summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/include/llvm/ADT/SmallVector.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/SmallVector.h')
-rw-r--r--third_party/llvm-project/include/llvm/ADT/SmallVector.h930
1 files changed, 930 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallVector.h b/third_party/llvm-project/include/llvm/ADT/SmallVector.h
new file mode 100644
index 000000000..17586904d
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/SmallVector.h
@@ -0,0 +1,930 @@
+//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SmallVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SMALLVECTOR_H
+#define LLVM_ADT_SMALLVECTOR_H
+
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/AlignOf.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemAlloc.h"
+#include "llvm/Support/type_traits.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdlib>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <memory>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+/// This is all the non-templated stuff common to all SmallVectors.
+class SmallVectorBase {
+protected:
+ void *BeginX;
+ unsigned Size = 0, Capacity;
+
+ SmallVectorBase() = delete;
+ SmallVectorBase(void *FirstEl, size_t TotalCapacity)
+ : BeginX(FirstEl), Capacity(TotalCapacity) {}
+
+ /// This is an implementation of the grow() method which only works
+ /// on POD-like data types and is out of line to reduce code duplication.
+ void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
+
+public:
+ size_t size() const { return Size; }
+ size_t capacity() const { return Capacity; }
+
+ LLVM_NODISCARD bool empty() const { return !Size; }
+
+ /// Set the array size to \p N, which the current array must have enough
+ /// capacity for.
+ ///
+ /// This does not construct or destroy any elements in the vector.
+ ///
+ /// Clients can use this in conjunction with capacity() to write past the end
+ /// of the buffer when they know that more elements are available, and only
+ /// update the size later. This avoids the cost of value initializing elements
+ /// which will only be overwritten.
+ void set_size(size_t N) {
+ assert(N <= capacity());
+ Size = N;
+ }
+};
+
+/// Figure out the offset of the first element.
+template <class T, typename = void> struct SmallVectorAlignmentAndSize {
+ AlignedCharArrayUnion<SmallVectorBase> Base;
+ AlignedCharArrayUnion<T> FirstEl;
+};
+
+/// This is the part of SmallVectorTemplateBase which does not depend on whether
+/// the type T is a POD. The extra dummy template argument is used by ArrayRef
+/// to avoid unnecessarily requiring T to be complete.
+template <typename T, typename = void>
+class SmallVectorTemplateCommon : public SmallVectorBase {
+ /// Find the address of the first element. For this pointer math to be valid
+ /// with small-size of 0 for T with lots of alignment, it's important that
+ /// SmallVectorStorage is properly-aligned even for small-size of 0.
+ void *getFirstEl() const {
+ return const_cast<void *>(reinterpret_cast<const void *>(
+ reinterpret_cast<const char *>(this) +
+ offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
+ }
+ // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
+
+protected:
+ SmallVectorTemplateCommon(size_t Size)
+ : SmallVectorBase(getFirstEl(), Size) {}
+
+ void grow_pod(size_t MinCapacity, size_t TSize) {
+ SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
+ }
+
+ /// Return true if this is a smallvector which has not had dynamic
+ /// memory allocated for it.
+ bool isSmall() const { return BeginX == getFirstEl(); }
+
+ /// Put this vector in a state of being small.
+ void resetToSmall() {
+ BeginX = getFirstEl();
+ Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
+ }
+
+public:
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+ using value_type = T;
+ using iterator = T *;
+ using const_iterator = const T *;
+
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+
+ using reference = T &;
+ using const_reference = const T &;
+ using pointer = T *;
+ using const_pointer = const T *;
+
+ // forward iterator creation methods.
+ iterator begin() { return (iterator)this->BeginX; }
+ const_iterator begin() const { return (const_iterator)this->BeginX; }
+ iterator end() { return begin() + size(); }
+ const_iterator end() const { return begin() + size(); }
+
+ // reverse iterator creation methods.
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+ const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+ const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
+
+ size_type size_in_bytes() const { return size() * sizeof(T); }
+ size_type max_size() const { return size_type(-1) / sizeof(T); }
+
+ size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
+
+ /// Return a pointer to the vector's buffer, even if empty().
+ pointer data() { return pointer(begin()); }
+ /// Return a pointer to the vector's buffer, even if empty().
