summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/include/llvm/ADT
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT')
-rw-r--r--third_party/llvm-project/include/llvm/ADT/APFloat.h1290
-rw-r--r--third_party/llvm-project/include/llvm/ADT/APInt.h2258
-rw-r--r--third_party/llvm-project/include/llvm/ADT/APSInt.h353
-rw-r--r--third_party/llvm-project/include/llvm/ADT/AllocatorList.h240
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ArrayRef.h540
-rw-r--r--third_party/llvm-project/include/llvm/ADT/BitmaskEnum.h152
-rw-r--r--third_party/llvm-project/include/llvm/ADT/DenseMap.h1275
-rw-r--r--third_party/llvm-project/include/llvm/ADT/DenseMapInfo.h300
-rw-r--r--third_party/llvm-project/include/llvm/ADT/DenseSet.h283
-rw-r--r--third_party/llvm-project/include/llvm/ADT/EpochTracker.h98
-rw-r--r--third_party/llvm-project/include/llvm/ADT/FoldingSet.h761
-rw-r--r--third_party/llvm-project/include/llvm/ADT/FunctionExtras.h292
-rw-r--r--third_party/llvm-project/include/llvm/ADT/Hashing.h659
-rw-r--r--third_party/llvm-project/include/llvm/ADT/MapVector.h239
-rw-r--r--third_party/llvm-project/include/llvm/ADT/None.h26
-rw-r--r--third_party/llvm-project/include/llvm/ADT/Optional.h429
-rw-r--r--third_party/llvm-project/include/llvm/ADT/PointerIntPair.h243
-rw-r--r--third_party/llvm-project/include/llvm/ADT/PointerUnion.h309
-rw-r--r--third_party/llvm-project/include/llvm/ADT/STLExtras.h1578
-rw-r--r--third_party/llvm-project/include/llvm/ADT/SmallPtrSet.h511
-rw-r--r--third_party/llvm-project/include/llvm/ADT/SmallSet.h278
-rw-r--r--third_party/llvm-project/include/llvm/ADT/SmallString.h296
-rw-r--r--third_party/llvm-project/include/llvm/ADT/SmallVector.h930
-rw-r--r--third_party/llvm-project/include/llvm/ADT/StringExtras.h401
-rw-r--r--third_party/llvm-project/include/llvm/ADT/StringMap.h593
-rw-r--r--third_party/llvm-project/include/llvm/ADT/StringRef.h920
-rw-r--r--third_party/llvm-project/include/llvm/ADT/StringSet.h58
-rw-r--r--third_party/llvm-project/include/llvm/ADT/StringSwitch.h196
-rw-r--r--third_party/llvm-project/include/llvm/ADT/Triple.h881
-rw-r--r--third_party/llvm-project/include/llvm/ADT/Twine.h544
-rw-r--r--third_party/llvm-project/include/llvm/ADT/bit.h58
-rw-r--r--third_party/llvm-project/include/llvm/ADT/edit_distance.h102
-rw-r--r--third_party/llvm-project/include/llvm/ADT/fallible_iterator.h243
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ilist_base.h92
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ilist_iterator.h198
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ilist_node.h305
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ilist_node_base.h52
-rw-r--r--third_party/llvm-project/include/llvm/ADT/ilist_node_options.h131
-rw-r--r--third_party/llvm-project/include/llvm/ADT/iterator.h366
-rw-r--r--third_party/llvm-project/include/llvm/ADT/iterator_range.h69
-rw-r--r--third_party/llvm-project/include/llvm/ADT/simple_ilist.h314
41 files changed, 18863 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/APFloat.h b/third_party/llvm-project/include/llvm/ADT/APFloat.h
new file mode 100644
index 000000000..1c4969733
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/APFloat.h
@@ -0,0 +1,1290 @@
+//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief
+/// This file declares a class to represent arbitrary precision floating point
+/// values and provide a variety of arithmetic operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APFLOAT_H
+#define LLVM_ADT_APFLOAT_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <memory>
+
+#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
+ do { \
+ if (usesLayout<IEEEFloat>(getSemantics())) \
+ return U.IEEE.METHOD_CALL; \
+ if (usesLayout<DoubleAPFloat>(getSemantics())) \
+ return U.Double.METHOD_CALL; \
+ llvm_unreachable("Unexpected semantics"); \
+ } while (false)
+
+namespace llvm {
+
+struct fltSemantics;
+class APSInt;
+class StringRef;
+class APFloat;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+
+/// Enum that represents what fraction of the LSB truncated bits of an fp number
+/// represent.
+///
+/// This essentially combines the roles of guard and sticky bits.
+enum lostFraction { // Example of truncated bits:
+ lfExactlyZero, // 000000
+ lfLessThanHalf, // 0xxxxx x's not all zero
+ lfExactlyHalf, // 100000
+ lfMoreThanHalf // 1xxxxx x's not all zero
+};
+
+/// A self-contained host- and target-independent arbitrary-precision
+/// floating-point software implementation.
+///
+/// APFloat uses bignum integer arithmetic as provided by static functions in
+/// the APInt class. The library will work with bignum integers whose parts are
+/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
+///
+/// Written for clarity rather than speed, in particular with a view to use in
+/// the front-end of a cross compiler so that target arithmetic can be correctly
+/// performed on the host. Performance should nonetheless be reasonable,
+/// particularly for its intended use. It may be useful as a base
+/// implementation for a run-time library during development of a faster
+/// target-specific one.
+///
+/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
+/// implemented operations. Currently implemented operations are add, subtract,
+/// multiply, divide, fused-multiply-add, conversion-to-float,
+/// conversion-to-integer and conversion-from-integer. New rounding modes
+/// (e.g. away from zero) can be added with three or four lines of code.
+///
+/// Four formats are built-in: IEEE single precision, double precision,
+/// quadruple precision, and x87 80-bit extended double (when operating with
+/// full extended precision). Adding a new format that obeys IEEE semantics
+/// only requires adding two lines of code: a declaration and definition of the
+/// format.
+///
+/// All operations return the status of that operation as an exception bit-mask,
+/// so multiple operations can be done consecutively with their results or-ed
+/// together. The returned status can be useful for compiler diagnostics; e.g.,
+/// inexact, underflow and overflow can be easily diagnosed on constant folding,
+/// and compiler optimizers can determine what exceptions would be raised by
+/// folding operations and optimize, or perhaps not optimize, accordingly.
+///
+/// At present, underflow tininess is detected after rounding; it should be
+/// straight forward to add support for the before-rounding case too.
+///
+/// The library reads hexadecimal floating point numbers as per C99, and
+/// correctly rounds if necessary according to the specified rounding mode.
+/// Syntax is required to have been validated by the caller. It also converts
+/// floating point numbers to hexadecimal text as per the C99 %a and %A
+/// conversions. The output precision (or alternatively the natural minimal
+/// precision) can be specified; if the requested precision is less than the
+/// natural precision the output is correctly rounded for the specified rounding
+/// mode.
+///
+/// It also reads decimal floating point numbers and correctly rounds according
+/// to the specified rounding mode.
+///
+/// Conversion to decimal text is not currently implemented.
+///
+/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
+/// signed exponent, and the significand as an array of integer parts. After
+/// normalization of a number of precision P the exponent is within the range of
+/// the format, and if the number is not denormal the P-th bit of the
+/// significand is set as an explicit integer bit. For denormals the most
+/// significant bit is shifted right so that the exponent is maintained at the
+/// format's minimum, so that the smallest denormal has just the least
+/// significant bit of the significand set. The sign of zeroes and infinities
+/// is significant; the exponent and significand of such numbers is not stored,
+/// but has a known implicit (deterministic) value: 0 for the significands, 0
+/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
+/// significand are deterministic, although not really meaningful, and preserved
+/// in non-conversion operations. The exponent is implicitly all 1 bits.
+///
+/// APFloat does not provide any exception handling beyond default exception
+/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
+/// by encoding Signaling NaNs with the first bit of its trailing significand as
+/// 0.
+///
+/// TODO
+/// ====
+///
+/// Some features that may or may not be worth adding:
+///
+/// Binary to decimal conversion (hard).
+///
+/// Optional ability to detect underflow tininess before rounding.
+///
+/// New formats: x87 in single and double precision mode (IEEE apart from
+/// extended exponent range) (hard).
+///
+/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
+///
+
+// This is the common type definitions shared by APFloat and its internal
+// implementation classes. This struct should not define any non-static data
+// members.
+struct APFloatBase {
+ typedef APInt::WordType integerPart;
+ static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
+
+ /// A signed type to represent a floating point numbers unbiased exponent.
+ typedef signed short ExponentType;
+
+ /// \name Floating Point Semantics.
+ /// @{
+ enum Semantics {
+ S_IEEEhalf,
+ S_IEEEsingle,
+ S_IEEEdouble,
+ S_x87DoubleExtended,
+ S_IEEEquad,
+ S_PPCDoubleDouble
+ };
+
+ static const llvm::fltSemantics &EnumToSemantics(Semantics S);
+ static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
+
+ static const fltSemantics &IEEEhalf() LLVM_READNONE;
+ static const fltSemantics &IEEEsingle() LLVM_READNONE;
+ static const fltSemantics &IEEEdouble() LLVM_READNONE;
+ static const fltSemantics &IEEEquad() LLVM_READNONE;
+ static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
+ static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
+
+ /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
+ /// anything real.
+ static const fltSemantics &Bogus() LLVM_READNONE;
+
+ /// @}
+
+ /// IEEE-754R 5.11: Floating Point Comparison Relations.
+ enum cmpResult {
+ cmpLessThan,
+ cmpEqual,
+ cmpGreaterThan,
+ cmpUnordered
+ };
+
+ /// IEEE-754R 4.3: Rounding-direction attributes.
+ enum roundingMode {
+ rmNearestTiesToEven,
+ rmTowardPositive,
+ rmTowardNegative,
+ rmTowardZero,
+ rmNearestTiesToAway
+ };
+
+ /// IEEE-754R 7: Default exception handling.
+ ///
+ /// opUnderflow or opOverflow are always returned or-ed with opInexact.
+ ///
+ /// APFloat models this behavior specified by IEEE-754:
+ /// "For operations producing results in floating-point format, the default
+ /// result of an operation that signals the invalid operation exception
+ /// shall be a quiet NaN."
+ enum opStatus {
+ opOK = 0x00,
+ opInvalidOp = 0x01,
+ opDivByZero = 0x02,
+ opOverflow = 0x04,
+ opUnderflow = 0x08,
+ opInexact = 0x10
+ };
+
+ /// Category of internally-represented number.
+ enum fltCategory {
+ fcInfinity,
+ fcNaN,
+ fcNormal,
+ fcZero
+ };
+
+ /// Convenience enum used to construct an uninitialized APFloat.
+ enum uninitializedTag {
+ uninitialized
+ };
+
+ /// Enumeration of \c ilogb error results.
+ enum IlogbErrorKinds {
+ IEK_Zero = INT_MIN + 1,
+ IEK_NaN = INT_MIN,
+ IEK_Inf = INT_MAX
+ };
+
+ static unsigned int semanticsPrecision(const fltSemantics &);
+ static ExponentType semanticsMinExponent(const fltSemantics &);
+ static ExponentType semanticsMaxExponent(const fltSemantics &);
+ static unsigned int semanticsSizeInBits(const fltSemantics &);
+
+ /// Returns the size of the floating point number (in bits) in the given
+ /// semantics.
+ static unsigned getSizeInBits(const fltSemantics &Sem);
+};
+
+namespace detail {
+
+class IEEEFloat final : public APFloatBase {
+public:
+ /// \name Constructors
+ /// @{
+
+ IEEEFloat(const fltSemantics &); // Default construct to 0.0
+ IEEEFloat(const fltSemantics &, integerPart);
+ IEEEFloat(const fltSemantics &, uninitializedTag);
+ IEEEFloat(const fltSemantics &, const APInt &);
+ explicit IEEEFloat(double d);
+ explicit IEEEFloat(float f);
+ IEEEFloat(const IEEEFloat &);
+ IEEEFloat(IEEEFloat &&);
+ ~IEEEFloat();
+
+ /// @}
+
+ /// Returns whether this instance allocated memory.
+ bool needsCleanup() const { return partCount() > 1; }
+
+ /// \name Convenience "constructors"
+ /// @{
+
+ /// @}
+
+ /// \name Arithmetic
+ /// @{
+
+ opStatus add(const IEEEFloat &, roundingMode);
+ opStatus subtract(const IEEEFloat &, roundingMode);
+ opStatus multiply(const IEEEFloat &, roundingMode);
+ opStatus divide(const IEEEFloat &, roundingMode);
+ /// IEEE remainder.
+ opStatus remainder(const IEEEFloat &);
+ /// C fmod, or llvm frem.
+ opStatus mod(const IEEEFloat &);
+ opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
+ opStatus roundToIntegral(roundingMode);
+ /// IEEE-754R 5.3.1: nextUp/nextDown.
+ opStatus next(bool nextDown);
+
+ /// @}
+
+ /// \name Sign operations.
+ /// @{
+
+ void changeSign();
+
+ /// @}
+
+ /// \name Conversions
+ /// @{
+
+ opStatus convert(const fltSemantics &, roundingMode, bool *);
+ opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
+ roundingMode, bool *) const;
+ opStatus convertFromAPInt(const APInt &, bool, roundingMode);
+ opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
+ bool, roundingMode);
+ opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
+ bool, roundingMode);
+ opStatus convertFromString(StringRef, roundingMode);
+ APInt bitcastToAPInt() const;
+ double convertToDouble() const;
+ float convertToFloat() const;
+
+ /// @}
+
+ /// The definition of equality is not straightforward for floating point, so
+ /// we won't use operator==. Use one of the following, or write whatever it
+ /// is you really mean.
+ bool operator==(const IEEEFloat &) const = delete;
+
+ /// IEEE comparison with another floating point number (NaNs compare
+ /// unordered, 0==-0).
+ cmpResult compare(const IEEEFloat &) const;
+
+ /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
+ bool bitwiseIsEqual(const IEEEFloat &) const;
+
+ /// Write out a hexadecimal representation of the floating point value to DST,
+ /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
+ /// Return the number of characters written, excluding the terminating NUL.
+ unsigned int convertToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase, roundingMode) const;
+
+ /// \name IEEE-754R 5.7.2 General operations.
+ /// @{
+
+ /// IEEE-754R isSignMinus: Returns true if and only if the current value is
+ /// negative.
+ ///
+ /// This applies to zeros and NaNs as well.
+ bool isNegative() const { return sign; }
+
+ /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
+ ///
+ /// This implies that the current value of the float is not zero, subnormal,
+ /// infinite, or NaN following the definition of normality from IEEE-754R.
+ bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+
+ /// Returns true if and only if the current value is zero, subnormal, or
+ /// normal.
+ ///
+ /// This means that the value is not infinite or NaN.
+ bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+ /// Returns true if and only if the float is plus or minus zero.
+ bool isZero() const { return category == fcZero; }
+
+ /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
+ /// denormal.
+ bool isDenormal() const;
+
+ /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
+ bool isInfinity() const { return category == fcInfinity; }
+
+ /// Returns true if and only if the float is a quiet or signaling NaN.
+ bool isNaN() const { return category == fcNaN; }
+
+ /// Returns true if and only if the float is a signaling NaN.
+ bool isSignaling() const;
+
+ /// @}
+
+ /// \name Simple Queries
+ /// @{
+
+ fltCategory getCategory() const { return category; }
+ const fltSemantics &getSemantics() const { return *semantics; }
+ bool isNonZero() const { return category != fcZero; }
+ bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+ bool isPosZero() const { return isZero() && !isNegative(); }
+ bool isNegZero() const { return isZero() && isNegative(); }
+
+ /// Returns true if and only if the number has the smallest possible non-zero
+ /// magnitude in the current semantics.
+ bool isSmallest() const;
+
+ /// Returns true if and only if the number has the largest possible finite
+ /// magnitude in the current semantics.
+ bool isLargest() const;
+
+ /// Returns true if and only if the number is an exact integer.
+ bool isInteger() const;
+
+ /// @}
+
+ IEEEFloat &operator=(const IEEEFloat &);
+ IEEEFloat &operator=(IEEEFloat &&);
+
+ /// Overload to compute a hash code for an APFloat value.
+ ///
+ /// Note that the use of hash codes for floating point values is in general
+ /// frought with peril. Equality is hard to define for these values. For
+ /// example, should negative and positive zero hash to different codes? Are
+ /// they equal or not? This hash value implementation specifically
+ /// emphasizes producing different codes for different inputs in order to
+ /// be used in canonicalization and memoization. As such, equality is
+ /// bitwiseIsEqual, and 0 != -0.
+ friend hash_code hash_value(const IEEEFloat &Arg);
+
+ /// Converts this value into a decimal string.
+ ///
+ /// \param FormatPrecision The maximum number of digits of
+ /// precision to output. If there are fewer digits available,
+ /// zero padding will not be used unless the value is
+ /// integral and small enough to be expressed in
+ /// FormatPrecision digits. 0 means to use the natural
+ /// precision of the number.
+ /// \param FormatMaxPadding The maximum number of zeros to
+ /// consider inserting before falling back to scientific
+ /// notation. 0 means to always use scientific notation.
+ ///
+ /// \param TruncateZero Indicate whether to remove the trailing zero in
+ /// fraction part or not. Also setting this parameter to false forcing
+ /// producing of output more similar to default printf behavior.
+ /// Specifically the lower e is used as exponent delimiter and exponent
+ /// always contains no less than two digits.
+ ///
+ /// Number Precision MaxPadding Result
+ /// ------ --------- ---------- ------
+ /// 1.01E+4 5 2 10100
+ /// 1.01E+4 4 2 1.01E+4
+ /// 1.01E+4 5 1 1.01E+4
+ /// 1.01E-2 5 2 0.0101
+ /// 1.01E-2 4 2 0.0101
+ /// 1.01E-2 4 1 1.01E-2
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+ unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
+
+ /// If this value has an exact multiplicative inverse, store it in inv and
+ /// return true.
+ bool getExactInverse(APFloat *inv) const;
+
+ /// Returns the exponent of the internal representation of the APFloat.
+ ///
+ /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
+ /// For special APFloat values, this returns special error codes:
+ ///
+ /// NaN -> \c IEK_NaN
+ /// 0 -> \c IEK_Zero
+ /// Inf -> \c IEK_Inf
+ ///
+ friend int ilogb(const IEEEFloat &Arg);
+
+ /// Returns: X * 2^Exp for integral exponents.
+ friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
+
+ friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
+
+ /// \name Special value setters.
+ /// @{
+
+ void makeLargest(bool Neg = false);
+ void makeSmallest(bool Neg = false);
+ void makeNaN(bool SNaN = false, bool Neg = false,
+ const APInt *fill = nullptr);
+ void makeInf(bool Neg = false);
+ void makeZero(bool Neg = false);
+ void makeQuiet();
+
+ /// Returns the smallest (by magnitude) normalized finite number in the given
+ /// semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ void makeSmallestNormalized(bool Negative = false);
+
+ /// @}
+
+ cmpResult compareAbsoluteValue(const IEEEFloat &) const;
+
+private:
+ /// \name Simple Queries
+ /// @{
+
+ integerPart *significandParts();
+ const integerPart *significandParts() const;
+ unsigned int partCount() const;
+
+ /// @}
+
+ /// \name Significand operations.
+ /// @{
+
+ integerPart addSignificand(const IEEEFloat &);
+ integerPart subtractSignificand(const IEEEFloat &, integerPart);
+ lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
+ lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
+ lostFraction divideSignificand(const IEEEFloat &);
+ void incrementSignificand();
+ void initialize(const fltSemantics *);
+ void shiftSignificandLeft(unsigned int);
+ lostFraction shiftSignificandRight(unsigned int);
+ unsigned int significandLSB() const;
+ unsigned int significandMSB() const;
+ void zeroSignificand();
+ /// Return true if the significand excluding the integral bit is all ones.
+ bool isSignificandAllOnes() const;
+ /// Return true if the significand excluding the integral bit is all zeros.
+ bool isSignificandAllZeros() const;
+
+ /// @}
+
+ /// \name Arithmetic on special values.
+ /// @{
+
+ opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
+ opStatus divideSpecials(const IEEEFloat &);
+ opStatus multiplySpecials(const IEEEFloat &);
+ opStatus modSpecials(const IEEEFloat &);
+
+ /// @}
+
+ /// \name Miscellany
+ /// @{
+
+ bool convertFromStringSpecials(StringRef str);
+ opStatus normalize(roundingMode, lostFraction);
+ opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
+ opStatus handleOverflow(roundingMode);
+ bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
+ opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
+ unsigned int, bool, roundingMode,
+ bool *) const;
+ opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
+ roundingMode);
+ opStatus convertFromHexadecimalString(StringRef, roundingMode);
+ opStatus convertFromDecimalString(StringRef, roundingMode);
+ char *convertNormalToHexString(char *, unsigned int, bool,
+ roundingMode) const;
+ opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
+ roundingMode);
+
+ /// @}
+
+ APInt convertHalfAPFloatToAPInt() const;
+ APInt convertFloatAPFloatToAPInt() const;
+ APInt convertDoubleAPFloatToAPInt() const;
+ APInt convertQuadrupleAPFloatToAPInt() const;
+ APInt convertF80LongDoubleAPFloatToAPInt() const;
+ APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
+ void initFromAPInt(const fltSemantics *Sem, const APInt &api);
+ void initFromHalfAPInt(const APInt &api);
+ void initFromFloatAPInt(const APInt &api);
+ void initFromDoubleAPInt(const APInt &api);
+ void initFromQuadrupleAPInt(const APInt &api);
+ void initFromF80LongDoubleAPInt(const APInt &api);
+ void initFromPPCDoubleDoubleAPInt(const APInt &api);
+
+ void assign(const IEEEFloat &);
+ void copySignificand(const IEEEFloat &);
+ void freeSignificand();
+
+ /// Note: this must be the first data member.
+ /// The semantics that this value obeys.
+ const fltSemantics *semantics;
+
+ /// A binary fraction with an explicit integer bit.
+ ///
+ /// The significand must be at least one bit wider than the target precision.
+ union Significand {
+ integerPart part;
+ integerPart *parts;
+ } significand;
+
+ /// The signed unbiased exponent of the value.
+ ExponentType exponent;
+
+ /// What kind of floating point number this is.
+ ///
+ /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
+ /// Using the extra bit keeps it from failing under VisualStudio.
+ fltCategory category : 3;
+
+ /// Sign bit of the number.
+ unsigned int sign : 1;
+};
+
+hash_code hash_value(const IEEEFloat &Arg);
+int ilogb(const IEEEFloat &Arg);
+IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
+IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
+
+// This mode implements more precise float in terms of two APFloats.
+// The interface and layout is designed for arbitray underlying semantics,
+// though currently only PPCDoubleDouble semantics are supported, whose
+// corresponding underlying semantics are IEEEdouble.
+class DoubleAPFloat final : public APFloatBase {
+ // Note: this must be the first data member.
+ const fltSemantics *Semantics;
+ std::unique_ptr<APFloat[]> Floats;
+
+ opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
+ const APFloat &cc, roundingMode RM);
+
+ opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
+ DoubleAPFloat &Out, roundingMode RM);
+
+public:
+ DoubleAPFloat(const fltSemantics &S);
+ DoubleAPFloat(const fltSemantics &S, uninitializedTag);
+ DoubleAPFloat(const fltSemantics &S, integerPart);
+ DoubleAPFloat(const fltSemantics &S, const APInt &I);
+ DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
+ DoubleAPFloat(const DoubleAPFloat &RHS);
+ DoubleAPFloat(DoubleAPFloat &&RHS);
+
+ DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
+
+ DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
+ if (this != &RHS) {
+ this->~DoubleAPFloat();
+ new (this) DoubleAPFloat(std::move(RHS));
+ }
+ return *this;
+ }
+
+ bool needsCleanup() const { return Floats != nullptr; }
+
+ APFloat &getFirst() { return Floats[0]; }
+ const APFloat &getFirst() const { return Floats[0]; }
+ APFloat &getSecond() { return Floats[1]; }
+ const APFloat &getSecond() const { return Floats[1]; }
+
+ opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus remainder(const DoubleAPFloat &RHS);
+ opStatus mod(const DoubleAPFloat &RHS);
+ opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
+ const DoubleAPFloat &Addend, roundingMode RM);
+ opStatus roundToIntegral(roundingMode RM);
+ void changeSign();
+ cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
+
+ fltCategory getCategory() const;
+ bool isNegative() const;
+
+ void makeInf(bool Neg);
+ void makeZero(bool Neg);
+ void makeLargest(bool Neg);
+ void makeSmallest(bool Neg);
+ void makeSmallestNormalized(bool Neg);
+ void makeNaN(bool SNaN, bool Neg, const APInt *fill);
+
+ cmpResult compare(const DoubleAPFloat &RHS) const;
+ bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
+ APInt bitcastToAPInt() const;
+ opStatus convertFromString(StringRef, roundingMode);
+ opStatus next(bool nextDown);
+
+ opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+ unsigned int Width, bool IsSigned, roundingMode RM,
+ bool *IsExact) const;
+ opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
+ opStatus convertFromSignExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM);
+ opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM);
+ unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+ bool UpperCase, roundingMode RM) const;
+
+ bool isDenormal() const;
+ bool isSmallest() const;
+ bool isLargest() const;
+ bool isInteger() const;
+
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
+ unsigned FormatMaxPadding, bool TruncateZero = true) const;
+
+ bool getExactInverse(APFloat *inv) const;
+
+ friend int ilogb(const DoubleAPFloat &Arg);
+ friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
+ friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
+ friend hash_code hash_value(const DoubleAPFloat &Arg);
+};
+
+hash_code hash_value(const DoubleAPFloat &Arg);
+
+} // End detail namespace
+
+// This is a interface class that is currently forwarding functionalities from
+// detail::IEEEFloat.
+class APFloat : public APFloatBase {
+ typedef detail::IEEEFloat IEEEFloat;
+ typedef detail::DoubleAPFloat DoubleAPFloat;
+
+ static_assert(std::is_standard_layout<IEEEFloat>::value, "");
+
+ union Storage {
+ const fltSemantics *semantics;
+ IEEEFloat IEEE;
+ DoubleAPFloat Double;
+
+ explicit Storage(IEEEFloat F, const fltSemantics &S);
+ explicit Storage(DoubleAPFloat F, const fltSemantics &S)
+ : Double(std::move(F)) {
+ assert(&S == &PPCDoubleDouble());
+ }
+
+ template <typename... ArgTypes>
+ Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
+ if (usesLayout<IEEEFloat>(Semantics)) {
+ new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(Semantics)) {
+ new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ ~Storage() {
+ if (usesLayout<IEEEFloat>(*semantics)) {
+ IEEE.~IEEEFloat();
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*semantics)) {
+ Double.~DoubleAPFloat();
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage(const Storage &RHS) {
+ if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+ new (this) IEEEFloat(RHS.IEEE);
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ new (this) DoubleAPFloat(RHS.Double);
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage(Storage &&RHS) {
+ if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+ new (this) IEEEFloat(std::move(RHS.IEEE));
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ new (this) DoubleAPFloat(std::move(RHS.Double));
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage &operator=(const Storage &RHS) {
+ if (usesLayout<IEEEFloat>(*semantics) &&
+ usesLayout<IEEEFloat>(*RHS.semantics)) {
+ IEEE = RHS.IEEE;
+ } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+ usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ Double = RHS.Double;
+ } else if (this != &RHS) {
+ this->~Storage();
+ new (this) Storage(RHS);
+ }
+ return *this;
+ }
+
+ Storage &operator=(Storage &&RHS) {
+ if (usesLayout<IEEEFloat>(*semantics) &&
+ usesLayout<IEEEFloat>(*RHS.semantics)) {
+ IEEE = std::move(RHS.IEEE);
+ } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+ usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ Double = std::move(RHS.Double);
+ } else if (this != &RHS) {
+ this->~Storage();
+ new (this) Storage(std::move(RHS));
+ }
+ return *this;
+ }
+ } U;
+
+ template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
+ static_assert(std::is_same<T, IEEEFloat>::value ||
+ std::is_same<T, DoubleAPFloat>::value, "");
+ if (std::is_same<T, DoubleAPFloat>::value) {
+ return &Semantics == &PPCDoubleDouble();
+ }
+ return &Semantics != &PPCDoubleDouble();
+ }
+
+ IEEEFloat &getIEEE() {
+ if (usesLayout<IEEEFloat>(*U.semantics))
+ return U.IEEE;
+ if (usesLayout<DoubleAPFloat>(*U.semantics))
+ return U.Double.getFirst().U.IEEE;
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ const IEEEFloat &getIEEE() const {
+ if (usesLayout<IEEEFloat>(*U.semantics))
+ return U.IEEE;
+ if (usesLayout<DoubleAPFloat>(*U.semantics))
+ return U.Double.getFirst().U.IEEE;
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
+
+ void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
+
+ void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
+ }
+
+ void makeLargest(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
+ }
+
+ void makeSmallest(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
+ }
+
+ void makeSmallestNormalized(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
+ }
+
+ // FIXME: This is due to clang 3.3 (or older version) always checks for the
+ // default constructor in an array aggregate initialization, even if no
+ // elements in the array is default initialized.
+ APFloat() : U(IEEEdouble()) {
+ llvm_unreachable("This is a workaround for old clang.");
+ }
+
+ explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
+ explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
+ : U(std::move(F), S) {}
+
+ cmpResult compareAbsoluteValue(const APFloat &RHS) const {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only compare APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.compareAbsoluteValue(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+public:
+ APFloat(const fltSemantics &Semantics) : U(Semantics) {}
+ APFloat(const fltSemantics &Semantics, StringRef S);
+ APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
+ // TODO: Remove this constructor. This isn't faster than the first one.
+ APFloat(const fltSemantics &Semantics, uninitializedTag)
+ : U(Semantics, uninitialized) {}
+ APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
+ explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
+ explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
+ APFloat(const APFloat &RHS) = default;
+ APFloat(APFloat &&RHS) = default;
+
+ ~APFloat() = default;
+
+ bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
+
+ /// Factory for Positive and Negative Zero.
+ ///
+ /// \param Negative True iff the number should be negative.
+ static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeZero(Negative);
+ return Val;
+ }
+
+ /// Factory for Positive and Negative Infinity.
+ ///
+ /// \param Negative True iff the number should be negative.
+ static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeInf(Negative);
+ return Val;
+ }
+
+ /// Factory for NaN values.
+ ///
+ /// \param Negative - True iff the NaN generated should be negative.
+ /// \param payload - The unspecified fill bits for creating the NaN, 0 by
+ /// default. The value is truncated as necessary.
+ static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
+ uint64_t payload = 0) {
+ if (payload) {
+ APInt intPayload(64, payload);
+ return getQNaN(Sem, Negative, &intPayload);
+ } else {
+ return getQNaN(Sem, Negative, nullptr);
+ }
+ }
+
+ /// Factory for QNaN values.
+ static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
+ const APInt *payload = nullptr) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeNaN(false, Negative, payload);
+ return Val;
+ }
+
+ /// Factory for SNaN values.
+ static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
+ const APInt *payload = nullptr) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeNaN(true, Negative, payload);
+ return Val;
+ }
+
+ /// Returns the largest finite number in the given semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeLargest(Negative);
+ return Val;
+ }
+
+ /// Returns the smallest (by magnitude) finite number in the given semantics.
+ /// Might be denormalized, which implies a relative loss of precision.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeSmallest(Negative);
+ return Val;
+ }
+
+ /// Returns the smallest (by magnitude) normalized finite number in the given
+ /// semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getSmallestNormalized(const fltSemantics &Sem,
+ bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeSmallestNormalized(Negative);
+ return Val;
+ }
+
+ /// Returns a float which is bitcasted from an all one value int.
+ ///
+ /// \param BitWidth - Select float type
+ /// \param isIEEE - If 128 bit number, select between PPC and IEEE
+ static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
+
+ /// Used to insert APFloat objects, or objects that contain APFloat objects,
+ /// into FoldingSets.
+ void Profile(FoldingSetNodeID &NID) const;
+
+ opStatus add(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.add(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.add(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus subtract(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.subtract(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.subtract(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus multiply(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.multiply(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.multiply(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus divide(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.divide(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.divide(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus remainder(const APFloat &RHS) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.remainder(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.remainder(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus mod(const APFloat &RHS) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.mod(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.mod(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
+ roundingMode RM) {
+ assert(&getSemantics() == &Multiplicand.getSemantics() &&
+ "Should only call on APFloats with the same semantics");
+ assert(&getSemantics() == &Addend.getSemantics() &&
+ "Should only call on APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
+ RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus roundToIntegral(roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
+ }
+
+ // TODO: bool parameters are not readable and a source of bugs.
+ // Do something.
+ opStatus next(bool nextDown) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
+ }
+
+ /// Add two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator+(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.add(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Subtract two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator-(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.subtract(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Multiply two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator*(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.multiply(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Divide the first APFloat by the second, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator/(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.divide(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
+ void clearSign() {
+ if (isNegative())
+ changeSign();
+ }
+ void copySign(const APFloat &RHS) {
+ if (isNegative() != RHS.isNegative())
+ changeSign();
+ }
+
+ /// A static helper to produce a copy of an APFloat value with its sign
+ /// copied from some other APFloat.
+ static APFloat copySign(APFloat Value, const APFloat &Sign) {
+ Value.copySign(Sign);
+ return Value;
+ }
+
+ opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
+ bool *losesInfo);
+ opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+ unsigned int Width, bool IsSigned, roundingMode RM,
+ bool *IsExact) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertToInteger(Input, Width, IsSigned, RM, IsExact));
+ }
+ opStatus convertToInteger(APSInt &Result, roundingMode RM,
+ bool *IsExact) const;
+ opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
+ }
+ opStatus convertFromSignExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
+ }
+ opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
+ }
+ opStatus convertFromString(StringRef, roundingMode);
+ APInt bitcastToAPInt() const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
+ }
+ double convertToDouble() const { return getIEEE().convertToDouble(); }
+ float convertToFloat() const { return getIEEE().convertToFloat(); }
+
+ bool operator==(const APFloat &) const = delete;
+
+ cmpResult compare(const APFloat &RHS) const {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only compare APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.compare(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.compare(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ bool bitwiseIsEqual(const APFloat &RHS) const {
+ if (&getSemantics() != &RHS.getSemantics())
+ return false;
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.bitwiseIsEqual(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ /// We don't rely on operator== working on double values, as
+ /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values.
+ ///
+ /// We leave the version with the double argument here because it's just so
+ /// convenient to write "2.0" and the like. Without this function we'd
+ /// have to duplicate its logic everywhere it's called.
+ bool isExactlyValue(double V) const {
+ bool ignored;
+ APFloat Tmp(V);
+ Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
+ return bitwiseIsEqual(Tmp);
+ }
+
+ unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+ bool UpperCase, roundingMode RM) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertToHexString(DST, HexDigits, UpperCase, RM));
+ }
+
+ bool isZero() const { return getCategory() == fcZero; }
+ bool isInfinity() const { return getCategory() == fcInfinity; }
+ bool isNaN() const { return getCategory() == fcNaN; }
+
+ bool isNegative() const { return getIEEE().isNegative(); }
+ bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
+ bool isSignaling() const { return getIEEE().isSignaling(); }
+
+ bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+ bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+ fltCategory getCategory() const { return getIEEE().getCategory(); }
+ const fltSemantics &getSemantics() const { return *U.semantics; }
+ bool isNonZero() const { return !isZero(); }
+ bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+ bool isPosZero() const { return isZero() && !isNegative(); }
+ bool isNegZero() const { return isZero() && isNegative(); }
+ bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
+ bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
+ bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
+
+ APFloat &operator=(const APFloat &RHS) = default;
+ APFloat &operator=(APFloat &&RHS) = default;
+
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+ unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
+ }
+
+ void print(raw_ostream &) const;
+ void dump() const;
+
+ bool getExactInverse(APFloat *inv) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
+ }
+
+ friend hash_code hash_value(const APFloat &Arg);
+ friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
+ friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
+ friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
+ friend IEEEFloat;
+ friend DoubleAPFloat;
+};
+
+/// See friend declarations above.
+///
+/// These additional declarations are required in order to compile LLVM with IBM
+/// xlC compiler.
+hash_code hash_value(const APFloat &Arg);
+inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
+ if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+ return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
+ if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+ return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
+ llvm_unreachable("Unexpected semantics");
+}
+
+/// Equivalent of C standard library function.
+///
+/// While the C standard says Exp is an unspecified value for infinity and nan,
+/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
+inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
+ if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+ return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
+ if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+ return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
+ llvm_unreachable("Unexpected semantics");
+}
+/// Returns the absolute value of the argument.
+inline APFloat abs(APFloat X) {
+ X.clearSign();
+ return X;
+}
+
+/// Returns the negated value of the argument.
+inline APFloat neg(APFloat X) {
+ X.changeSign();
+ return X;
+}
+
+/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat minnum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return B;
+ if (B.isNaN())
+ return A;
+ return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat maxnum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return B;
+ if (B.isNaN())
+ return A;
+ return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
+/// arguments, propagating NaNs and treating -0 as less than +0.
+LLVM_READONLY
+inline APFloat minimum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return A;
+ if (B.isNaN())
+ return B;
+ if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
+ return A.isNegative() ? A : B;
+ return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
+/// arguments, propagating NaNs and treating -0 as less than +0.
+LLVM_READONLY
+inline APFloat maximum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return A;
+ if (B.isNaN())
+ return B;
+ if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
+ return A.isNegative() ? B : A;
+ return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
+}
+
+} // namespace llvm
+
+#undef APFLOAT_DISPATCH_ON_SEMANTICS
+#endif // LLVM_ADT_APFLOAT_H
diff --git a/third_party/llvm-project/include/llvm/ADT/APInt.h b/third_party/llvm-project/include/llvm/ADT/APInt.h
new file mode 100644
index 000000000..60a0db7e9
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/APInt.h
@@ -0,0 +1,2258 @@
+//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements a class to represent arbitrary precision
+/// integral constant values and operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APINT_H
+#define LLVM_ADT_APINT_H
+
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <climits>
+#include <cstring>
+#include <string>
+
+namespace llvm {
+class FoldingSetNodeID;
+class StringRef;
+class hash_code;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+template <typename T> class ArrayRef;
+template <typename T> class Optional;
+
+class APInt;
+
+inline APInt operator-(APInt);
+
+//===----------------------------------------------------------------------===//
+// APInt Class
+//===----------------------------------------------------------------------===//
+
+/// Class for arbitrary precision integers.
