator_tag>::value>::type> + iterator insert(iterator I, ItTy From, ItTy To) { + // Convert iterator to elt# to avoid invalidating iterator when we reserve() + size_t InsertElt = I - this->begin(); + + if (I == this->end()) { // Important special case for empty vector. + append(From, To); + return this->begin()+InsertElt; + } + + assert(I >= this->begin() && "Insertion iterator is out of bounds."); + assert(I <= this->end() && "Inserting past the end of the vector."); + + size_t NumToInsert = std::distance(From, To); + + // Ensure there is enough space. + reserve(this->size() + NumToInsert); + + // Uninvalidate the iterator. + I = this->begin()+InsertElt; + + // If there are more elements between the insertion point and the end of the + // range than there are being inserted, we can use a simple approach to + // insertion. Since we already reserved space, we know that this won't + // reallocate the vector. + if (size_t(this->end()-I) >= NumToInsert) { + T *OldEnd = this->end(); + append(std::move_iterator<iterator>(this->end() - NumToInsert), + std::move_iterator<iterator>(this->end())); + + // Copy the existing elements that get replaced. + std::move_backward(I, OldEnd-NumToInsert, OldEnd); + + std::copy(From, To, I); + return I; + } + + // Otherwise, we're inserting more elements than exist already, and we're + // not inserting at the end. + + // Move over the elements that we're about to overwrite. + T *OldEnd = this->end(); + this->set_size(this->size() + NumToInsert); + size_t NumOverwritten = OldEnd-I; + this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); + + // Replace the overwritten part. + for (T *J = I; NumOverwritten > 0; --NumOverwritten) { + *J = *From; + ++J; ++From; + } + + // Insert the non-overwritten middle part. + this->uninitialized_copy(From, To, OldEnd); + return I; + } + + void insert(iterator I, std::initializer_list<T> IL) { + insert(I, IL.begin(), IL.end()); + } + + template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { + if (LLVM_UNLIKELY(this->size() >= this->capacity())) + this->grow(); + ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); + this->set_size(this->size() + 1); + return this->back(); + } + + SmallVectorImpl &operator=(const SmallVectorImpl &RHS); + + SmallVectorImpl &operator=(SmallVectorImpl &&RHS); + + bool operator==(const SmallVectorImpl &RHS) const { + if (this->size() != RHS.size()) return false; + return std::equal(this->begin(), this->end(), RHS.begin()); + } + bool operator!=(const SmallVectorImpl &RHS) const { + return !(*this == RHS); + } + + bool operator<(const SmallVectorImpl &RHS) const { + return std::lexicographical_compare(this->begin(), this->end(), + RHS.begin(), RHS.end()); + } +}; + +template <typename T> +void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { + if (this == &RHS) return; + + // We can only avoid copying elements if neither vector is small. + if (!this->isSmall() && !RHS.isSmall()) { + std::swap(this->BeginX, RHS.BeginX); + std::swap(this->Size, RHS.Size); + std::swap(this->Capacity, RHS.Capacity); + return; + } + if (RHS.size() > this->capacity()) + this->grow(RHS.size()); + if (this->size() > RHS.capacity()) + RHS.grow(this->size()); + + // Swap the shared elements. + size_t NumShared = this->size(); + if (NumShared > RHS.size()) NumShared = RHS.size(); + for (size_type i = 0; i != NumShared; ++i) + std::swap((*this)[i], RHS[i]); + + // Copy over the extra elts. + if (this->size() > RHS.size()) { + size_t EltDiff = this->size() - RHS.size(); + this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); + RHS.set_size(RHS.size() + EltDiff); + this->destroy_range(this->begin()+NumShared, this->end()); + this->set_size(NumShared); + } else if (RHS.size() > this->size()) { + size_t EltDiff = RHS.size() - this->size(); + this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); + this->set_size(this->size() + EltDiff); + this->destroy_range(RHS.begin()+NumShared, RHS.end()); + RHS.set_size(NumShared); + } +} + +template <typename T> +SmallVectorImpl<T> &SmallVectorImpl<T>:: + operator=(const SmallVectorImpl<T> &RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd; + if (RHSSize) + NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); + else + NewEnd = this->begin(); + + // Destroy excess elements. + this->destroy_range(NewEnd, this->end()); + + // Trim. + this->set_size(RHSSize); + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: don't do this if they're efficiently moveable. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->destroy_range(this->begin(), this->end()); + this->set_size(0); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); + } + + // Copy construct the new elements in place. + this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); + + // Set end. + this->set_size(RHSSize); + return *this; +} + +template <typename T> +SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { + // Avoid self-assignment. + if (this == &RHS) return *this; + + // If the RHS isn't small, clear this vector and then steal its buffer. + if (!RHS.isSmall()) { + this->destroy_range(this->begin(), this->end()); + if (!this->isSmall()) free(this->begin()); + this->BeginX = RHS.BeginX; + this->Size = RHS.Size; + this->Capacity = RHS.Capacity; + RHS.resetToSmall(); + return *this; + } + + // If we already have sufficient space, assign the common elements, then + // destroy any excess. + size_t RHSSize = RHS.size(); + size_t CurSize = this->size(); + if (CurSize >= RHSSize) { + // Assign common elements. + iterator NewEnd = this->begin(); + if (RHSSize) + NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); + + // Destroy excess elements and trim the bounds. + this->destroy_range(NewEnd, this->end()); + this->set_size(RHSSize); + + // Clear the RHS. + RHS.clear(); + + return *this; + } + + // If we have to grow to have enough elements, destroy the current elements. + // This allows us to avoid copying them during the grow. + // FIXME: this may not actually make any sense if we can efficiently move + // elements. + if (this->capacity() < RHSSize) { + // Destroy current elements. + this->destroy_range(this->begin(), this->end()); + this->set_size(0); + CurSize = 0; + this->grow(RHSSize); + } else if (CurSize) { + // Otherwise, use assignment for the already-constructed elements. + std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); + } + + // Move-construct the new elements in place. + this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), + this->begin()+CurSize); + + // Set end. + this->set_size(RHSSize); + + RHS.clear(); + return *this; +} + +/// Storage for the SmallVector elements. This is specialized for the N=0 case +/// to avoid allocating unnecessary storage. +template <typename T, unsigned N> +struct SmallVectorStorage { + AlignedCharArrayUnion<T> InlineElts[N]; +}; + +/// We need the storage to be properly aligned even for small-size of 0 so that +/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is +/// well-defined. +template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {}; + +/// This is a 'vector' (really, a variable-sized array), optimized +/// for the case when the array is small. It contains some number of elements +/// in-place, which allows it to avoid heap allocation when the actual number of +/// elements is below that threshold. This allows normal "small" cases to be +/// fast without losing generality for large inputs. +/// +/// Note that this does not attempt to be exception safe. +/// +template <typename T, unsigned N> +class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> { +public: + SmallVector() : SmallVectorImpl<T>(N) {} + + ~SmallVector() { + // Destroy the constructed elements in the vector. + this->destroy_range(this->begin(), this->end()); + } + + explicit SmallVector(size_t Size, const T &Value = T()) + : SmallVectorImpl<T>(N) { + this->assign(Size, Value); + } + + template <typename ItTy, + typename = typename std::enable_if<std::is_convertible< + typename std::iterator_traits<ItTy>::iterator_category, + std::input_iterator_tag>::value>::type> + SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { + this->append(S, E); + } + + template <typename RangeTy> + explicit SmallVector(const iterator_range<RangeTy> &R) + : SmallVectorImpl<T>(N) { + this->append(R.begin(), R.end()); + } + + SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { + this->assign(IL); + } + + SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { + if (!RHS.empty()) + SmallVectorImpl<T>::operator=(RHS); + } + + const SmallVector &operator=(const SmallVector &RHS) { + SmallVectorImpl<T>::operator=(RHS); + return *this; + } + + SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { + if (!RHS.empty()) + SmallVectorImpl<T>::operator=(::std::move(RHS)); + } + + SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { + if (!RHS.empty()) + SmallVectorImpl<T>::operator=(::std::move(RHS)); + } + + const SmallVector &operator=(SmallVector &&RHS) { + SmallVectorImpl<T>::operator=(::std::move(RHS)); + return *this; + } + + const SmallVector &operator=(SmallVectorImpl<T> &&RHS) { + SmallVectorImpl<T>::operator=(::std::move(RHS)); + return *this; + } + + const SmallVector &operator=(std::initializer_list<T> IL) { + this->assign(IL); + return *this; + } +}; + +template <typename T, unsigned N> +inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { + return X.capacity_in_bytes(); +} + +} // end namespace llvm + +namespace std { + + /// Implement std::swap in terms of SmallVector swap. + template<typename T> + inline void + swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { + LHS.swap(RHS); + } + + /// Implement std::swap in terms of SmallVector swap. + template<typename T, unsigned N> + inline void + swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { + LHS.swap(RHS); + } + +} // end namespace std + +#endif // LLVM_ADT_SMALLVECTOR_H |