+ const_pointer data() const { return const_pointer(begin()); }
+
+ reference operator[](size_type idx) {
+ assert(idx < size());
+ return begin()[idx];
+ }
+ const_reference operator[](size_type idx) const {
+ assert(idx < size());
+ return begin()[idx];
+ }
+
+ reference front() {
+ assert(!empty());
+ return begin()[0];
+ }
+ const_reference front() const {
+ assert(!empty());
+ return begin()[0];
+ }
+
+ reference back() {
+ assert(!empty());
+ return end()[-1];
+ }
+ const_reference back() const {
+ assert(!empty());
+ return end()[-1];
+ }
+};
+
+/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
+/// implementations that are designed to work with non-POD-like T's.
+template <typename T, bool = is_trivially_copyable<T>::value>
+class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
+protected:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
+
+ static void destroy_range(T *S, T *E) {
+ while (S != E) {
+ --E;
+ E->~T();
+ }
+ }
+
+ /// Move the range [I, E) into the uninitialized memory starting with "Dest",
+ /// constructing elements as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_move(It1 I, It1 E, It2 Dest) {
+ std::uninitialized_copy(std::make_move_iterator(I),
+ std::make_move_iterator(E), Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
+ /// constructing elements as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ std::uninitialized_copy(I, E, Dest);
+ }
+
+ /// Grow the allocated memory (without initializing new elements), doubling
+ /// the size of the allocated memory. Guarantees space for at least one more
+ /// element, or MinSize more elements if specified.
+ void grow(size_t MinSize = 0);
+
+public:
+ void push_back(const T &Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void*) this->end()) T(Elt);
+ this->set_size(this->size() + 1);
+ }
+
+ void push_back(T &&Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void*) this->end()) T(::std::move(Elt));
+ this->set_size(this->size() + 1);
+ }
+
+ void pop_back() {
+ this->set_size(this->size() - 1);
+ this->end()->~T();
+ }
+};
+
+// Define this out-of-line to dissuade the C++ compiler from inlining it.
+template <typename T, bool TriviallyCopyable>
+void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
+ if (MinSize > UINT32_MAX)
+ report_bad_alloc_error("SmallVector capacity overflow during allocation");
+
+ // Always grow, even from zero.
+ size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
+ NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
+ T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
+
+ // Move the elements over.
+ this->uninitialized_move(this->begin(), this->end(), NewElts);
+
+ // Destroy the original elements.
+ destroy_range(this->begin(), this->end());
+
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ free(this->begin());
+
+ this->BeginX = NewElts;
+ this->Capacity = NewCapacity;
+}
+
+/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
+/// method implementations that are designed to work with POD-like T's.
+template <typename T>
+class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
+protected:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
+
+ // No need to do a destroy loop for POD's.
+ static void destroy_range(T *, T *) {}
+
+ /// Move the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_move(It1 I, It1 E, It2 Dest) {
+ // Just do a copy.
+ uninitialized_copy(I, E, Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ // Arbitrary iterator types; just use the basic implementation.
+ std::uninitialized_copy(I, E, Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template <typename T1, typename T2>
+ static void uninitialized_copy(
+ T1 *I, T1 *E, T2 *Dest,
+ typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
+ T2>::value>::type * = nullptr) {
+ // Use memcpy for PODs iterated by pointers (which includes SmallVector
+ // iterators): std::uninitialized_copy optimizes to memmove, but we can
+ // use memcpy here. Note that I and E are iterators and thus might be
+ // invalid for memcpy if they are equal.
+ if (I != E)
+ memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
+ }
+
+ /// Double the size of the allocated memory, guaranteeing space for at
+ /// least one more element or MinSize if specified.
+ void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
+
+public:
+ void push_back(const T &Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
+ this->set_size(this->size() + 1);
+ }
+
+ void pop_back() { this->set_size(this->size() - 1); }
+};
+
+/// This class consists of common code factored out of the SmallVector class to
+/// reduce code duplication based on the SmallVector 'N' template parameter.
+template <typename T>
+class SmallVectorImpl : public SmallVectorTemplateBase<T> {
+ using SuperClass = SmallVectorTemplateBase<T>;
+
+public:
+ using iterator = typename SuperClass::iterator;
+ using const_iterator = typename SuperClass::const_iterator;
+ using reference = typename SuperClass::reference;
+ using size_type = typename SuperClass::size_type;
+
+protected:
+ // Default ctor - Initialize to empty.