+///
+/// APInt is a functional replacement for common case unsigned integer type like
+/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
+/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
+/// than 64-bits of precision. APInt provides a variety of arithmetic operators
+/// and methods to manipulate integer values of any bit-width. It supports both
+/// the typical integer arithmetic and comparison operations as well as bitwise
+/// manipulation.
+///
+/// The class has several invariants worth noting:
+/// * All bit, byte, and word positions are zero-based.
+/// * Once the bit width is set, it doesn't change except by the Truncate,
+/// SignExtend, or ZeroExtend operations.
+/// * All binary operators must be on APInt instances of the same bit width.
+/// Attempting to use these operators on instances with different bit
+/// widths will yield an assertion.
+/// * The value is stored canonically as an unsigned value. For operations
+/// where it makes a difference, there are both signed and unsigned variants
+/// of the operation. For example, sdiv and udiv. However, because the bit
+/// widths must be the same, operations such as Mul and Add produce the same
+/// results regardless of whether the values are interpreted as signed or
+/// not.
+/// * In general, the class tries to follow the style of computation that LLVM
+/// uses in its IR. This simplifies its use for LLVM.
+///
+class LLVM_NODISCARD APInt {
+public:
+ typedef uint64_t WordType;
+
+ /// This enum is used to hold the constants we needed for APInt.
+ enum : unsigned {
+ /// Byte size of a word.
+ APINT_WORD_SIZE = sizeof(WordType),
+ /// Bits in a word.
+ APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
+ };
+
+ enum class Rounding {
+ DOWN,
+ TOWARD_ZERO,
+ UP,
+ };
+
+ static const WordType WORDTYPE_MAX = ~WordType(0);
+
+private:
+ /// This union is used to store the integer value. When the
+ /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
+ union {
+ uint64_t VAL; ///< Used to store the <= 64 bits integer value.
+ uint64_t *pVal; ///< Used to store the >64 bits integer value.
+ } U;
+
+ unsigned BitWidth; ///< The number of bits in this APInt.
+
+ friend struct DenseMapAPIntKeyInfo;
+
+ friend class APSInt;
+
+ /// Fast internal constructor
+ ///
+ /// This constructor is used only internally for speed of construction of
+ /// temporaries. It is unsafe for general use so it is not public.
+ APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
+ U.pVal = val;
+ }
+
+ /// Determine if this APInt just has one word to store value.
+ ///
+ /// \returns true if the number of bits <= 64, false otherwise.
+ bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
+
+ /// Determine which word a bit is in.
+ ///
+ /// \returns the word position for the specified bit position.
+ static unsigned whichWord(unsigned bitPosition) {
+ return bitPosition / APINT_BITS_PER_WORD;
+ }
+
+ /// Determine which bit in a word a bit is in.
+ ///
+ /// \returns the bit position in a word for the specified bit position
+ /// in the APInt.
+ static unsigned whichBit(unsigned bitPosition) {
+ return bitPosition % APINT_BITS_PER_WORD;
+ }
+
+ /// Get a single bit mask.
+ ///
+ /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
+ /// This method generates and returns a uint64_t (word) mask for a single
+ /// bit at a specific bit position. This is used to mask the bit in the
+ /// corresponding word.
+ static uint64_t maskBit(unsigned bitPosition) {
+ return 1ULL << whichBit(bitPosition);
+ }
+
+ /// Clear unused high order bits
+ ///
+ /// This method is used internally to clear the top "N" bits in the high order
+ /// word that are not used by the APInt. This is needed after the most
+ /// significant word is assigned a value to ensure that those bits are
+ /// zero'd out.
+ APInt &clearUnusedBits() {
+ // Compute how many bits are used in the final word
+ unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
+
+ // Mask out the high bits.
+ uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
+ if (isSingleWord())
+ U.VAL &= mask;
+ else
+ U.pVal[getNumWords() - 1] &= mask;
+ return *this;
+ }
+
+ /// Get the word corresponding to a bit position
+ /// \returns the corresponding word for the specified bit position.
+ uint64_t getWord(unsigned bitPosition) const {
+ return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
+ }
+
+ /// Utility method to change the bit width of this APInt to new bit width,
+ /// allocating and/or deallocating as necessary. There is no guarantee on the
+ /// value of any bits upon return. Caller should populate the bits after.
+ void reallocate(unsigned NewBitWidth);
+
+ /// Convert a char array into an APInt
+ ///
+ /// \param radix 2, 8, 10, 16, or 36
+ /// Converts a string into a number. The string must be non-empty
+ /// and well-formed as a number of the given base. The bit-width
+ /// must be sufficient to hold the result.
+ ///
+ /// This is used by the constructors that take string arguments.
+ ///
+ /// StringRef::getAsInteger is superficially similar but (1) does
+ /// not assume that the string is well-formed and (2) grows the
+ /// result to hold the input.
+ void fromString(unsigned numBits, StringRef str, uint8_t radix);
+
+ /// An internal division function for dividing APInts.
+ ///
+ /// This is used by the toString method to divide by the radix. It simply
+ /// provides a more convenient form of divide for internal use since KnuthDiv
+ /// has specific constraints on its inputs. If those constraints are not met
+ /// then it provides a simpler form of divide.
+ static void divide(const WordType *LHS, unsigned lhsWords,
+ const WordType *RHS, unsigned rhsWords, WordType *Quotient,
+ WordType *Remainder);
+
+ /// out-of-line slow case for inline constructor
+ void initSlowCase(uint64_t val, bool isSigned);
+
+ /// shared code between two array constructors
+ void initFromArray(ArrayRef<uint64_t> array);
+
+ /// out-of-line slow case for inline copy constructor
+ void initSlowCase(const APInt &that);
+
+ /// out-of-line slow case for shl
+ void shlSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for lshr.
+ void lshrSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for ashr.
+ void ashrSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for operator=
+ void AssignSlowCase(const APInt &RHS);
+
+ /// out-of-line slow case for operator==
+ bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for countLeadingZeros
+ unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countLeadingOnes.
+ unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countTrailingZeros.
+ unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countTrailingOnes
+ unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countPopulation
+ unsigned countPopulationSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for intersects.
+ bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for isSubsetOf.
+ bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for setBits.
+ void setBitsSlowCase(unsigned loBit, unsigned hiBit);
+
+ /// out-of-line slow case for flipAllBits.
+ void flipAllBitsSlowCase();
+
+ /// out-of-line slow case for operator&=.
+ void AndAssignSlowCase(const APInt& RHS);
+
+ /// out-of-line slow case for operator|=.
+ void OrAssignSlowCase(const APInt& RHS);
+
+ /// out-of-line slow case for operator^=.
+ void XorAssignSlowCase(const APInt& RHS);
+
+ /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+ /// to, or greater than RHS.
+ int compare(const APInt &RHS) const LLVM_READONLY;
+
+ /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+ /// to, or greater than RHS.
+ int compareSigned(const APInt &RHS) const LLVM_READONLY;
+
+public:
+ /// \name Constructors
+ /// @{
+
+ /// Create a new APInt of numBits width, initialized as val.
+ ///
+ /// If isSigned is true then val is treated as if it were a signed value
+ /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
+ /// will be done. Otherwise, no sign extension occurs (high order bits beyond
+ /// the range of val are zero filled).
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param val the initial value of the APInt
+ /// \param isSigned how to treat signedness of val
+ APInt(unsigned numBits, uint64_t val, bool isSigned = false)
+ : BitWidth(numBits) {
+ assert(BitWidth && "bitwidth too small");
+ if (isSingleWord()) {
+ U.VAL = val;
+ clearUnusedBits();
+ } else {
+ initSlowCase(val, isSigned);
+ }
+ }
+
+ /// Construct an APInt of numBits width, initialized as bigVal[].
+ ///
+ /// Note that bigVal.size() can be smaller or larger than the corresponding
+ /// bit width but any extraneous bits will be dropped.
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param bigVal a sequence of words to form the initial value of the APInt
+ APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
+
+ /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
+ /// deprecated because this constructor is prone to ambiguity with the
+ /// APInt(unsigned, uint64_t, bool) constructor.
+ ///
+ /// If this overload is ever deleted, care should be taken to prevent calls
+ /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
+ /// constructor.
+ APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
+
+ /// Construct an APInt from a string representation.
+ ///
+ /// This constructor interprets the string \p str in the given radix. The
+ /// interpretation stops when the first character that is not suitable for the
+ /// radix is encountered, or the end of the string. Acceptable radix values
+ /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
+ /// string to require more bits than numBits.
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param str the string to be interpreted
+ /// \param radix the radix to use for the conversion
+ APInt(unsigned numBits, StringRef str, uint8_t radix);
+
+ /// Simply makes *this a copy of that.
+ /// Copy Constructor.
+ APInt(const APInt &that) : BitWidth(that.BitWidth) {
+ if (isSingleWord())
+ U.VAL = that.U.VAL;
+ else
+ initSlowCase(that);
+ }
+
+ /// Move Constructor.
+ APInt(APInt &&that) : BitWidth(that.BitWidth) {
+ memcpy(&U, &that.U, sizeof(U));
+ that.BitWidth = 0;
+ }
+
+ /// Destructor.
+ ~APInt() {
+ if (needsCleanup())
+ delete[] U.pVal;
+ }
+
+ /// Default constructor that creates an uninteresting APInt
+ /// representing a 1-bit zero value.
+ ///
+ /// This is useful for object deserialization (pair this with the static
+ /// method Read).
+ explicit APInt() : BitWidth(1) { U.VAL = 0; }
+
+ /// Returns whether this instance allocated memory.
+ bool needsCleanup() const { return !isSingleWord(); }
+
+ /// Used to insert APInt objects, or objects that contain APInt objects, into
+ /// FoldingSets.
+ void Profile(FoldingSetNodeID &id) const;
+
+ /// @}
+ /// \name Value Tests
+ /// @{
+
+ /// Determine sign of this APInt.
+ ///
+ /// This tests the high bit of this APInt to determine if it is set.
+ ///
+ /// \returns true if this APInt is negative, false otherwise
+ bool isNegative() const { return (*this)[BitWidth - 1]; }
+
+ /// Determine if this APInt Value is non-negative (>= 0)
+ ///
+ /// This tests the high bit of the APInt to determine if it is unset.
+ bool isNonNegative() const { return !isNegative(); }
+
+ /// Determine if sign bit of this APInt is set.
+ ///
+ /// This tests the high bit of this APInt to determine if it is set.
+ ///
+ /// \returns true if this APInt has its sign bit set, false otherwise.
+ bool isSignBitSet() const { return (*this)[BitWidth-1]; }
+
+ /// Determine if sign bit of this APInt is clear.
+ ///
+ /// This tests the high bit of this APInt to determine if it is clear.
+ ///
+ /// \returns true if this APInt has its sign bit clear, false otherwise.
+ bool isSignBitClear() const { return !isSignBitSet(); }
+
+ /// Determine if this APInt Value is positive.
+ ///
+ /// This tests if the value of this APInt is positive (> 0). Note
+ /// that 0 is not a positive value.
+ ///
+ /// \returns true if this APInt is positive.
+ bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
+
+ /// Determine if all bits are set
+ ///
+ /// This checks to see if the value has all bits of the APInt are set or not.
+ bool isAllOnesValue() const {
+ if (isSingleWord())
+ return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
+ return countTrailingOnesSlowCase() == BitWidth;
+ }
+
+ /// Determine if all bits are clear
+ ///
+ /// This checks to see if the value has all bits of the APInt are clear or
+ /// not.
+ bool isNullValue() const { return !*this; }
+
+ /// Determine if this is a value of 1.
+ ///
+ /// This checks to see if the value of this APInt is one.
+ bool isOneValue() const {
+ if (isSingleWord())
+ return U.VAL == 1;
+ return countLeadingZerosSlowCase() == BitWidth - 1;
+ }
+
+ /// Determine if this is the largest unsigned value.
+ ///
+ /// This checks to see if the value of this APInt is the maximum unsigned
+ /// value for the APInt's bit width.
+ bool isMaxValue() const { return isAllOnesValue(); }
+
+ /// Determine if this is the largest signed value.
+ ///
+ /// This checks to see if the value of this APInt is the maximum signed
+ /// value for the APInt's bit width.
+ bool isMaxSignedValue() const {
+ if (isSingleWord())
+ return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
+ return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
+ }
+
+ /// Determine if this is the smallest unsigned value.
+ ///
+ /// This checks to see if the value of this APInt is the minimum unsigned
+ /// value for the APInt's bit width.
+ bool isMinValue() const { return isNullValue(); }
+
+ /// Determine if this is the smallest signed value.
+ ///
+ /// This checks to see if the value of this APInt is the minimum signed
+ /// value for the APInt's bit width.
+ bool isMinSignedValue() const {
+ if (isSingleWord())
+ return U.VAL == (WordType(1) << (BitWidth - 1));
+ return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
+ }
+
+ /// Check if this APInt has an N-bits unsigned integer value.
+ bool isIntN(unsigned N) const {
+ assert(N && "N == 0 ???");
+ return getActiveBits() <= N;
+ }
+
+ /// Check if this APInt has an N-bits signed integer value.
+ bool isSignedIntN(unsigned N) const {
+ assert(N && "N == 0 ???");
+ return getMinSignedBits() <= N;
+ }
+
+ /// Check if this APInt's value is a power of two greater than zero.
+ ///
+ /// \returns true if the argument APInt value is a power of two > 0.
+ bool isPowerOf2() const {
+ if (isSingleWord())
+ return isPowerOf2_64(U.VAL);
+ return countPopulationSlowCase() == 1;
+ }
+
+ /// Check if the APInt's value is returned by getSignMask.
+ ///
+ /// \returns true if this is the value returned by getSignMask.
+ bool isSignMask() const { return isMinSignedValue(); }
+
+ /// Convert APInt to a boolean value.
+ ///
+ /// This converts the APInt to a boolean value as a test against zero.
+ bool getBoolValue() const { return !!*this; }
+
+ /// If this value is smaller than the specified limit, return it, otherwise
+ /// return the limit value. This causes the value to saturate to the limit.
+ uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
+ return ugt(Limit) ? Limit : getZExtValue();
+ }
+
+ /// Check if the APInt consists of a repeated bit pattern.
+ ///
+ /// e.g. 0x01010101 satisfies isSplat(8).
+ /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
+ /// width without remainder.
+ bool isSplat(unsigned SplatSizeInBits) const;
+
+ /// \returns true if this APInt value is a sequence of \param numBits ones
+ /// starting at the least significant bit with the remainder zero.
+ bool isMask(unsigned numBits) const {
+ assert(numBits != 0 && "numBits must be non-zero");
+ assert(numBits <= BitWidth && "numBits out of range");
+ if (isSingleWord())
+ return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
+ unsigned Ones = countTrailingOnesSlowCase();
+ return (numBits == Ones) &&
+ ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+ }
+
+ /// \returns true if this APInt is a non-empty sequence of ones starting at
+ /// the least significant bit with the remainder zero.
+ /// Ex. isMask(0x0000FFFFU) == true.
+ bool isMask() const {
+ if (isSingleWord())
+ return isMask_64(U.VAL);
+ unsigned Ones = countTrailingOnesSlowCase();
+ return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+ }
+
+ /// Return true if this APInt value contains a sequence of ones with
+ /// the remainder zero.
+ bool isShiftedMask() const {
+ if (isSingleWord())
+ return isShiftedMask_64(U.VAL);
+ unsigned Ones = countPopulationSlowCase();
+ unsigned LeadZ = countLeadingZerosSlowCase();
+ return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
+ }
+
+ /// @}
+ /// \name Value Generators
+ /// @{
+
+ /// Gets maximum unsigned value of APInt for specific bit width.
+ static APInt getMaxValue(unsigned numBits) {
+ return getAllOnesValue(numBits);
+ }
+
+ /// Gets maximum signed value of APInt for a specific bit width.
+ static APInt getSignedMaxValue(unsigned numBits) {
+ APInt API = getAllOnesValue(numBits);
+ API.clearBit(numBits - 1);
+ return API;
+ }
+
+ /// Gets minimum unsigned value of APInt for a specific bit width.
+ static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
+
+ /// Gets minimum signed value of APInt for a specific bit width.
+ static APInt getSignedMinValue(unsigned numBits) {
+ APInt API(numBits, 0);
+ API.setBit(numBits - 1);
+ return API;
+ }
+
+ /// Get the SignMask for a specific bit width.
+ ///
+ /// This is just a wrapper function of getSignedMinValue(), and it helps code
+ /// readability when we want to get a SignMask.
+ static APInt getSignMask(unsigned BitWidth) {
+ return getSignedMinValue(BitWidth);
+ }
+
+ /// Get the all-ones value.
+ ///
+ /// \returns the all-ones value for an APInt of the specified bit-width.
+ static APInt getAllOnesValue(unsigned numBits) {
+ return APInt(numBits, WORDTYPE_MAX, true);
+ }
+
+ /// Get the '0' value.
+ ///
+ /// \returns the '0' value for an APInt of the specified bit-width.
+ static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
+
+ /// Compute an APInt containing numBits highbits from this APInt.
+ ///
+ /// Get an APInt with the same BitWidth as this APInt, just zero mask
+ /// the low bits and right shift to the least significant bit.
+ ///
+ /// \returns the high "numBits" bits of this APInt.
+ APInt getHiBits(unsigned numBits) const;
+
+ /// Compute an APInt containing numBits lowbits from this APInt.
+ ///
+ /// Get an APInt with the same BitWidth as this APInt, just zero mask
+ /// the high bits.
+ ///
+ /// \returns the low "numBits" bits of this APInt.
+ APInt getLoBits(unsigned numBits) const;
+
+ /// Return an APInt with exactly one bit set in the result.
+ static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
+ APInt Res(numBits, 0);
+ Res.setBit(BitNo);
+ return Res;
+ }
+
+ /// Get a value with a block of bits set.
+ ///
+ /// Constructs an APInt value that has a contiguous range of bits set. The
+ /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
+ /// bits will be zero. For example, with parameters(32, 0, 16) you would get
+ /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
+ /// example, with parameters (32, 28, 4), you would get 0xF000000F.
+ ///
+ /// \param numBits the intended bit width of the result
+ /// \param loBit the index of the lowest bit set.
+ /// \param hiBit the index of the highest bit set.
+ ///
+ /// \returns An APInt value with the requested bits set.
+ static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
+ APInt Res(numBits, 0);
+ Res.setBits(loBit, hiBit);
+ return Res;
+ }
+
+ /// Get a value with upper bits starting at loBit set.
+ ///
+ /// Constructs an APInt value that has a contiguous range of bits set. The
+ /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
+ /// bits will be zero. For example, with parameters(32, 12) you would get
+ /// 0xFFFFF000.
+ ///
+ /// \param numBits the intended bit width of the result
+ /// \param loBit the index of the lowest bit to set.
+ ///
+ /// \returns An APInt value with the requested bits set.
+ static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
+ APInt Res(numBits, 0);
+ Res.setBitsFrom(loBit);
+ return Res;
+ }
+
+ /// Get a value with high bits set
+ ///
+ /// Constructs an APInt value that has the top hiBitsSet bits set.
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param hiBitsSet the number of high-order bits set in the result.
+ static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
+ APInt Res(numBits, 0);
+ Res.setHighBits(hiBitsSet);
+ return Res;
+ }
+
+ /// Get a value with low bits set
+ ///
+ /// Constructs an APInt value that has the bottom loBitsSet bits set.
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param loBitsSet the number of low-order bits set in the result.
+ static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
+ APInt Res(numBits, 0);
+ Res.setLowBits(loBitsSet);
+ return Res;
+ }
+
+ /// Return a value containing V broadcasted over NewLen bits.
+ static APInt getSplat(unsigned NewLen, const APInt &V);
+
+ /// Determine if two APInts have the same value, after zero-extending
+ /// one of them (if needed!) to ensure that the bit-widths match.
+ static bool isSameValue(const APInt &I1, const APInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth())
+ return I1 == I2;
+
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return I1 == I2.zext(I1.getBitWidth());
+
+ return I1.zext(I2.getBitWidth()) == I2;
+ }
+
+ /// Overload to compute a hash_code for an APInt value.
+ friend hash_code hash_value(const APInt &Arg);
+
+ /// This function returns a pointer to the internal storage of the APInt.
+ /// This is useful for writing out the APInt in binary form without any
+ /// conversions.
+ const uint64_t *getRawData() const {
+ if (isSingleWord())
+ return &U.VAL;
+ return &U.pVal[0];
+ }
+
+ /// @}
+ /// \name Unary Operators
+ /// @{
+
+ /// Postfix increment operator.
+ ///
+ /// Increments *this by 1.
+ ///
+ /// \returns a new APInt value representing the original value of *this.
+ const APInt operator++(int) {
+ APInt API(*this);
+ ++(*this);
+ return API;
+ }
+
+ /// Prefix increment operator.
+ ///
+ /// \returns *this incremented by one
+ APInt &operator++();
+
+ /// Postfix decrement operator.
+ ///
+ /// Decrements *this by 1.
+ ///
+ /// \returns a new APInt value representing the original value of *this.
+ const APInt operator--(int) {
+ APInt API(*this);
+ --(*this);
+ return API;
+ }
+
+ /// Prefix decrement operator.
+ ///
+ /// \returns *this decremented by one.
+ APInt &operator--();
+
+ /// Logical negation operator.
+ ///
+ /// Performs logical negation operation on this APInt.
+ ///
+ /// \returns true if *this is zero, false otherwise.
+ bool operator!() const {
+ if (isSingleWord())
+ return U.VAL == 0;
+ return countLeadingZerosSlowCase() == BitWidth;
+ }
+
+ /// @}
+ /// \name Assignment Operators
+ /// @{
+
+ /// Copy assignment operator.
+ ///
+ /// \returns *this after assignment of RHS.
+ APInt &operator=(const APInt &RHS) {
+ // If the bitwidths are the same, we can avoid mucking with memory
+ if (isSingleWord() && RHS.isSingleWord()) {
+ U.VAL = RHS.U.VAL;
+ BitWidth = RHS.BitWidth;
+ return clearUnusedBits();
+ }
+
+ AssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Move assignment operator.
+ APInt &operator=(APInt &&that) {
+#ifdef _MSC_VER
+ // The MSVC std::shuffle implementation still does self-assignment.
+ if (this == &that)
+ return *this;
+#endif
+ assert(this != &that && "Self-move not supported");
+ if (!isSingleWord())
+ delete[] U.pVal;
+
+ // Use memcpy so that type based alias analysis sees both VAL and pVal
+ // as modified.
+ memcpy(&U, &that.U, sizeof(U));
+
+ BitWidth = that.BitWidth;
+ that.BitWidth = 0;
+
+ return *this;
+ }
+
+ /// Assignment operator.
+ ///
+ /// The RHS value is assigned to *this. If the significant bits in RHS exceed
+ /// the bit width, the excess bits are truncated. If the bit width is larger
+ /// than 64, the value is zero filled in the unspecified high order bits.
+ ///
+ /// \returns *this after assignment of RHS value.
+ APInt &operator=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL = RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] = RHS;
+ memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ }
+ return *this;
+ }
+
+ /// Bitwise AND assignment operator.
+ ///
+ /// Performs a bitwise AND operation on this APInt and RHS. The result is
+ /// assigned to *this.
+ ///
+ /// \returns *this after ANDing with RHS.
+ APInt &operator&=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL &= RHS.U.VAL;
+ else
+ AndAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise AND assignment operator.
+ ///
+ /// Performs a bitwise AND operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator&=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL &= RHS;
+ return *this;
+ }
+ U.pVal[0] &= RHS;
+ memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ return *this;
+ }
+
+ /// Bitwise OR assignment operator.
+ ///
+ /// Performs a bitwise OR operation on this APInt and RHS. The result is
+ /// assigned *this;
+ ///
+ /// \returns *this after ORing with RHS.
+ APInt &operator|=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL |= RHS.U.VAL;
+ else
+ OrAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise OR assignment operator.
+ ///
+ /// Performs a bitwise OR operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator|=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL |= RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] |= RHS;
+ }
+ return *this;
+ }
+
+ /// Bitwise XOR assignment operator.
+ ///
+ /// Performs a bitwise XOR operation on this APInt and RHS. The result is
+ /// assigned to *this.
+ ///
+ /// \returns *this after XORing with RHS.
+ APInt &operator^=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL ^= RHS.U.VAL;
+ else
+ XorAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise XOR assignment operator.
+ ///
+ /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator^=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL ^= RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] ^= RHS;
+ }
+ return *this;
+ }
+
+ /// Multiplication assignment operator.
+ ///
+ /// Multiplies this APInt by RHS and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator*=(const APInt &RHS);
+ APInt &operator*=(uint64_t RHS);
+
+ /// Addition assignment operator.
+ ///
+ /// Adds RHS to *this and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator+=(const APInt &RHS);
+ APInt &operator+=(uint64_t RHS);
+
+ /// Subtraction assignment operator.
+ ///
+ /// Subtracts RHS from *this and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator-=(const APInt &RHS);
+ APInt &operator-=(uint64_t RHS);
+
+ /// Left-shift assignment function.
+ ///
+ /// Shifts *this left by shiftAmt and assigns the result to *this.
+ ///
+ /// \returns *this after shifting left by ShiftAmt
+ APInt &operator<<=(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ if (ShiftAmt == BitWidth)
+ U.VAL = 0;
+ else
+ U.VAL <<= ShiftAmt;
+ return clearUnusedBits();
+ }
+ shlSlowCase(ShiftAmt);
+ return *this;
+ }
+
+ /// Left-shift assignment function.
+ ///
+ /// Shifts *this left by shiftAmt and assigns the result to *this.
+ ///
+ /// \returns *this after shifting left by ShiftAmt
+ APInt &operator<<=(const APInt &ShiftAmt);
+
+ /// @}
+ /// \name Binary Operators
+ /// @{
+
+ /// Multiplication operator.
+ ///
+ /// Multiplies this APInt by RHS and returns the result.
+ APInt operator*(const APInt &RHS) const;
+
+ /// Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
+ APInt operator<<(unsigned Bits) const { return shl(Bits); }
+
+ /// Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
+ APInt operator<<(const APInt &Bits) const { return shl(Bits); }
+
+ /// Arithmetic right-shift function.
+ ///
+ /// Arithmetic right-shift this APInt by shiftAmt.
+ APInt ashr(unsigned ShiftAmt) const {
+ APInt R(*this);
+ R.ashrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Arithmetic right-shift this APInt by ShiftAmt in place.
+ void ashrInPlace(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
+ if (ShiftAmt == BitWidth)
+ U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
+ else
+ U.VAL = SExtVAL >> ShiftAmt;
+ clearUnusedBits();
+ return;
+ }
+ ashrSlowCase(ShiftAmt);
+ }
+
+ /// Logical right-shift function.
+ ///
+ /// Logical right-shift this APInt by shiftAmt.
+ APInt lshr(unsigned shiftAmt) const {
+ APInt R(*this);
+ R.lshrInPlace(shiftAmt);
+ return R;
+ }
+
+ /// Logical right-shift this APInt by ShiftAmt in place.
+ void lshrInPlace(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ if (ShiftAmt == BitWidth)
+ U.VAL = 0;
+ else
+ U.VAL >>= ShiftAmt;
+ return;
+ }
+ lshrSlowCase(ShiftAmt);
+ }
+
+ /// Left-shift function.
+ ///
+ /// Left-shift this APInt by shiftAmt.
+ APInt shl(unsigned shiftAmt) const {
+ APInt R(*this);
+ R <<= shiftAmt;
+ return R;
+ }
+
+ /// Rotate left by rotateAmt.
+ APInt rotl(unsigned rotateAmt) const;
+
+ /// Rotate right by rotateAmt.
+ APInt rotr(unsigned rotateAmt) const;
+
+ /// Arithmetic right-shift function.
+ ///
+ /// Arithmetic right-shift this APInt by shiftAmt.
+ APInt ashr(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R.ashrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Arithmetic right-shift this APInt by shiftAmt in place.
+ void ashrInPlace(const APInt &shiftAmt);
+
+ /// Logical right-shift function.
+ ///
+ /// Logical right-shift this APInt by shiftAmt.
+ APInt lshr(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R.lshrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Logical right-shift this APInt by ShiftAmt in place.
+ void lshrInPlace(const APInt &ShiftAmt);
+
+ /// Left-shift function.
+ ///
+ /// Left-shift this APInt by shiftAmt.
+ APInt shl(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R <<= ShiftAmt;
+ return R;
+ }
+
+ /// Rotate left by rotateAmt.
+ APInt rotl(const APInt &rotateAmt) const;
+
+ /// Rotate right by rotateAmt.
+ APInt rotr(const APInt &rotateAmt) const;
+
+ /// Unsigned division operation.
+ ///
+ /// Perform an unsigned divide operation on this APInt by RHS. Both this and
+ /// RHS are treated as unsigned quantities for purposes of this division.
+ ///
+ /// \returns a new APInt value containing the division result, rounded towards
+ /// zero.
+ APInt udiv(const APInt &RHS) const;
+ APInt udiv(uint64_t RHS) const;
+
+ /// Signed division function for APInt.
+ ///
+ /// Signed divide this APInt by APInt RHS.
+ ///
+ /// The result is rounded towards zero.
+ APInt sdiv(const APInt &RHS) const;
+ APInt sdiv(int64_t RHS) const;
+
+ /// Unsigned remainder operation.
+ ///
+ /// Perform an unsigned remainder operation on this APInt with RHS being the
+ /// divisor. Both this and RHS are treated as unsigned quantities for purposes
+ /// of this operation. Note that this is a true remainder operation and not a
+ /// modulo operation because the sign follows the sign of the dividend which
+ /// is *this.
+ ///
+ /// \returns a new APInt value containing the remainder result
+ APInt urem(const APInt &RHS) const;
+ uint64_t urem(uint64_t RHS) const;
+
+ /// Function for signed remainder operation.
+ ///
+ /// Signed remainder operation on APInt.
+ APInt srem(const APInt &RHS) const;
+ int64_t srem(int64_t RHS) const;
+
+ /// Dual division/remainder interface.
+ ///
+ /// Sometimes it is convenient to divide two APInt values and obtain both the
+ /// quotient and remainder. This function does both operations in the same
+ /// computation making it a little more efficient. The pair of input arguments
+ /// may overlap with the pair of output arguments. It is safe to call
+ /// udivrem(X, Y, X, Y), for example.
+ static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+ APInt &Remainder);
+ static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
+ uint64_t &Remainder);
+
+ static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+ APInt &Remainder);
+ static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
+ int64_t &Remainder);
+
+ // Operations that return overflow indicators.
+ APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
+ APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
+ APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
+ APInt usub_ov(const APInt &RHS, bool &Overflow) const;
+ APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
+ APInt smul_ov(const APInt &RHS, bool &Overflow) const;
+ APInt umul_ov(const APInt &RHS, bool &Overflow) const;
+ APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
+ APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
+
+ // Operations that saturate
+ APInt sadd_sat(const APInt &RHS) const;
+ APInt uadd_sat(const APInt &RHS) const;
+ APInt ssub_sat(const APInt &RHS) const;
+ APInt usub_sat(const APInt &RHS) const;
+ APInt smul_sat(const APInt &RHS) const;
+ APInt umul_sat(const APInt &RHS) const;
+ APInt sshl_sat(const APInt &RHS) const;
+ APInt ushl_sat(const APInt &RHS) const;
+
+ /// Array-indexing support.
+ ///
+ /// \returns the bit value at bitPosition
+ bool operator[](unsigned bitPosition) const {
+ assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
+ return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
+ }
+
+ /// @}
+ /// \name Comparison Operators
+ /// @{
+
+ /// Equality operator.
+ ///
+ /// Compares this APInt with RHS for the validity of the equality
+ /// relationship.
+ bool operator==(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
+ if (isSingleWord())
+ return U.VAL == RHS.U.VAL;
+ return EqualSlowCase(RHS);
+ }
+
+ /// Equality operator.
+ ///
+ /// Compares this APInt with a uint64_t for the validity of the equality
+ /// relationship.
+ ///
+ /// \returns true if *this == Val
+ bool operator==(uint64_t Val) const {
+ return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
+ }
+
+ /// Equality comparison.
+ ///
+ /// Compares this APInt with RHS for the validity of the equality
+ /// relationship.
+ ///
+ /// \returns true if *this == Val
+ bool eq(const APInt &RHS) const { return (*this) == RHS; }
+
+ /// Inequality operator.
+ ///
+ /// Compares this APInt with RHS for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
+
+ /// Inequality operator.
+ ///
+ /// Compares this APInt with a uint64_t for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool operator!=(uint64_t Val) const { return !((*this) == Val); }
+
+ /// Inequality comparison
+ ///
+ /// Compares this APInt with RHS for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool ne(const APInt &RHS) const { return !((*this) == RHS); }
+
+ /// Unsigned less than comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when both are considered unsigned.
+ bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
+
+ /// Unsigned less than comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when considered unsigned.
+ bool ult(uint64_t RHS) const {
+ // Only need to check active bits if not a single word.
+ return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
+ }
+
+ /// Signed less than comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when both are considered signed.
+ bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
+
+ /// Signed less than comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when considered signed.
+ bool slt(int64_t RHS) const {
+ return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
+ : getSExtValue() < RHS;
+ }
+
+ /// Unsigned less or equal comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when both are considered unsigned.
+ bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
+
+ /// Unsigned less or equal comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when considered unsigned.
+ bool ule(uint64_t RHS) const { return !ugt(RHS); }
+
+ /// Signed less or equal comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when both are considered signed.
+ bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
+
+ /// Signed less or equal comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for the
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when considered signed.
+ bool sle(uint64_t RHS) const { return !sgt(RHS); }
+
+ /// Unsigned greater than comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when both are considered unsigned.
+ bool ugt(const APInt &RHS) const { return !ule(RHS); }
+
+ /// Unsigned greater than comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when considered unsigned.
+ bool ugt(uint64_t RHS) const {
+ // Only need to check active bits if not a single word.
+ return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
+ }
+
+ /// Signed greater than comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for the
+ /// validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when both are considered signed.
+ bool sgt(const APInt &RHS) const { return !sle(RHS); }
+
+ /// Signed greater than comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when considered signed.
+ bool sgt(int64_t RHS) const {
+ return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
+ : getSExtValue() > RHS;
+ }
+
+ /// Unsigned greater or equal comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when both are considered unsigned.
+ bool uge(const APInt &RHS) const { return !ult(RHS); }
+
+ /// Unsigned greater or equal comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when considered unsigned.
+ bool uge(uint64_t RHS) const { return !ult(RHS); }
+
+ /// Signed greater or equal comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when both are considered signed.
+ bool sge(const APInt &RHS) const { return !slt(RHS); }
+
+ /// Signed greater or equal comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when considered signed.
+ bool sge(int64_t RHS) const { return !slt(RHS); }
+
+ /// This operation tests if there are any pairs of corresponding bits
+ /// between this APInt and RHS that are both set.
+ bool intersects(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return (U.VAL & RHS.U.VAL) != 0;
+ return intersectsSlowCase(RHS);
+ }
+
+ /// This operation checks that all bits set in this APInt are also set in RHS.
+ bool isSubsetOf(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return (U.VAL & ~RHS.U.VAL) == 0;
+ return isSubsetOfSlowCase(RHS);
+ }
+
+ /// @}
+ /// \name Resizing Operators
+ /// @{
+
+ /// Truncate to new width.
+ ///
+ /// Truncate the APInt to a specified width. It is an error to specify a width
+ /// that is greater than or equal to the current width.
+ APInt trunc(unsigned width) const;
+
+ /// Truncate to new width with unsigned saturation.
+ ///
+ /// If the APInt, treated as unsigned integer, can be losslessly truncated to
+ /// the new bitwidth, then return truncated APInt. Else, return max value.
+ APInt truncUSat(unsigned width) const;
+
+ /// Truncate to new width with signed saturation.
+ ///
+ /// If this APInt, treated as signed integer, can be losslessly truncated to
+ /// the new bitwidth, then return truncated APInt. Else, return either
+ /// signed min value if the APInt was negative, or signed max value.
+ APInt truncSSat(unsigned width) const;
+
+ /// Sign extend to a new width.
+ ///
+ /// This operation sign extends the APInt to a new width. If the high order
+ /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
+ /// It is an error to specify a width that is less than or equal to the
+ /// current width.
+ APInt sext(unsigned width) const;
+
+ /// Zero extend to a new width.
+ ///
+ /// This operation zero extends the APInt to a new width. The high order bits
+ /// are filled with 0 bits. It is an error to specify a width that is less
+ /// than or equal to the current width.
+ APInt zext(unsigned width) const;
+
+ /// Sign extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is sign
+ /// extended, truncated, or left alone to make it that width.
+ APInt sextOrTrunc(unsigned width) const;
+
+ /// Zero extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is zero
+ /// extended, truncated, or left alone to make it that width.
+ APInt zextOrTrunc(unsigned width) const;
+
+ /// Sign extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is sign
+ /// extended, or left alone to make it that width.
+ APInt sextOrSelf(unsigned width) const;
+
+ /// Zero extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is zero
+ /// extended, or left alone to make it that width.
+ APInt zextOrSelf(unsigned width) const;
+
+ /// @}
+ /// \name Bit Manipulation Operators
+ /// @{
+
+ /// Set every bit to 1.
+ void setAllBits() {
+ if (isSingleWord())
+ U.VAL = WORDTYPE_MAX;
+ else
+ // Set all the bits in all the words.
+ memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
+ // Clear the unused ones
+ clearUnusedBits();
+ }
+
+ /// Set a given bit to 1.