+ explicit SmallVectorImpl(unsigned N)
+ : SmallVectorTemplateBase<T>(N) {}
+
+public:
+ SmallVectorImpl(const SmallVectorImpl &) = delete;
+
+ ~SmallVectorImpl() {
+ // Subclass has already destructed this vector's elements.
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ free(this->begin());
+ }
+
+ void clear() {
+ this->destroy_range(this->begin(), this->end());
+ this->Size = 0;
+ }
+
+ void resize(size_type N) {
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->set_size(N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
+ new (&*I) T();
+ this->set_size(N);
+ }
+ }
+
+ void resize(size_type N, const T &NV) {
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->set_size(N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ std::uninitialized_fill(this->end(), this->begin()+N, NV);
+ this->set_size(N);
+ }
+ }
+
+ void reserve(size_type N) {
+ if (this->capacity() < N)
+ this->grow(N);
+ }
+
+ LLVM_NODISCARD T pop_back_val() {
+ T Result = ::std::move(this->back());
+ this->pop_back();
+ return Result;
+ }
+
+ void swap(SmallVectorImpl &RHS);
+
+ /// Add the specified range to the end of the SmallVector.
+ template <typename in_iter,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<in_iter>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ void append(in_iter in_start, in_iter in_end) {
+ size_type NumInputs = std::distance(in_start, in_end);
+ if (NumInputs > this->capacity() - this->size())
+ this->grow(this->size()+NumInputs);
+
+ this->uninitialized_copy(in_start, in_end, this->end());
+ this->set_size(this->size() + NumInputs);
+ }
+
+ /// Append \p NumInputs copies of \p Elt to the end.
+ void append(size_type NumInputs, const T &Elt) {
+ if (NumInputs > this->capacity() - this->size())
+ this->grow(this->size()+NumInputs);
+
+ std::uninitialized_fill_n(this->end(), NumInputs, Elt);
+ this->set_size(this->size() + NumInputs);
+ }
+
+ void append(std::initializer_list<T> IL) {
+ append(IL.begin(), IL.end());
+ }
+
+ // FIXME: Consider assigning over existing elements, rather than clearing &
+ // re-initializing them - for all assign(...) variants.
+
+ void assign(size_type NumElts, const T &Elt) {
+ clear();
+ if (this->capacity() < NumElts)
+ this->grow(NumElts);
+ this->set_size(NumElts);
+ std::uninitialized_fill(this->begin(), this->end(), Elt);
+ }
+
+ template <typename in_iter,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<in_iter>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ void assign(in_iter in_start, in_iter in_end) {
+ clear();
+ append(in_start, in_end);
+ }
+
+ void assign(std::initializer_list<T> IL) {
+ clear();
+ append(IL);
+ }
+
+ iterator erase(const_iterator CI) {
+ // Just cast away constness because this is a non-const member function.
+ iterator I = const_cast<iterator>(CI);
+
+ assert(I >= this->begin() && "Iterator to erase is out of bounds.");
+ assert(I < this->end() && "Erasing at past-the-end iterator.");
+
+ iterator N = I;
+ // Shift all elts down one.
+ std::move(I+1, this->end(), I);
+ // Drop the last elt.
+ this->pop_back();
+ return(N);
+ }
+
+ iterator erase(const_iterator CS, const_iterator CE) {
+ // Just cast away constness because this is a non-const member function.
+ iterator S = const_cast<iterator>(CS);
+ iterator E = const_cast<iterator>(CE);
+
+ assert(S >= this->begin() && "Range to erase is out of bounds.");
+ assert(S <= E && "Trying to erase invalid range.");
+ assert(E <= this->end() && "Trying to erase past the end.");
+
+ iterator N = S;
+ // Shift all elts down.
+ iterator I = std::move(E, this->end(), S);
+ // Drop the last elts.
+ this->destroy_range(I, this->end());
+ this->set_size(I - this->begin());
+ return(N);
+ }
+
+ iterator insert(iterator I, T &&Elt) {
+ if (I == this->end()) { // Important special case for empty vector.