+ ///
+ /// Set the given bit to 1 whose position is given as "bitPosition".
+ void setBit(unsigned BitPosition) {
+ assert(BitPosition < BitWidth && "BitPosition out of range");
+ WordType Mask = maskBit(BitPosition);
+ if (isSingleWord())
+ U.VAL |= Mask;
+ else
+ U.pVal[whichWord(BitPosition)] |= Mask;
+ }
+
+ /// Set the sign bit to 1.
+ void setSignBit() {
+ setBit(BitWidth - 1);
+ }
+
+ /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
+ void setBits(unsigned loBit, unsigned hiBit) {
+ assert(hiBit <= BitWidth && "hiBit out of range");
+ assert(loBit <= BitWidth && "loBit out of range");
+ assert(loBit <= hiBit && "loBit greater than hiBit");
+ if (loBit == hiBit)
+ return;
+ if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
+ uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
+ mask <<= loBit;
+ if (isSingleWord())
+ U.VAL |= mask;
+ else
+ U.pVal[0] |= mask;
+ } else {
+ setBitsSlowCase(loBit, hiBit);
+ }
+ }
+
+ /// Set the top bits starting from loBit.
+ void setBitsFrom(unsigned loBit) {
+ return setBits(loBit, BitWidth);
+ }
+
+ /// Set the bottom loBits bits.
+ void setLowBits(unsigned loBits) {
+ return setBits(0, loBits);
+ }
+
+ /// Set the top hiBits bits.
+ void setHighBits(unsigned hiBits) {
+ return setBits(BitWidth - hiBits, BitWidth);
+ }
+
+ /// Set every bit to 0.
+ void clearAllBits() {
+ if (isSingleWord())
+ U.VAL = 0;
+ else
+ memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
+ }
+
+ /// Set a given bit to 0.
+ ///
+ /// Set the given bit to 0 whose position is given as "bitPosition".
+ void clearBit(unsigned BitPosition) {
+ assert(BitPosition < BitWidth && "BitPosition out of range");
+ WordType Mask = ~maskBit(BitPosition);
+ if (isSingleWord())
+ U.VAL &= Mask;
+ else
+ U.pVal[whichWord(BitPosition)] &= Mask;
+ }
+
+ /// Set bottom loBits bits to 0.
+ void clearLowBits(unsigned loBits) {
+ assert(loBits <= BitWidth && "More bits than bitwidth");
+ APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
+ *this &= Keep;
+ }
+
+ /// Set the sign bit to 0.
+ void clearSignBit() {
+ clearBit(BitWidth - 1);
+ }
+
+ /// Toggle every bit to its opposite value.
+ void flipAllBits() {
+ if (isSingleWord()) {
+ U.VAL ^= WORDTYPE_MAX;
+ clearUnusedBits();
+ } else {
+ flipAllBitsSlowCase();
+ }
+ }
+
+ /// Toggles a given bit to its opposite value.
+ ///
+ /// Toggle a given bit to its opposite value whose position is given
+ /// as "bitPosition".
+ void flipBit(unsigned bitPosition);
+
+ /// Negate this APInt in place.
+ void negate() {
+ flipAllBits();
+ ++(*this);
+ }
+
+ /// Insert the bits from a smaller APInt starting at bitPosition.
+ void insertBits(const APInt &SubBits, unsigned bitPosition);
+ void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
+
+ /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
+ APInt extractBits(unsigned numBits, unsigned bitPosition) const;
+ uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
+
+ /// @}
+ /// \name Value Characterization Functions
+ /// @{
+
+ /// Return the number of bits in the APInt.
+ unsigned getBitWidth() const { return BitWidth; }
+
+ /// Get the number of words.
+ ///
+ /// Here one word's bitwidth equals to that of uint64_t.
+ ///
+ /// \returns the number of words to hold the integer value of this APInt.
+ unsigned getNumWords() const { return getNumWords(BitWidth); }
+
+ /// Get the number of words.
+ ///
+ /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
+ ///
+ /// \returns the number of words to hold the integer value with a given bit
+ /// width.
+ static unsigned getNumWords(unsigned BitWidth) {
+ return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
+ }
+
+ /// Compute the number of active bits in the value
+ ///
+ /// This function returns the number of active bits which is defined as the
+ /// bit width minus the number of leading zeros. This is used in several
+ /// computations to see how "wide" the value is.
+ unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
+
+ /// Compute the number of active words in the value of this APInt.
+ ///
+ /// This is used in conjunction with getActiveData to extract the raw value of
+ /// the APInt.
+ unsigned getActiveWords() const {
+ unsigned numActiveBits = getActiveBits();
+ return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
+ }
+
+ /// Get the minimum bit size for this signed APInt
+ ///
+ /// Computes the minimum bit width for this APInt while considering it to be a
+ /// signed (and probably negative) value. If the value is not negative, this
+ /// function returns the same value as getActiveBits()+1. Otherwise, it
+ /// returns the smallest bit width that will retain the negative value. For
+ /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
+ /// for -1, this function will always return 1.
+ unsigned getMinSignedBits() const {
+ if (isNegative())
+ return BitWidth - countLeadingOnes() + 1;
+ return getActiveBits() + 1;
+ }
+
+ /// Get zero extended value
+ ///
+ /// This method attempts to return the value of this APInt as a zero extended
+ /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
+ /// uint64_t. Otherwise an assertion will result.
+ uint64_t getZExtValue() const {
+ if (isSingleWord())
+ return U.VAL;
+ assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
+ return U.pVal[0];
+ }
+
+ /// Get sign extended value
+ ///
+ /// This method attempts to return the value of this APInt as a sign extended
+ /// int64_t. The bit width must be <= 64 or the value must fit within an
+ /// int64_t. Otherwise an assertion will result.
+ int64_t getSExtValue() const {
+ if (isSingleWord())
+ return SignExtend64(U.VAL, BitWidth);
+ assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
+ return int64_t(U.pVal[0]);
+ }
+
+ /// Get bits required for string value.
+ ///
+ /// This method determines how many bits are required to hold the APInt
+ /// equivalent of the string given by \p str.
+ static unsigned getBitsNeeded(StringRef str, uint8_t radix);
+
+ /// The APInt version of the countLeadingZeros functions in
+ /// MathExtras.h.
+ ///
+ /// It counts the number of zeros from the most significant bit to the first
+ /// one bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the most significant bit to the first one bits.
+ unsigned countLeadingZeros() const {
+ if (isSingleWord()) {
+ unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
+ return llvm::countLeadingZeros(U.VAL) - unusedBits;
+ }
+ return countLeadingZerosSlowCase();
+ }
+
+ /// Count the number of leading one bits.
+ ///
+ /// This function is an APInt version of the countLeadingOnes
+ /// functions in MathExtras.h. It counts the number of ones from the most
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns 0 if the high order bit is not set, otherwise returns the number
+ /// of 1 bits from the most significant to the least
+ unsigned countLeadingOnes() const {
+ if (isSingleWord())
+ return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
+ return countLeadingOnesSlowCase();
+ }
+
+ /// Computes the number of leading bits of this APInt that are equal to its
+ /// sign bit.
+ unsigned getNumSignBits() const {
+ return isNegative() ? countLeadingOnes() : countLeadingZeros();
+ }
+
+ /// Count the number of trailing zero bits.
+ ///
+ /// This function is an APInt version of the countTrailingZeros
+ /// functions in MathExtras.h. It counts the number of zeros from the least
+ /// significant bit to the first set bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the least significant bit to the first one bit.
+ unsigned countTrailingZeros() const {
+ if (isSingleWord())
+ return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
+ return countTrailingZerosSlowCase();
+ }
+
+ /// Count the number of trailing one bits.
+ ///
+ /// This function is an APInt version of the countTrailingOnes
+ /// functions in MathExtras.h. It counts the number of ones from the least
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns BitWidth if the value is all ones, otherwise returns the number
+ /// of ones from the least significant bit to the first zero bit.
+ unsigned countTrailingOnes() const {
+ if (isSingleWord())
+ return llvm::countTrailingOnes(U.VAL);
+ return countTrailingOnesSlowCase();
+ }
+
+ /// Count the number of bits set.
+ ///
+ /// This function is an APInt version of the countPopulation functions
+ /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
+ ///
+ /// \returns 0 if the value is zero, otherwise returns the number of set bits.
+ unsigned countPopulation() const {
+ if (isSingleWord())
+ return llvm::countPopulation(U.VAL);
+ return countPopulationSlowCase();
+ }
+
+ /// @}
+ /// \name Conversion Functions
+ /// @{
+ void print(raw_ostream &OS, bool isSigned) const;
+
+ /// Converts an APInt to a string and append it to Str. Str is commonly a
+ /// SmallString.
+ void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
+ bool formatAsCLiteral = false) const;
+
+ /// Considers the APInt to be unsigned and converts it into a string in the
+ /// radix given. The radix can be 2, 8, 10 16, or 36.
+ void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+ toString(Str, Radix, false, false);
+ }
+
+ /// Considers the APInt to be signed and converts it into a string in the
+ /// radix given. The radix can be 2, 8, 10, 16, or 36.
+ void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+ toString(Str, Radix, true, false);
+ }
+
+ /// Return the APInt as a std::string.
+ ///
+ /// Note that this is an inefficient method. It is better to pass in a
+ /// SmallVector/SmallString to the methods above to avoid thrashing the heap
+ /// for the string.
+ std::string toString(unsigned Radix, bool Signed) const;
+
+ /// \returns a byte-swapped representation of this APInt Value.
+ APInt byteSwap() const;
+
+ /// \returns the value with the bit representation reversed of this APInt
+ /// Value.
+ APInt reverseBits() const;
+
+ /// Converts this APInt to a double value.
+ double roundToDouble(bool isSigned) const;
+
+ /// Converts this unsigned APInt to a double value.
+ double roundToDouble() const { return roundToDouble(false); }
+
+ /// Converts this signed APInt to a double value.
+ double signedRoundToDouble() const { return roundToDouble(true); }
+
+ /// Converts APInt bits to a double
+ ///
+ /// The conversion does not do a translation from integer to double, it just
+ /// re-interprets the bits as a double. Note that it is valid to do this on
+ /// any bit width. Exactly 64 bits will be translated.
+ double bitsToDouble() const {
+ return BitsToDouble(getWord(0));
+ }
+
+ /// Converts APInt bits to a float
+ ///
+ /// The conversion does not do a translation from integer to float, it just
+ /// re-interprets the bits as a float. Note that it is valid to do this on
+ /// any bit width. Exactly 32 bits will be translated.
+ float bitsToFloat() const {
+ return BitsToFloat(static_cast<uint32_t>(getWord(0)));
+ }
+
+ /// Converts a double to APInt bits.
+ ///
+ /// The conversion does not do a translation from double to integer, it just
+ /// re-interprets the bits of the double.
+ static APInt doubleToBits(double V) {
+ return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
+ }
+
+ /// Converts a float to APInt bits.
+ ///
+ /// The conversion does not do a translation from float to integer, it just
+ /// re-interprets the bits of the float.
+ static APInt floatToBits(float V) {
+ return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
+ }
+
+ /// @}
+ /// \name Mathematics Operations
+ /// @{
+
+ /// \returns the floor log base 2 of this APInt.
+ unsigned logBase2() const { return getActiveBits() - 1; }
+
+ /// \returns the ceil log base 2 of this APInt.
+ unsigned ceilLogBase2() const {
+ APInt temp(*this);
+ --temp;
+ return temp.getActiveBits();
+ }
+
+ /// \returns the nearest log base 2 of this APInt. Ties round up.
+ ///
+ /// NOTE: When we have a BitWidth of 1, we define:
+ ///
+ /// log2(0) = UINT32_MAX
+ /// log2(1) = 0
+ ///
+ /// to get around any mathematical concerns resulting from
+ /// referencing 2 in a space where 2 does no exist.
+ unsigned nearestLogBase2() const {
+ // Special case when we have a bitwidth of 1. If VAL is 1, then we
+ // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
+ // UINT32_MAX.
+ if (BitWidth == 1)
+ return U.VAL - 1;
+
+ // Handle the zero case.
+ if (isNullValue())
+ return UINT32_MAX;
+
+ // The non-zero case is handled by computing:
+ //
+ // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
+ //
+ // where x[i] is referring to the value of the ith bit of x.
+ unsigned lg = logBase2();
+ return lg + unsigned((*this)[lg - 1]);
+ }
+
+ /// \returns the log base 2 of this APInt if its an exact power of two, -1
+ /// otherwise
+ int32_t exactLogBase2() const {
+ if (!isPowerOf2())
+ return -1;
+ return logBase2();
+ }
+
+ /// Compute the square root
+ APInt sqrt() const;
+
+ /// Get the absolute value;
+ ///
+ /// If *this is < 0 then return -(*this), otherwise *this;
+ APInt abs() const {
+ if (isNegative())
+ return -(*this);
+ return *this;
+ }
+
+ /// \returns the multiplicative inverse for a given modulo.
+ APInt multiplicativeInverse(const APInt &modulo) const;
+
+ /// @}
+ /// \name Support for division by constant
+ /// @{
+
+ /// Calculate the magic number for signed division by a constant.
+ struct ms;
+ ms magic() const;
+
+ /// Calculate the magic number for unsigned division by a constant.
+ struct mu;
+ mu magicu(unsigned LeadingZeros = 0) const;
+
+ /// @}
+ /// \name Building-block Operations for APInt and APFloat
+ /// @{
+
+ // These building block operations operate on a representation of arbitrary
+ // precision, two's-complement, bignum integer values. They should be
+ // sufficient to implement APInt and APFloat bignum requirements. Inputs are
+ // generally a pointer to the base of an array of integer parts, representing
+ // an unsigned bignum, and a count of how many parts there are.
+
+ /// Sets the least significant part of a bignum to the input value, and zeroes
+ /// out higher parts.
+ static void tcSet(WordType *, WordType, unsigned);
+
+ /// Assign one bignum to another.
+ static void tcAssign(WordType *, const WordType *, unsigned);
+
+ /// Returns true if a bignum is zero, false otherwise.
+ static bool tcIsZero(const WordType *, unsigned);
+
+ /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
+ static int tcExtractBit(const WordType *, unsigned bit);
+
+ /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
+ /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
+ /// significant bit of DST. All high bits above srcBITS in DST are
+ /// zero-filled.
+ static void tcExtract(WordType *, unsigned dstCount,
+ const WordType *, unsigned srcBits,
+ unsigned srcLSB);
+
+ /// Set the given bit of a bignum. Zero-based.
+ static void tcSetBit(WordType *, unsigned bit);
+
+ /// Clear the given bit of a bignum. Zero-based.
+ static void tcClearBit(WordType *, unsigned bit);
+
+ /// Returns the bit number of the least or most significant set bit of a
+ /// number. If the input number has no bits set -1U is returned.
+ static unsigned tcLSB(const WordType *, unsigned n);
+ static unsigned tcMSB(const WordType *parts, unsigned n);
+
+ /// Negate a bignum in-place.
+ static void tcNegate(WordType *, unsigned);
+
+ /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
+ static WordType tcAdd(WordType *, const WordType *,
+ WordType carry, unsigned);
+ /// DST += RHS. Returns the carry flag.
+ static WordType tcAddPart(WordType *, WordType, unsigned);
+
+ /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
+ static WordType tcSubtract(WordType *, const WordType *,
+ WordType carry, unsigned);
+ /// DST -= RHS. Returns the carry flag.
+ static WordType tcSubtractPart(WordType *, WordType, unsigned);
+
+ /// DST += SRC * MULTIPLIER + PART if add is true
+ /// DST = SRC * MULTIPLIER + PART if add is false
+ ///
+ /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
+ /// start at the same point, i.e. DST == SRC.
+ ///
+ /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
+ /// Otherwise DST is filled with the least significant DSTPARTS parts of the
+ /// result, and if all of the omitted higher parts were zero return zero,
+ /// otherwise overflow occurred and return one.
+ static int tcMultiplyPart(WordType *dst, const WordType *src,
+ WordType multiplier, WordType carry,
+ unsigned srcParts, unsigned dstParts,
+ bool add);
+
+ /// DST = LHS * RHS, where DST has the same width as the operands and is
+ /// filled with the least significant parts of the result. Returns one if
+ /// overflow occurred, otherwise zero. DST must be disjoint from both
+ /// operands.
+ static int tcMultiply(WordType *, const WordType *, const WordType *,
+ unsigned);
+
+ /// DST = LHS * RHS, where DST has width the sum of the widths of the
+ /// operands. No overflow occurs. DST must be disjoint from both operands.
+ static void tcFullMultiply(WordType *, const WordType *,
+ const WordType *, unsigned, unsigned);
+
+ /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
+ /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
+ /// REMAINDER to the remainder, return zero. i.e.
+ ///
+ /// OLD_LHS = RHS * LHS + REMAINDER
+ ///
+ /// SCRATCH is a bignum of the same size as the operands and result for use by
+ /// the routine; its contents need not be initialized and are destroyed. LHS,
+ /// REMAINDER and SCRATCH must be distinct.
+ static int tcDivide(WordType *lhs, const WordType *rhs,
+ WordType *remainder, WordType *scratch,
+ unsigned parts);
+
+ /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
+ /// restrictions on Count.
+ static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
+
+ /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
+ /// restrictions on Count.
+ static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
+
+ /// The obvious AND, OR and XOR and complement operations.
+ static void tcAnd(WordType *, const WordType *, unsigned);
+ static void tcOr(WordType *, const WordType *, unsigned);
+ static void tcXor(WordType *, const WordType *, unsigned);
+ static void tcComplement(WordType *, unsigned);
+
+ /// Comparison (unsigned) of two bignums.
+ static int tcCompare(const WordType *, const WordType *, unsigned);
+
+ /// Increment a bignum in-place. Return the carry flag.
+ static WordType tcIncrement(WordType *dst, unsigned parts) {
+ return tcAddPart(dst, 1, parts);
+ }
+
+ /// Decrement a bignum in-place. Return the borrow flag.
+ static WordType tcDecrement(WordType *dst, unsigned parts) {
+ return tcSubtractPart(dst, 1, parts);
+ }
+
+ /// Set the least significant BITS and clear the rest.
+ static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
+
+ /// debug method
+ void dump() const;
+
+ /// @}
+};
+
+/// Magic data for optimising signed division by a constant.
+struct APInt::ms {
+ APInt m; ///< magic number
+ unsigned s; ///< shift amount
+};
+
+/// Magic data for optimising unsigned division by a constant.
+struct APInt::mu {
+ APInt m; ///< magic number
+ bool a; ///< add indicator
+ unsigned s; ///< shift amount
+};
+
+inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
+
+inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
+
+/// Unary bitwise complement operator.
+///
+/// \returns an APInt that is the bitwise complement of \p v.
+inline APInt operator~(APInt v) {
+ v.flipAllBits();
+ return v;
+}
+
+inline APInt operator&(APInt a, const APInt &b) {
+ a &= b;
+ return a;
+}
+
+inline APInt operator&(const APInt &a, APInt &&b) {
+ b &= a;
+ return std::move(b);
+}
+
+inline APInt operator&(APInt a, uint64_t RHS) {
+ a &= RHS;
+ return a;
+}
+
+inline APInt operator&(uint64_t LHS, APInt b) {
+ b &= LHS;
+ return b;
+}
+
+inline APInt operator|(APInt a, const APInt &b) {
+ a |= b;
+ return a;
+}
+
+inline APInt operator|(const APInt &a, APInt &&b) {
+ b |= a;
+ return std::move(b);
+}
+
+inline APInt operator|(APInt a, uint64_t RHS) {
+ a |= RHS;
+ return a;
+}
+
+inline APInt operator|(uint64_t LHS, APInt b) {
+ b |= LHS;
+ return b;
+}
+
+inline APInt operator^(APInt a, const APInt &b) {
+ a ^= b;
+ return a;
+}
+
+inline APInt operator^(const APInt &a, APInt &&b) {
+ b ^= a;
+ return std::move(b);
+}
+
+inline APInt operator^(APInt a, uint64_t RHS) {
+ a ^= RHS;
+ return a;
+}
+
+inline APInt operator^(uint64_t LHS, APInt b) {
+ b ^= LHS;
+ return b;
+}
+
+inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
+ I.print(OS, true);
+ return OS;
+}
+
+inline APInt operator-(APInt v) {
+ v.negate();
+ return v;
+}
+
+inline APInt operator+(APInt a, const APInt &b) {
+ a += b;
+ return a;
+}
+
+inline APInt operator+(const APInt &a, APInt &&b) {
+ b += a;
+ return std::move(b);
+}
+
+inline APInt operator+(APInt a, uint64_t RHS) {
+ a += RHS;
+ return a;
+}
+
+inline APInt operator+(uint64_t LHS, APInt b) {
+ b += LHS;
+ return b;
+}
+
+inline APInt operator-(APInt a, const APInt &b) {
+ a -= b;
+ return a;
+}
+
+inline APInt operator-(const APInt &a, APInt &&b) {
+ b.negate();
+ b += a;
+ return std::move(b);
+}
+
+inline APInt operator-(APInt a, uint64_t RHS) {
+ a -= RHS;
+ return a;
+}
+
+inline APInt operator-(uint64_t LHS, APInt b) {
+ b.negate();
+ b += LHS;
+ return b;
+}
+
+inline APInt operator*(APInt a, uint64_t RHS) {
+ a *= RHS;
+ return a;
+}
+
+inline APInt operator*(uint64_t LHS, APInt b) {
+ b *= LHS;
+ return b;
+}
+
+
+namespace APIntOps {
+
+/// Determine the smaller of two APInts considered to be signed.
+inline const APInt &smin(const APInt &A, const APInt &B) {
+ return A.slt(B) ? A : B;
+}
+
+/// Determine the larger of two APInts considered to be signed.
+inline const APInt &smax(const APInt &A, const APInt &B) {
+ return A.sgt(B) ? A : B;
+}
+
+/// Determine the smaller of two APInts considered to be signed.
+inline const APInt &umin(const APInt &A, const APInt &B) {
+ return A.ult(B) ? A : B;
+}
+
+/// Determine the larger of two APInts considered to be unsigned.
+inline const APInt &umax(const APInt &A, const APInt &B) {
+ return A.ugt(B) ? A : B;
+}
+
+/// Compute GCD of two unsigned APInt values.
+///
+/// This function returns the greatest common divisor of the two APInt values
+/// using Stein's algorithm.
+///
+/// \returns the greatest common divisor of A and B.
+APInt GreatestCommonDivisor(APInt A, APInt B);
+
+/// Converts the given APInt to a double value.
+///
+/// Treats the APInt as an unsigned value for conversion purposes.
+inline double RoundAPIntToDouble(const APInt &APIVal) {
+ return APIVal.roundToDouble();
+}
+
+/// Converts the given APInt to a double value.
+///
+/// Treats the APInt as a signed value for conversion purposes.
+inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
+ return APIVal.signedRoundToDouble();
+}
+
+/// Converts the given APInt to a float vlalue.
+inline float RoundAPIntToFloat(const APInt &APIVal) {
+ return float(RoundAPIntToDouble(APIVal));
+}
+
+/// Converts the given APInt to a float value.
+///
+/// Treats the APInt as a signed value for conversion purposes.
+inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
+ return float(APIVal.signedRoundToDouble());
+}
+
+/// Converts the given double value into a APInt.
+///
+/// This function convert a double value to an APInt value.
+APInt RoundDoubleToAPInt(double Double, unsigned width);
+
+/// Converts a float value into a APInt.
+///
+/// Converts a float value into an APInt value.
+inline APInt RoundFloatToAPInt(float Float, unsigned width) {
+ return RoundDoubleToAPInt(double(Float), width);
+}
+
+/// Return A unsign-divided by B, rounded by the given rounding mode.
+APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
+
+/// Return A sign-divided by B, rounded by the given rounding mode.
+APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
+
+/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
+/// (e.g. 32 for i32).
+/// This function finds the smallest number n, such that
+/// (a) n >= 0 and q(n) = 0, or
+/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
+/// integers, belong to two different intervals [Rk, Rk+R),
+/// where R = 2^BW, and k is an integer.
+/// The idea here is to find when q(n) "overflows" 2^BW, while at the
+/// same time "allowing" subtraction. In unsigned modulo arithmetic a
+/// subtraction (treated as addition of negated numbers) would always
+/// count as an overflow, but here we want to allow values to decrease
+/// and increase as long as they are within the same interval.
+/// Specifically, adding of two negative numbers should not cause an
+/// overflow (as long as the magnitude does not exceed the bit width).
+/// On the other hand, given a positive number, adding a negative
+/// number to it can give a negative result, which would cause the
+/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
+/// treated as a special case of an overflow.
+///
+/// This function returns None if after finding k that minimizes the
+/// positive solution to q(n) = kR, both solutions are contained between
+/// two consecutive integers.
+///
+/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
+/// in arithmetic modulo 2^BW, and treating the values as signed) by the
+/// virtue of *signed* overflow. This function will *not* find such an n,
+/// however it may find a value of n satisfying the inequalities due to
+/// an *unsigned* overflow (if the values are treated as unsigned).
+/// To find a solution for a signed overflow, treat it as a problem of
+/// finding an unsigned overflow with a range with of BW-1.
+///
+/// The returned value may have a different bit width from the input
+/// coefficients.
+Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
+ unsigned RangeWidth);
+
+/// Compare two values, and if they are different, return the position of the
+/// most significant bit that is different in the values.
+Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
+ const APInt &B);
+
+} // End of APIntOps namespace
+
+// See friend declaration above. This additional declaration is required in
+// order to compile LLVM with IBM xlC compiler.
+hash_code hash_value(const APInt &Arg);
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);
+
+} // namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/APSInt.h b/third_party/llvm-project/include/llvm/ADT/APSInt.h
new file mode 100644
index 000000000..0f991826c
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/APSInt.h
@@ -0,0 +1,353 @@
+//===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the APSInt class, which is a simple class that
+// represents an arbitrary sized integer that knows its signedness.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APSINT_H
+#define LLVM_ADT_APSINT_H
+
+#include "llvm/ADT/APInt.h"
+
+namespace llvm {
+
+class LLVM_NODISCARD APSInt : public APInt {
+ bool IsUnsigned;
+
+public:
+ /// Default constructor that creates an uninitialized APInt.
+ explicit APSInt() : IsUnsigned(false) {}
+
+ /// APSInt ctor - Create an APSInt with the specified width, default to
+ /// unsigned.
+ explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
+ : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
+
+ explicit APSInt(APInt I, bool isUnsigned = true)
+ : APInt(std::move(I)), IsUnsigned(isUnsigned) {}
+
+ /// Construct an APSInt from a string representation.
+ ///
+ /// This constructor interprets the string \p Str using the radix of 10.
+ /// The interpretation stops at the end of the string. The bit width of the
+ /// constructed APSInt is determined automatically.
+ ///
+ /// \param Str the string to be interpreted.
+ explicit APSInt(StringRef Str);
+
+ /// Determine sign of this APSInt.
+ ///
+ /// \returns true if this APSInt is negative, false otherwise
+ bool isNegative() const { return isSigned() && APInt::isNegative(); }
+
+ /// Determine if this APSInt Value is non-negative (>= 0)
+ ///
+ /// \returns true if this APSInt is non-negative, false otherwise
+ bool isNonNegative() const { return !isNegative(); }
+
+ /// Determine if this APSInt Value is positive.
+ ///
+ /// This tests if the value of this APSInt is positive (> 0). Note
+ /// that 0 is not a positive value.
+ ///
+ /// \returns true if this APSInt is positive.
+ bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
+
+ APSInt &operator=(APInt RHS) {
+ // Retain our current sign.
+ APInt::operator=(std::move(RHS));
+ return *this;
+ }
+
+ APSInt &operator=(uint64_t RHS) {
+ // Retain our current sign.
+ APInt::operator=(RHS);
+ return *this;
+ }
+
+ // Query sign information.
+ bool isSigned() const { return !IsUnsigned; }
+ bool isUnsigned() const { return IsUnsigned; }
+ void setIsUnsigned(bool Val) { IsUnsigned = Val; }
+ void setIsSigned(bool Val) { IsUnsigned = !Val; }
+
+ /// toString - Append this APSInt to the specified SmallString.
+ void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+ APInt::toString(Str, Radix, isSigned());
+ }
+ /// toString - Converts an APInt to a std::string. This is an inefficient
+ /// method; you should prefer passing in a SmallString instead.
+ std::string toString(unsigned Radix) const {
+ return APInt::toString(Radix, isSigned());
+ }
+ using APInt::toString;
+
+ /// Get the correctly-extended \c int64_t value.
+ int64_t getExtValue() const {
+ assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
+ return isSigned() ? getSExtValue() : getZExtValue();
+ }
+
+ APSInt trunc(uint32_t width) const {
+ return APSInt(APInt::trunc(width), IsUnsigned);
+ }
+
+ APSInt extend(uint32_t width) const {
+ if (IsUnsigned)
+ return APSInt(zext(width), IsUnsigned);
+ else
+ return APSInt(sext(width), IsUnsigned);
+ }
+
+ APSInt extOrTrunc(uint32_t width) const {
+ if (IsUnsigned)
+ return APSInt(zextOrTrunc(width), IsUnsigned);
+ else
+ return APSInt(sextOrTrunc(width), IsUnsigned);
+ }
+
+ const APSInt &operator%=(const APSInt &RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ if (IsUnsigned)
+ *this = urem(RHS);
+ else
+ *this = srem(RHS);
+ return *this;
+ }
+ const APSInt &operator/=(const APSInt &RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ if (IsUnsigned)
+ *this = udiv(RHS);
+ else
+ *this = sdiv(RHS);
+ return *this;
+ }
+ APSInt operator%(const APSInt &RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
+ }
+ APSInt operator/(const APSInt &RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
+ }
+
+ APSInt operator>>(unsigned Amt) const {
+ return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
+ }
+ APSInt& operator>>=(unsigned Amt) {
+ if (IsUnsigned)
+ lshrInPlace(Amt);
+ else
+ ashrInPlace(Amt);
+ return *this;
+ }
+
+ inline bool operator<(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? ult(RHS) : slt(RHS);
+ }
+ inline bool operator>(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? ugt(RHS) : sgt(RHS);
+ }
+ inline bool operator<=(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? ule(RHS) : sle(RHS);
+ }
+ inline bool operator>=(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return IsUnsigned ? uge(RHS) : sge(RHS);
+ }
+ inline bool operator==(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return eq(RHS);
+ }
+ inline bool operator!=(const APSInt& RHS) const {
+ return !((*this) == RHS);
+ }
+
+ bool operator==(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) == 0;
+ }
+ bool operator!=(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) != 0;
+ }
+ bool operator<=(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) <= 0;
+ }
+ bool operator>=(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) >= 0;
+ }
+ bool operator<(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) < 0;
+ }
+ bool operator>(int64_t RHS) const {
+ return compareValues(*this, get(RHS)) > 0;
+ }
+
+ // The remaining operators just wrap the logic of APInt, but retain the
+ // signedness information.
+
+ APSInt operator<<(unsigned Bits) const {
+ return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
+ }
+ APSInt& operator<<=(unsigned Amt) {
+ static_cast<APInt&>(*this) <<= Amt;
+ return *this;
+ }
+
+ APSInt& operator++() {
+ ++(static_cast<APInt&>(*this));
+ return *this;
+ }
+ APSInt& operator--() {
+ --(static_cast<APInt&>(*this));
+ return *this;
+ }
+ APSInt operator++(int) {
+ return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
+ }
+ APSInt operator--(int) {
+ return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
+ }
+ APSInt operator-() const {
+ return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
+ }
+ APSInt& operator+=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) += RHS;
+ return *this;
+ }
+ APSInt& operator-=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) -= RHS;
+ return *this;
+ }
+ APSInt& operator*=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) *= RHS;
+ return *this;
+ }
+ APSInt& operator&=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) &= RHS;
+ return *this;
+ }
+ APSInt& operator|=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) |= RHS;
+ return *this;
+ }
+ APSInt& operator^=(const APSInt& RHS) {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ static_cast<APInt&>(*this) ^= RHS;
+ return *this;
+ }
+
+ APSInt operator&(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
+ }
+
+ APSInt operator|(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
+ }
+
+ APSInt operator^(const APSInt &RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
+ }
+
+ APSInt operator*(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
+ }
+ APSInt operator+(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
+ }
+ APSInt operator-(const APSInt& RHS) const {
+ assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
+ return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
+ }
+ APSInt operator~() const {
+ return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
+ }
+
+ /// getMaxValue - Return the APSInt representing the maximum integer value
+ /// with the given bit width and signedness.
+ static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
+ return APSInt(Unsigned ? APInt::getMaxValue(numBits)
+ : APInt::getSignedMaxValue(numBits), Unsigned);
+ }
+
+ /// getMinValue - Return the APSInt representing the minimum integer value
+ /// with the given bit width and signedness.
+ static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
+ return APSInt(Unsigned ? APInt::getMinValue(numBits)
+ : APInt::getSignedMinValue(numBits), Unsigned);
+ }
+
+ /// Determine if two APSInts have the same value, zero- or
+ /// sign-extending as needed.
+ static bool isSameValue(const APSInt &I1, const APSInt &I2) {
+ return !compareValues(I1, I2);
+ }
+
+ /// Compare underlying values of two numbers.
+ static int compareValues(const APSInt &I1, const APSInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
+ return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2);
+
+ // Check for a bit-width mismatch.
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return compareValues(I1, I2.extend(I1.getBitWidth()));
+ if (I2.getBitWidth() > I1.getBitWidth())
+ return compareValues(I1.extend(I2.getBitWidth()), I2);
+
+ // We have a signedness mismatch. Check for negative values and do an
+ // unsigned compare if both are positive.
+ if (I1.isSigned()) {
+ assert(!I2.isSigned() && "Expected signed mismatch");
+ if (I1.isNegative())
+ return -1;
+ } else {
+ assert(I2.isSigned() && "Expected signed mismatch");
+ if (I2.isNegative())
+ return 1;
+ }
+
+ return I1.compare(I2);
+ }
+
+ static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
+ static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }
+
+ /// Profile - Used to insert APSInt objects, or objects that contain APSInt
+ /// objects, into FoldingSets.
+ void Profile(FoldingSetNodeID& ID) const;
+};
+
+inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
+inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
+inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
+inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
+inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
+inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }
+
+inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
+ I.print(OS, I.isSigned());
+ return OS;
+}
+
+} // end namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/AllocatorList.h b/third_party/llvm-project/include/llvm/ADT/AllocatorList.h
new file mode 100644
index 000000000..405a2e426
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/AllocatorList.h
@@ -0,0 +1,240 @@
+//===- llvm/ADT/AllocatorList.h - Custom allocator list ---------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ALLOCATORLIST_H
+#define LLVM_ADT_ALLOCATORLIST_H
+
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/simple_ilist.h"
+#include "llvm/Support/Allocator.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+/// A linked-list with a custom, local allocator.
+///
+/// Expose a std::list-like interface that owns and uses a custom LLVM-style
+/// allocator (e.g., BumpPtrAllocator), leveraging \a simple_ilist for the
+/// implementation details.
+///
+/// Because this list owns the allocator, calling \a splice() with a different
+/// list isn't generally safe. As such, \a splice has been left out of the
+/// interface entirely.
+template <class T, class AllocatorT> class AllocatorList : AllocatorT {
+ struct Node : ilist_node<Node> {
+ Node(Node &&) = delete;
+ Node(const Node &) = delete;
+ Node &operator=(Node &&) = delete;
+ Node &operator=(const Node &) = delete;
+
+ Node(T &&V) : V(std::move(V)) {}
+ Node(const T &V) : V(V) {}
+ template <class... Ts> Node(Ts &&... Vs) : V(std::forward<Ts>(Vs)...) {}
+ T V;
+ };
+
+ using list_type = simple_ilist<Node>;
+
+ list_type List;
+
+ AllocatorT &getAlloc() { return *this; }
+ const AllocatorT &getAlloc() const { return *this; }
+
+ template <class... ArgTs> Node *create(ArgTs &&... Args) {
+ return new (getAlloc()) Node(std::forward<ArgTs>(Args)...);
+ }
+
+ struct Cloner {
+ AllocatorList &AL;
+
+ Cloner(AllocatorList &AL) : AL(AL) {}
+
+ Node *operator()(const Node &N) const { return AL.create(N.V); }
+ };
+
+ struct Disposer {
+ AllocatorList &AL;
+
+ Disposer(AllocatorList &AL) : AL(AL) {}
+
+ void operator()(Node *N) const {
+ N->~Node();
+ AL.getAlloc().Deallocate(N);
+ }
+ };
+
+public:
+ using value_type = T;
+ using pointer = T *;
+ using reference = T &;
+ using const_pointer = const T *;
+ using const_reference = const T &;
+ using size_type = typename list_type::size_type;
+ using difference_type = typename list_type::difference_type;
+
+private:
+ template <class ValueT, class IteratorBase>
+ class IteratorImpl
+ : public iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>,
+ IteratorBase,
+ std::bidirectional_iterator_tag, ValueT> {
+ template <class OtherValueT, class OtherIteratorBase>
+ friend class IteratorImpl;
+ friend AllocatorList;
+
+ using base_type =
+ iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>, IteratorBase,
+ std::bidirectional_iterator_tag, ValueT>;
+
+ public:
+ using value_type = ValueT;
+ using pointer = ValueT *;
+ using reference = ValueT &;
+
+ IteratorImpl() = default;
+ IteratorImpl(const IteratorImpl &) = default;
+ IteratorImpl &operator=(const IteratorImpl &) = default;
+
+ explicit IteratorImpl(const IteratorBase &I) : base_type(I) {}
+
+ template <class OtherValueT, class OtherIteratorBase>
+ IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
+ typename std::enable_if<std::is_convertible<
+ OtherIteratorBase, IteratorBase>::value>::type * = nullptr)
+ : base_type(X.wrapped()) {}
+
+ ~IteratorImpl() = default;
+
+ reference operator*() const { return base_type::wrapped()->V; }
+ pointer operator->() const { return &operator*(); }
+
+ friend bool operator==(const IteratorImpl &L, const IteratorImpl &R) {
+ return L.wrapped() == R.wrapped();
+ }
+ friend bool operator!=(const IteratorImpl &L, const IteratorImpl &R) {
+ return !(L == R);
+ }
+ };
+
+public:
+ using iterator = IteratorImpl<T, typename list_type::iterator>;
+ using reverse_iterator =
+ IteratorImpl<T, typename list_type::reverse_iterator>;
+ using const_iterator =
+ IteratorImpl<const T, typename list_type::const_iterator>;
+ using const_reverse_iterator =
+ IteratorImpl<const T, typename list_type::const_reverse_iterator>;
+
+ AllocatorList() = default;
+ AllocatorList(AllocatorList &&X)
+ : AllocatorT(std::move(X.getAlloc())), List(std::move(X.List)) {}
+
+ AllocatorList(const AllocatorList &X) {
+ List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
+ }
+
+ AllocatorList &operator=(AllocatorList &&X) {
+ clear(); // Dispose of current nodes explicitly.