+ this->push_back(::std::move(Elt));
+ return this->end()-1;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ if (this->size() >= this->capacity()) {
+ size_t EltNo = I-this->begin();
+ this->grow();
+ I = this->begin()+EltNo;
+ }
+
+ ::new ((void*) this->end()) T(::std::move(this->back()));
+ // Push everything else over.
+ std::move_backward(I, this->end()-1, this->end());
+ this->set_size(this->size() + 1);
+
+ // If we just moved the element we're inserting, be sure to update
+ // the reference.
+ T *EltPtr = &Elt;
+ if (I <= EltPtr && EltPtr < this->end())
+ ++EltPtr;
+
+ *I = ::std::move(*EltPtr);
+ return I;
+ }
+
+ iterator insert(iterator I, const T &Elt) {
+ if (I == this->end()) { // Important special case for empty vector.
+ this->push_back(Elt);
+ return this->end()-1;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ if (this->size() >= this->capacity()) {
+ size_t EltNo = I-this->begin();
+ this->grow();
+ I = this->begin()+EltNo;
+ }
+ ::new ((void*) this->end()) T(std::move(this->back()));
+ // Push everything else over.
+ std::move_backward(I, this->end()-1, this->end());
+ this->set_size(this->size() + 1);
+
+ // If we just moved the element we're inserting, be sure to update
+ // the reference.
+ const T *EltPtr = &Elt;
+ if (I <= EltPtr && EltPtr < this->end())
+ ++EltPtr;
+
+ *I = *EltPtr;
+ return I;
+ }
+
+ iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
+ // Convert iterator to elt# to avoid invalidating iterator when we reserve()
+ size_t InsertElt = I - this->begin();
+
+ if (I == this->end()) { // Important special case for empty vector.
+ append(NumToInsert, Elt);
+ return this->begin()+InsertElt;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ // Ensure there is enough space.
+ reserve(this->size() + NumToInsert);
+
+ // Uninvalidate the iterator.
+ I = this->begin()+InsertElt;
+
+ // If there are more elements between the insertion point and the end of the
+ // range than there are being inserted, we can use a simple approach to
+ // insertion. Since we already reserved space, we know that this won't
+ // reallocate the vector.
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(std::move_iterator<iterator>(this->end() - NumToInsert),
+ std::move_iterator<iterator>(this->end()));
+
+ // Copy the existing elements that get replaced.
+ std::move_backward(I, OldEnd-NumToInsert, OldEnd);
+
+ std::fill_n(I, NumToInsert, Elt);
+ return I;
+ }
+
+ // Otherwise, we're inserting more elements than exist already, and we're
+ // not inserting at the end.
+
+ // Move over the elements that we're about to overwrite.
+ T *OldEnd = this->end();
+ this->set_size(this->size() + NumToInsert);
+ size_t NumOverwritten = OldEnd-I;
+ this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
+
+ // Replace the overwritten part.
+ std::fill_n(I, NumOverwritten, Elt);
+
+ // Insert the non-overwritten middle part.
+ std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
+ return I;
+ }
+
+ template <typename ItTy,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<ItTy>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ iterator insert(iterator I, ItTy From, ItTy To) {
+ // Convert iterator to elt# to avoid invalidating iterator when we reserve()
+ size_t InsertElt = I - this->begin();
+
+ if (I == this->end()) { // Important special case for empty vector.
+ append(From, To);
+ return this->begin()+InsertElt;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ size_t NumToInsert = std::distance(From, To);
+
+ // Ensure there is enough space.
+ reserve(this->size() + NumToInsert);
+
+ // Uninvalidate the iterator.
+ I = this->begin()+InsertElt;
+
+ // If there are more elements between the insertion point and the end of the
+ // range than there are being inserted, we can use a simple approach to
+ // insertion. Since we already reserved space, we know that this won't
+ // reallocate the vector.
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(std::move_iterator<iterator>(this->end() - NumToInsert),
+ std::move_iterator<iterator>(this->end()));
+
+ // Copy the existing elements that get replaced.
+ std::move_backward(I, OldEnd-NumToInsert, OldEnd);
+
+ std::copy(From, To, I);
+ return I;
+ }
+
+ // Otherwise, we're inserting more elements than exist already, and we're
+ // not inserting at the end.
+
+ // Move over the elements that we're about to overwrite.