+ List = std::move(X.List);
+ getAlloc() = std::move(X.getAlloc());
+ return *this;
+ }
+
+ AllocatorList &operator=(const AllocatorList &X) {
+ List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
+ return *this;
+ }
+
+ ~AllocatorList() { clear(); }
+
+ void swap(AllocatorList &RHS) {
+ List.swap(RHS.List);
+ std::swap(getAlloc(), RHS.getAlloc());
+ }
+
+ bool empty() { return List.empty(); }
+ size_t size() { return List.size(); }
+
+ iterator begin() { return iterator(List.begin()); }
+ iterator end() { return iterator(List.end()); }
+ const_iterator begin() const { return const_iterator(List.begin()); }
+ const_iterator end() const { return const_iterator(List.end()); }
+ reverse_iterator rbegin() { return reverse_iterator(List.rbegin()); }
+ reverse_iterator rend() { return reverse_iterator(List.rend()); }
+ const_reverse_iterator rbegin() const {
+ return const_reverse_iterator(List.rbegin());
+ }
+ const_reverse_iterator rend() const {
+ return const_reverse_iterator(List.rend());
+ }
+
+ T &back() { return List.back().V; }
+ T &front() { return List.front().V; }
+ const T &back() const { return List.back().V; }
+ const T &front() const { return List.front().V; }
+
+ template <class... Ts> iterator emplace(iterator I, Ts &&... Vs) {
+ return iterator(List.insert(I.wrapped(), *create(std::forward<Ts>(Vs)...)));
+ }
+
+ iterator insert(iterator I, T &&V) {
+ return iterator(List.insert(I.wrapped(), *create(std::move(V))));
+ }
+ iterator insert(iterator I, const T &V) {
+ return iterator(List.insert(I.wrapped(), *create(V)));
+ }
+
+ template <class Iterator>
+ void insert(iterator I, Iterator First, Iterator Last) {
+ for (; First != Last; ++First)
+ List.insert(I.wrapped(), *create(*First));
+ }
+
+ iterator erase(iterator I) {
+ return iterator(List.eraseAndDispose(I.wrapped(), Disposer(*this)));
+ }
+
+ iterator erase(iterator First, iterator Last) {
+ return iterator(
+ List.eraseAndDispose(First.wrapped(), Last.wrapped(), Disposer(*this)));
+ }
+
+ void clear() { List.clearAndDispose(Disposer(*this)); }
+ void pop_back() { List.eraseAndDispose(--List.end(), Disposer(*this)); }
+ void pop_front() { List.eraseAndDispose(List.begin(), Disposer(*this)); }
+ void push_back(T &&V) { insert(end(), std::move(V)); }
+ void push_front(T &&V) { insert(begin(), std::move(V)); }
+ void push_back(const T &V) { insert(end(), V); }
+ void push_front(const T &V) { insert(begin(), V); }
+ template <class... Ts> void emplace_back(Ts &&... Vs) {
+ emplace(end(), std::forward<Ts>(Vs)...);
+ }
+ template <class... Ts> void emplace_front(Ts &&... Vs) {
+ emplace(begin(), std::forward<Ts>(Vs)...);
+ }
+
+ /// Reset the underlying allocator.
+ ///
+ /// \pre \c empty()
+ void resetAlloc() {
+ assert(empty() && "Cannot reset allocator if not empty");
+ getAlloc().Reset();
+ }
+};
+
+template <class T> using BumpPtrList = AllocatorList<T, BumpPtrAllocator>;
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ALLOCATORLIST_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ArrayRef.h b/third_party/llvm-project/include/llvm/ADT/ArrayRef.h
new file mode 100644
index 000000000..f6455d3fa
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ArrayRef.h
@@ -0,0 +1,540 @@
+//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ARRAYREF_H
+#define LLVM_ADT_ARRAYREF_H
+
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cstddef>
+#include <initializer_list>
+#include <iterator>
+#include <memory>
+#include <type_traits>
+#include <vector>
+
+namespace llvm {
+
+ /// ArrayRef - Represent a constant reference to an array (0 or more elements
+ /// consecutively in memory), i.e. a start pointer and a length. It allows
+ /// various APIs to take consecutive elements easily and conveniently.
+ ///
+ /// This class does not own the underlying data, it is expected to be used in
+ /// situations where the data resides in some other buffer, whose lifetime
+ /// extends past that of the ArrayRef. For this reason, it is not in general
+ /// safe to store an ArrayRef.
+ ///
+ /// This is intended to be trivially copyable, so it should be passed by
+ /// value.
+ template<typename T>
+ class LLVM_NODISCARD ArrayRef {
+ public:
+ using iterator = const T *;
+ using const_iterator = const T *;
+ using size_type = size_t;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+
+ private:
+ /// The start of the array, in an external buffer.
+ const T *Data = nullptr;
+
+ /// The number of elements.
+ size_type Length = 0;
+
+ public:
+ /// @name Constructors
+ /// @{
+
+ /// Construct an empty ArrayRef.
+ /*implicit*/ ArrayRef() = default;
+
+ /// Construct an empty ArrayRef from None.
+ /*implicit*/ ArrayRef(NoneType) {}
+
+ /// Construct an ArrayRef from a single element.
+ /*implicit*/ ArrayRef(const T &OneElt)
+ : Data(&OneElt), Length(1) {}
+
+ /// Construct an ArrayRef from a pointer and length.
+ /*implicit*/ ArrayRef(const T *data, size_t length)
+ : Data(data), Length(length) {}
+
+ /// Construct an ArrayRef from a range.
+ ArrayRef(const T *begin, const T *end)
+ : Data(begin), Length(end - begin) {}
+
+ /// Construct an ArrayRef from a SmallVector. This is templated in order to
+ /// avoid instantiating SmallVectorTemplateCommon<T> whenever we
+ /// copy-construct an ArrayRef.
+ template<typename U>
+ /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec)
+ : Data(Vec.data()), Length(Vec.size()) {
+ }
+
+ /// Construct an ArrayRef from a std::vector.
+ template<typename A>
+ /*implicit*/ ArrayRef(const std::vector<T, A> &Vec)
+ : Data(Vec.data()), Length(Vec.size()) {}
+
+ /// Construct an ArrayRef from a std::array
+ template <size_t N>
+ /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr)
+ : Data(Arr.data()), Length(N) {}
+
+ /// Construct an ArrayRef from a C array.
+ template <size_t N>
+ /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {}
+
+ /// Construct an ArrayRef from a std::initializer_list.
+ /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec)
+ : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()),
+ Length(Vec.size()) {}
+
+ /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to
+ /// ensure that only ArrayRefs of pointers can be converted.
+ template <typename U>
+ ArrayRef(
+ const ArrayRef<U *> &A,
+ typename std::enable_if<
+ std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
+ : Data(A.data()), Length(A.size()) {}
+
+ /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is
+ /// templated in order to avoid instantiating SmallVectorTemplateCommon<T>
+ /// whenever we copy-construct an ArrayRef.
+ template<typename U, typename DummyT>
+ /*implicit*/ ArrayRef(
+ const SmallVectorTemplateCommon<U *, DummyT> &Vec,
+ typename std::enable_if<
+ std::is_convertible<U *const *, T const *>::value>::type * = nullptr)
+ : Data(Vec.data()), Length(Vec.size()) {
+ }
+
+ /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE
+ /// to ensure that only vectors of pointers can be converted.
+ template<typename U, typename A>
+ ArrayRef(const std::vector<U *, A> &Vec,
+ typename std::enable_if<
+ std::is_convertible<U *const *, T const *>::value>::type* = 0)
+ : Data(Vec.data()), Length(Vec.size()) {}
+
+ /// @}
+ /// @name Simple Operations
+ /// @{
+
+ iterator begin() const { return Data; }
+ iterator end() const { return Data + Length; }
+
+ reverse_iterator rbegin() const { return reverse_iterator(end()); }
+ reverse_iterator rend() const { return reverse_iterator(begin()); }
+
+ /// empty - Check if the array is empty.
+ bool empty() const { return Length == 0; }
+
+ const T *data() const { return Data; }
+
+ /// size - Get the array size.
+ size_t size() const { return Length; }
+
+ /// front - Get the first element.
+ const T &front() const {
+ assert(!empty());
+ return Data[0];
+ }
+
+ /// back - Get the last element.
+ const T &back() const {
+ assert(!empty());
+ return Data[Length-1];
+ }
+
+ // copy - Allocate copy in Allocator and return ArrayRef<T> to it.
+ template <typename Allocator> ArrayRef<T> copy(Allocator &A) {
+ T *Buff = A.template Allocate<T>(Length);
+ std::uninitialized_copy(begin(), end(), Buff);
+ return ArrayRef<T>(Buff, Length);
+ }
+
+ /// equals - Check for element-wise equality.
+ bool equals(ArrayRef RHS) const {
+ if (Length != RHS.Length)
+ return false;
+ return std::equal(begin(), end(), RHS.begin());
+ }
+
+ /// slice(n, m) - Chop off the first N elements of the array, and keep M
+ /// elements in the array.
+ ArrayRef<T> slice(size_t N, size_t M) const {
+ assert(N+M <= size() && "Invalid specifier");
+ return ArrayRef<T>(data()+N, M);
+ }
+
+ /// slice(n) - Chop off the first N elements of the array.
+ ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); }
+
+ /// Drop the first \p N elements of the array.
+ ArrayRef<T> drop_front(size_t N = 1) const {
+ assert(size() >= N && "Dropping more elements than exist");
+ return slice(N, size() - N);
+ }
+
+ /// Drop the last \p N elements of the array.
+ ArrayRef<T> drop_back(size_t N = 1) const {
+ assert(size() >= N && "Dropping more elements than exist");
+ return slice(0, size() - N);
+ }
+
+ /// Return a copy of *this with the first N elements satisfying the
+ /// given predicate removed.
+ template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const {
+ return ArrayRef<T>(find_if_not(*this, Pred), end());
+ }
+
+ /// Return a copy of *this with the first N elements not satisfying
+ /// the given predicate removed.
+ template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const {
+ return ArrayRef<T>(find_if(*this, Pred), end());
+ }
+
+ /// Return a copy of *this with only the first \p N elements.
+ ArrayRef<T> take_front(size_t N = 1) const {
+ if (N >= size())
+ return *this;
+ return drop_back(size() - N);
+ }
+
+ /// Return a copy of *this with only the last \p N elements.
+ ArrayRef<T> take_back(size_t N = 1) const {
+ if (N >= size())
+ return *this;
+ return drop_front(size() - N);
+ }
+
+ /// Return the first N elements of this Array that satisfy the given
+ /// predicate.
+ template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const {
+ return ArrayRef<T>(begin(), find_if_not(*this, Pred));
+ }
+
+ /// Return the first N elements of this Array that don't satisfy the
+ /// given predicate.
+ template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const {
+ return ArrayRef<T>(begin(), find_if(*this, Pred));
+ }
+
+ /// @}
+ /// @name Operator Overloads
+ /// @{
+ const T &operator[](size_t Index) const {
+ assert(Index < Length && "Invalid index!");
+ return Data[Index];
+ }
+
+ /// Disallow accidental assignment from a temporary.
+ ///
+ /// The declaration here is extra complicated so that "arrayRef = {}"
+ /// continues to select the move assignment operator.
+ template <typename U>
+ typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
+ operator=(U &&Temporary) = delete;
+
+ /// Disallow accidental assignment from a temporary.
+ ///
+ /// The declaration here is extra complicated so that "arrayRef = {}"
+ /// continues to select the move assignment operator.
+ template <typename U>
+ typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type &
+ operator=(std::initializer_list<U>) = delete;
+
+ /// @}
+ /// @name Expensive Operations
+ /// @{
+ std::vector<T> vec() const {
+ return std::vector<T>(Data, Data+Length);
+ }
+
+ /// @}
+ /// @name Conversion operators
+ /// @{
+ operator std::vector<T>() const {
+ return std::vector<T>(Data, Data+Length);
+ }
+
+ /// @}
+ };
+
+ /// MutableArrayRef - Represent a mutable reference to an array (0 or more
+ /// elements consecutively in memory), i.e. a start pointer and a length. It
+ /// allows various APIs to take and modify consecutive elements easily and
+ /// conveniently.
+ ///
+ /// This class does not own the underlying data, it is expected to be used in
+ /// situations where the data resides in some other buffer, whose lifetime
+ /// extends past that of the MutableArrayRef. For this reason, it is not in
+ /// general safe to store a MutableArrayRef.
+ ///
+ /// This is intended to be trivially copyable, so it should be passed by
+ /// value.
+ template<typename T>
+ class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> {
+ public:
+ using iterator = T *;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+
+ /// Construct an empty MutableArrayRef.
+ /*implicit*/ MutableArrayRef() = default;
+
+ /// Construct an empty MutableArrayRef from None.
+ /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {}
+
+ /// Construct an MutableArrayRef from a single element.
+ /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {}
+
+ /// Construct an MutableArrayRef from a pointer and length.
+ /*implicit*/ MutableArrayRef(T *data, size_t length)
+ : ArrayRef<T>(data, length) {}
+
+ /// Construct an MutableArrayRef from a range.
+ MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {}
+
+ /// Construct an MutableArrayRef from a SmallVector.
+ /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec)
+ : ArrayRef<T>(Vec) {}
+
+ /// Construct a MutableArrayRef from a std::vector.
+ /*implicit*/ MutableArrayRef(std::vector<T> &Vec)
+ : ArrayRef<T>(Vec) {}
+
+ /// Construct an ArrayRef from a std::array
+ template <size_t N>
+ /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr)
+ : ArrayRef<T>(Arr) {}
+
+ /// Construct an MutableArrayRef from a C array.
+ template <size_t N>
+ /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {}
+
+ T *data() const { return const_cast<T*>(ArrayRef<T>::data()); }
+
+ iterator begin() const { return data(); }
+ iterator end() const { return data() + this->size(); }
+
+ reverse_iterator rbegin() const { return reverse_iterator(end()); }
+ reverse_iterator rend() const { return reverse_iterator(begin()); }
+
+ /// front - Get the first element.
+ T &front() const {
+ assert(!this->empty());
+ return data()[0];
+ }
+
+ /// back - Get the last element.
+ T &back() const {
+ assert(!this->empty());
+ return data()[this->size()-1];
+ }
+
+ /// slice(n, m) - Chop off the first N elements of the array, and keep M
+ /// elements in the array.
+ MutableArrayRef<T> slice(size_t N, size_t M) const {
+ assert(N + M <= this->size() && "Invalid specifier");
+ return MutableArrayRef<T>(this->data() + N, M);
+ }
+
+ /// slice(n) - Chop off the first N elements of the array.
+ MutableArrayRef<T> slice(size_t N) const {
+ return slice(N, this->size() - N);
+ }
+
+ /// Drop the first \p N elements of the array.
+ MutableArrayRef<T> drop_front(size_t N = 1) const {
+ assert(this->size() >= N && "Dropping more elements than exist");
+ return slice(N, this->size() - N);
+ }
+
+ MutableArrayRef<T> drop_back(size_t N = 1) const {
+ assert(this->size() >= N && "Dropping more elements than exist");
+ return slice(0, this->size() - N);
+ }
+
+ /// Return a copy of *this with the first N elements satisfying the
+ /// given predicate removed.
+ template <class PredicateT>
+ MutableArrayRef<T> drop_while(PredicateT Pred) const {
+ return MutableArrayRef<T>(find_if_not(*this, Pred), end());
+ }
+
+ /// Return a copy of *this with the first N elements not satisfying
+ /// the given predicate removed.
+ template <class PredicateT>
+ MutableArrayRef<T> drop_until(PredicateT Pred) const {
+ return MutableArrayRef<T>(find_if(*this, Pred), end());
+ }
+
+ /// Return a copy of *this with only the first \p N elements.
+ MutableArrayRef<T> take_front(size_t N = 1) const {
+ if (N >= this->size())
+ return *this;
+ return drop_back(this->size() - N);
+ }
+
+ /// Return a copy of *this with only the last \p N elements.
+ MutableArrayRef<T> take_back(size_t N = 1) const {
+ if (N >= this->size())
+ return *this;
+ return drop_front(this->size() - N);
+ }
+
+ /// Return the first N elements of this Array that satisfy the given
+ /// predicate.
+ template <class PredicateT>
+ MutableArrayRef<T> take_while(PredicateT Pred) const {
+ return MutableArrayRef<T>(begin(), find_if_not(*this, Pred));
+ }
+
+ /// Return the first N elements of this Array that don't satisfy the
+ /// given predicate.
+ template <class PredicateT>
+ MutableArrayRef<T> take_until(PredicateT Pred) const {
+ return MutableArrayRef<T>(begin(), find_if(*this, Pred));
+ }
+
+ /// @}
+ /// @name Operator Overloads
+ /// @{
+ T &operator[](size_t Index) const {
+ assert(Index < this->size() && "Invalid index!");
+ return data()[Index];
+ }
+ };
+
+ /// This is a MutableArrayRef that owns its array.
+ template <typename T> class OwningArrayRef : public MutableArrayRef<T> {
+ public:
+ OwningArrayRef() = default;
+ OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {}
+
+ OwningArrayRef(ArrayRef<T> Data)
+ : MutableArrayRef<T>(new T[Data.size()], Data.size()) {
+ std::copy(Data.begin(), Data.end(), this->begin());
+ }
+
+ OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); }
+
+ OwningArrayRef &operator=(OwningArrayRef &&Other) {
+ delete[] this->data();
+ this->MutableArrayRef<T>::operator=(Other);
+ Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>());
+ return *this;
+ }
+
+ ~OwningArrayRef() { delete[] this->data(); }
+ };
+
+ /// @name ArrayRef Convenience constructors
+ /// @{
+
+ /// Construct an ArrayRef from a single element.
+ template<typename T>
+ ArrayRef<T> makeArrayRef(const T &OneElt) {
+ return OneElt;
+ }
+
+ /// Construct an ArrayRef from a pointer and length.
+ template<typename T>
+ ArrayRef<T> makeArrayRef(const T *data, size_t length) {
+ return ArrayRef<T>(data, length);
+ }
+
+ /// Construct an ArrayRef from a range.
+ template<typename T>
+ ArrayRef<T> makeArrayRef(const T *begin, const T *end) {
+ return ArrayRef<T>(begin, end);
+ }
+
+ /// Construct an ArrayRef from a SmallVector.
+ template <typename T>
+ ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) {
+ return Vec;
+ }
+
+ /// Construct an ArrayRef from a SmallVector.
+ template <typename T, unsigned N>
+ ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) {
+ return Vec;
+ }
+
+ /// Construct an ArrayRef from a std::vector.
+ template<typename T>
+ ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) {
+ return Vec;
+ }
+
+ /// Construct an ArrayRef from a std::array.
+ template <typename T, std::size_t N>
+ ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) {
+ return Arr;
+ }
+
+ /// Construct an ArrayRef from an ArrayRef (no-op) (const)
+ template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) {
+ return Vec;
+ }
+
+ /// Construct an ArrayRef from an ArrayRef (no-op)
+ template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) {
+ return Vec;
+ }
+
+ /// Construct an ArrayRef from a C array.
+ template<typename T, size_t N>
+ ArrayRef<T> makeArrayRef(const T (&Arr)[N]) {
+ return ArrayRef<T>(Arr);
+ }
+
+ /// Construct a MutableArrayRef from a single element.
+ template<typename T>
+ MutableArrayRef<T> makeMutableArrayRef(T &OneElt) {
+ return OneElt;
+ }
+
+ /// Construct a MutableArrayRef from a pointer and length.
+ template<typename T>
+ MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) {
+ return MutableArrayRef<T>(data, length);
+ }
+
+ /// @}
+ /// @name ArrayRef Comparison Operators
+ /// @{
+
+ template<typename T>
+ inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) {
+ return LHS.equals(RHS);
+ }
+
+ template<typename T>
+ inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) {
+ return !(LHS == RHS);
+ }
+
+ /// @}
+
+ template <typename T> hash_code hash_value(ArrayRef<T> S) {
+ return hash_combine_range(S.begin(), S.end());
+ }
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ARRAYREF_H
diff --git a/third_party/llvm-project/include/llvm/ADT/BitmaskEnum.h b/third_party/llvm-project/include/llvm/ADT/BitmaskEnum.h
new file mode 100644
index 000000000..1a18bc721
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/BitmaskEnum.h
@@ -0,0 +1,152 @@
+//===-- llvm/ADT/BitmaskEnum.h ----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_BITMASKENUM_H
+#define LLVM_ADT_BITMASKENUM_H
+
+#include <cassert>
+#include <type_traits>
+#include <utility>
+
+#include "llvm/Support/MathExtras.h"
+
+/// LLVM_MARK_AS_BITMASK_ENUM lets you opt in an individual enum type so you can
+/// perform bitwise operations on it without putting static_cast everywhere.
+///
+/// \code
+/// enum MyEnum {
+/// E1 = 1, E2 = 2, E3 = 4, E4 = 8,
+/// LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue = */ E4)
+/// };
+///
+/// void Foo() {
+/// MyEnum A = (E1 | E2) & E3 ^ ~E4; // Look, ma: No static_cast!
+/// }
+/// \endcode
+///
+/// Normally when you do a bitwise operation on an enum value, you get back an
+/// instance of the underlying type (e.g. int). But using this macro, bitwise
+/// ops on your enum will return you back instances of the enum. This is
+/// particularly useful for enums which represent a combination of flags.
+///
+/// The parameter to LLVM_MARK_AS_BITMASK_ENUM should be the largest individual
+/// value in your enum.
+///
+/// All of the enum's values must be non-negative.
+#define LLVM_MARK_AS_BITMASK_ENUM(LargestValue) \
+ LLVM_BITMASK_LARGEST_ENUMERATOR = LargestValue
+
+/// LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE() pulls the operator overloads used
+/// by LLVM_MARK_AS_BITMASK_ENUM into the current namespace.
+///
+/// Suppose you have an enum foo::bar::MyEnum. Before using
+/// LLVM_MARK_AS_BITMASK_ENUM on MyEnum, you must put
+/// LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE() somewhere inside namespace foo or
+/// namespace foo::bar. This allows the relevant operator overloads to be found
+/// by ADL.
+///
+/// You don't need to use this macro in namespace llvm; it's done at the bottom
+/// of this file.
+#define LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE() \
+ using ::llvm::BitmaskEnumDetail::operator~; \
+ using ::llvm::BitmaskEnumDetail::operator|; \
+ using ::llvm::BitmaskEnumDetail::operator&; \
+ using ::llvm::BitmaskEnumDetail::operator^; \
+ using ::llvm::BitmaskEnumDetail::operator|=; \
+ using ::llvm::BitmaskEnumDetail::operator&=; \
+ /* Force a semicolon at the end of this macro. */ \
+ using ::llvm::BitmaskEnumDetail::operator^=
+
+namespace llvm {
+
+/// Traits class to determine whether an enum has a
+/// LLVM_BITMASK_LARGEST_ENUMERATOR enumerator.
+template <typename E, typename Enable = void>
+struct is_bitmask_enum : std::false_type {};
+
+template <typename E>
+struct is_bitmask_enum<
+ E, typename std::enable_if<sizeof(E::LLVM_BITMASK_LARGEST_ENUMERATOR) >=
+ 0>::type> : std::true_type {};
+namespace BitmaskEnumDetail {
+
+/// Get a bitmask with 1s in all places up to the high-order bit of E's largest
+/// value.
+template <typename E> typename std::underlying_type<E>::type Mask() {
+ // On overflow, NextPowerOf2 returns zero with the type uint64_t, so
+ // subtracting 1 gives us the mask with all bits set, like we want.
+ return NextPowerOf2(static_cast<typename std::underlying_type<E>::type>(
+ E::LLVM_BITMASK_LARGEST_ENUMERATOR)) -
+ 1;
+}
+
+/// Check that Val is in range for E, and return Val cast to E's underlying
+/// type.
+template <typename E> typename std::underlying_type<E>::type Underlying(E Val) {
+ auto U = static_cast<typename std::underlying_type<E>::type>(Val);
+ assert(U >= 0 && "Negative enum values are not allowed.");
+ assert(U <= Mask<E>() && "Enum value too large (or largest val too small?)");
+ return U;
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E operator~(E Val) {
+ return static_cast<E>(~Underlying(Val) & Mask<E>());
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E operator|(E LHS, E RHS) {
+ return static_cast<E>(Underlying(LHS) | Underlying(RHS));
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E operator&(E LHS, E RHS) {
+ return static_cast<E>(Underlying(LHS) & Underlying(RHS));
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E operator^(E LHS, E RHS) {
+ return static_cast<E>(Underlying(LHS) ^ Underlying(RHS));
+}
+
+// |=, &=, and ^= return a reference to LHS, to match the behavior of the
+// operators on builtin types.
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E &operator|=(E &LHS, E RHS) {
+ LHS = LHS | RHS;
+ return LHS;
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E &operator&=(E &LHS, E RHS) {
+ LHS = LHS & RHS;
+ return LHS;
+}
+
+template <typename E,
+ typename = typename std::enable_if<is_bitmask_enum<E>::value>::type>
+E &operator^=(E &LHS, E RHS) {
+ LHS = LHS ^ RHS;
+ return LHS;
+}
+
+} // namespace BitmaskEnumDetail
+
+// Enable bitmask enums in namespace ::llvm and all nested namespaces.
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+
+} // namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/DenseMap.h b/third_party/llvm-project/include/llvm/ADT/DenseMap.h
new file mode 100644
index 000000000..948a6e6bf
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/DenseMap.h
@@ -0,0 +1,1275 @@
+//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DenseMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_DENSEMAP_H
+#define LLVM_ADT_DENSEMAP_H
+
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/EpochTracker.h"
+#include "llvm/Support/AlignOf.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/ReverseIteration.h"
+#include "llvm/Support/type_traits.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+namespace detail {
+
+// We extend a pair to allow users to override the bucket type with their own
+// implementation without requiring two members.
+template <typename KeyT, typename ValueT>
+struct DenseMapPair : public std::pair<KeyT, ValueT> {
+ using std::pair<KeyT, ValueT>::pair;
+
+ KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
+ const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
+ ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
+ const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
+};
+
+} // end namespace detail
+
+template <typename KeyT, typename ValueT,
+ typename KeyInfoT = DenseMapInfo<KeyT>,
+ typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
+ bool IsConst = false>
+class DenseMapIterator;
+
+template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
+ typename BucketT>
+class DenseMapBase : public DebugEpochBase {
+ template <typename T>
+ using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
+
+public:
+ using size_type = unsigned;
+ using key_type = KeyT;
+ using mapped_type = ValueT;
+ using value_type = BucketT;
+
+ using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
+ using const_iterator =
+ DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
+
+ inline iterator begin() {
+ // When the map is empty, avoid the overhead of advancing/retreating past
+ // empty buckets.
+ if (empty())
+ return end();
+ if (shouldReverseIterate<KeyT>())
+ return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
+ return makeIterator(getBuckets(), getBucketsEnd(), *this);
+ }
+ inline iterator end() {
+ return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
+ }
+ inline const_iterator begin() const {
+ if (empty())
+ return end();
+ if (shouldReverseIterate<KeyT>())
+ return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
+ return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
+ }
+ inline const_iterator end() const {
+ return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
+ }
+
+ LLVM_NODISCARD bool empty() const {
+ return getNumEntries() == 0;
+ }
+ unsigned size() const { return getNumEntries(); }
+
+ /// Grow the densemap so that it can contain at least \p NumEntries items
+ /// before resizing again.
+ void reserve(size_type NumEntries) {
+ auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
+ incrementEpoch();
+ if (NumBuckets > getNumBuckets())
+ grow(NumBuckets);
+ }
+
+ void clear() {
+ incrementEpoch();
+ if (getNumEntries() == 0 && getNumTombstones() == 0) return;
+
+ // If the capacity of the array is huge, and the # elements used is small,
+ // shrink the array.
+ if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
+ shrink_and_clear();
+ return;
+ }
+
+ const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
+ if (is_trivially_copyable<KeyT>::value &&
+ is_trivially_copyable<ValueT>::value) {
+ // Use a simpler loop when these are trivial types.
+ for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
+ P->getFirst() = EmptyKey;
+ } else {
+ unsigned NumEntries = getNumEntries();
+ for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
+ if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
+ P->getSecond().~ValueT();
+ --NumEntries;
+ }
+ P->getFirst() = EmptyKey;
+ }
+ }
+ assert(NumEntries == 0 && "Node count imbalance!");
+ }
+ setNumEntries(0);
+ setNumTombstones(0);
+ }
+
+ /// Return 1 if the specified key is in the map, 0 otherwise.
+ size_type count(const_arg_type_t<KeyT> Val) const {
+ const BucketT *TheBucket;
+ return LookupBucketFor(Val, TheBucket) ? 1 : 0;
+ }
+
+ iterator find(const_arg_type_t<KeyT> Val) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return makeIterator(TheBucket, getBucketsEnd(), *this, true);
+ return end();
+ }
+ const_iterator find(const_arg_type_t<KeyT> Val) const {
+ const BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
+ return end();
+ }
+
+ /// Alternate version of find() which allows a different, and possibly
+ /// less expensive, key type.
+ /// The DenseMapInfo is responsible for supplying methods
+ /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
+ /// type used.
+ template<class LookupKeyT>
+ iterator find_as(const LookupKeyT &Val) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return makeIterator(TheBucket, getBucketsEnd(), *this, true);
+ return end();
+ }
+ template<class LookupKeyT>
+ const_iterator find_as(const LookupKeyT &Val) const {
+ const BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return makeConstIterator(TheBucket, getBucketsEnd(), *this, true);
+ return end();
+ }
+
+ /// lookup - Return the entry for the specified key, or a default
+ /// constructed value if no such entry exists.
+ ValueT lookup(const_arg_type_t<KeyT> Val) const {
+ const BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return TheBucket->getSecond();
+ return ValueT();
+ }
+
+ // Inserts key,value pair into the map if the key isn't already in the map.
+ // If the key is already in the map, it returns false and doesn't update the
+ // value.
+ std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
+ return try_emplace(KV.first, KV.second);
+ }
+
+ // Inserts key,value pair into the map if the key isn't already in the map.
+ // If the key is already in the map, it returns false and doesn't update the
+ // value.
+ std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
+ return try_emplace(std::move(KV.first), std::move(KV.second));
+ }
+
+ // Inserts key,value pair into the map if the key isn't already in the map.
+ // The value is constructed in-place if the key is not in the map, otherwise
+ // it is not moved.
+ template <typename... Ts>
+ std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Key, TheBucket))
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ false); // Already in map.
+
+ // Otherwise, insert the new element.
+ TheBucket =
+ InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ true);
+ }
+
+ // Inserts key,value pair into the map if the key isn't already in the map.
+ // The value is constructed in-place if the key is not in the map, otherwise
+ // it is not moved.
+ template <typename... Ts>
+ std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Key, TheBucket))
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ false); // Already in map.
+
+ // Otherwise, insert the new element.
+ TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ true);
+ }
+
+ /// Alternate version of insert() which allows a different, and possibly
+ /// less expensive, key type.
+ /// The DenseMapInfo is responsible for supplying methods
+ /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
+ /// type used.
+ template <typename LookupKeyT>
+ std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
+ const LookupKeyT &Val) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Val, TheBucket))
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ false); // Already in map.
+
+ // Otherwise, insert the new element.
+ TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
+ std::move(KV.second), Val);
+ return std::make_pair(
+ makeIterator(TheBucket, getBucketsEnd(), *this, true),
+ true);
+ }
+
+ /// insert - Range insertion of pairs.
+ template<typename InputIt>
+ void insert(InputIt I, InputIt E) {
+ for (; I != E; ++I)
+ insert(*I);
+ }
+
+ bool erase(const KeyT &Val) {
+ BucketT *TheBucket;
+ if (!LookupBucketFor(Val, TheBucket))
+ return false; // not in map.
+
+ TheBucket->getSecond().~ValueT();
+ TheBucket->getFirst() = getTombstoneKey();
+ decrementNumEntries();
+ incrementNumTombstones();
+ return true;
+ }
+ void erase(iterator I) {
+ BucketT *TheBucket = &*I;
+ TheBucket->getSecond().~ValueT();
+ TheBucket->getFirst() = getTombstoneKey();
+ decrementNumEntries();
+ incrementNumTombstones();
+ }
+
+ value_type& FindAndConstruct(const KeyT &Key) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Key, TheBucket))
+ return *TheBucket;
+
+ return *InsertIntoBucket(TheBucket, Key);
+ }
+
+ ValueT &operator[](const KeyT &Key) {
+ return FindAndConstruct(Key).second;
+ }
+
+ value_type& FindAndConstruct(KeyT &&Key) {
+ BucketT *TheBucket;
+ if (LookupBucketFor(Key, TheBucket))
+ return *TheBucket;
+
+ return *InsertIntoBucket(TheBucket, std::move(Key));
+ }
+
+ ValueT &operator[](KeyT &&Key) {
+ return FindAndConstruct(std::move(Key)).second;
+ }
+
+ /// isPointerIntoBucketsArray - Return true if the specified pointer points
+ /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
+ /// value in the DenseMap).
+ bool isPointerIntoBucketsArray(const void *Ptr) const {
+ return Ptr >= getBuckets() && Ptr < getBucketsEnd();
+ }
+
+ /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
+ /// array. In conjunction with the previous method, this can be used to
+ /// determine whether an insertion caused the DenseMap to reallocate.
+ const void *getPointerIntoBucketsArray() const { return getBuckets(); }
+
+protected:
+ DenseMapBase() = default;
+
+ void destroyAll() {
+ if (getNumBuckets() == 0) // Nothing to do.
+ return;
+
+ const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
+ for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
+ P->getSecond().~ValueT();
+ P->getFirst().~KeyT();
+ }
+ }
+
+ void initEmpty() {
+ setNumEntries(0);
+ setNumTombstones(0);
+
+ assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
+ "# initial buckets must be a power of two!");
+ const KeyT EmptyKey = getEmptyKey();
+ for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
+ ::new (&B->getFirst()) KeyT(EmptyKey);
+ }
+
+ /// Returns the number of buckets to allocate to ensure that the DenseMap can
+ /// accommodate \p NumEntries without need to grow().
+ unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
+ // Ensure that "NumEntries * 4 < NumBuckets * 3"
+ if (NumEntries == 0)
+ return 0;
+ // +1 is required because of the strict equality.
+ // For example if NumEntries is 48, we need to return 401.
+ return NextPowerOf2(NumEntries * 4 / 3 + 1);
+ }
+
+ void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
+ initEmpty();
+
+ // Insert all the old elements.
+ const KeyT EmptyKey = getEmptyKey();
+ const KeyT TombstoneKey = getTombstoneKey();
+ for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
+ if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
+ // Insert the key/value into the new table.
+ BucketT *DestBucket;
+ bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
+ (void)FoundVal; // silence warning.
+ assert(!FoundVal && "Key already in new map?");
+ DestBucket->getFirst() = std::move(B->getFirst());
+ ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
+ incrementNumEntries();
+
+ // Free the value.
+ B->getSecond().~ValueT();
+ }
+ B->getFirst().~KeyT();
+ }
+ }
+
+ template <typename OtherBaseT>
+ void copyFrom(
+ const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
+ assert(&other != this);
+ assert(getNumBuckets() == other.getNumBuckets());
+
+ setNumEntries(other.getNumEntries());
+ setNumTombstones(other.getNumTombstones());
+
+ if (is_trivially_copyable<KeyT>::value &&
+ is_trivially_copyable<ValueT>::value)
+ memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
+ getNumBuckets() * sizeof(BucketT));
+ else
+ for (size_t i = 0; i < getNumBuckets(); ++i) {
+ ::new (&getBuckets()[i].getFirst())
+ KeyT(other.getBuckets()[i].getFirst());
+ if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
+ !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
+ ::new (&getBuckets()[i].getSecond())
+ ValueT(other.getBuckets()[i].getSecond());
+ }
+ }
+
+ static unsigned getHashValue(const KeyT &Val) {
+ return KeyInfoT::getHashValue(Val);
+ }
+
+ template<typename LookupKeyT>
+ static unsigned getHashValue(const LookupKeyT &Val) {
+ return KeyInfoT::getHashValue(Val);
+ }
+
+ static const KeyT getEmptyKey() {
+ static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
+ "Must pass the derived type to this template!");
+ return KeyInfoT::getEmptyKey();
+ }
+
+ static const KeyT getTombstoneKey() {
+ return KeyInfoT::getTombstoneKey();
+ }
+
+private:
+ iterator makeIterator(BucketT *P, BucketT *E,
+ DebugEpochBase &Epoch,
+ bool NoAdvance=false) {
+ if (shouldReverseIterate<KeyT>()) {
+ BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
+ return iterator(B, E, Epoch, NoAdvance);
+ }
+ return iterator(P, E, Epoch, NoAdvance);
+ }
+
+ const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
+ const DebugEpochBase &Epoch,
+ const bool NoAdvance=false) const {
+ if (shouldReverseIterate<KeyT>()) {
+ const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
+ return const_iterator(B, E, Epoch, NoAdvance);
+ }
+ return const_iterator(P, E, Epoch, NoAdvance);
+ }
+
+ unsigned getNumEntries() const {
+ return static_cast<const DerivedT *>(this)->getNumEntries();
+ }
+
+ void setNumEntries(unsigned Num) {
+ static_cast<DerivedT *>(this)->setNumEntries(Num);
+ }
+
+ void incrementNumEntries() {
+ setNumEntries(getNumEntries() + 1);
+ }
+
+ void decrementNumEntries() {
+ setNumEntries(getNumEntries() - 1);
+ }
+
+ unsigned getNumTombstones() const {
+ return static_cast<const DerivedT *>(this)->getNumTombstones();
+ }
+
+ void setNumTombstones(unsigned Num) {
+ static_cast<DerivedT *>(this)->setNumTombstones(Num);
+ }
+
+ void incrementNumTombstones() {
+ setNumTombstones(getNumTombstones() + 1);
+ }
+
+ void decrementNumTombstones() {
+ setNumTombstones(getNumTombstones() - 1);
+ }
+
+ const BucketT *getBuckets() const {
+ return static_cast<const DerivedT *>(this)->getBuckets();
+ }
+
+ BucketT *getBuckets() {
+ return static_cast<DerivedT *>(this)->getBuckets();
+ }
+
+ unsigned getNumBuckets() const {
+ return static_cast<const DerivedT *>(this)->getNumBuckets();
+ }
+
+ BucketT *getBucketsEnd() {
+ return getBuckets() + getNumBuckets();
+ }
+
+ const BucketT *getBucketsEnd() const {
+ return getBuckets() + getNumBuckets();
+ }
+
+ void grow(unsigned AtLeast) {
+ static_cast<DerivedT *>(this)->grow(AtLeast);
+ }
+
+ void shrink_and_clear() {
+ static_cast<DerivedT *>(this)->shrink_and_clear();
+ }
+
+ template <typename KeyArg, typename... ValueArgs>
+ BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
+ ValueArgs &&... Values) {
+ TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
+
+ TheBucket->getFirst() = std::forward<KeyArg>(Key);
+ ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
+ return TheBucket;
+ }
+
+ template <typename LookupKeyT>
+ BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
+ ValueT &&Value, LookupKeyT &Lookup) {
+ TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
+
+ TheBucket->getFirst() = std::move(Key);
+ ::new (&TheBucket->getSecond()) ValueT(std::move(Value));
+ return TheBucket;
+ }
+
+ template <typename LookupKeyT>
+ BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
+ BucketT *TheBucket) {
+ incrementEpoch();
+
+ // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
+ // the buckets are empty (meaning that many are filled with tombstones),
+ // grow the table.
+ //
+ // The later case is tricky. For example, if we had one empty bucket with
+ // tons of tombstones, failing lookups (e.g. for insertion) would have to
+ // probe almost the entire table until it found the empty bucket. If the
+ // table completely filled with tombstones, no lookup would ever succeed,
+ // causing infinite loops in lookup.
+ unsigned NewNumEntries = getNumEntries() + 1;
+ unsigned NumBuckets = getNumBuckets();
+ if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
+ this->grow(NumBuckets * 2);
+ LookupBucketFor(Lookup, TheBucket);
+ NumBuckets = getNumBuckets();
+ } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
+ NumBuckets/8)) {
+ this->grow(NumBuckets);
+ LookupBucketFor(Lookup, TheBucket);
+ }
+ assert(TheBucket);
+
+ // Only update the state after we've grown our bucket space appropriately
+ // so that when growing buckets we have self-consistent entry count.
+ incrementNumEntries();
+
+ // If we are writing over a tombstone, remember this.
+ const KeyT EmptyKey = getEmptyKey();
+ if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
+ decrementNumTombstones();
+
+ return TheBucket;
+ }
+
+ /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
+ /// FoundBucket. If the bucket contains the key and a value, this returns
+ /// true, otherwise it returns a bucket with an empty marker or tombstone and
+ /// returns false.
+ template<typename LookupKeyT>
+ bool LookupBucketFor(const LookupKeyT &Val,
+ const BucketT *&FoundBucket) const {
+ const BucketT *BucketsPtr = getBuckets();
+ const unsigned NumBuckets = getNumBuckets();
+
+ if (NumBuckets == 0) {
+ FoundBucket = nullptr;
+ return false;
+ }
+
+ // FoundTombstone - Keep track of whether we find a tombstone while probing.
+ const BucketT *FoundTombstone = nullptr;
+ const KeyT EmptyKey = getEmptyKey();
+ const KeyT TombstoneKey = getTombstoneKey();
+ assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
+ !KeyInfoT::isEqual(Val, TombstoneKey) &&
+ "Empty/Tombstone value shouldn't be inserted into map!");
+
+ unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
+ unsigned ProbeAmt = 1;
+ while (true) {
+ const BucketT *ThisBucket = BucketsPtr + BucketNo;
+ // Found Val's bucket? If so, return it.
+ if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
+ FoundBucket = ThisBucket;
+ return true;
+ }
+
+ // If we found an empty bucket, the key doesn't exist in the set.
+ // Insert it and return the default value.
+ if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
+ // If we've already seen a tombstone while probing, fill it in instead
+ // of the empty bucket we eventually probed to.
+ FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
+ return false;
+ }
+
+ // If this is a tombstone, remember it. If Val ends up not in the map, we
+ // prefer to return it than something that would require more probing.
+ if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
+ !FoundTombstone)
+ FoundTombstone = ThisBucket; // Remember the first tombstone found.
+
+ // Otherwise, it's a hash collision or a tombstone, continue quadratic
+ // probing.
+ BucketNo += ProbeAmt++;
+ BucketNo &= (NumBuckets-1);
+ }
+ }
+
+ template <typename LookupKeyT>
+ bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
+ const BucketT *ConstFoundBucket;
+ bool Result = const_cast<const DenseMapBase *>(this)
+ ->LookupBucketFor(Val, ConstFoundBucket);
+ FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
+ return Result;
+ }
+
+public:
+ /// Return the approximate size (in bytes) of the actual map.
+ /// This is just the raw memory used by DenseMap.
+ /// If entries are pointers to objects, the size of the referenced objects
+ /// are not included.
+ size_t getMemorySize() const {
+ return getNumBuckets() * sizeof(BucketT);
+ }
+};
+
+/// Equality comparison for DenseMap.
+///
+/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
+/// is also in RHS, and that no additional pairs are in RHS.
+/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
+/// complexity is linear, worst case is O(N^2) (if every hash collides).
+template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
+ typename BucketT>
+bool operator==(
+ const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
+ const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
+ if (LHS.size() != RHS.size())
+ return false;
+
+ for (auto &KV : LHS) {
+ auto I = RHS.find(KV.first);
+ if (I == RHS.end() || I->second != KV.second)
+ return false;
+ }
+
+ return true;
+}
+
+/// Inequality comparison for DenseMap.
+///
+/// Equivalent to !(LHS == RHS). See operator== for performance notes.
+template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
+ typename BucketT>
+bool operator!=(
+ const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
+ const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
+ return !(LHS == RHS);
+}
+
+template <typename KeyT, typename ValueT,
+ typename KeyInfoT = DenseMapInfo<KeyT>,
+ typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
+class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
+ KeyT, ValueT, KeyInfoT, BucketT> {
+ friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
+
+ // Lift some types from the dependent base class into this class for
+ // simplicity of referring to them.
+ using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
+
+ BucketT *Buckets;
+ unsigned NumEntries;
+ unsigned NumTombstones;
+ unsigned NumBuckets;
+
+public:
+ /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
+ /// this number of elements can be inserted in the map without grow()
+ explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
+
+ DenseMap(const DenseMap &other) : BaseT() {
+ init(0);
+ copyFrom(other);
+ }
+
+ DenseMap(DenseMap &&other) : BaseT() {
+ init(0);
+ swap(other);
+ }
+
+ template<typename InputIt>
+ DenseMap(const InputIt &I, const InputIt &E) {
+ init(std::distance(I, E));
+ this->insert(I, E);
+ }
+
+ DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
+ init(Vals.size());
+ this->insert(Vals.begin(), Vals.end());
+ }
+
+ ~DenseMap() {
+ this->destroyAll();
+ deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
+ }
+
+ void swap(DenseMap& RHS) {
+ this->incrementEpoch();
+ RHS.incrementEpoch();
+ std::swap(Buckets, RHS.Buckets);
+ std::swap(NumEntries, RHS.NumEntries);
+ std::swap(NumTombstones, RHS.NumTombstones);
+ std::swap(NumBuckets, RHS.NumBuckets);
+ }
+
+ DenseMap& operator=(const DenseMap& other) {
+ if (&other != this)
+ copyFrom(other);
+ return *this;
+ }
+
+ DenseMap& operator=(DenseMap &&other) {
+ this->destroyAll();
+ deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
+ init(0);
+ swap(other);
+ return *this;
+ }
+
+ void copyFrom(const DenseMap& other) {
+ this->destroyAll();
+ deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
+ if (allocateBuckets(other.NumBuckets)) {
+ this->BaseT::copyFrom(other);
+ } else {
+ NumEntries = 0;
+ NumTombstones = 0;
+ }
+ }
+
+ void init(unsigned InitNumEntries) {
+ auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
+ if (allocateBuckets(InitBuckets)) {
+ this->BaseT::initEmpty();
+ } else {
+ NumEntries = 0;
+ NumTombstones = 0;
+ }
+ }
+
+ void grow(unsigned AtLeast) {
+ unsigned OldNumBuckets = NumBuckets;
+ BucketT *OldBuckets = Buckets;
+
+ allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
+ assert(Buckets);
+ if (!OldBuckets) {
+ this->BaseT::initEmpty();
+ return;
+ }
+
+ this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
+
+ // Free the old table.
+ deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
+ alignof(BucketT));
+ }
+
+ void shrink_and_clear() {
+ unsigned OldNumBuckets = NumBuckets;
+ unsigned OldNumEntries = NumEntries;
+ this->destroyAll();
+
+ // Reduce the number of buckets.
+ unsigned NewNumBuckets = 0;
+ if (OldNumEntries)
+ NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
+ if (NewNumBuckets == NumBuckets) {
+ this->BaseT::initEmpty();
+ return;
+ }
+
+ deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
+ alignof(BucketT));
+ init(NewNumBuckets);
+ }
+
+private:
+ unsigned getNumEntries() const {
+ return NumEntries;
+ }
+
+ void setNumEntries(unsigned Num) {
+ NumEntries = Num;
+ }
+
+ unsigned getNumTombstones() const {
+ return NumTombstones;
+ }
+
+ void setNumTombstones(unsigned Num) {
+ NumTombstones = Num;
+ }
+
+ BucketT *getBuckets() const {
+ return Buckets;
+ }
+
+ unsigned getNumBuckets() const {
+ return NumBuckets;
+ }
+
+ bool allocateBuckets(unsigned Num) {
+ NumBuckets = Num;
+ if (NumBuckets == 0) {
+ Buckets = nullptr;
+ return false;
+ }
+
+ Buckets = static_cast<BucketT *>(
+ allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
+ return true;
+ }
+};
+
+template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
+ typename KeyInfoT = DenseMapInfo<KeyT>,
+ typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
+class SmallDenseMap
+ : public DenseMapBase<
+ SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
+ ValueT, KeyInfoT, BucketT> {
+ friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
+
+ // Lift some types from the dependent base class into this class for
+ // simplicity of referring to them.
+ using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
+
+ static_assert(isPowerOf2_64(InlineBuckets),
+ "InlineBuckets must be a power of 2.");
+
+ unsigned Small : 1;
+ unsigned NumEntries : 31;
+ unsigned NumTombstones;
+
+ struct LargeRep {
+ BucketT *Buckets;
+ unsigned NumBuckets;
+ };
+
+ /// A "union" of an inline bucket array and the struct representing
+ /// a large bucket. This union will be discriminated by the 'Small' bit.
+ AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
+
+public:
+ explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
+ init(NumInitBuckets);
+ }
+
+ SmallDenseMap(const SmallDenseMap &other) : BaseT() {
+ init(0);
+ copyFrom(other);
+ }
+
+ SmallDenseMap(SmallDenseMap &&other) : BaseT() {
+ init(0);
+ swap(other);
+ }
+
+ template<typename InputIt>
+ SmallDenseMap(const InputIt &I, const InputIt &E) {
+ init(NextPowerOf2(std::distance(I, E)));
+ this->insert(I, E);
+ }
+
+ ~SmallDenseMap() {
+ this->destroyAll();
+ deallocateBuckets();
+ }
+
+ void swap(SmallDenseMap& RHS) {
+ unsigned TmpNumEntries = RHS.NumEntries;
+ RHS.NumEntries = NumEntries;
+ NumEntries = TmpNumEntries;
+ std::swap(NumTombstones, RHS.NumTombstones);
+
+ const KeyT EmptyKey = this->getEmptyKey();
+ const KeyT TombstoneKey = this->getTombstoneKey();
+ if (Small && RHS.Small) {
+ // If we're swapping inline bucket arrays, we have to cope with some of
+ // the tricky bits of DenseMap's storage system: the buckets are not
+ // fully initialized. Thus we swap every key, but we may have
+ // a one-directional move of the value.
+ for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
+ BucketT *LHSB = &getInlineBuckets()[i],
+ *RHSB = &RHS.getInlineBuckets()[i];
+ bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
+ bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
+ if (hasLHSValue && hasRHSValue) {
+ // Swap together if we can...
+ std::swap(*LHSB, *RHSB);
+ continue;
+ }
+ // Swap separately and handle any assymetry.
+ std::swap(LHSB->getFirst(), RHSB->getFirst());
+ if (hasLHSValue) {
+ ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
+ LHSB->getSecond().~ValueT();
+ } else if (hasRHSValue) {
+ ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
+ RHSB->getSecond().~ValueT();
+ }
+ }
+ return;
+ }
+ if (!Small && !RHS.Small) {
+ std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
+ std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
+ return;
+ }
+
+ SmallDenseMap &SmallSide = Small ? *this : RHS;
+ SmallDenseMap &LargeSide = Small ? RHS : *this;
+
+ // First stash the large side's rep and move the small side across.
+ LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
+ LargeSide.getLargeRep()->~LargeRep();
+ LargeSide.Small = true;
+ // This is similar to the standard move-from-old-buckets, but the bucket
+ // count hasn't actually rotated in this case. So we have to carefully
+ // move construct the keys and values into their new locations, but there
+ // is no need to re-hash things.
+ for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
+ BucketT *NewB = &LargeSide.getInlineBuckets()[i],
+ *OldB = &SmallSide.getInlineBuckets()[i];
+ ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
+ OldB->getFirst().~KeyT();
+ if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
+ ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
+ OldB->getSecond().~ValueT();
+ }
+ }
+
+ // The hard part of moving the small buckets across is done, just move
+ // the TmpRep into its new home.
+ SmallSide.Small = false;
+ new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
+ }
+
+ SmallDenseMap& operator=(const SmallDenseMap& other) {
+ if (&other != this)
+ copyFrom(other);
+ return *this;
+ }
+
+ SmallDenseMap& operator=(SmallDenseMap &&other) {
+ this->destroyAll();
+ deallocateBuckets();
+ init(0);
+ swap(other);
+ return *this;
+ }
+
+ void copyFrom(const SmallDenseMap& other) {
+ this->destroyAll();
+ deallocateBuckets();
+ Small = true;
+ if (other.getNumBuckets() > InlineBuckets) {
+ Small = false;
+ new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
+ }
+ this->BaseT::copyFrom(other);
+ }
+
+ void init(unsigned InitBuckets) {
+ Small = true;
+ if (InitBuckets > InlineBuckets) {
+ Small = false;
+ new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
+ }
+ this->BaseT::initEmpty();
+ }
+
+ void grow(unsigned AtLeast) {
+ if (AtLeast >= InlineBuckets)
+ AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
+
+ if (Small) {
+ if (AtLeast < InlineBuckets)
+ return; // Nothing to do.
+
+ // First move the inline buckets into a temporary storage.
+ AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
+ BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
+ BucketT *TmpEnd = TmpBegin;
+
+ // Loop over the buckets, moving non-empty, non-tombstones into the
+ // temporary storage. Have the loop move the TmpEnd forward as it goes.
+ const KeyT EmptyKey = this->getEmptyKey();
+ const KeyT TombstoneKey = this->getTombstoneKey();
+ for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
+ if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
+ !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
+ assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
+ "Too many inline buckets!");
+ ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
+ ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
+ ++TmpEnd;
+ P->getSecond().~ValueT();
+ }
+ P->getFirst().~KeyT();
+ }
+
+ // Now make this map use the large rep, and move all the entries back
+ // into it.
+ Small = false;
+ new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
+ this->moveFromOldBuckets(TmpBegin, TmpEnd);
+ return;
+ }
+
+ LargeRep OldRep = std::move(*getLargeRep());
+ getLargeRep()->~LargeRep();
+ if (AtLeast <= InlineBuckets) {
+ Small = true;
+ } else {
+ new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
+ }
+
+ this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
+
+ // Free the old table.
+ deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
+ alignof(BucketT));
+ }
+
+ void shrink_and_clear() {
+ unsigned OldSize = this->size();
+ this->destroyAll();
+
+ // Reduce the number of buckets.
+ unsigned NewNumBuckets = 0;
+ if (OldSize) {
+ NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
+ if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
+ NewNumBuckets = 64;
+ }
+ if ((Small && NewNumBuckets <= InlineBuckets) ||
+ (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
+ this->BaseT::initEmpty();
+ return;
+ }
+
+ deallocateBuckets();
+ init(NewNumBuckets);
+ }
+
+private:
+ unsigned getNumEntries() const {
+ return NumEntries;
+ }
+
+ void setNumEntries(unsigned Num) {
+ // NumEntries is hardcoded to be 31 bits wide.
+ assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
+ NumEntries = Num;
+ }
+
+ unsigned getNumTombstones() const {
+ return NumTombstones;
+ }
+
+ void setNumTombstones(unsigned Num) {
+ NumTombstones = Num;
+ }
+
+ const BucketT *getInlineBuckets() const {
+ assert(Small);
+ // Note that this cast does not violate aliasing rules as we assert that
+ // the memory's dynamic type is the small, inline bucket buffer, and the
+ // 'storage.buffer' static type is 'char *'.
+ return reinterpret_cast<const BucketT *>(storage.buffer);
+ }
+
+ BucketT *getInlineBuckets() {
+ return const_cast<BucketT *>(
+ const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
+ }
+
+ const LargeRep *getLargeRep() const {
+ assert(!Small);
+ // Note, same rule about aliasing as with getInlineBuckets.
+ return reinterpret_cast<const LargeRep *>(storage.buffer);
+ }
+
+ LargeRep *getLargeRep() {
+ return const_cast<LargeRep *>(
+ const_cast<const SmallDenseMap *>(this)->getLargeRep());
+ }
+
+ const BucketT *getBuckets() const {
+ return Small ? getInlineBuckets() : getLargeRep()->Buckets;
+ }
+
+ BucketT *getBuckets() {
+ return const_cast<BucketT *>(
+ const_cast<const SmallDenseMap *>(this)->getBuckets());
+ }
+
+ unsigned getNumBuckets() const {
+ return Small ? InlineBuckets : getLargeRep()->NumBuckets;
+ }
+
+ void deallocateBuckets() {
+ if (Small)
+ return;
+
+ deallocate_buffer(getLargeRep()->Buckets,
+ sizeof(BucketT) * getLargeRep()->NumBuckets,
+ alignof(BucketT));
+ getLargeRep()->~LargeRep();
+ }
+
+ LargeRep allocateBuckets(unsigned Num) {
+ assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
+ LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
+ sizeof(BucketT) * Num, alignof(BucketT))),
+ Num};
+ return Rep;
+ }
+};
+
+template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
+ bool IsConst>
+class DenseMapIterator : DebugEpochBase::HandleBase {
+ friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
+ friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
+
+ using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
+
+public:
+ using difference_type = ptrdiff_t;
+ using value_type =
+ typename std::conditional<IsConst, const Bucket, Bucket>::type;
+ using pointer = value_type *;
+ using reference = value_type &;
+ using iterator_category = std::forward_iterator_tag;
+
+private:
+ pointer Ptr = nullptr;
+ pointer End = nullptr;
+
+public:
+ DenseMapIterator() = default;
+
+ DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
+ bool NoAdvance = false)
+ : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
+ assert(isHandleInSync() && "invalid construction!");
+
+ if (NoAdvance) return;
+ if (shouldReverseIterate<KeyT>()) {
+ RetreatPastEmptyBuckets();
+ return;
+ }
+ AdvancePastEmptyBuckets();
+ }
+
+ // Converting ctor from non-const iterators to const iterators. SFINAE'd out
+ // for const iterator destinations so it doesn't end up as a user defined copy
+ // constructor.
+ template <bool IsConstSrc,
+ typename = typename std::enable_if<!IsConstSrc && IsConst>::type>
+ DenseMapIterator(
+ const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
+ : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
+
+ reference operator*() const {
+ assert(isHandleInSync() && "invalid iterator access!");
+ if (shouldReverseIterate<KeyT>())
+ return Ptr[-1];
+ return *Ptr;
+ }
+ pointer operator->() const {
+ assert(isHandleInSync() && "invalid iterator access!");
+ if (shouldReverseIterate<KeyT>())
+ return &(Ptr[-1]);
+ return Ptr;
+ }
+
+ bool operator==(const ConstIterator &RHS) const {
+ assert((!Ptr || isHandleInSync()) && "handle not in sync!");
+ assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
+ assert(getEpochAddress() == RHS.getEpochAddress() &&
+ "comparing incomparable iterators!");
+ return Ptr == RHS.Ptr;
+ }
+ bool operator!=(const ConstIterator &RHS) const {
+ assert((!Ptr || isHandleInSync()) && "handle not in sync!");
+ assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
+ assert(getEpochAddress() == RHS.getEpochAddress() &&
+ "comparing incomparable iterators!");
+ return Ptr != RHS.Ptr;
+ }
+
+ inline DenseMapIterator& operator++() { // Preincrement
+ assert(isHandleInSync() && "invalid iterator access!");
+ if (shouldReverseIterate<KeyT>()) {
+ --Ptr;
+ RetreatPastEmptyBuckets();
+ return *this;
+ }
+ ++Ptr;
+ AdvancePastEmptyBuckets();
+ return *this;
+ }
+ DenseMapIterator operator++(int) { // Postincrement
+ assert(isHandleInSync() && "invalid iterator access!");
+ DenseMapIterator tmp = *this; ++*this; return tmp;
+ }
+
+private:
+ void AdvancePastEmptyBuckets() {
+ assert(Ptr <= End);
+ const KeyT Empty = KeyInfoT::getEmptyKey();
+ const KeyT Tombstone = KeyInfoT::getTombstoneKey();
+
+ while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
+ KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
+ ++Ptr;
+ }
+
+ void RetreatPastEmptyBuckets() {
+ assert(Ptr >= End);
+ const KeyT Empty = KeyInfoT::getEmptyKey();
+ const KeyT Tombstone = KeyInfoT::getTombstoneKey();
+
+ while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
+ KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
+ --Ptr;
+ }
+};
+
+template <typename KeyT, typename ValueT, typename KeyInfoT>
+inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
+ return X.getMemorySize();
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_DENSEMAP_H
diff --git a/third_party/llvm-project/include/llvm/ADT/DenseMapInfo.h b/third_party/llvm-project/include/llvm/ADT/DenseMapInfo.h
new file mode 100644
index 000000000..bd4c60c8f
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/DenseMapInfo.h
@@ -0,0 +1,300 @@
+//===- llvm/ADT/DenseMapInfo.h - Type traits for DenseMap -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines DenseMapInfo traits for DenseMap.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_DENSEMAPINFO_H
+#define LLVM_ADT_DENSEMAPINFO_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include "llvm/Support/TypeSize.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <utility>
+
+namespace llvm {
+
+template<typename T>
+struct DenseMapInfo {
+ //static inline T getEmptyKey();
+ //static inline T getTombstoneKey();
+ //static unsigned getHashValue(const T &Val);
+ //static bool isEqual(const T &LHS, const T &RHS);
+};
+
+// Provide DenseMapInfo for all pointers.
+template<typename T>
+struct DenseMapInfo<T*> {
+ static inline T* getEmptyKey() {
+ uintptr_t Val = static_cast<uintptr_t>(-1);
+ Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
+ return reinterpret_cast<T*>(Val);
+ }
+
+ static inline T* getTombstoneKey() {
+ uintptr_t Val = static_cast<uintptr_t>(-2);
+ Val <<= PointerLikeTypeTraits<T*>::NumLowBitsAvailable;
+ return reinterpret_cast<T*>(Val);
+ }
+
+ static unsigned getHashValue(const T *PtrVal) {
+ return (unsigned((uintptr_t)PtrVal) >> 4) ^
+ (unsigned((uintptr_t)PtrVal) >> 9);
+ }
+
+ static bool isEqual(const T *LHS, const T *RHS) { return LHS == RHS; }
+};
+
+// Provide DenseMapInfo for chars.
+template<> struct DenseMapInfo<char> {
+ static inline char getEmptyKey() { return ~0; }
+ static inline char getTombstoneKey() { return ~0 - 1; }
+ static unsigned getHashValue(const char& Val) { return Val * 37U; }
+
+ static bool isEqual(const char &LHS, const char &RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned chars.
+template <> struct DenseMapInfo<unsigned char> {
+ static inline unsigned char getEmptyKey() { return ~0; }
+ static inline unsigned char getTombstoneKey() { return ~0 - 1; }
+ static unsigned getHashValue(const unsigned char &Val) { return Val * 37U; }
+
+ static bool isEqual(const unsigned char &LHS, const unsigned char &RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned shorts.
+template <> struct DenseMapInfo<unsigned short> {
+ static inline unsigned short getEmptyKey() { return 0xFFFF; }
+ static inline unsigned short getTombstoneKey() { return 0xFFFF - 1; }
+ static unsigned getHashValue(const unsigned short &Val) { return Val * 37U; }
+
+ static bool isEqual(const unsigned short &LHS, const unsigned short &RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned ints.
+template<> struct DenseMapInfo<unsigned> {
+ static inline unsigned getEmptyKey() { return ~0U; }
+ static inline unsigned getTombstoneKey() { return ~0U - 1; }
+ static unsigned getHashValue(const unsigned& Val) { return Val * 37U; }
+
+ static bool isEqual(const unsigned& LHS, const unsigned& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned longs.
+template<> struct DenseMapInfo<unsigned long> {
+ static inline unsigned long getEmptyKey() { return ~0UL; }
+ static inline unsigned long getTombstoneKey() { return ~0UL - 1L; }
+
+ static unsigned getHashValue(const unsigned long& Val) {
+ return (unsigned)(Val * 37UL);
+ }
+
+ static bool isEqual(const unsigned long& LHS, const unsigned long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for unsigned long longs.
+template<> struct DenseMapInfo<unsigned long long> {
+ static inline unsigned long long getEmptyKey() { return ~0ULL; }
+ static inline unsigned long long getTombstoneKey() { return ~0ULL - 1ULL; }
+
+ static unsigned getHashValue(const unsigned long long& Val) {
+ return (unsigned)(Val * 37ULL);
+ }
+
+ static bool isEqual(const unsigned long long& LHS,
+ const unsigned long long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for shorts.
+template <> struct DenseMapInfo<short> {
+ static inline short getEmptyKey() { return 0x7FFF; }
+ static inline short getTombstoneKey() { return -0x7FFF - 1; }
+ static unsigned getHashValue(const short &Val) { return Val * 37U; }
+ static bool isEqual(const short &LHS, const short &RHS) { return LHS == RHS; }
+};
+
+// Provide DenseMapInfo for ints.
+template<> struct DenseMapInfo<int> {
+ static inline int getEmptyKey() { return 0x7fffffff; }
+ static inline int getTombstoneKey() { return -0x7fffffff - 1; }
+ static unsigned getHashValue(const int& Val) { return (unsigned)(Val * 37U); }
+
+ static bool isEqual(const int& LHS, const int& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for longs.
+template<> struct DenseMapInfo<long> {
+ static inline long getEmptyKey() {
+ return (1UL << (sizeof(long) * 8 - 1)) - 1UL;
+ }
+
+ static inline long getTombstoneKey() { return getEmptyKey() - 1L; }
+
+ static unsigned getHashValue(const long& Val) {
+ return (unsigned)(Val * 37UL);
+ }
+
+ static bool isEqual(const long& LHS, const long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for long longs.
+template<> struct DenseMapInfo<long long> {
+ static inline long long getEmptyKey() { return 0x7fffffffffffffffLL; }
+ static inline long long getTombstoneKey() { return -0x7fffffffffffffffLL-1; }
+
+ static unsigned getHashValue(const long long& Val) {
+ return (unsigned)(Val * 37ULL);
+ }
+
+ static bool isEqual(const long long& LHS,
+ const long long& RHS) {
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for all pairs whose members have info.
+template<typename T, typename U>
+struct DenseMapInfo<std::pair<T, U>> {
+ using Pair = std::pair<T, U>;
+ using FirstInfo = DenseMapInfo<T>;
+ using SecondInfo = DenseMapInfo<U>;
+
+ static inline Pair getEmptyKey() {
+ return std::make_pair(FirstInfo::getEmptyKey(),
+ SecondInfo::getEmptyKey());
+ }
+
+ static inline Pair getTombstoneKey() {
+ return std::make_pair(FirstInfo::getTombstoneKey(),
+ SecondInfo::getTombstoneKey());
+ }
+
+ static unsigned getHashValue(const Pair& PairVal) {
+ uint64_t key = (uint64_t)FirstInfo::getHashValue(PairVal.first) << 32
+ | (uint64_t)SecondInfo::getHashValue(PairVal.second);
+ key += ~(key << 32);
+ key ^= (key >> 22);
+ key += ~(key << 13);
+ key ^= (key >> 8);
+ key += (key << 3);
+ key ^= (key >> 15);
+ key += ~(key << 27);
+ key ^= (key >> 31);
+ return (unsigned)key;
+ }
+
+ static bool isEqual(const Pair &LHS, const Pair &RHS) {
+ return FirstInfo::isEqual(LHS.first, RHS.first) &&
+ SecondInfo::isEqual(LHS.second, RHS.second);
+ }
+};
+
+// Provide DenseMapInfo for StringRefs.
+template <> struct DenseMapInfo<StringRef> {
+ static inline StringRef getEmptyKey() {
+ return StringRef(reinterpret_cast<const char *>(~static_cast<uintptr_t>(0)),
+ 0);
+ }
+
+ static inline StringRef getTombstoneKey() {
+ return StringRef(reinterpret_cast<const char *>(~static_cast<uintptr_t>(1)),
+ 0);
+ }
+
+ static unsigned getHashValue(StringRef Val) {
+ assert(Val.data() != getEmptyKey().data() && "Cannot hash the empty key!");
+ assert(Val.data() != getTombstoneKey().data() &&
+ "Cannot hash the tombstone key!");
+ return (unsigned)(hash_value(Val));
+ }
+
+ static bool isEqual(StringRef LHS, StringRef RHS) {
+ if (RHS.data() == getEmptyKey().data())
+ return LHS.data() == getEmptyKey().data();
+ if (RHS.data() == getTombstoneKey().data())
+ return LHS.data() == getTombstoneKey().data();
+ return LHS == RHS;
+ }
+};
+
+// Provide DenseMapInfo for ArrayRefs.
+template <typename T> struct DenseMapInfo<ArrayRef<T>> {
+ static inline ArrayRef<T> getEmptyKey() {
+ return ArrayRef<T>(reinterpret_cast<const T *>(~static_cast<uintptr_t>(0)),
+ size_t(0));
+ }
+
+ static inline ArrayRef<T> getTombstoneKey() {
+ return ArrayRef<T>(reinterpret_cast<const T *>(~static_cast<uintptr_t>(1)),
+ size_t(0));
+ }
+
+ static unsigned getHashValue(ArrayRef<T> Val) {
+ assert(Val.data() != getEmptyKey().data() && "Cannot hash the empty key!");
+ assert(Val.data() != getTombstoneKey().data() &&
+ "Cannot hash the tombstone key!");
+ return (unsigned)(hash_value(Val));
+ }
+
+ static bool isEqual(ArrayRef<T> LHS, ArrayRef<T> RHS) {
+ if (RHS.data() == getEmptyKey().data())
+ return LHS.data() == getEmptyKey().data();
+ if (RHS.data() == getTombstoneKey().data())
+ return LHS.data() == getTombstoneKey().data();
+ return LHS == RHS;
+ }
+};
+
+template <> struct DenseMapInfo<hash_code> {
+ static inline hash_code getEmptyKey() { return hash_code(-1); }
+ static inline hash_code getTombstoneKey() { return hash_code(-2); }
+ static unsigned getHashValue(hash_code val) { return val; }
+ static bool isEqual(hash_code LHS, hash_code RHS) { return LHS == RHS; }
+};
+
+template <> struct DenseMapInfo<ElementCount> {
+ static inline ElementCount getEmptyKey() { return {~0U, true}; }
+ static inline ElementCount getTombstoneKey() { return {~0U - 1, false}; }
+ static unsigned getHashValue(const ElementCount& EltCnt) {
+ if (EltCnt.Scalable)
+ return (EltCnt.Min * 37U) - 1U;
+
+ return EltCnt.Min * 37U;
+ }
+
+ static bool isEqual(const ElementCount& LHS, const ElementCount& RHS) {
+ return LHS == RHS;
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_DENSEMAPINFO_H
diff --git a/third_party/llvm-project/include/llvm/ADT/DenseSet.h b/third_party/llvm-project/include/llvm/ADT/DenseSet.h
new file mode 100644
index 000000000..9afb715ae
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/DenseSet.h
@@ -0,0 +1,283 @@
+//===- llvm/ADT/DenseSet.h - Dense probed hash table ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DenseSet and SmallDenseSet classes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_DENSESET_H
+#define LLVM_ADT_DENSESET_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/type_traits.h"
+#include <algorithm>
+#include <cstddef>
+#include <initializer_list>
+#include <iterator>
+#include <utility>
+
+namespace llvm {
+
+namespace detail {
+
+struct DenseSetEmpty {};
+
+// Use the empty base class trick so we can create a DenseMap where the buckets
+// contain only a single item.
+template <typename KeyT> class DenseSetPair : public DenseSetEmpty {
+ KeyT key;
+
+public:
+ KeyT &getFirst() { return key; }
+ const KeyT &getFirst() const { return key; }
+ DenseSetEmpty &getSecond() { return *this; }
+ const DenseSetEmpty &getSecond() const { return *this; }
+};
+
+/// Base class for DenseSet and DenseSmallSet.
+///
+/// MapTy should be either
+///
+/// DenseMap<ValueT, detail::DenseSetEmpty, ValueInfoT,
+/// detail::DenseSetPair<ValueT>>
+///
+/// or the equivalent SmallDenseMap type. ValueInfoT must implement the
+/// DenseMapInfo "concept".
+template <typename ValueT, typename MapTy, typename ValueInfoT>
+class DenseSetImpl {
+ static_assert(sizeof(typename MapTy::value_type) == sizeof(ValueT),
+ "DenseMap buckets unexpectedly large!");
+ MapTy TheMap;
+
+ template <typename T>
+ using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
+
+public:
+ using key_type = ValueT;
+ using value_type = ValueT;
+ using size_type = unsigned;
+
+ explicit DenseSetImpl(unsigned InitialReserve = 0) : TheMap(InitialReserve) {}
+
+ DenseSetImpl(std::initializer_list<ValueT> Elems)
+ : DenseSetImpl(PowerOf2Ceil(Elems.size())) {
+ insert(Elems.begin(), Elems.end());
+ }
+
+ bool empty() const { return TheMap.empty(); }
+ size_type size() const { return TheMap.size(); }
+ size_t getMemorySize() const { return TheMap.getMemorySize(); }
+
+ /// Grow the DenseSet so that it has at least Size buckets. Will not shrink
+ /// the Size of the set.
+ void resize(size_t Size) { TheMap.resize(Size); }
+
+ /// Grow the DenseSet so that it can contain at least \p NumEntries items
+ /// before resizing again.
+ void reserve(size_t Size) { TheMap.reserve(Size); }
+
+ void clear() {
+ TheMap.clear();
+ }
+
+ /// Return 1 if the specified key is in the set, 0 otherwise.
+ size_type count(const_arg_type_t<ValueT> V) const {
+ return TheMap.count(V);
+ }
+
+ bool erase(const ValueT &V) {
+ return TheMap.erase(V);
+ }
+
+ void swap(DenseSetImpl &RHS) { TheMap.swap(RHS.TheMap); }
+
+ // Iterators.
+
+ class ConstIterator;
+
+ class Iterator {
+ typename MapTy::iterator I;
+ friend class DenseSetImpl;
+ friend class ConstIterator;
+
+ public:
+ using difference_type = typename MapTy::iterator::difference_type;
+ using value_type = ValueT;
+ using pointer = value_type *;
+ using reference = value_type &;
+ using iterator_category = std::forward_iterator_tag;
+
+ Iterator() = default;
+ Iterator(const typename MapTy::iterator &i) : I(i) {}
+
+ ValueT &operator*() { return I->getFirst(); }
+ const ValueT &operator*() const { return I->getFirst(); }
+ ValueT *operator->() { return &I->getFirst(); }
+ const ValueT *operator->() const { return &I->getFirst(); }
+
+ Iterator& operator++() { ++I; return *this; }
+ Iterator operator++(int) { auto T = *this; ++I; return T; }
+ bool operator==(const ConstIterator& X) const { return I == X.I; }
+ bool operator!=(const ConstIterator& X) const { return I != X.I; }
+ };
+
+ class ConstIterator {
+ typename MapTy::const_iterator I;
+ friend class DenseSetImpl;
+ friend class Iterator;
+
+ public:
+ using difference_type = typename MapTy::const_iterator::difference_type;
+ using value_type = ValueT;
+ using pointer = const value_type *;
+ using reference = const value_type &;
+ using iterator_category = std::forward_iterator_tag;
+
+ ConstIterator() = default;
+ ConstIterator(const Iterator &B) : I(B.I) {}
+ ConstIterator(const typename MapTy::const_iterator &i) : I(i) {}
+
+ const ValueT &operator*() const { return I->getFirst(); }
+ const ValueT *operator->() const { return &I->getFirst(); }
+
+ ConstIterator& operator++() { ++I; return *this; }
+ ConstIterator operator++(int) { auto T = *this; ++I; return T; }
+ bool operator==(const ConstIterator& X) const { return I == X.I; }
+ bool operator!=(const ConstIterator& X) const { return I != X.I; }
+ };
+
+ using iterator = Iterator;
+ using const_iterator = ConstIterator;
+
+ iterator begin() { return Iterator(TheMap.begin()); }
+ iterator end() { return Iterator(TheMap.end()); }
+
+ const_iterator begin() const { return ConstIterator(TheMap.begin()); }
+ const_iterator end() const { return ConstIterator(TheMap.end()); }
+
+ iterator find(const_arg_type_t<ValueT> V) { return Iterator(TheMap.find(V)); }
+ const_iterator find(const_arg_type_t<ValueT> V) const {
+ return ConstIterator(TheMap.find(V));
+ }
+
+ /// Alternative version of find() which allows a different, and possibly less
+ /// expensive, key type.