+ T *OldEnd = this->end();
+ this->set_size(this->size() + NumToInsert);
+ size_t NumOverwritten = OldEnd-I;
+ this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
+
+ // Replace the overwritten part.
+ for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
+ *J = *From;
+ ++J; ++From;
+ }
+
+ // Insert the non-overwritten middle part.
+ this->uninitialized_copy(From, To, OldEnd);
+ return I;
+ }
+
+ void insert(iterator I, std::initializer_list<T> IL) {
+ insert(I, IL.begin(), IL.end());
+ }
+
+ template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
+ this->set_size(this->size() + 1);
+ return this->back();
+ }
+
+ SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
+
+ SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
+
+ bool operator==(const SmallVectorImpl &RHS) const {
+ if (this->size() != RHS.size()) return false;
+ return std::equal(this->begin(), this->end(), RHS.begin());
+ }
+ bool operator!=(const SmallVectorImpl &RHS) const {
+ return !(*this == RHS);
+ }
+
+ bool operator<(const SmallVectorImpl &RHS) const {
+ return std::lexicographical_compare(this->begin(), this->end(),
+ RHS.begin(), RHS.end());
+ }
+};
+
+template <typename T>
+void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
+ if (this == &RHS) return;
+
+ // We can only avoid copying elements if neither vector is small.
+ if (!this->isSmall() && !RHS.isSmall()) {
+ std::swap(this->BeginX, RHS.BeginX);
+ std::swap(this->Size, RHS.Size);
+ std::swap(this->Capacity, RHS.Capacity);
+ return;
+ }
+ if (RHS.size() > this->capacity())
+ this->grow(RHS.size());
+ if (this->size() > RHS.capacity())
+ RHS.grow(this->size());
+
+ // Swap the shared elements.
+ size_t NumShared = this->size();
+ if (NumShared > RHS.size()) NumShared = RHS.size();
+ for (size_type i = 0; i != NumShared; ++i)
+ std::swap((*this)[i], RHS[i]);
+
+ // Copy over the extra elts.
+ if (this->size() > RHS.size()) {
+ size_t EltDiff = this->size() - RHS.size();
+ this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
+ RHS.set_size(RHS.size() + EltDiff);
+ this->destroy_range(this->begin()+NumShared, this->end());
+ this->set_size(NumShared);
+ } else if (RHS.size() > this->size()) {
+ size_t EltDiff = RHS.size() - this->size();
+ this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
+ this->set_size(this->size() + EltDiff);
+ this->destroy_range(RHS.begin()+NumShared, RHS.end());
+ RHS.set_size(NumShared);
+ }
+}
+
+template <typename T>
+SmallVectorImpl<T> &SmallVectorImpl<T>::
+ operator=(const SmallVectorImpl<T> &RHS) {
+ // Avoid self-assignment.
+ if (this == &RHS) return *this;
+
+ // If we already have sufficient space, assign the common elements, then
+ // destroy any excess.
+ size_t RHSSize = RHS.size();
+ size_t CurSize = this->size();
+ if (CurSize >= RHSSize) {
+ // Assign common elements.
+ iterator NewEnd;
+ if (RHSSize)
+ NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
+ else
+ NewEnd = this->begin();
+
+ // Destroy excess elements.
+ this->destroy_range(NewEnd, this->end());
+
+ // Trim.
+ this->set_size(RHSSize);
+ return *this;
+ }
+
+ // If we have to grow to have enough elements, destroy the current elements.
+ // This allows us to avoid copying them during the grow.
+ // FIXME: don't do this if they're efficiently moveable.
+ if (this->capacity() < RHSSize) {
+ // Destroy current elements.
+ this->destroy_range(this->begin(), this->end());
+ this->set_size(0);
+ CurSize = 0;
+ this->grow(RHSSize);
+ } else if (CurSize) {
+ // Otherwise, use assignment for the already-constructed elements.
+ std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
+ }
+
+ // Copy construct the new elements in place.
+ this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
+ this->begin()+CurSize);
+
+ // Set end.
+ this->set_size(RHSSize);
+ return *this;
+}
+
+template <typename T>
+SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
+ // Avoid self-assignment.
+ if (this == &RHS) return *this;
+
+ // If the RHS isn't small, clear this vector and then steal its buffer.