+ /// The DenseMapInfo is responsible for supplying methods
+ /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key type
+ /// used.
+ template <class LookupKeyT>
+ iterator find_as(const LookupKeyT &Val) {
+ return Iterator(TheMap.find_as(Val));
+ }
+ template <class LookupKeyT>
+ const_iterator find_as(const LookupKeyT &Val) const {
+ return ConstIterator(TheMap.find_as(Val));
+ }
+
+ void erase(Iterator I) { return TheMap.erase(I.I); }
+ void erase(ConstIterator CI) { return TheMap.erase(CI.I); }
+
+ std::pair<iterator, bool> insert(const ValueT &V) {
+ detail::DenseSetEmpty Empty;
+ return TheMap.try_emplace(V, Empty);
+ }
+
+ std::pair<iterator, bool> insert(ValueT &&V) {
+ detail::DenseSetEmpty Empty;
+ return TheMap.try_emplace(std::move(V), Empty);
+ }
+
+ /// Alternative version of insert that uses a different (and possibly less
+ /// expensive) key type.
+ template <typename LookupKeyT>
+ std::pair<iterator, bool> insert_as(const ValueT &V,
+ const LookupKeyT &LookupKey) {
+ return TheMap.insert_as({V, detail::DenseSetEmpty()}, LookupKey);
+ }
+ template <typename LookupKeyT>
+ std::pair<iterator, bool> insert_as(ValueT &&V, const LookupKeyT &LookupKey) {
+ return TheMap.insert_as({std::move(V), detail::DenseSetEmpty()}, LookupKey);
+ }
+
+ // Range insertion of values.
+ template<typename InputIt>
+ void insert(InputIt I, InputIt E) {
+ for (; I != E; ++I)
+ insert(*I);
+ }
+};
+
+/// Equality comparison for DenseSet.
+///
+/// Iterates over elements of LHS confirming that each element is also a member
+/// of RHS, and that RHS contains no additional values.
+/// Equivalent to N calls to RHS.count. Amortized complexity is linear, worst
+/// case is O(N^2) (if every hash collides).
+template <typename ValueT, typename MapTy, typename ValueInfoT>
+bool operator==(const DenseSetImpl<ValueT, MapTy, ValueInfoT> &LHS,
+ const DenseSetImpl<ValueT, MapTy, ValueInfoT> &RHS) {
+ if (LHS.size() != RHS.size())
+ return false;
+
+ for (auto &E : LHS)
+ if (!RHS.count(E))
+ return false;
+
+ return true;
+}
+
+/// Inequality comparison for DenseSet.
+///
+/// Equivalent to !(LHS == RHS). See operator== for performance notes.
+template <typename ValueT, typename MapTy, typename ValueInfoT>
+bool operator!=(const DenseSetImpl<ValueT, MapTy, ValueInfoT> &LHS,
+ const DenseSetImpl<ValueT, MapTy, ValueInfoT> &RHS) {
+ return !(LHS == RHS);
+}
+
+} // end namespace detail
+
+/// Implements a dense probed hash-table based set.
+template <typename ValueT, typename ValueInfoT = DenseMapInfo<ValueT>>
+class DenseSet : public detail::DenseSetImpl<
+ ValueT, DenseMap<ValueT, detail::DenseSetEmpty, ValueInfoT,
+ detail::DenseSetPair<ValueT>>,
+ ValueInfoT> {
+ using BaseT =
+ detail::DenseSetImpl<ValueT,
+ DenseMap<ValueT, detail::DenseSetEmpty, ValueInfoT,
+ detail::DenseSetPair<ValueT>>,
+ ValueInfoT>;
+
+public:
+ using BaseT::BaseT;
+};
+
+/// Implements a dense probed hash-table based set with some number of buckets
+/// stored inline.
+template <typename ValueT, unsigned InlineBuckets = 4,
+ typename ValueInfoT = DenseMapInfo<ValueT>>
+class SmallDenseSet
+ : public detail::DenseSetImpl<
+ ValueT, SmallDenseMap<ValueT, detail::DenseSetEmpty, InlineBuckets,
+ ValueInfoT, detail::DenseSetPair<ValueT>>,
+ ValueInfoT> {
+ using BaseT = detail::DenseSetImpl<
+ ValueT, SmallDenseMap<ValueT, detail::DenseSetEmpty, InlineBuckets,
+ ValueInfoT, detail::DenseSetPair<ValueT>>,
+ ValueInfoT>;
+
+public:
+ using BaseT::BaseT;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_DENSESET_H
diff --git a/third_party/llvm-project/include/llvm/ADT/EpochTracker.h b/third_party/llvm-project/include/llvm/ADT/EpochTracker.h
new file mode 100644
index 000000000..a782b4756
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/EpochTracker.h
@@ -0,0 +1,98 @@
+//===- llvm/ADT/EpochTracker.h - ADT epoch tracking --------------*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DebugEpochBase and DebugEpochBase::HandleBase classes.
+// These can be used to write iterators that are fail-fast when LLVM is built
+// with asserts enabled.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_EPOCH_TRACKER_H
+#define LLVM_ADT_EPOCH_TRACKER_H
+
+#include "llvm/Config/abi-breaking.h"
+
+#include <cstdint>
+
+namespace llvm {
+
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+
+/// A base class for data structure classes wishing to make iterators
+/// ("handles") pointing into themselves fail-fast. When building without
+/// asserts, this class is empty and does nothing.
+///
+/// DebugEpochBase does not by itself track handles pointing into itself. The
+/// expectation is that routines touching the handles will poll on
+/// isHandleInSync at appropriate points to assert that the handle they're using
+/// is still valid.
+///
+class DebugEpochBase {
+ uint64_t Epoch;
+
+public:
+ DebugEpochBase() : Epoch(0) {}
+
+ /// Calling incrementEpoch invalidates all handles pointing into the
+ /// calling instance.
+ void incrementEpoch() { ++Epoch; }
+
+ /// The destructor calls incrementEpoch to make use-after-free bugs
+ /// more likely to crash deterministically.
+ ~DebugEpochBase() { incrementEpoch(); }
+
+ /// A base class for iterator classes ("handles") that wish to poll for
+ /// iterator invalidating modifications in the underlying data structure.
+ /// When LLVM is built without asserts, this class is empty and does nothing.
+ ///
+ /// HandleBase does not track the parent data structure by itself. It expects
+ /// the routines modifying the data structure to call incrementEpoch when they
+ /// make an iterator-invalidating modification.
+ ///
+ class HandleBase {
+ const uint64_t *EpochAddress;
+ uint64_t EpochAtCreation;
+
+ public:
+ HandleBase() : EpochAddress(nullptr), EpochAtCreation(UINT64_MAX) {}
+
+ explicit HandleBase(const DebugEpochBase *Parent)
+ : EpochAddress(&Parent->Epoch), EpochAtCreation(Parent->Epoch) {}
+
+ /// Returns true if the DebugEpochBase this Handle is linked to has
+ /// not called incrementEpoch on itself since the creation of this
+ /// HandleBase instance.
+ bool isHandleInSync() const { return *EpochAddress == EpochAtCreation; }
+
+ /// Returns a pointer to the epoch word stored in the data structure
+ /// this handle points into. Can be used to check if two iterators point
+ /// into the same data structure.
+ const void *getEpochAddress() const { return EpochAddress; }
+ };
+};
+
+#else
+
+class DebugEpochBase {
+public:
+ void incrementEpoch() {}
+
+ class HandleBase {
+ public:
+ HandleBase() = default;
+ explicit HandleBase(const DebugEpochBase *) {}
+ bool isHandleInSync() const { return true; }
+ const void *getEpochAddress() const { return nullptr; }
+ };
+};
+
+#endif // LLVM_ENABLE_ABI_BREAKING_CHECKS
+
+} // namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/FoldingSet.h b/third_party/llvm-project/include/llvm/ADT/FoldingSet.h
new file mode 100644
index 000000000..d5837e51b
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/FoldingSet.h
@@ -0,0 +1,761 @@
+//===- llvm/ADT/FoldingSet.h - Uniquing Hash Set ----------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a hash set that can be used to remove duplication of nodes
+// in a graph. This code was originally created by Chris Lattner for use with
+// SelectionDAGCSEMap, but was isolated to provide use across the llvm code set.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_FOLDINGSET_H
+#define LLVM_ADT_FOLDINGSET_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/Support/Allocator.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <utility>
+
+namespace llvm {
+
+/// This folding set used for two purposes:
+/// 1. Given information about a node we want to create, look up the unique
+/// instance of the node in the set. If the node already exists, return
+/// it, otherwise return the bucket it should be inserted into.
+/// 2. Given a node that has already been created, remove it from the set.
+///
+/// This class is implemented as a single-link chained hash table, where the
+/// "buckets" are actually the nodes themselves (the next pointer is in the
+/// node). The last node points back to the bucket to simplify node removal.
+///
+/// Any node that is to be included in the folding set must be a subclass of
+/// FoldingSetNode. The node class must also define a Profile method used to
+/// establish the unique bits of data for the node. The Profile method is
+/// passed a FoldingSetNodeID object which is used to gather the bits. Just
+/// call one of the Add* functions defined in the FoldingSetBase::NodeID class.
+/// NOTE: That the folding set does not own the nodes and it is the
+/// responsibility of the user to dispose of the nodes.
+///
+/// Eg.
+/// class MyNode : public FoldingSetNode {
+/// private:
+/// std::string Name;
+/// unsigned Value;
+/// public:
+/// MyNode(const char *N, unsigned V) : Name(N), Value(V) {}
+/// ...
+/// void Profile(FoldingSetNodeID &ID) const {
+/// ID.AddString(Name);
+/// ID.AddInteger(Value);
+/// }
+/// ...
+/// };
+///
+/// To define the folding set itself use the FoldingSet template;
+///
+/// Eg.
+/// FoldingSet<MyNode> MyFoldingSet;
+///
+/// Four public methods are available to manipulate the folding set;
+///
+/// 1) If you have an existing node that you want add to the set but unsure
+/// that the node might already exist then call;
+///
+/// MyNode *M = MyFoldingSet.GetOrInsertNode(N);
+///
+/// If The result is equal to the input then the node has been inserted.
+/// Otherwise, the result is the node existing in the folding set, and the
+/// input can be discarded (use the result instead.)
+///
+/// 2) If you are ready to construct a node but want to check if it already
+/// exists, then call FindNodeOrInsertPos with a FoldingSetNodeID of the bits to
+/// check;
+///
+/// FoldingSetNodeID ID;
+/// ID.AddString(Name);
+/// ID.AddInteger(Value);
+/// void *InsertPoint;
+///
+/// MyNode *M = MyFoldingSet.FindNodeOrInsertPos(ID, InsertPoint);
+///
+/// If found then M with be non-NULL, else InsertPoint will point to where it
+/// should be inserted using InsertNode.
+///
+/// 3) If you get a NULL result from FindNodeOrInsertPos then you can as a new
+/// node with FindNodeOrInsertPos;
+///
+/// InsertNode(N, InsertPoint);
+///
+/// 4) Finally, if you want to remove a node from the folding set call;
+///
+/// bool WasRemoved = RemoveNode(N);
+///
+/// The result indicates whether the node existed in the folding set.
+
+class FoldingSetNodeID;
+class StringRef;
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetBase - Implements the folding set functionality. The main
+/// structure is an array of buckets. Each bucket is indexed by the hash of
+/// the nodes it contains. The bucket itself points to the nodes contained
+/// in the bucket via a singly linked list. The last node in the list points
+/// back to the bucket to facilitate node removal.
+///
+class FoldingSetBase {
+ virtual void anchor(); // Out of line virtual method.
+
+protected:
+ /// Buckets - Array of bucket chains.
+ void **Buckets;
+
+ /// NumBuckets - Length of the Buckets array. Always a power of 2.
+ unsigned NumBuckets;
+
+ /// NumNodes - Number of nodes in the folding set. Growth occurs when NumNodes
+ /// is greater than twice the number of buckets.
+ unsigned NumNodes;
+
+ explicit FoldingSetBase(unsigned Log2InitSize = 6);
+ FoldingSetBase(FoldingSetBase &&Arg);
+ FoldingSetBase &operator=(FoldingSetBase &&RHS);
+ ~FoldingSetBase();
+
+public:
+ //===--------------------------------------------------------------------===//
+ /// Node - This class is used to maintain the singly linked bucket list in
+ /// a folding set.
+ class Node {
+ private:
+ // NextInFoldingSetBucket - next link in the bucket list.
+ void *NextInFoldingSetBucket = nullptr;
+
+ public:
+ Node() = default;
+
+ // Accessors
+ void *getNextInBucket() const { return NextInFoldingSetBucket; }
+ void SetNextInBucket(void *N) { NextInFoldingSetBucket = N; }
+ };
+
+ /// clear - Remove all nodes from the folding set.
+ void clear();
+
+ /// size - Returns the number of nodes in the folding set.
+ unsigned size() const { return NumNodes; }
+
+ /// empty - Returns true if there are no nodes in the folding set.
+ bool empty() const { return NumNodes == 0; }
+
+ /// reserve - Increase the number of buckets such that adding the
+ /// EltCount-th node won't cause a rebucket operation. reserve is permitted
+ /// to allocate more space than requested by EltCount.
+ void reserve(unsigned EltCount);
+
+ /// capacity - Returns the number of nodes permitted in the folding set
+ /// before a rebucket operation is performed.
+ unsigned capacity() {
+ // We allow a load factor of up to 2.0,
+ // so that means our capacity is NumBuckets * 2
+ return NumBuckets * 2;
+ }
+
+private:
+ /// GrowHashTable - Double the size of the hash table and rehash everything.
+ void GrowHashTable();
+
+ /// GrowBucketCount - resize the hash table and rehash everything.
+ /// NewBucketCount must be a power of two, and must be greater than the old
+ /// bucket count.
+ void GrowBucketCount(unsigned NewBucketCount);
+
+protected:
+ /// GetNodeProfile - Instantiations of the FoldingSet template implement
+ /// this function to gather data bits for the given node.
+ virtual void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const = 0;
+
+ /// NodeEquals - Instantiations of the FoldingSet template implement
+ /// this function to compare the given node with the given ID.
+ virtual bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
+ FoldingSetNodeID &TempID) const=0;
+
+ /// ComputeNodeHash - Instantiations of the FoldingSet template implement
+ /// this function to compute a hash value for the given node.
+ virtual unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const = 0;
+
+ // The below methods are protected to encourage subclasses to provide a more
+ // type-safe API.
+
+ /// RemoveNode - Remove a node from the folding set, returning true if one
+ /// was removed or false if the node was not in the folding set.
+ bool RemoveNode(Node *N);
+
+ /// GetOrInsertNode - If there is an existing simple Node exactly
+ /// equal to the specified node, return it. Otherwise, insert 'N' and return
+ /// it instead.
+ Node *GetOrInsertNode(Node *N);
+
+ /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
+ /// return it. If not, return the insertion token that will make insertion
+ /// faster.
+ Node *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
+
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set. InsertPos must be obtained from
+ /// FindNodeOrInsertPos.
+ void InsertNode(Node *N, void *InsertPos);
+};
+
+//===----------------------------------------------------------------------===//
+
+/// DefaultFoldingSetTrait - This class provides default implementations
+/// for FoldingSetTrait implementations.
+template<typename T> struct DefaultFoldingSetTrait {
+ static void Profile(const T &X, FoldingSetNodeID &ID) {
+ X.Profile(ID);
+ }
+ static void Profile(T &X, FoldingSetNodeID &ID) {
+ X.Profile(ID);
+ }
+
+ // Equals - Test if the profile for X would match ID, using TempID
+ // to compute a temporary ID if necessary. The default implementation
+ // just calls Profile and does a regular comparison. Implementations
+ // can override this to provide more efficient implementations.
+ static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
+ FoldingSetNodeID &TempID);
+
+ // ComputeHash - Compute a hash value for X, using TempID to
+ // compute a temporary ID if necessary. The default implementation
+ // just calls Profile and does a regular hash computation.
+ // Implementations can override this to provide more efficient
+ // implementations.
+ static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID);
+};
+
+/// FoldingSetTrait - This trait class is used to define behavior of how
+/// to "profile" (in the FoldingSet parlance) an object of a given type.
+/// The default behavior is to invoke a 'Profile' method on an object, but
+/// through template specialization the behavior can be tailored for specific
+/// types. Combined with the FoldingSetNodeWrapper class, one can add objects
+/// to FoldingSets that were not originally designed to have that behavior.
+template<typename T> struct FoldingSetTrait
+ : public DefaultFoldingSetTrait<T> {};
+
+/// DefaultContextualFoldingSetTrait - Like DefaultFoldingSetTrait, but
+/// for ContextualFoldingSets.
+template<typename T, typename Ctx>
+struct DefaultContextualFoldingSetTrait {
+ static void Profile(T &X, FoldingSetNodeID &ID, Ctx Context) {
+ X.Profile(ID, Context);
+ }
+
+ static inline bool Equals(T &X, const FoldingSetNodeID &ID, unsigned IDHash,
+ FoldingSetNodeID &TempID, Ctx Context);
+ static inline unsigned ComputeHash(T &X, FoldingSetNodeID &TempID,
+ Ctx Context);
+};
+
+/// ContextualFoldingSetTrait - Like FoldingSetTrait, but for
+/// ContextualFoldingSets.
+template<typename T, typename Ctx> struct ContextualFoldingSetTrait
+ : public DefaultContextualFoldingSetTrait<T, Ctx> {};
+
+//===--------------------------------------------------------------------===//
+/// FoldingSetNodeIDRef - This class describes a reference to an interned
+/// FoldingSetNodeID, which can be a useful to store node id data rather
+/// than using plain FoldingSetNodeIDs, since the 32-element SmallVector
+/// is often much larger than necessary, and the possibility of heap
+/// allocation means it requires a non-trivial destructor call.
+class FoldingSetNodeIDRef {
+ const unsigned *Data = nullptr;
+ size_t Size = 0;
+
+public:
+ FoldingSetNodeIDRef() = default;
+ FoldingSetNodeIDRef(const unsigned *D, size_t S) : Data(D), Size(S) {}
+
+ /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
+ /// used to lookup the node in the FoldingSetBase.
+ unsigned ComputeHash() const;
+
+ bool operator==(FoldingSetNodeIDRef) const;
+
+ bool operator!=(FoldingSetNodeIDRef RHS) const { return !(*this == RHS); }
+
+ /// Used to compare the "ordering" of two nodes as defined by the
+ /// profiled bits and their ordering defined by memcmp().
+ bool operator<(FoldingSetNodeIDRef) const;
+
+ const unsigned *getData() const { return Data; }
+ size_t getSize() const { return Size; }
+};
+
+//===--------------------------------------------------------------------===//
+/// FoldingSetNodeID - This class is used to gather all the unique data bits of
+/// a node. When all the bits are gathered this class is used to produce a
+/// hash value for the node.
+class FoldingSetNodeID {
+ /// Bits - Vector of all the data bits that make the node unique.
+ /// Use a SmallVector to avoid a heap allocation in the common case.
+ SmallVector<unsigned, 32> Bits;
+
+public:
+ FoldingSetNodeID() = default;
+
+ FoldingSetNodeID(FoldingSetNodeIDRef Ref)
+ : Bits(Ref.getData(), Ref.getData() + Ref.getSize()) {}
+
+ /// Add* - Add various data types to Bit data.
+ void AddPointer(const void *Ptr);
+ void AddInteger(signed I);
+ void AddInteger(unsigned I);
+ void AddInteger(long I);
+ void AddInteger(unsigned long I);
+ void AddInteger(long long I);
+ void AddInteger(unsigned long long I);
+ void AddBoolean(bool B) { AddInteger(B ? 1U : 0U); }
+ void AddString(StringRef String);
+ void AddNodeID(const FoldingSetNodeID &ID);
+
+ template <typename T>
+ inline void Add(const T &x) { FoldingSetTrait<T>::Profile(x, *this); }
+
+ /// clear - Clear the accumulated profile, allowing this FoldingSetNodeID
+ /// object to be used to compute a new profile.
+ inline void clear() { Bits.clear(); }
+
+ /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used
+ /// to lookup the node in the FoldingSetBase.
+ unsigned ComputeHash() const;
+
+ /// operator== - Used to compare two nodes to each other.
+ bool operator==(const FoldingSetNodeID &RHS) const;
+ bool operator==(const FoldingSetNodeIDRef RHS) const;
+
+ bool operator!=(const FoldingSetNodeID &RHS) const { return !(*this == RHS); }
+ bool operator!=(const FoldingSetNodeIDRef RHS) const { return !(*this ==RHS);}
+
+ /// Used to compare the "ordering" of two nodes as defined by the
+ /// profiled bits and their ordering defined by memcmp().
+ bool operator<(const FoldingSetNodeID &RHS) const;
+ bool operator<(const FoldingSetNodeIDRef RHS) const;
+
+ /// Intern - Copy this node's data to a memory region allocated from the
+ /// given allocator and return a FoldingSetNodeIDRef describing the
+ /// interned data.
+ FoldingSetNodeIDRef Intern(BumpPtrAllocator &Allocator) const;
+};
+
+// Convenience type to hide the implementation of the folding set.
+using FoldingSetNode = FoldingSetBase::Node;
+template<class T> class FoldingSetIterator;
+template<class T> class FoldingSetBucketIterator;
+
+// Definitions of FoldingSetTrait and ContextualFoldingSetTrait functions, which
+// require the definition of FoldingSetNodeID.
+template<typename T>
+inline bool
+DefaultFoldingSetTrait<T>::Equals(T &X, const FoldingSetNodeID &ID,
+ unsigned /*IDHash*/,
+ FoldingSetNodeID &TempID) {
+ FoldingSetTrait<T>::Profile(X, TempID);
+ return TempID == ID;
+}
+template<typename T>
+inline unsigned
+DefaultFoldingSetTrait<T>::ComputeHash(T &X, FoldingSetNodeID &TempID) {
+ FoldingSetTrait<T>::Profile(X, TempID);
+ return TempID.ComputeHash();
+}
+template<typename T, typename Ctx>
+inline bool
+DefaultContextualFoldingSetTrait<T, Ctx>::Equals(T &X,
+ const FoldingSetNodeID &ID,
+ unsigned /*IDHash*/,
+ FoldingSetNodeID &TempID,
+ Ctx Context) {
+ ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
+ return TempID == ID;
+}
+template<typename T, typename Ctx>
+inline unsigned
+DefaultContextualFoldingSetTrait<T, Ctx>::ComputeHash(T &X,
+ FoldingSetNodeID &TempID,
+ Ctx Context) {
+ ContextualFoldingSetTrait<T, Ctx>::Profile(X, TempID, Context);
+ return TempID.ComputeHash();
+}
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetImpl - An implementation detail that lets us share code between
+/// FoldingSet and ContextualFoldingSet.
+template <class T> class FoldingSetImpl : public FoldingSetBase {
+protected:
+ explicit FoldingSetImpl(unsigned Log2InitSize)
+ : FoldingSetBase(Log2InitSize) {}
+
+ FoldingSetImpl(FoldingSetImpl &&Arg) = default;
+ FoldingSetImpl &operator=(FoldingSetImpl &&RHS) = default;
+ ~FoldingSetImpl() = default;
+
+public:
+ using iterator = FoldingSetIterator<T>;
+
+ iterator begin() { return iterator(Buckets); }
+ iterator end() { return iterator(Buckets+NumBuckets); }
+
+ using const_iterator = FoldingSetIterator<const T>;
+
+ const_iterator begin() const { return const_iterator(Buckets); }
+ const_iterator end() const { return const_iterator(Buckets+NumBuckets); }
+
+ using bucket_iterator = FoldingSetBucketIterator<T>;
+
+ bucket_iterator bucket_begin(unsigned hash) {
+ return bucket_iterator(Buckets + (hash & (NumBuckets-1)));
+ }
+
+ bucket_iterator bucket_end(unsigned hash) {
+ return bucket_iterator(Buckets + (hash & (NumBuckets-1)), true);
+ }
+
+ /// RemoveNode - Remove a node from the folding set, returning true if one
+ /// was removed or false if the node was not in the folding set.
+ bool RemoveNode(T *N) { return FoldingSetBase::RemoveNode(N); }
+
+ /// GetOrInsertNode - If there is an existing simple Node exactly
+ /// equal to the specified node, return it. Otherwise, insert 'N' and
+ /// return it instead.
+ T *GetOrInsertNode(T *N) {
+ return static_cast<T *>(FoldingSetBase::GetOrInsertNode(N));
+ }
+
+ /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
+ /// return it. If not, return the insertion token that will make insertion
+ /// faster.
+ T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
+ return static_cast<T *>(FoldingSetBase::FindNodeOrInsertPos(ID, InsertPos));
+ }
+
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set. InsertPos must be obtained from
+ /// FindNodeOrInsertPos.
+ void InsertNode(T *N, void *InsertPos) {
+ FoldingSetBase::InsertNode(N, InsertPos);
+ }
+
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set.
+ void InsertNode(T *N) {
+ T *Inserted = GetOrInsertNode(N);
+ (void)Inserted;
+ assert(Inserted == N && "Node already inserted!");
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// FoldingSet - This template class is used to instantiate a specialized
+/// implementation of the folding set to the node class T. T must be a
+/// subclass of FoldingSetNode and implement a Profile function.
+///
+/// Note that this set type is movable and move-assignable. However, its
+/// moved-from state is not a valid state for anything other than
+/// move-assigning and destroying. This is primarily to enable movable APIs
+/// that incorporate these objects.
+template <class T> class FoldingSet final : public FoldingSetImpl<T> {
+ using Super = FoldingSetImpl<T>;
+ using Node = typename Super::Node;
+
+ /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
+ /// way to convert nodes into a unique specifier.
+ void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
+ T *TN = static_cast<T *>(N);
+ FoldingSetTrait<T>::Profile(*TN, ID);
+ }
+
+ /// NodeEquals - Instantiations may optionally provide a way to compare a
+ /// node with a specified ID.
+ bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
+ FoldingSetNodeID &TempID) const override {
+ T *TN = static_cast<T *>(N);
+ return FoldingSetTrait<T>::Equals(*TN, ID, IDHash, TempID);
+ }
+
+ /// ComputeNodeHash - Instantiations may optionally provide a way to compute a
+ /// hash value directly from a node.
+ unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
+ T *TN = static_cast<T *>(N);
+ return FoldingSetTrait<T>::ComputeHash(*TN, TempID);
+ }
+
+public:
+ explicit FoldingSet(unsigned Log2InitSize = 6) : Super(Log2InitSize) {}
+ FoldingSet(FoldingSet &&Arg) = default;
+ FoldingSet &operator=(FoldingSet &&RHS) = default;
+};
+
+//===----------------------------------------------------------------------===//
+/// ContextualFoldingSet - This template class is a further refinement
+/// of FoldingSet which provides a context argument when calling
+/// Profile on its nodes. Currently, that argument is fixed at
+/// initialization time.
+///
+/// T must be a subclass of FoldingSetNode and implement a Profile
+/// function with signature
+/// void Profile(FoldingSetNodeID &, Ctx);
+template <class T, class Ctx>
+class ContextualFoldingSet final : public FoldingSetImpl<T> {
+ // Unfortunately, this can't derive from FoldingSet<T> because the
+ // construction of the vtable for FoldingSet<T> requires
+ // FoldingSet<T>::GetNodeProfile to be instantiated, which in turn
+ // requires a single-argument T::Profile().
+
+ using Super = FoldingSetImpl<T>;
+ using Node = typename Super::Node;
+
+ Ctx Context;
+
+ /// GetNodeProfile - Each instantiatation of the FoldingSet needs to provide a
+ /// way to convert nodes into a unique specifier.
+ void GetNodeProfile(Node *N, FoldingSetNodeID &ID) const override {
+ T *TN = static_cast<T *>(N);
+ ContextualFoldingSetTrait<T, Ctx>::Profile(*TN, ID, Context);
+ }
+
+ bool NodeEquals(Node *N, const FoldingSetNodeID &ID, unsigned IDHash,
+ FoldingSetNodeID &TempID) const override {
+ T *TN = static_cast<T *>(N);
+ return ContextualFoldingSetTrait<T, Ctx>::Equals(*TN, ID, IDHash, TempID,
+ Context);
+ }
+
+ unsigned ComputeNodeHash(Node *N, FoldingSetNodeID &TempID) const override {
+ T *TN = static_cast<T *>(N);
+ return ContextualFoldingSetTrait<T, Ctx>::ComputeHash(*TN, TempID, Context);
+ }
+
+public:
+ explicit ContextualFoldingSet(Ctx Context, unsigned Log2InitSize = 6)
+ : Super(Log2InitSize), Context(Context) {}
+
+ Ctx getContext() const { return Context; }
+};
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetVector - This template class combines a FoldingSet and a vector
+/// to provide the interface of FoldingSet but with deterministic iteration
+/// order based on the insertion order. T must be a subclass of FoldingSetNode
+/// and implement a Profile function.
+template <class T, class VectorT = SmallVector<T*, 8>>
+class FoldingSetVector {
+ FoldingSet<T> Set;
+ VectorT Vector;
+
+public:
+ explicit FoldingSetVector(unsigned Log2InitSize = 6) : Set(Log2InitSize) {}
+
+ using iterator = pointee_iterator<typename VectorT::iterator>;
+
+ iterator begin() { return Vector.begin(); }
+ iterator end() { return Vector.end(); }
+
+ using const_iterator = pointee_iterator<typename VectorT::const_iterator>;
+
+ const_iterator begin() const { return Vector.begin(); }
+ const_iterator end() const { return Vector.end(); }
+
+ /// clear - Remove all nodes from the folding set.
+ void clear() { Set.clear(); Vector.clear(); }
+
+ /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
+ /// return it. If not, return the insertion token that will make insertion
+ /// faster.
+ T *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos) {
+ return Set.FindNodeOrInsertPos(ID, InsertPos);
+ }
+
+ /// GetOrInsertNode - If there is an existing simple Node exactly
+ /// equal to the specified node, return it. Otherwise, insert 'N' and
+ /// return it instead.
+ T *GetOrInsertNode(T *N) {
+ T *Result = Set.GetOrInsertNode(N);
+ if (Result == N) Vector.push_back(N);
+ return Result;
+ }
+
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set. InsertPos must be obtained from
+ /// FindNodeOrInsertPos.
+ void InsertNode(T *N, void *InsertPos) {
+ Set.InsertNode(N, InsertPos);
+ Vector.push_back(N);
+ }
+
+ /// InsertNode - Insert the specified node into the folding set, knowing that
+ /// it is not already in the folding set.
+ void InsertNode(T *N) {
+ Set.InsertNode(N);
+ Vector.push_back(N);
+ }
+
+ /// size - Returns the number of nodes in the folding set.
+ unsigned size() const { return Set.size(); }
+
+ /// empty - Returns true if there are no nodes in the folding set.
+ bool empty() const { return Set.empty(); }
+};
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetIteratorImpl - This is the common iterator support shared by all
+/// folding sets, which knows how to walk the folding set hash table.
+class FoldingSetIteratorImpl {
+protected:
+ FoldingSetNode *NodePtr;
+
+ FoldingSetIteratorImpl(void **Bucket);
+
+ void advance();
+
+public:
+ bool operator==(const FoldingSetIteratorImpl &RHS) const {
+ return NodePtr == RHS.NodePtr;
+ }
+ bool operator!=(const FoldingSetIteratorImpl &RHS) const {
+ return NodePtr != RHS.NodePtr;
+ }
+};
+
+template <class T> class FoldingSetIterator : public FoldingSetIteratorImpl {
+public:
+ explicit FoldingSetIterator(void **Bucket) : FoldingSetIteratorImpl(Bucket) {}
+
+ T &operator*() const {
+ return *static_cast<T*>(NodePtr);
+ }
+
+ T *operator->() const {
+ return static_cast<T*>(NodePtr);
+ }
+
+ inline FoldingSetIterator &operator++() { // Preincrement
+ advance();
+ return *this;
+ }
+ FoldingSetIterator operator++(int) { // Postincrement
+ FoldingSetIterator tmp = *this; ++*this; return tmp;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetBucketIteratorImpl - This is the common bucket iterator support
+/// shared by all folding sets, which knows how to walk a particular bucket
+/// of a folding set hash table.
+class FoldingSetBucketIteratorImpl {
+protected:
+ void *Ptr;
+
+ explicit FoldingSetBucketIteratorImpl(void **Bucket);
+
+ FoldingSetBucketIteratorImpl(void **Bucket, bool) : Ptr(Bucket) {}
+
+ void advance() {
+ void *Probe = static_cast<FoldingSetNode*>(Ptr)->getNextInBucket();
+ uintptr_t x = reinterpret_cast<uintptr_t>(Probe) & ~0x1;
+ Ptr = reinterpret_cast<void*>(x);
+ }
+
+public:
+ bool operator==(const FoldingSetBucketIteratorImpl &RHS) const {
+ return Ptr == RHS.Ptr;
+ }
+ bool operator!=(const FoldingSetBucketIteratorImpl &RHS) const {
+ return Ptr != RHS.Ptr;
+ }
+};
+
+template <class T>
+class FoldingSetBucketIterator : public FoldingSetBucketIteratorImpl {
+public:
+ explicit FoldingSetBucketIterator(void **Bucket) :
+ FoldingSetBucketIteratorImpl(Bucket) {}
+
+ FoldingSetBucketIterator(void **Bucket, bool) :
+ FoldingSetBucketIteratorImpl(Bucket, true) {}
+
+ T &operator*() const { return *static_cast<T*>(Ptr); }
+ T *operator->() const { return static_cast<T*>(Ptr); }
+
+ inline FoldingSetBucketIterator &operator++() { // Preincrement
+ advance();
+ return *this;
+ }
+ FoldingSetBucketIterator operator++(int) { // Postincrement
+ FoldingSetBucketIterator tmp = *this; ++*this; return tmp;
+ }
+};
+
+//===----------------------------------------------------------------------===//
+/// FoldingSetNodeWrapper - This template class is used to "wrap" arbitrary
+/// types in an enclosing object so that they can be inserted into FoldingSets.
+template <typename T>
+class FoldingSetNodeWrapper : public FoldingSetNode {
+ T data;
+
+public:
+ template <typename... Ts>
+ explicit FoldingSetNodeWrapper(Ts &&... Args)
+ : data(std::forward<Ts>(Args)...) {}
+
+ void Profile(FoldingSetNodeID &ID) { FoldingSetTrait<T>::Profile(data, ID); }
+
+ T &getValue() { return data; }
+ const T &getValue() const { return data; }
+
+ operator T&() { return data; }
+ operator const T&() const { return data; }
+};
+
+//===----------------------------------------------------------------------===//
+/// FastFoldingSetNode - This is a subclass of FoldingSetNode which stores
+/// a FoldingSetNodeID value rather than requiring the node to recompute it
+/// each time it is needed. This trades space for speed (which can be
+/// significant if the ID is long), and it also permits nodes to drop
+/// information that would otherwise only be required for recomputing an ID.
+class FastFoldingSetNode : public FoldingSetNode {
+ FoldingSetNodeID FastID;
+
+protected:
+ explicit FastFoldingSetNode(const FoldingSetNodeID &ID) : FastID(ID) {}
+
+public:
+ void Profile(FoldingSetNodeID &ID) const { ID.AddNodeID(FastID); }
+};
+
+//===----------------------------------------------------------------------===//
+// Partial specializations of FoldingSetTrait.
+
+template<typename T> struct FoldingSetTrait<T*> {
+ static inline void Profile(T *X, FoldingSetNodeID &ID) {
+ ID.AddPointer(X);
+ }
+};
+template <typename T1, typename T2>
+struct FoldingSetTrait<std::pair<T1, T2>> {
+ static inline void Profile(const std::pair<T1, T2> &P,
+ FoldingSetNodeID &ID) {
+ ID.Add(P.first);
+ ID.Add(P.second);
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_FOLDINGSET_H
diff --git a/third_party/llvm-project/include/llvm/ADT/FunctionExtras.h b/third_party/llvm-project/include/llvm/ADT/FunctionExtras.h
new file mode 100644
index 000000000..121aa527a
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/FunctionExtras.h
@@ -0,0 +1,292 @@
+//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file provides a collection of function (or more generally, callable)
+/// type erasure utilities supplementing those provided by the standard library
+/// in `<function>`.
+///
+/// It provides `unique_function`, which works like `std::function` but supports
+/// move-only callable objects.
+///
+/// Future plans:
+/// - Add a `function` that provides const, volatile, and ref-qualified support,
+/// which doesn't work with `std::function`.
+/// - Provide support for specifying multiple signatures to type erase callable
+/// objects with an overload set, such as those produced by generic lambdas.
+/// - Expand to include a copyable utility that directly replaces std::function
+/// but brings the above improvements.
+///
+/// Note that LLVM's utilities are greatly simplified by not supporting
+/// allocators.
+///
+/// If the standard library ever begins to provide comparable facilities we can
+/// consider switching to those.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_FUNCTION_EXTRAS_H
+#define LLVM_ADT_FUNCTION_EXTRAS_H
+
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/PointerUnion.h"
+#include "llvm/Support/type_traits.h"
+#include <memory>
+
+namespace llvm {
+
+template <typename FunctionT> class unique_function;
+
+template <typename ReturnT, typename... ParamTs>
+class unique_function<ReturnT(ParamTs...)> {
+ static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
+
+ // MSVC has a bug and ICEs if we give it a particular dependent value
+ // expression as part of the `std::conditional` below. To work around this,
+ // we build that into a template struct's constexpr bool.
+ template <typename T> struct IsSizeLessThanThresholdT {
+ static constexpr bool value = sizeof(T) <= (2 * sizeof(void *));
+ };
+
+ // Provide a type function to map parameters that won't observe extra copies
+ // or moves and which are small enough to likely pass in register to values
+ // and all other types to l-value reference types. We use this to compute the
+ // types used in our erased call utility to minimize copies and moves unless
+ // doing so would force things unnecessarily into memory.
+ //
+ // The heuristic used is related to common ABI register passing conventions.
+ // It doesn't have to be exact though, and in one way it is more strict
+ // because we want to still be able to observe either moves *or* copies.
+ template <typename T>
+ using AdjustedParamT = typename std::conditional<
+ !std::is_reference<T>::value &&
+ llvm::is_trivially_copy_constructible<T>::value &&
+ llvm::is_trivially_move_constructible<T>::value &&
+ IsSizeLessThanThresholdT<T>::value,
+ T, T &>::type;
+
+ // The type of the erased function pointer we use as a callback to dispatch to
+ // the stored callable when it is trivial to move and destroy.
+ using CallPtrT = ReturnT (*)(void *CallableAddr,
+ AdjustedParamT<ParamTs>... Params);
+ using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
+ using DestroyPtrT = void (*)(void *CallableAddr);
+
+ /// A struct to hold a single trivial callback with sufficient alignment for
+ /// our bitpacking.
+ struct alignas(8) TrivialCallback {
+ CallPtrT CallPtr;
+ };
+
+ /// A struct we use to aggregate three callbacks when we need full set of
+ /// operations.
+ struct alignas(8) NonTrivialCallbacks {
+ CallPtrT CallPtr;
+ MovePtrT MovePtr;
+ DestroyPtrT DestroyPtr;
+ };
+
+ // Create a pointer union between either a pointer to a static trivial call
+ // pointer in a struct or a pointer to a static struct of the call, move, and
+ // destroy pointers.
+ using CallbackPointerUnionT =
+ PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
+
+ // The main storage buffer. This will either have a pointer to out-of-line
+ // storage or an inline buffer storing the callable.
+ union StorageUnionT {
+ // For out-of-line storage we keep a pointer to the underlying storage and
+ // the size. This is enough to deallocate the memory.
+ struct OutOfLineStorageT {
+ void *StoragePtr;
+ size_t Size;
+ size_t Alignment;
+ } OutOfLineStorage;
+ static_assert(
+ sizeof(OutOfLineStorageT) <= InlineStorageSize,
+ "Should always use all of the out-of-line storage for inline storage!");
+
+ // For in-line storage, we just provide an aligned character buffer. We
+ // provide three pointers worth of storage here.
+ typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
+ InlineStorage;
+ } StorageUnion;
+
+ // A compressed pointer to either our dispatching callback or our table of
+ // dispatching callbacks and the flag for whether the callable itself is
+ // stored inline or not.
+ PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
+
+ bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
+
+ bool isTrivialCallback() const {
+ return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
+ }
+
+ CallPtrT getTrivialCallback() const {
+ return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
+ }
+
+ NonTrivialCallbacks *getNonTrivialCallbacks() const {
+ return CallbackAndInlineFlag.getPointer()
+ .template get<NonTrivialCallbacks *>();
+ }
+
+ void *getInlineStorage() { return &StorageUnion.InlineStorage; }
+
+ void *getOutOfLineStorage() {
+ return StorageUnion.OutOfLineStorage.StoragePtr;
+ }
+ size_t getOutOfLineStorageSize() const {
+ return StorageUnion.OutOfLineStorage.Size;
+ }
+ size_t getOutOfLineStorageAlignment() const {
+ return StorageUnion.OutOfLineStorage.Alignment;
+ }
+
+ void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
+ StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
+ }
+
+ template <typename CallableT>
+ static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) {
+ return (*reinterpret_cast<CallableT *>(CallableAddr))(
+ std::forward<ParamTs>(Params)...);
+ }
+
+ template <typename CallableT>
+ static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
+ new (LHSCallableAddr)
+ CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
+ }
+
+ template <typename CallableT>
+ static void DestroyImpl(void *CallableAddr) noexcept {
+ reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
+ }
+
+public:
+ unique_function() = default;
+ unique_function(std::nullptr_t /*null_callable*/) {}
+
+ ~unique_function() {
+ if (!CallbackAndInlineFlag.getPointer())
+ return;
+
+ // Cache this value so we don't re-check it after type-erased operations.
+ bool IsInlineStorage = isInlineStorage();
+
+ if (!isTrivialCallback())
+ getNonTrivialCallbacks()->DestroyPtr(
+ IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
+
+ if (!IsInlineStorage)
+ deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
+ getOutOfLineStorageAlignment());
+ }
+
+ unique_function(unique_function &&RHS) noexcept {
+ // Copy the callback and inline flag.
+ CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
+
+ // If the RHS is empty, just copying the above is sufficient.
+ if (!RHS)
+ return;
+
+ if (!isInlineStorage()) {
+ // The out-of-line case is easiest to move.
+ StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
+ } else if (isTrivialCallback()) {
+ // Move is trivial, just memcpy the bytes across.
+ memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
+ } else {
+ // Non-trivial move, so dispatch to a type-erased implementation.
+ getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
+ RHS.getInlineStorage());
+ }
+
+ // Clear the old callback and inline flag to get back to as-if-null.
+ RHS.CallbackAndInlineFlag = {};
+
+#ifndef NDEBUG
+ // In debug builds, we also scribble across the rest of the storage.
+ memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
+#endif
+ }
+
+ unique_function &operator=(unique_function &&RHS) noexcept {
+ if (this == &RHS)
+ return *this;
+
+ // Because we don't try to provide any exception safety guarantees we can
+ // implement move assignment very simply by first destroying the current
+ // object and then move-constructing over top of it.
+ this->~unique_function();
+ new (this) unique_function(std::move(RHS));
+ return *this;
+ }
+
+ template <typename CallableT> unique_function(CallableT Callable) {
+ bool IsInlineStorage = true;
+ void *CallableAddr = getInlineStorage();
+ if (sizeof(CallableT) > InlineStorageSize ||
+ alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
+ IsInlineStorage = false;
+ // Allocate out-of-line storage. FIXME: Use an explicit alignment
+ // parameter in C++17 mode.
+ auto Size = sizeof(CallableT);
+ auto Alignment = alignof(CallableT);
+ CallableAddr = allocate_buffer(Size, Alignment);
+ setOutOfLineStorage(CallableAddr, Size, Alignment);
+ }
+
+ // Now move into the storage.
+ new (CallableAddr) CallableT(std::move(Callable));
+
+ // See if we can create a trivial callback. We need the callable to be
+ // trivially moved and trivially destroyed so that we don't have to store
+ // type erased callbacks for those operations.
+ //
+ // FIXME: We should use constexpr if here and below to avoid instantiating
+ // the non-trivial static objects when unnecessary. While the linker should
+ // remove them, it is still wasteful.
+ if (llvm::is_trivially_move_constructible<CallableT>::value &&
+ std::is_trivially_destructible<CallableT>::value) {
+ // We need to create a nicely aligned object. We use a static variable
+ // for this because it is a trivial struct.
+ static TrivialCallback Callback = { &CallImpl<CallableT> };
+
+ CallbackAndInlineFlag = {&Callback, IsInlineStorage};
+ return;
+ }
+
+ // Otherwise, we need to point at an object that contains all the different
+ // type erased behaviors needed. Create a static instance of the struct type
+ // here and then use a pointer to that.
+ static NonTrivialCallbacks Callbacks = {
+ &CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
+
+ CallbackAndInlineFlag = {&Callbacks, IsInlineStorage};
+ }
+
+ ReturnT operator()(ParamTs... Params) {
+ void *CallableAddr =
+ isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
+
+ return (isTrivialCallback()
+ ? getTrivialCallback()
+ : getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...);
+ }
+
+ explicit operator bool() const {
+ return (bool)CallbackAndInlineFlag.getPointer();
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_FUNCTION_H
diff --git a/third_party/llvm-project/include/llvm/ADT/Hashing.h b/third_party/llvm-project/include/llvm/ADT/Hashing.h
new file mode 100644
index 000000000..adcc5cf54
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/Hashing.h
@@ -0,0 +1,659 @@
+//===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the newly proposed standard C++ interfaces for hashing
+// arbitrary data and building hash functions for user-defined types. This
+// interface was originally proposed in N3333[1] and is currently under review
+// for inclusion in a future TR and/or standard.
+//
+// The primary interfaces provide are comprised of one type and three functions:
+//
+// -- 'hash_code' class is an opaque type representing the hash code for some
+// data. It is the intended product of hashing, and can be used to implement
+// hash tables, checksumming, and other common uses of hashes. It is not an
+// integer type (although it can be converted to one) because it is risky
+// to assume much about the internals of a hash_code. In particular, each
+// execution of the program has a high probability of producing a different
+// hash_code for a given input. Thus their values are not stable to save or
+// persist, and should only be used during the execution for the
+// construction of hashing datastructures.
+//
+// -- 'hash_value' is a function designed to be overloaded for each
+// user-defined type which wishes to be used within a hashing context. It
+// should be overloaded within the user-defined type's namespace and found
+// via ADL. Overloads for primitive types are provided by this library.
+//
+// -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
+// programmers in easily and intuitively combining a set of data into
+// a single hash_code for their object. They should only logically be used
+// within the implementation of a 'hash_value' routine or similar context.
+//
+// Note that 'hash_combine_range' contains very special logic for hashing
+// a contiguous array of integers or pointers. This logic is *extremely* fast,
+// on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
+// benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
+// under 32-bytes.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_HASHING_H
+#define LLVM_ADT_HASHING_H
+
+#include "llvm/Support/DataTypes.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SwapByteOrder.h"
+#include "llvm/Support/type_traits.h"
+#include <algorithm>
+#include <cassert>
+#include <cstring>
+#include <string>
+#include <utility>
+
+namespace llvm {
+
+/// An opaque object representing a hash code.
+///
+/// This object represents the result of hashing some entity. It is intended to
+/// be used to implement hashtables or other hashing-based data structures.
+/// While it wraps and exposes a numeric value, this value should not be
+/// trusted to be stable or predictable across processes or executions.
+///
+/// In order to obtain the hash_code for an object 'x':
+/// \code
+/// using llvm::hash_value;
+/// llvm::hash_code code = hash_value(x);
+/// \endcode
+class hash_code {
+ size_t value;
+
+public:
+ /// Default construct a hash_code.
+ /// Note that this leaves the value uninitialized.
+ hash_code() = default;
+
+ /// Form a hash code directly from a numerical value.
+ hash_code(size_t value) : value(value) {}
+
+ /// Convert the hash code to its numerical value for use.
+ /*explicit*/ operator size_t() const { return value; }
+
+ friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
+ return lhs.value == rhs.value;
+ }
+ friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
+ return lhs.value != rhs.value;
+ }
+
+ /// Allow a hash_code to be directly run through hash_value.
+ friend size_t hash_value(const hash_code &code) { return code.value; }
+};
+
+/// Compute a hash_code for any integer value.
+///
+/// Note that this function is intended to compute the same hash_code for
+/// a particular value without regard to the pre-promotion type. This is in
+/// contrast to hash_combine which may produce different hash_codes for
+/// differing argument types even if they would implicit promote to a common
+/// type without changing the value.
+template <typename T>
+typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
+hash_value(T value);
+
+/// Compute a hash_code for a pointer's address.
+///
+/// N.B.: This hashes the *address*. Not the value and not the type.
+template <typename T> hash_code hash_value(const T *ptr);
+
+/// Compute a hash_code for a pair of objects.
+template <typename T, typename U>
+hash_code hash_value(const std::pair<T, U> &arg);
+
+/// Compute a hash_code for a standard string.
+template <typename T>
+hash_code hash_value(const std::basic_string<T> &arg);
+
+
+/// Override the execution seed with a fixed value.
+///
+/// This hashing library uses a per-execution seed designed to change on each
+/// run with high probability in order to ensure that the hash codes are not
+/// attackable and to ensure that output which is intended to be stable does
+/// not rely on the particulars of the hash codes produced.
+///
+/// That said, there are use cases where it is important to be able to
+/// reproduce *exactly* a specific behavior. To that end, we provide a function
+/// which will forcibly set the seed to a fixed value. This must be done at the
+/// start of the program, before any hashes are computed. Also, it cannot be
+/// undone. This makes it thread-hostile and very hard to use outside of
+/// immediately on start of a simple program designed for reproducible
+/// behavior.
+void set_fixed_execution_hash_seed(uint64_t fixed_value);
+
+
+// All of the implementation details of actually computing the various hash
+// code values are held within this namespace. These routines are included in
+// the header file mainly to allow inlining and constant propagation.
+namespace hashing {
+namespace detail {
+
+inline uint64_t fetch64(const char *p) {
+ uint64_t result;
+ memcpy(&result, p, sizeof(result));
+ if (sys::IsBigEndianHost)
+ sys::swapByteOrder(result);
+ return result;
+}
+
+inline uint32_t fetch32(const char *p) {
+ uint32_t result;
+ memcpy(&result, p, sizeof(result));
+ if (sys::IsBigEndianHost)
+ sys::swapByteOrder(result);
+ return result;
+}
+
+/// Some primes between 2^63 and 2^64 for various uses.
+static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
+static const uint64_t k1 = 0xb492b66fbe98f273ULL;
+static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
+static const uint64_t k3 = 0xc949d7c7509e6557ULL;
+
+/// Bitwise right rotate.
+/// Normally this will compile to a single instruction, especially if the
+/// shift is a manifest constant.
+inline uint64_t rotate(uint64_t val, size_t shift) {
+ // Avoid shifting by 64: doing so yields an undefined result.
+ return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
+}
+
+inline uint64_t shift_mix(uint64_t val) {
+ return val ^ (val >> 47);
+}
+
+inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
+ // Murmur-inspired hashing.
+ const uint64_t kMul = 0x9ddfea08eb382d69ULL;
+ uint64_t a = (low ^ high) * kMul;
+ a ^= (a >> 47);
+ uint64_t b = (high ^ a) * kMul;
+ b ^= (b >> 47);
+ b *= kMul;
+ return b;
+}
+
+inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
+ uint8_t a = s[0];
+ uint8_t b = s[len >> 1];
+ uint8_t c = s[len - 1];
+ uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
+ uint32_t z = static_cast<uint32_t>(len) + (static_cast<uint32_t>(c) << 2);
+ return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
+}
+
+inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
+ uint64_t a = fetch32(s);
+ return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
+}
+
+inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
+ uint64_t a = fetch64(s);
+ uint64_t b = fetch64(s + len - 8);
+ return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
+}
+
+inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
+ uint64_t a = fetch64(s) * k1;
+ uint64_t b = fetch64(s + 8);
+ uint64_t c = fetch64(s + len - 8) * k2;
+ uint64_t d = fetch64(s + len - 16) * k0;
+ return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
+ a + rotate(b ^ k3, 20) - c + len + seed);
+}
+
+inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
+ uint64_t z = fetch64(s + 24);
+ uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
+ uint64_t b = rotate(a + z, 52);
+ uint64_t c = rotate(a, 37);
+ a += fetch64(s + 8);
+ c += rotate(a, 7);
+ a += fetch64(s + 16);
+ uint64_t vf = a + z;
+ uint64_t vs = b + rotate(a, 31) + c;
+ a = fetch64(s + 16) + fetch64(s + len - 32);
+ z = fetch64(s + len - 8);
+ b = rotate(a + z, 52);
+ c = rotate(a, 37);
+ a += fetch64(s + len - 24);
+ c += rotate(a, 7);
+ a += fetch64(s + len - 16);
+ uint64_t wf = a + z;
+ uint64_t ws = b + rotate(a, 31) + c;
+ uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
+ return shift_mix((seed ^ (r * k0)) + vs) * k2;
+}
+
+inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
+ if (length >= 4 && length <= 8)
+ return hash_4to8_bytes(s, length, seed);
+ if (length > 8 && length <= 16)
+ return hash_9to16_bytes(s, length, seed);
+ if (length > 16 && length <= 32)
+ return hash_17to32_bytes(s, length, seed);
+ if (length > 32)
+ return hash_33to64_bytes(s, length, seed);
+ if (length != 0)
+ return hash_1to3_bytes(s, length, seed);
+
+ return k2 ^ seed;
+}
+
+/// The intermediate state used during hashing.
+/// Currently, the algorithm for computing hash codes is based on CityHash and
+/// keeps 56 bytes of arbitrary state.
+struct hash_state {
+ uint64_t h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0;
+
+ /// Create a new hash_state structure and initialize it based on the
+ /// seed and the first 64-byte chunk.
+ /// This effectively performs the initial mix.
+ static hash_state create(const char *s, uint64_t seed) {
+ hash_state state = {
+ 0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
+ seed * k1, shift_mix(seed), 0 };
+ state.h6 = hash_16_bytes(state.h4, state.h5);
+ state.mix(s);
+ return state;
+ }
+
+ /// Mix 32-bytes from the input sequence into the 16-bytes of 'a'
+ /// and 'b', including whatever is already in 'a' and 'b'.
+ static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
+ a += fetch64(s);
+ uint64_t c = fetch64(s + 24);
+ b = rotate(b + a + c, 21);
+ uint64_t d = a;
+ a += fetch64(s + 8) + fetch64(s + 16);
+ b += rotate(a, 44) + d;
+ a += c;
+ }
+
+ /// Mix in a 64-byte buffer of data.
+ /// We mix all 64 bytes even when the chunk length is smaller, but we
+ /// record the actual length.
+ void mix(const char *s) {
+ h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
+ h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
+ h0 ^= h6;
+ h1 += h3 + fetch64(s + 40);
+ h2 = rotate(h2 + h5, 33) * k1;
+ h3 = h4 * k1;
+ h4 = h0 + h5;
+ mix_32_bytes(s, h3, h4);
+ h5 = h2 + h6;
+ h6 = h1 + fetch64(s + 16);
+ mix_32_bytes(s + 32, h5, h6);
+ std::swap(h2, h0);
+ }
+
+ /// Compute the final 64-bit hash code value based on the current
+ /// state and the length of bytes hashed.
+ uint64_t finalize(size_t length) {
+ return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
+ hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
+ }
+};
+
+
+/// A global, fixed seed-override variable.
+///
+/// This variable can be set using the \see llvm::set_fixed_execution_seed
+/// function. See that function for details. Do not, under any circumstances,
+/// set or read this variable.
+extern uint64_t fixed_seed_override;
+
+inline uint64_t get_execution_seed() {
+ // FIXME: This needs to be a per-execution seed. This is just a placeholder
+ // implementation. Switching to a per-execution seed is likely to flush out
+ // instability bugs and so will happen as its own commit.
+ //
+ // However, if there is a fixed seed override set the first time this is
+ // called, return that instead of the per-execution seed.
+ const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
+ static uint64_t seed = fixed_seed_override ? fixed_seed_override : seed_prime;
+ return seed;
+}
+
+
+/// Trait to indicate whether a type's bits can be hashed directly.
+///
+/// A type trait which is true if we want to combine values for hashing by
+/// reading the underlying data. It is false if values of this type must
+/// first be passed to hash_value, and the resulting hash_codes combined.
+//
+// FIXME: We want to replace is_integral_or_enum and is_pointer here with
+// a predicate which asserts that comparing the underlying storage of two
+// values of the type for equality is equivalent to comparing the two values
+// for equality. For all the platforms we care about, this holds for integers
+// and pointers, but there are platforms where it doesn't and we would like to
+// support user-defined types which happen to satisfy this property.
+template <typename T> struct is_hashable_data
+ : std::integral_constant<bool, ((is_integral_or_enum<T>::value ||
+ std::is_pointer<T>::value) &&
+ 64 % sizeof(T) == 0)> {};
+
+// Special case std::pair to detect when both types are viable and when there
+// is no alignment-derived padding in the pair. This is a bit of a lie because
+// std::pair isn't truly POD, but it's close enough in all reasonable
+// implementations for our use case of hashing the underlying data.
+template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
+ : std::integral_constant<bool, (is_hashable_data<T>::value &&
+ is_hashable_data<U>::value &&
+ (sizeof(T) + sizeof(U)) ==
+ sizeof(std::pair<T, U>))> {};
+
+/// Helper to get the hashable data representation for a type.
+/// This variant is enabled when the type itself can be used.
+template <typename T>
+typename std::enable_if<is_hashable_data<T>::value, T>::type
+get_hashable_data(const T &value) {
+ return value;
+}
+/// Helper to get the hashable data representation for a type.
+/// This variant is enabled when we must first call hash_value and use the
+/// result as our data.
+template <typename T>
+typename std::enable_if<!is_hashable_data<T>::value, size_t>::type
+get_hashable_data(const T &value) {
+ using ::llvm::hash_value;
+ return hash_value(value);
+}
+
+/// Helper to store data from a value into a buffer and advance the
+/// pointer into that buffer.
+///
+/// This routine first checks whether there is enough space in the provided
+/// buffer, and if not immediately returns false. If there is space, it
+/// copies the underlying bytes of value into the buffer, advances the
+/// buffer_ptr past the copied bytes, and returns true.
+template <typename T>
+bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
+ size_t offset = 0) {
+ size_t store_size = sizeof(value) - offset;
+ if (buffer_ptr + store_size > buffer_end)
+ return false;
+ const char *value_data = reinterpret_cast<const char *>(&value);
+ memcpy(buffer_ptr, value_data + offset, store_size);
+ buffer_ptr += store_size;
+ return true;
+}
+
+/// Implement the combining of integral values into a hash_code.
+///
+/// This overload is selected when the value type of the iterator is
+/// integral. Rather than computing a hash_code for each object and then
+/// combining them, this (as an optimization) directly combines the integers.
+template <typename InputIteratorT>
+hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
+ const uint64_t seed = get_execution_seed();
+ char buffer[64], *buffer_ptr = buffer;
+ char *const buffer_end = std::end(buffer);
+ while (first != last && store_and_advance(buffer_ptr, buffer_end,
+ get_hashable_data(*first)))
+ ++first;
+ if (first == last)
+ return hash_short(buffer, buffer_ptr - buffer, seed);
+ assert(buffer_ptr == buffer_end);
+
+ hash_state state = state.create(buffer, seed);
+ size_t length = 64;
+ while (first != last) {
+ // Fill up the buffer. We don't clear it, which re-mixes the last round
+ // when only a partial 64-byte chunk is left.
+ buffer_ptr = buffer;
+ while (first != last && store_and_advance(buffer_ptr, buffer_end,
+ get_hashable_data(*first)))
+ ++first;
+
+ // Rotate the buffer if we did a partial fill in order to simulate doing
+ // a mix of the last 64-bytes. That is how the algorithm works when we
+ // have a contiguous byte sequence, and we want to emulate that here.
+ std::rotate(buffer, buffer_ptr, buffer_end);
+
+ // Mix this chunk into the current state.
+ state.mix(buffer);
+ length += buffer_ptr - buffer;
+ };
+
+ return state.finalize(length);
+}
+
+/// Implement the combining of integral values into a hash_code.
+///
+/// This overload is selected when the value type of the iterator is integral
+/// and when the input iterator is actually a pointer. Rather than computing
+/// a hash_code for each object and then combining them, this (as an
+/// optimization) directly combines the integers. Also, because the integers
+/// are stored in contiguous memory, this routine avoids copying each value
+/// and directly reads from the underlying memory.
+template <typename ValueT>
+typename std::enable_if<is_hashable_data<ValueT>::value, hash_code>::type
+hash_combine_range_impl(ValueT *first, ValueT *last) {
+ const uint64_t seed = get_execution_seed();
+ const char *s_begin = reinterpret_cast<const char *>(first);
+ const char *s_end = reinterpret_cast<const char *>(last);
+ const size_t length = std::distance(s_begin, s_end);
+ if (length <= 64)
+ return hash_short(s_begin, length, seed);
+
+ const char *s_aligned_end = s_begin + (length & ~63);
+ hash_state state = state.create(s_begin, seed);
+ s_begin += 64;
+ while (s_begin != s_aligned_end) {
+ state.mix(s_begin);
+ s_begin += 64;
+ }
+ if (length & 63)
+ state.mix(s_end - 64);
+
+ return state.finalize(length);
+}
+
+} // namespace detail
+} // namespace hashing
+
+
+/// Compute a hash_code for a sequence of values.
+///
+/// This hashes a sequence of values. It produces the same hash_code as
+/// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
+/// and is significantly faster given pointers and types which can be hashed as
+/// a sequence of bytes.
+template <typename InputIteratorT>
+hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
+ return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
+}
+
+
+// Implementation details for hash_combine.
+namespace hashing {
+namespace detail {
+
+/// Helper class to manage the recursive combining of hash_combine
+/// arguments.
+///
+/// This class exists to manage the state and various calls involved in the
+/// recursive combining of arguments used in hash_combine. It is particularly
+/// useful at minimizing the code in the recursive calls to ease the pain
+/// caused by a lack of variadic functions.
+struct hash_combine_recursive_helper {
+ char buffer[64] = {};
+ hash_state state;
+ const uint64_t seed;
+
+public:
+ /// Construct a recursive hash combining helper.
+ ///
+ /// This sets up the state for a recursive hash combine, including getting
+ /// the seed and buffer setup.
+ hash_combine_recursive_helper()
+ : seed(get_execution_seed()) {}
+
+ /// Combine one chunk of data into the current in-flight hash.
+ ///
+ /// This merges one chunk of data into the hash. First it tries to buffer
+ /// the data. If the buffer is full, it hashes the buffer into its
+ /// hash_state, empties it, and then merges the new chunk in. This also
+ /// handles cases where the data straddles the end of the buffer.
+ template <typename T>
+ char *combine_data(size_t &length, char *buffer_ptr, char *buffer_end, T data) {
+ if (!store_and_advance(buffer_ptr, buffer_end, data)) {
+ // Check for skew which prevents the buffer from being packed, and do
+ // a partial store into the buffer to fill it. This is only a concern
+ // with the variadic combine because that formation can have varying
+ // argument types.
+ size_t partial_store_size = buffer_end - buffer_ptr;
+ memcpy(buffer_ptr, &data, partial_store_size);
+
+ // If the store fails, our buffer is full and ready to hash. We have to
+ // either initialize the hash state (on the first full buffer) or mix
+ // this buffer into the existing hash state. Length tracks the *hashed*
+ // length, not the buffered length.
+ if (length == 0) {
+ state = state.create(buffer, seed);
+ length = 64;
+ } else {
+ // Mix this chunk into the current state and bump length up by 64.
+ state.mix(buffer);
+ length += 64;
+ }
+ // Reset the buffer_ptr to the head of the buffer for the next chunk of
+ // data.
+ buffer_ptr = buffer;
+
+ // Try again to store into the buffer -- this cannot fail as we only
+ // store types smaller than the buffer.
+ if (!store_and_advance(buffer_ptr, buffer_end, data,
+ partial_store_size))
+ llvm_unreachable("buffer smaller than stored type");
+ }
+ return buffer_ptr;
+ }
+
+ /// Recursive, variadic combining method.
+ ///
+ /// This function recurses through each argument, combining that argument
+ /// into a single hash.
+ template <typename T, typename ...Ts>
+ hash_code combine(size_t length, char *buffer_ptr, char *buffer_end,
+ const T &arg, const Ts &...args) {
+ buffer_ptr = combine_data(length, buffer_ptr, buffer_end, get_hashable_data(arg));
+
+ // Recurse to the next argument.
+ return combine(length, buffer_ptr, buffer_end, args...);
+ }
+
+ /// Base case for recursive, variadic combining.
+ ///
+ /// The base case when combining arguments recursively is reached when all
+ /// arguments have been handled. It flushes the remaining buffer and
+ /// constructs a hash_code.
+ hash_code combine(size_t length, char *buffer_ptr, char *buffer_end) {
+ // Check whether the entire set of values fit in the buffer. If so, we'll
+ // use the optimized short hashing routine and skip state entirely.
+ if (length == 0)
+ return hash_short(buffer, buffer_ptr - buffer, seed);
+
+ // Mix the final buffer, rotating it if we did a partial fill in order to
+ // simulate doing a mix of the last 64-bytes. That is how the algorithm
+ // works when we have a contiguous byte sequence, and we want to emulate
+ // that here.
+ std::rotate(buffer, buffer_ptr, buffer_end);
+
+ // Mix this chunk into the current state.
+ state.mix(buffer);
+ length += buffer_ptr - buffer;
+
+ return state.finalize(length);
+ }
+};
+
+} // namespace detail
+} // namespace hashing
+
+/// Combine values into a single hash_code.
+///
+/// This routine accepts a varying number of arguments of any type. It will
+/// attempt to combine them into a single hash_code. For user-defined types it
+/// attempts to call a \see hash_value overload (via ADL) for the type. For
+/// integer and pointer types it directly combines their data into the
+/// resulting hash_code.
+///
+/// The result is suitable for returning from a user's hash_value
+/// *implementation* for their user-defined type. Consumers of a type should
+/// *not* call this routine, they should instead call 'hash_value'.
+template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
+ // Recursively hash each argument using a helper class.
+ ::llvm::hashing::detail::hash_combine_recursive_helper helper;
+ return helper.combine(0, helper.buffer, helper.buffer + 64, args...);
+}
+
+// Implementation details for implementations of hash_value overloads provided
+// here.
+namespace hashing {
+namespace detail {
+
+/// Helper to hash the value of a single integer.
+///
+/// Overloads for smaller integer types are not provided to ensure consistent
+/// behavior in the presence of integral promotions. Essentially,
+/// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
+inline hash_code hash_integer_value(uint64_t value) {
+ // Similar to hash_4to8_bytes but using a seed instead of length.
+ const uint64_t seed = get_execution_seed();
+ const char *s = reinterpret_cast<const char *>(&value);
+ const uint64_t a = fetch32(s);
+ return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
+}
+
+} // namespace detail
+} // namespace hashing
+
+// Declared and documented above, but defined here so that any of the hashing
+// infrastructure is available.
+template <typename T>
+typename std::enable_if<is_integral_or_enum<T>::value, hash_code>::type
+hash_value(T value) {
+ return ::llvm::hashing::detail::hash_integer_value(
+ static_cast<uint64_t>(value));
+}
+
+// Declared and documented above, but defined here so that any of the hashing
+// infrastructure is available.
+template <typename T> hash_code hash_value(const T *ptr) {
+ return ::llvm::hashing::detail::hash_integer_value(
+ reinterpret_cast<uintptr_t>(ptr));
+}
+
+// Declared and documented above, but defined here so that any of the hashing
+// infrastructure is available.
+template <typename T, typename U>
+hash_code hash_value(const std::pair<T, U> &arg) {
+ return hash_combine(arg.first, arg.second);
+}
+
+// Declared and documented above, but defined here so that any of the hashing
+// infrastructure is available.
+template <typename T>
+hash_code hash_value(const std::basic_string<T> &arg) {
+ return hash_combine_range(arg.begin(), arg.end());
+}
+
+} // namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/MapVector.h b/third_party/llvm-project/include/llvm/ADT/MapVector.h
new file mode 100644
index 000000000..1de1124f4
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/MapVector.h
@@ -0,0 +1,239 @@
+//===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a map that provides insertion order iteration. The
+// interface is purposefully minimal. The key is assumed to be cheap to copy
+// and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
+// a std::vector.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_MAPVECTOR_H
+#define LLVM_ADT_MAPVECTOR_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+/// This class implements a map that also provides access to all stored values
+/// in a deterministic order. The values are kept in a std::vector and the
+/// mapping is done with DenseMap from Keys to indexes in that vector.
+template<typename KeyT, typename ValueT,
+ typename MapType = DenseMap<KeyT, unsigned>,
+ typename VectorType = std::vector<std::pair<KeyT, ValueT>>>
+class MapVector {
+ MapType Map;
+ VectorType Vector;
+
+ static_assert(
+ std::is_integral<typename MapType::mapped_type>::value,
+ "The mapped_type of the specified Map must be an integral type");
+
+public:
+ using value_type = typename VectorType::value_type;
+ using size_type = typename VectorType::size_type;
+
+ using iterator = typename VectorType::iterator;
+ using const_iterator = typename VectorType::const_iterator;
+ using reverse_iterator = typename VectorType::reverse_iterator;
+ using const_reverse_iterator = typename VectorType::const_reverse_iterator;
+
+ /// Clear the MapVector and return the underlying vector.
+ VectorType takeVector() {
+ Map.clear();
+ return std::move(Vector);
+ }
+
+ size_type size() const { return Vector.size(); }
+
+ /// Grow the MapVector so that it can contain at least \p NumEntries items
+ /// before resizing again.
+ void reserve(size_type NumEntries) {
+ Map.reserve(NumEntries);
+ Vector.reserve(NumEntries);
+ }
+
+ iterator begin() { return Vector.begin(); }
+ const_iterator begin() const { return Vector.begin(); }
+ iterator end() { return Vector.end(); }
+ const_iterator end() const { return Vector.end(); }
+
+ reverse_iterator rbegin() { return Vector.rbegin(); }
+ const_reverse_iterator rbegin() const { return Vector.rbegin(); }
+ reverse_iterator rend() { return Vector.rend(); }
+ const_reverse_iterator rend() const { return Vector.rend(); }
+
+ bool empty() const {
+ return Vector.empty();
+ }
+
+ std::pair<KeyT, ValueT> &front() { return Vector.front(); }
+ const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
+ std::pair<KeyT, ValueT> &back() { return Vector.back(); }
+ const std::pair<KeyT, ValueT> &back() const { return Vector.back(); }
+
+ void clear() {
+ Map.clear();
+ Vector.clear();
+ }
+
+ void swap(MapVector &RHS) {
+ std::swap(Map, RHS.Map);
+ std::swap(Vector, RHS.Vector);
+ }
+
+ ValueT &operator[](const KeyT &Key) {
+ std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(Key, 0);
+ std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
+ auto &I = Result.first->second;
+ if (Result.second) {
+ Vector.push_back(std::make_pair(Key, ValueT()));
+ I = Vector.size() - 1;
+ }
+ return Vector[I].second;
+ }
+
+ // Returns a copy of the value. Only allowed if ValueT is copyable.
+ ValueT lookup(const KeyT &Key) const {
+ static_assert(std::is_copy_constructible<ValueT>::value,
+ "Cannot call lookup() if ValueT is not copyable.");
+ typename MapType::const_iterator Pos = Map.find(Key);
+ return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
+ }
+
+ std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
+ std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0);
+ std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
+ auto &I = Result.first->second;
+ if (Result.second) {
+ Vector.push_back(std::make_pair(KV.first, KV.second));
+ I = Vector.size() - 1;
+ return std::make_pair(std::prev(end()), true);
+ }
+ return std::make_pair(begin() + I, false);
+ }
+
+ std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
+ // Copy KV.first into the map, then move it into the vector.
+ std::pair<KeyT, typename MapType::mapped_type> Pair = std::make_pair(KV.first, 0);
+ std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
+ auto &I = Result.first->second;
+ if (Result.second) {
+ Vector.push_back(std::move(KV));
+ I = Vector.size() - 1;
+ return std::make_pair(std::prev(end()), true);
+ }
+ return std::make_pair(begin() + I, false);
+ }
+
+ size_type count(const KeyT &Key) const {
+ typename MapType::const_iterator Pos = Map.find(Key);
+ return Pos == Map.end()? 0 : 1;
+ }
+
+ iterator find(const KeyT &Key) {
+ typename MapType::const_iterator Pos = Map.find(Key);
+ return Pos == Map.end()? Vector.end() :
+ (Vector.begin() + Pos->second);
+ }
+
+ const_iterator find(const KeyT &Key) const {
+ typename MapType::const_iterator Pos = Map.find(Key);
+ return Pos == Map.end()? Vector.end() :
+ (Vector.begin() + Pos->second);
+ }
+
+ /// Remove the last element from the vector.
+ void pop_back() {
+ typename MapType::iterator Pos = Map.find(Vector.back().first);
+ Map.erase(Pos);
+ Vector.pop_back();
+ }
+
+ /// Remove the element given by Iterator.
+ ///
+ /// Returns an iterator to the element following the one which was removed,
+ /// which may be end().
+ ///
+ /// \note This is a deceivingly expensive operation (linear time). It's
+ /// usually better to use \a remove_if() if possible.
+ typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
+ Map.erase(Iterator->first);
+ auto Next = Vector.erase(Iterator);
+ if (Next == Vector.end())
+ return Next;
+
+ // Update indices in the map.
+ size_t Index = Next - Vector.begin();
+ for (auto &I : Map) {
+ assert(I.second != Index && "Index was already erased!");
+ if (I.second > Index)
+ --I.second;
+ }
+ return Next;
+ }
+
+ /// Remove all elements with the key value Key.
+ ///
+ /// Returns the number of elements removed.
+ size_type erase(const KeyT &Key) {
+ auto Iterator = find(Key);
+ if (Iterator == end())
+ return 0;
+ erase(Iterator);
+ return 1;
+ }
+
+ /// Remove the elements that match the predicate.
+ ///
+ /// Erase all elements that match \c Pred in a single pass. Takes linear
+ /// time.
+ template <class Predicate> void remove_if(Predicate Pred);
+};
+
+template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
+template <class Function>
+void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
+ auto O = Vector.begin();
+ for (auto I = O, E = Vector.end(); I != E; ++I) {
+ if (Pred(*I)) {
+ // Erase from the map.
+ Map.erase(I->first);
+ continue;
+ }
+
+ if (I != O) {
+ // Move the value and update the index in the map.
+ *O = std::move(*I);
+ Map[O->first] = O - Vector.begin();
+ }
+ ++O;
+ }
+ // Erase trailing entries in the vector.