+ if (!RHS.isSmall()) {
+ this->destroy_range(this->begin(), this->end());
+ if (!this->isSmall()) free(this->begin());
+ this->BeginX = RHS.BeginX;
+ this->Size = RHS.Size;
+ this->Capacity = RHS.Capacity;
+ RHS.resetToSmall();
+ return *this;
+ }
+
+ // If we already have sufficient space, assign the common elements, then
+ // destroy any excess.
+ size_t RHSSize = RHS.size();
+ size_t CurSize = this->size();
+ if (CurSize >= RHSSize) {
+ // Assign common elements.
+ iterator NewEnd = this->begin();
+ if (RHSSize)
+ NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
+
+ // Destroy excess elements and trim the bounds.
+ this->destroy_range(NewEnd, this->end());
+ this->set_size(RHSSize);
+
+ // Clear the RHS.
+ RHS.clear();
+
+ return *this;
+ }
+
+ // If we have to grow to have enough elements, destroy the current elements.
+ // This allows us to avoid copying them during the grow.
+ // FIXME: this may not actually make any sense if we can efficiently move
+ // elements.
+ if (this->capacity() < RHSSize) {
+ // Destroy current elements.
+ this->destroy_range(this->begin(), this->end());
+ this->set_size(0);
+ CurSize = 0;
+ this->grow(RHSSize);
+ } else if (CurSize) {
+ // Otherwise, use assignment for the already-constructed elements.
+ std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
+ }
+
+ // Move-construct the new elements in place.
+ this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
+ this->begin()+CurSize);
+
+ // Set end.
+ this->set_size(RHSSize);
+
+ RHS.clear();
+ return *this;
+}
+
+/// Storage for the SmallVector elements. This is specialized for the N=0 case
+/// to avoid allocating unnecessary storage.
+template <typename T, unsigned N>
+struct SmallVectorStorage {
+ AlignedCharArrayUnion<T> InlineElts[N];
+};
+
+/// We need the storage to be properly aligned even for small-size of 0 so that
+/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
+/// well-defined.
+template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
+
+/// This is a 'vector' (really, a variable-sized array), optimized
+/// for the case when the array is small. It contains some number of elements
+/// in-place, which allows it to avoid heap allocation when the actual number of
+/// elements is below that threshold. This allows normal "small" cases to be
+/// fast without losing generality for large inputs.
+///
+/// Note that this does not attempt to be exception safe.
+///
+template <typename T, unsigned N>
+class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
+public:
+ SmallVector() : SmallVectorImpl<T>(N) {}
+
+ ~SmallVector() {
+ // Destroy the constructed elements in the vector.
+ this->destroy_range(this->begin(), this->end());
+ }
+
+ explicit SmallVector(size_t Size, const T &Value = T())
+ : SmallVectorImpl<T>(N) {
+ this->assign(Size, Value);
+ }
+
+ template <typename ItTy,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<ItTy>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
+ this->append(S, E);
+ }
+
+ template <typename RangeTy>
+ explicit SmallVector(const iterator_range<RangeTy> &R)
+ : SmallVectorImpl<T>(N) {
+ this->append(R.begin(), R.end());
+ }
+
+ SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
+ this->assign(IL);
+ }
+
+ SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(RHS);
+ }
+
+ const SmallVector &operator=(const SmallVector &RHS) {
+ SmallVectorImpl<T>::operator=(RHS);
+ return *this;
+ }
+
+ SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ }
+
+ SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ }
+
+ const SmallVector &operator=(SmallVector &&RHS) {
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ return *this;
+ }
+
+ const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ return *this;
+ }
+
+ const SmallVector &operator=(std::initializer_list<T> IL) {
+ this->assign(IL);
+ return *this;
+ }
+};
+
+template <typename T, unsigned N>
+inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
+ return X.capacity_in_bytes();
+}
+
+} // end namespace llvm
+
+namespace std {
+
+ /// Implement std::swap in terms of SmallVector swap.
+ template<typename T>
+ inline void
+ swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
+ LHS.swap(RHS);
+ }
+
+ /// Implement std::swap in terms of SmallVector swap.
+ template<typename T, unsigned N>
+ inline void
+ swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
+ LHS.swap(RHS);
+ }
+
+} // end namespace std
+
+#endif // LLVM_ADT_SMALLVECTOR_H