+ Vector.erase(O, Vector.end());
+}
+
+/// A MapVector that performs no allocations if smaller than a certain
+/// size.
+template <typename KeyT, typename ValueT, unsigned N>
+struct SmallMapVector
+ : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
+ SmallVector<std::pair<KeyT, ValueT>, N>> {
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_MAPVECTOR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/None.h b/third_party/llvm-project/include/llvm/ADT/None.h
new file mode 100644
index 000000000..004ca0ac5
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/None.h
@@ -0,0 +1,26 @@
+//===-- None.h - Simple null value for implicit construction ------*- C++ -*-=//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides None, an enumerator for use in implicit constructors
+// of various (usually templated) types to make such construction more
+// terse.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_NONE_H
+#define LLVM_ADT_NONE_H
+
+namespace llvm {
+/// A simple null object to allow implicit construction of Optional<T>
+/// and similar types without having to spell out the specialization's name.
+// (constant value 1 in an attempt to workaround MSVC build issue... )
+enum class NoneType { None = 1 };
+const NoneType None = NoneType::None;
+}
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/Optional.h b/third_party/llvm-project/include/llvm/ADT/Optional.h
new file mode 100644
index 000000000..b45a74002
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/Optional.h
@@ -0,0 +1,429 @@
+//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides Optional, a template class modeled in the spirit of
+// OCaml's 'opt' variant. The idea is to strongly type whether or not
+// a value can be optional.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_OPTIONAL_H
+#define LLVM_ADT_OPTIONAL_H
+
+#include "llvm/ADT/None.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/type_traits.h"
+#include <cassert>
+#include <memory>
+#include <new>
+#include <utility>
+
+namespace llvm {
+
+class raw_ostream;
+
+namespace optional_detail {
+
+struct in_place_t {};
+
+/// Storage for any type.
+template <typename T, bool = is_trivially_copyable<T>::value>
+class OptionalStorage {
+ union {
+ char empty;
+ T value;
+ };
+ bool hasVal;
+
+public:
+ ~OptionalStorage() { reset(); }
+
+ OptionalStorage() noexcept : empty(), hasVal(false) {}
+
+ OptionalStorage(OptionalStorage const &other) : OptionalStorage() {
+ if (other.hasValue()) {
+ emplace(other.value);
+ }
+ }
+ OptionalStorage(OptionalStorage &&other) : OptionalStorage() {
+ if (other.hasValue()) {
+ emplace(std::move(other.value));
+ }
+ }
+
+ template <class... Args>
+ explicit OptionalStorage(in_place_t, Args &&... args)
+ : value(std::forward<Args>(args)...), hasVal(true) {}
+
+ void reset() noexcept {
+ if (hasVal) {
+ value.~T();
+ hasVal = false;
+ }
+ }
+
+ bool hasValue() const noexcept { return hasVal; }
+
+ T &getValue() LLVM_LVALUE_FUNCTION noexcept {
+ assert(hasVal);
+ return value;
+ }
+ T const &getValue() const LLVM_LVALUE_FUNCTION noexcept {
+ assert(hasVal);
+ return value;
+ }
+#if LLVM_HAS_RVALUE_REFERENCE_THIS
+ T &&getValue() && noexcept {
+ assert(hasVal);
+ return std::move(value);
+ }
+#endif
+
+ template <class... Args> void emplace(Args &&... args) {
+ reset();
+ ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
+ hasVal = true;
+ }
+
+ OptionalStorage &operator=(T const &y) {
+ if (hasValue()) {
+ value = y;
+ } else {
+ ::new ((void *)std::addressof(value)) T(y);
+ hasVal = true;
+ }
+ return *this;
+ }
+ OptionalStorage &operator=(T &&y) {
+ if (hasValue()) {
+ value = std::move(y);
+ } else {
+ ::new ((void *)std::addressof(value)) T(std::move(y));
+ hasVal = true;
+ }
+ return *this;
+ }
+
+ OptionalStorage &operator=(OptionalStorage const &other) {
+ if (other.hasValue()) {
+ if (hasValue()) {
+ value = other.value;
+ } else {
+ ::new ((void *)std::addressof(value)) T(other.value);
+ hasVal = true;
+ }
+ } else {
+ reset();
+ }
+ return *this;
+ }
+
+ OptionalStorage &operator=(OptionalStorage &&other) {
+ if (other.hasValue()) {
+ if (hasValue()) {
+ value = std::move(other.value);
+ } else {
+ ::new ((void *)std::addressof(value)) T(std::move(other.value));
+ hasVal = true;
+ }
+ } else {
+ reset();
+ }
+ return *this;
+ }
+};
+
+template <typename T> class OptionalStorage<T, true> {
+ union {
+ char empty;
+ T value;
+ };
+ bool hasVal = false;
+
+public:
+ ~OptionalStorage() = default;
+
+ OptionalStorage() noexcept : empty{} {}
+
+ OptionalStorage(OptionalStorage const &other) = default;
+ OptionalStorage(OptionalStorage &&other) = default;
+
+ OptionalStorage &operator=(OptionalStorage const &other) = default;
+ OptionalStorage &operator=(OptionalStorage &&other) = default;
+
+ template <class... Args>
+ explicit OptionalStorage(in_place_t, Args &&... args)
+ : value(std::forward<Args>(args)...), hasVal(true) {}
+
+ void reset() noexcept {
+ if (hasVal) {
+ value.~T();
+ hasVal = false;
+ }
+ }
+
+ bool hasValue() const noexcept { return hasVal; }
+
+ T &getValue() LLVM_LVALUE_FUNCTION noexcept {
+ assert(hasVal);
+ return value;
+ }
+ T const &getValue() const LLVM_LVALUE_FUNCTION noexcept {
+ assert(hasVal);
+ return value;
+ }
+#if LLVM_HAS_RVALUE_REFERENCE_THIS
+ T &&getValue() && noexcept {
+ assert(hasVal);
+ return std::move(value);
+ }
+#endif
+
+ template <class... Args> void emplace(Args &&... args) {
+ reset();
+ ::new ((void *)std::addressof(value)) T(std::forward<Args>(args)...);
+ hasVal = true;
+ }
+
+ OptionalStorage &operator=(T const &y) {
+ if (hasValue()) {
+ value = y;
+ } else {
+ ::new ((void *)std::addressof(value)) T(y);
+ hasVal = true;
+ }
+ return *this;
+ }
+ OptionalStorage &operator=(T &&y) {
+ if (hasValue()) {
+ value = std::move(y);
+ } else {
+ ::new ((void *)std::addressof(value)) T(std::move(y));
+ hasVal = true;
+ }
+ return *this;
+ }
+};
+
+} // namespace optional_detail
+
+template <typename T> class Optional {
+ optional_detail::OptionalStorage<T> Storage;
+
+public:
+ using value_type = T;
+
+ constexpr Optional() {}
+ constexpr Optional(NoneType) {}
+
+ Optional(const T &y) : Storage(optional_detail::in_place_t{}, y) {}
+ Optional(const Optional &O) = default;
+
+ Optional(T &&y) : Storage(optional_detail::in_place_t{}, std::move(y)) {}
+ Optional(Optional &&O) = default;
+
+ Optional &operator=(T &&y) {
+ Storage = std::move(y);
+ return *this;
+ }
+ Optional &operator=(Optional &&O) = default;
+
+ /// Create a new object by constructing it in place with the given arguments.
+ template <typename... ArgTypes> void emplace(ArgTypes &&... Args) {
+ Storage.emplace(std::forward<ArgTypes>(Args)...);
+ }
+
+ static inline Optional create(const T *y) {
+ return y ? Optional(*y) : Optional();
+ }
+
+ Optional &operator=(const T &y) {
+ Storage = y;
+ return *this;
+ }
+ Optional &operator=(const Optional &O) = default;
+
+ void reset() { Storage.reset(); }
+
+ const T *getPointer() const { return &Storage.getValue(); }
+ T *getPointer() { return &Storage.getValue(); }
+ const T &getValue() const LLVM_LVALUE_FUNCTION { return Storage.getValue(); }
+ T &getValue() LLVM_LVALUE_FUNCTION { return Storage.getValue(); }
+
+ explicit operator bool() const { return hasValue(); }
+ bool hasValue() const { return Storage.hasValue(); }
+ const T *operator->() const { return getPointer(); }
+ T *operator->() { return getPointer(); }
+ const T &operator*() const LLVM_LVALUE_FUNCTION { return getValue(); }
+ T &operator*() LLVM_LVALUE_FUNCTION { return getValue(); }
+
+ template <typename U>
+ constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION {
+ return hasValue() ? getValue() : std::forward<U>(value);
+ }
+
+#if LLVM_HAS_RVALUE_REFERENCE_THIS
+ T &&getValue() && { return std::move(Storage.getValue()); }
+ T &&operator*() && { return std::move(Storage.getValue()); }
+
+ template <typename U>
+ T getValueOr(U &&value) && {
+ return hasValue() ? std::move(getValue()) : std::forward<U>(value);
+ }
+#endif
+};
+
+template <typename T, typename U>
+bool operator==(const Optional<T> &X, const Optional<U> &Y) {
+ if (X && Y)
+ return *X == *Y;
+ return X.hasValue() == Y.hasValue();
+}
+
+template <typename T, typename U>
+bool operator!=(const Optional<T> &X, const Optional<U> &Y) {
+ return !(X == Y);
+}
+
+template <typename T, typename U>
+bool operator<(const Optional<T> &X, const Optional<U> &Y) {
+ if (X && Y)
+ return *X < *Y;
+ return X.hasValue() < Y.hasValue();
+}
+
+template <typename T, typename U>
+bool operator<=(const Optional<T> &X, const Optional<U> &Y) {
+ return !(Y < X);
+}
+
+template <typename T, typename U>
+bool operator>(const Optional<T> &X, const Optional<U> &Y) {
+ return Y < X;
+}
+
+template <typename T, typename U>
+bool operator>=(const Optional<T> &X, const Optional<U> &Y) {
+ return !(X < Y);
+}
+
+template<typename T>
+bool operator==(const Optional<T> &X, NoneType) {
+ return !X;
+}
+
+template<typename T>
+bool operator==(NoneType, const Optional<T> &X) {
+ return X == None;
+}
+
+template<typename T>
+bool operator!=(const Optional<T> &X, NoneType) {
+ return !(X == None);
+}
+
+template<typename T>
+bool operator!=(NoneType, const Optional<T> &X) {
+ return X != None;
+}
+
+template <typename T> bool operator<(const Optional<T> &X, NoneType) {
+ return false;
+}
+
+template <typename T> bool operator<(NoneType, const Optional<T> &X) {
+ return X.hasValue();
+}
+
+template <typename T> bool operator<=(const Optional<T> &X, NoneType) {
+ return !(None < X);
+}
+
+template <typename T> bool operator<=(NoneType, const Optional<T> &X) {
+ return !(X < None);
+}
+
+template <typename T> bool operator>(const Optional<T> &X, NoneType) {
+ return None < X;
+}
+
+template <typename T> bool operator>(NoneType, const Optional<T> &X) {
+ return X < None;
+}
+
+template <typename T> bool operator>=(const Optional<T> &X, NoneType) {
+ return None <= X;
+}
+
+template <typename T> bool operator>=(NoneType, const Optional<T> &X) {
+ return X <= None;
+}
+
+template <typename T> bool operator==(const Optional<T> &X, const T &Y) {
+ return X && *X == Y;
+}
+
+template <typename T> bool operator==(const T &X, const Optional<T> &Y) {
+ return Y && X == *Y;
+}
+
+template <typename T> bool operator!=(const Optional<T> &X, const T &Y) {
+ return !(X == Y);
+}
+
+template <typename T> bool operator!=(const T &X, const Optional<T> &Y) {
+ return !(X == Y);
+}
+
+template <typename T> bool operator<(const Optional<T> &X, const T &Y) {
+ return !X || *X < Y;
+}
+
+template <typename T> bool operator<(const T &X, const Optional<T> &Y) {
+ return Y && X < *Y;
+}
+
+template <typename T> bool operator<=(const Optional<T> &X, const T &Y) {
+ return !(Y < X);
+}
+
+template <typename T> bool operator<=(const T &X, const Optional<T> &Y) {
+ return !(Y < X);
+}
+
+template <typename T> bool operator>(const Optional<T> &X, const T &Y) {
+ return Y < X;
+}
+
+template <typename T> bool operator>(const T &X, const Optional<T> &Y) {
+ return Y < X;
+}
+
+template <typename T> bool operator>=(const Optional<T> &X, const T &Y) {
+ return !(X < Y);
+}
+
+template <typename T> bool operator>=(const T &X, const Optional<T> &Y) {
+ return !(X < Y);
+}
+
+raw_ostream &operator<<(raw_ostream &OS, NoneType);
+
+template <typename T, typename = decltype(std::declval<raw_ostream &>()
+ << std::declval<const T &>())>
+raw_ostream &operator<<(raw_ostream &OS, const Optional<T> &O) {
+ if (O)
+ OS << *O;
+ else
+ OS << None;
+ return OS;
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_OPTIONAL_H
diff --git a/third_party/llvm-project/include/llvm/ADT/PointerIntPair.h b/third_party/llvm-project/include/llvm/ADT/PointerIntPair.h
new file mode 100644
index 000000000..fa6bf1504
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/PointerIntPair.h
@@ -0,0 +1,243 @@
+//===- llvm/ADT/PointerIntPair.h - Pair for pointer and int -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PointerIntPair class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_POINTERINTPAIR_H
+#define LLVM_ADT_POINTERINTPAIR_H
+
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include "llvm/Support/type_traits.h"
+#include <cassert>
+#include <cstdint>
+#include <limits>
+
+namespace llvm {
+
+template <typename T> struct DenseMapInfo;
+template <typename PointerT, unsigned IntBits, typename PtrTraits>
+struct PointerIntPairInfo;
+
+/// PointerIntPair - This class implements a pair of a pointer and small
+/// integer. It is designed to represent this in the space required by one
+/// pointer by bitmangling the integer into the low part of the pointer. This
+/// can only be done for small integers: typically up to 3 bits, but it depends
+/// on the number of bits available according to PointerLikeTypeTraits for the
+/// type.
+///
+/// Note that PointerIntPair always puts the IntVal part in the highest bits
+/// possible. For example, PointerIntPair<void*, 1, bool> will put the bit for
+/// the bool into bit #2, not bit #0, which allows the low two bits to be used
+/// for something else. For example, this allows:
+/// PointerIntPair<PointerIntPair<void*, 1, bool>, 1, bool>
+/// ... and the two bools will land in different bits.
+template <typename PointerTy, unsigned IntBits, typename IntType = unsigned,
+ typename PtrTraits = PointerLikeTypeTraits<PointerTy>,
+ typename Info = PointerIntPairInfo<PointerTy, IntBits, PtrTraits>>
+class PointerIntPair {
+ // Used by MSVC visualizer and generally helpful for debugging/visualizing.
+ using InfoTy = Info;
+ intptr_t Value = 0;
+
+public:
+ constexpr PointerIntPair() = default;
+
+ PointerIntPair(PointerTy PtrVal, IntType IntVal) {
+ setPointerAndInt(PtrVal, IntVal);
+ }
+
+ explicit PointerIntPair(PointerTy PtrVal) { initWithPointer(PtrVal); }
+
+ PointerTy getPointer() const { return Info::getPointer(Value); }
+
+ IntType getInt() const { return (IntType)Info::getInt(Value); }
+
+ void setPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION {
+ Value = Info::updatePointer(Value, PtrVal);
+ }
+
+ void setInt(IntType IntVal) LLVM_LVALUE_FUNCTION {
+ Value = Info::updateInt(Value, static_cast<intptr_t>(IntVal));
+ }
+
+ void initWithPointer(PointerTy PtrVal) LLVM_LVALUE_FUNCTION {
+ Value = Info::updatePointer(0, PtrVal);
+ }
+
+ void setPointerAndInt(PointerTy PtrVal, IntType IntVal) LLVM_LVALUE_FUNCTION {
+ Value = Info::updateInt(Info::updatePointer(0, PtrVal),
+ static_cast<intptr_t>(IntVal));
+ }
+
+ PointerTy const *getAddrOfPointer() const {
+ return const_cast<PointerIntPair *>(this)->getAddrOfPointer();
+ }
+
+ PointerTy *getAddrOfPointer() {
+ assert(Value == reinterpret_cast<intptr_t>(getPointer()) &&
+ "Can only return the address if IntBits is cleared and "
+ "PtrTraits doesn't change the pointer");
+ return reinterpret_cast<PointerTy *>(&Value);
+ }
+
+ void *getOpaqueValue() const { return reinterpret_cast<void *>(Value); }
+
+ void setFromOpaqueValue(void *Val) LLVM_LVALUE_FUNCTION {
+ Value = reinterpret_cast<intptr_t>(Val);
+ }
+
+ static PointerIntPair getFromOpaqueValue(void *V) {
+ PointerIntPair P;
+ P.setFromOpaqueValue(V);
+ return P;
+ }
+
+ // Allow PointerIntPairs to be created from const void * if and only if the
+ // pointer type could be created from a const void *.
+ static PointerIntPair getFromOpaqueValue(const void *V) {
+ (void)PtrTraits::getFromVoidPointer(V);
+ return getFromOpaqueValue(const_cast<void *>(V));
+ }
+
+ bool operator==(const PointerIntPair &RHS) const {
+ return Value == RHS.Value;
+ }
+
+ bool operator!=(const PointerIntPair &RHS) const {
+ return Value != RHS.Value;
+ }
+
+ bool operator<(const PointerIntPair &RHS) const { return Value < RHS.Value; }
+ bool operator>(const PointerIntPair &RHS) const { return Value > RHS.Value; }
+
+ bool operator<=(const PointerIntPair &RHS) const {
+ return Value <= RHS.Value;
+ }
+
+ bool operator>=(const PointerIntPair &RHS) const {
+ return Value >= RHS.Value;
+ }
+};
+
+// Specialize is_trivially_copyable to avoid limitation of llvm::is_trivially_copyable
+// when compiled with gcc 4.9.
+template <typename PointerTy, unsigned IntBits, typename IntType,
+ typename PtrTraits,
+ typename Info>
+struct is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>> : std::true_type {
+#ifdef HAVE_STD_IS_TRIVIALLY_COPYABLE
+ static_assert(std::is_trivially_copyable<PointerIntPair<PointerTy, IntBits, IntType, PtrTraits, Info>>::value,
+ "inconsistent behavior between llvm:: and std:: implementation of is_trivially_copyable");
+#endif
+};
+
+
+template <typename PointerT, unsigned IntBits, typename PtrTraits>
+struct PointerIntPairInfo {
+ static_assert(PtrTraits::NumLowBitsAvailable <
+ std::numeric_limits<uintptr_t>::digits,
+ "cannot use a pointer type that has all bits free");
+ static_assert(IntBits <= PtrTraits::NumLowBitsAvailable,
+ "PointerIntPair with integer size too large for pointer");
+ enum : uintptr_t {
+ /// PointerBitMask - The bits that come from the pointer.
+ PointerBitMask =
+ ~(uintptr_t)(((intptr_t)1 << PtrTraits::NumLowBitsAvailable) - 1),
+
+ /// IntShift - The number of low bits that we reserve for other uses, and
+ /// keep zero.
+ IntShift = (uintptr_t)PtrTraits::NumLowBitsAvailable - IntBits,
+
+ /// IntMask - This is the unshifted mask for valid bits of the int type.
+ IntMask = (uintptr_t)(((intptr_t)1 << IntBits) - 1),
+
+ // ShiftedIntMask - This is the bits for the integer shifted in place.
+ ShiftedIntMask = (uintptr_t)(IntMask << IntShift)
+ };
+
+ static PointerT getPointer(intptr_t Value) {
+ return PtrTraits::getFromVoidPointer(
+ reinterpret_cast<void *>(Value & PointerBitMask));
+ }
+
+ static intptr_t getInt(intptr_t Value) {
+ return (Value >> IntShift) & IntMask;
+ }
+
+ static intptr_t updatePointer(intptr_t OrigValue, PointerT Ptr) {
+ intptr_t PtrWord =
+ reinterpret_cast<intptr_t>(PtrTraits::getAsVoidPointer(Ptr));
+ assert((PtrWord & ~PointerBitMask) == 0 &&
+ "Pointer is not sufficiently aligned");
+ // Preserve all low bits, just update the pointer.
+ return PtrWord | (OrigValue & ~PointerBitMask);
+ }
+
+ static intptr_t updateInt(intptr_t OrigValue, intptr_t Int) {
+ intptr_t IntWord = static_cast<intptr_t>(Int);
+ assert((IntWord & ~IntMask) == 0 && "Integer too large for field");
+
+ // Preserve all bits other than the ones we are updating.
+ return (OrigValue & ~ShiftedIntMask) | IntWord << IntShift;
+ }
+};
+
+// Provide specialization of DenseMapInfo for PointerIntPair.
+template <typename PointerTy, unsigned IntBits, typename IntType>
+struct DenseMapInfo<PointerIntPair<PointerTy, IntBits, IntType>> {
+ using Ty = PointerIntPair<PointerTy, IntBits, IntType>;
+
+ static Ty getEmptyKey() {
+ uintptr_t Val = static_cast<uintptr_t>(-1);
+ Val <<= PointerLikeTypeTraits<Ty>::NumLowBitsAvailable;
+ return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
+ }
+
+ static Ty getTombstoneKey() {
+ uintptr_t Val = static_cast<uintptr_t>(-2);
+ Val <<= PointerLikeTypeTraits<PointerTy>::NumLowBitsAvailable;
+ return Ty::getFromOpaqueValue(reinterpret_cast<void *>(Val));
+ }
+
+ static unsigned getHashValue(Ty V) {
+ uintptr_t IV = reinterpret_cast<uintptr_t>(V.getOpaqueValue());
+ return unsigned(IV) ^ unsigned(IV >> 9);
+ }
+
+ static bool isEqual(const Ty &LHS, const Ty &RHS) { return LHS == RHS; }
+};
+
+// Teach SmallPtrSet that PointerIntPair is "basically a pointer".
+template <typename PointerTy, unsigned IntBits, typename IntType,
+ typename PtrTraits>
+struct PointerLikeTypeTraits<
+ PointerIntPair<PointerTy, IntBits, IntType, PtrTraits>> {
+ static inline void *
+ getAsVoidPointer(const PointerIntPair<PointerTy, IntBits, IntType> &P) {
+ return P.getOpaqueValue();
+ }
+
+ static inline PointerIntPair<PointerTy, IntBits, IntType>
+ getFromVoidPointer(void *P) {
+ return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
+ }
+
+ static inline PointerIntPair<PointerTy, IntBits, IntType>
+ getFromVoidPointer(const void *P) {
+ return PointerIntPair<PointerTy, IntBits, IntType>::getFromOpaqueValue(P);
+ }
+
+ enum { NumLowBitsAvailable = PtrTraits::NumLowBitsAvailable - IntBits };
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_POINTERINTPAIR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/PointerUnion.h b/third_party/llvm-project/include/llvm/ADT/PointerUnion.h
new file mode 100644
index 000000000..98c905775
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/PointerUnion.h
@@ -0,0 +1,309 @@
+//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PointerUnion class, which is a discriminated union of
+// pointer types.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_POINTERUNION_H
+#define LLVM_ADT_POINTERUNION_H
+
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+
+namespace llvm {
+
+template <typename T> struct PointerUnionTypeSelectorReturn {
+ using Return = T;
+};
+
+/// Get a type based on whether two types are the same or not.
+///
+/// For:
+///
+/// \code
+/// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return;
+/// \endcode
+///
+/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
+template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
+struct PointerUnionTypeSelector {
+ using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return;
+};
+
+template <typename T, typename RET_EQ, typename RET_NE>
+struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
+ using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return;
+};
+
+template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
+struct PointerUnionTypeSelectorReturn<
+ PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> {
+ using Return =
+ typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return;
+};
+
+namespace pointer_union_detail {
+ /// Determine the number of bits required to store integers with values < n.
+ /// This is ceil(log2(n)).
+ constexpr int bitsRequired(unsigned n) {
+ return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
+ }
+
+ template <typename... Ts> constexpr int lowBitsAvailable() {
+ return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
+ }
+
+ /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index
+ /// is the index of T in Us, or sizeof...(Us) if T does not appear in the
+ /// list.
+ template <typename T, typename ...Us> struct TypeIndex;
+ template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> {
+ static constexpr int Index = 0;
+ };
+ template <typename T, typename U, typename... Us>
+ struct TypeIndex<T, U, Us...> {
+ static constexpr int Index = 1 + TypeIndex<T, Us...>::Index;
+ };
+ template <typename T> struct TypeIndex<T> {
+ static constexpr int Index = 0;
+ };
+
+ /// Find the first type in a list of types.
+ template <typename T, typename...> struct GetFirstType {
+ using type = T;
+ };
+
+ /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
+ /// for the template arguments.
+ template <typename ...PTs> class PointerUnionUIntTraits {
+ public:
+ static inline void *getAsVoidPointer(void *P) { return P; }
+ static inline void *getFromVoidPointer(void *P) { return P; }
+ static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
+ };
+
+ /// Implement assigment in terms of construction.
+ template <typename Derived, typename T> struct AssignableFrom {
+ Derived &operator=(T t) {
+ return static_cast<Derived &>(*this) = Derived(t);
+ }
+ };
+
+ template <typename Derived, typename ValTy, int I, typename ...Types>
+ class PointerUnionMembers;
+
+ template <typename Derived, typename ValTy, int I>
+ class PointerUnionMembers<Derived, ValTy, I> {
+ protected:
+ ValTy Val;
+ PointerUnionMembers() = default;
+ PointerUnionMembers(ValTy Val) : Val(Val) {}
+
+ friend struct PointerLikeTypeTraits<Derived>;
+ };
+
+ template <typename Derived, typename ValTy, int I, typename Type,
+ typename ...Types>
+ class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
+ : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
+ using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
+ public:
+ using Base::Base;
+ PointerUnionMembers() = default;
+ PointerUnionMembers(Type V)
+ : Base(ValTy(const_cast<void *>(
+ PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
+ I)) {}
+
+ using Base::operator=;
+ Derived &operator=(Type V) {
+ this->Val = ValTy(
+ const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
+ I);
+ return static_cast<Derived &>(*this);
+ };
+ };
+}
+
+/// A discriminated union of two or more pointer types, with the discriminator
+/// in the low bit of the pointer.
+///
+/// This implementation is extremely efficient in space due to leveraging the
+/// low bits of the pointer, while exposing a natural and type-safe API.
+///
+/// Common use patterns would be something like this:
+/// PointerUnion<int*, float*> P;
+/// P = (int*)0;
+/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
+/// X = P.get<int*>(); // ok.
+/// Y = P.get<float*>(); // runtime assertion failure.
+/// Z = P.get<double*>(); // compile time failure.
+/// P = (float*)0;
+/// Y = P.get<float*>(); // ok.
+/// X = P.get<int*>(); // runtime assertion failure.
+template <typename... PTs>
+class PointerUnion
+ : public pointer_union_detail::PointerUnionMembers<
+ PointerUnion<PTs...>,
+ PointerIntPair<
+ void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
+ pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
+ 0, PTs...> {
+ // The first type is special because we want to directly cast a pointer to a
+ // default-initialized union to a pointer to the first type. But we don't
+ // want PointerUnion to be a 'template <typename First, typename ...Rest>'
+ // because it's much more convenient to have a name for the whole pack. So
+ // split off the first type here.
+ using First = typename pointer_union_detail::GetFirstType<PTs...>::type;
+ using Base = typename PointerUnion::PointerUnionMembers;
+
+public:
+ PointerUnion() = default;
+
+ PointerUnion(std::nullptr_t) : PointerUnion() {}
+ using Base::Base;
+
+ /// Test if the pointer held in the union is null, regardless of
+ /// which type it is.
+ bool isNull() const { return !this->Val.getPointer(); }
+
+ explicit operator bool() const { return !isNull(); }
+
+ /// Test if the Union currently holds the type matching T.
+ template <typename T> int is() const {
+ constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index;
+ static_assert(Index < sizeof...(PTs),
+ "PointerUnion::is<T> given type not in the union");
+ return this->Val.getInt() == Index;
+ }
+
+ /// Returns the value of the specified pointer type.
+ ///
+ /// If the specified pointer type is incorrect, assert.
+ template <typename T> T get() const {
+ assert(is<T>() && "Invalid accessor called");
+ return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer());
+ }
+
+ /// Returns the current pointer if it is of the specified pointer type,
+ /// otherwises returns null.
+ template <typename T> T dyn_cast() const {
+ if (is<T>())
+ return get<T>();
+ return T();
+ }
+
+ /// If the union is set to the first pointer type get an address pointing to
+ /// it.
+ First const *getAddrOfPtr1() const {
+ return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
+ }
+
+ /// If the union is set to the first pointer type get an address pointing to
+ /// it.
+ First *getAddrOfPtr1() {
+ assert(is<First>() && "Val is not the first pointer");
+ assert(
+ PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==
+ this->Val.getPointer() &&
+ "Can't get the address because PointerLikeTypeTraits changes the ptr");
+ return const_cast<First *>(
+ reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
+ }
+
+ /// Assignment from nullptr which just clears the union.
+ const PointerUnion &operator=(std::nullptr_t) {
+ this->Val.initWithPointer(nullptr);
+ return *this;
+ }
+
+ /// Assignment from elements of the union.
+ using Base::operator=;
+
+ void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
+ static inline PointerUnion getFromOpaqueValue(void *VP) {
+ PointerUnion V;
+ V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
+ return V;
+ }
+};
+
+template <typename ...PTs>
+bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
+ return lhs.getOpaqueValue() == rhs.getOpaqueValue();
+}
+
+template <typename ...PTs>
+bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
+ return lhs.getOpaqueValue() != rhs.getOpaqueValue();
+}
+
+template <typename ...PTs>
+bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
+ return lhs.getOpaqueValue() < rhs.getOpaqueValue();
+}
+
+// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
+// # low bits available = min(PT1bits,PT2bits)-1.
+template <typename ...PTs>
+struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
+ static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
+ return P.getOpaqueValue();
+ }
+
+ static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
+ return PointerUnion<PTs...>::getFromOpaqueValue(P);
+ }
+
+ // The number of bits available are the min of the pointer types minus the
+ // bits needed for the discriminator.
+ static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
+ PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
+};
+
+/// A pointer union of three pointer types. See documentation for PointerUnion
+/// for usage.
+template <typename PT1, typename PT2, typename PT3>
+using PointerUnion3 = PointerUnion<PT1, PT2, PT3>;
+
+/// A pointer union of four pointer types. See documentation for PointerUnion
+/// for usage.
+template <typename PT1, typename PT2, typename PT3, typename PT4>
+using PointerUnion4 = PointerUnion<PT1, PT2, PT3, PT4>;
+
+// Teach DenseMap how to use PointerUnions as keys.
+template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
+ using Union = PointerUnion<PTs...>;
+ using FirstInfo =
+ DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
+
+ static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
+
+ static inline Union getTombstoneKey() {
+ return Union(FirstInfo::getTombstoneKey());
+ }
+
+ static unsigned getHashValue(const Union &UnionVal) {
+ intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
+ return DenseMapInfo<intptr_t>::getHashValue(key);
+ }
+
+ static bool isEqual(const Union &LHS, const Union &RHS) {
+ return LHS == RHS;
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_POINTERUNION_H
diff --git a/third_party/llvm-project/include/llvm/ADT/STLExtras.h b/third_party/llvm-project/include/llvm/ADT/STLExtras.h
new file mode 100644
index 000000000..274933bc5
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/STLExtras.h
@@ -0,0 +1,1578 @@
+//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains some templates that are useful if you are working with the
+// STL at all.
+//
+// No library is required when using these functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STLEXTRAS_H
+#define LLVM_ADT_STLEXTRAS_H
+
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Config/abi-breaking.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <functional>
+#include <initializer_list>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#ifdef EXPENSIVE_CHECKS
+#include <random> // for std::mt19937
+#endif
+
+namespace llvm {
+
+// Only used by compiler if both template types are the same. Useful when
+// using SFINAE to test for the existence of member functions.
+template <typename T, T> struct SameType;
+
+namespace detail {
+
+template <typename RangeT>
+using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
+
+template <typename RangeT>
+using ValueOfRange = typename std::remove_reference<decltype(
+ *std::begin(std::declval<RangeT &>()))>::type;
+
+} // end namespace detail
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <type_traits>
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+struct negation : std::integral_constant<bool, !bool(T::value)> {};
+
+template <typename...> struct conjunction : std::true_type {};
+template <typename B1> struct conjunction<B1> : B1 {};
+template <typename B1, typename... Bn>
+struct conjunction<B1, Bn...>
+ : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
+
+template <typename T> struct make_const_ptr {
+ using type =
+ typename std::add_pointer<typename std::add_const<T>::type>::type;
+};
+
+template <typename T> struct make_const_ref {
+ using type = typename std::add_lvalue_reference<
+ typename std::add_const<T>::type>::type;
+};
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <functional>
+//===----------------------------------------------------------------------===//
+
+template <class Ty> struct identity {
+ using argument_type = Ty;
+
+ Ty &operator()(Ty &self) const {
+ return self;
+ }
+ const Ty &operator()(const Ty &self) const {
+ return self;
+ }
+};
+
+/// An efficient, type-erasing, non-owning reference to a callable. This is
+/// intended for use as the type of a function parameter that is not used
+/// after the function in question returns.
+///
+/// This class does not own the callable, so it is not in general safe to store
+/// a function_ref.
+template<typename Fn> class function_ref;
+
+template<typename Ret, typename ...Params>
+class function_ref<Ret(Params...)> {
+ Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
+ intptr_t callable;
+
+ template<typename Callable>
+ static Ret callback_fn(intptr_t callable, Params ...params) {
+ return (*reinterpret_cast<Callable*>(callable))(
+ std::forward<Params>(params)...);
+ }
+
+public:
+ function_ref() = default;
+ function_ref(std::nullptr_t) {}
+
+ template <typename Callable>
+ function_ref(Callable &&callable,
+ typename std::enable_if<
+ !std::is_same<typename std::remove_reference<Callable>::type,
+ function_ref>::value>::type * = nullptr)
+ : callback(callback_fn<typename std::remove_reference<Callable>::type>),
+ callable(reinterpret_cast<intptr_t>(&callable)) {}
+
+ Ret operator()(Params ...params) const {
+ return callback(callable, std::forward<Params>(params)...);
+ }
+
+ operator bool() const { return callback; }
+};
+
+// deleter - Very very very simple method that is used to invoke operator
+// delete on something. It is used like this:
+//
+// for_each(V.begin(), B.end(), deleter<Interval>);
+template <class T>
+inline void deleter(T *Ptr) {
+ delete Ptr;
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <iterator>
+//===----------------------------------------------------------------------===//
+
+namespace adl_detail {
+
+using std::begin;
+
+template <typename ContainerTy>
+auto adl_begin(ContainerTy &&container)
+ -> decltype(begin(std::forward<ContainerTy>(container))) {
+ return begin(std::forward<ContainerTy>(container));
+}
+
+using std::end;
+
+template <typename ContainerTy>
+auto adl_end(ContainerTy &&container)
+ -> decltype(end(std::forward<ContainerTy>(container))) {
+ return end(std::forward<ContainerTy>(container));
+}
+
+using std::swap;
+
+template <typename T>
+void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
+ std::declval<T>()))) {
+ swap(std::forward<T>(lhs), std::forward<T>(rhs));
+}
+
+} // end namespace adl_detail
+
+template <typename ContainerTy>
+auto adl_begin(ContainerTy &&container)
+ -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
+ return adl_detail::adl_begin(std::forward<ContainerTy>(container));
+}
+
+template <typename ContainerTy>
+auto adl_end(ContainerTy &&container)
+ -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
+ return adl_detail::adl_end(std::forward<ContainerTy>(container));
+}
+
+template <typename T>
+void adl_swap(T &&lhs, T &&rhs) noexcept(
+ noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
+ adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
+}
+
+/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
+template <typename T>
+constexpr bool empty(const T &RangeOrContainer) {
+ return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
+}
+
+// mapped_iterator - This is a simple iterator adapter that causes a function to
+// be applied whenever operator* is invoked on the iterator.
+
+template <typename ItTy, typename FuncTy,
+ typename FuncReturnTy =
+ decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
+class mapped_iterator
+ : public iterator_adaptor_base<
+ mapped_iterator<ItTy, FuncTy>, ItTy,
+ typename std::iterator_traits<ItTy>::iterator_category,
+ typename std::remove_reference<FuncReturnTy>::type> {
+public:
+ mapped_iterator(ItTy U, FuncTy F)
+ : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
+
+ ItTy getCurrent() { return this->I; }
+
+ FuncReturnTy operator*() { return F(*this->I); }
+
+private:
+ FuncTy F;
+};
+
+// map_iterator - Provide a convenient way to create mapped_iterators, just like
+// make_pair is useful for creating pairs...
+template <class ItTy, class FuncTy>
+inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
+ return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
+}
+
+template <class ContainerTy, class FuncTy>
+auto map_range(ContainerTy &&C, FuncTy F)
+ -> decltype(make_range(map_iterator(C.begin(), F),
+ map_iterator(C.end(), F))) {
+ return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
+}
+
+/// Helper to determine if type T has a member called rbegin().
+template <typename Ty> class has_rbegin_impl {
+ using yes = char[1];
+ using no = char[2];
+
+ template <typename Inner>
+ static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
+
+ template <typename>
+ static no& test(...);
+
+public:
+ static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
+};
+
+/// Metafunction to determine if T& or T has a member called rbegin().
+template <typename Ty>
+struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
+};
+
+// Returns an iterator_range over the given container which iterates in reverse.
+// Note that the container must have rbegin()/rend() methods for this to work.
+template <typename ContainerTy>
+auto reverse(ContainerTy &&C,
+ typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
+ nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
+ return make_range(C.rbegin(), C.rend());
+}
+
+// Returns a std::reverse_iterator wrapped around the given iterator.
+template <typename IteratorTy>
+std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
+ return std::reverse_iterator<IteratorTy>(It);
+}
+
+// Returns an iterator_range over the given container which iterates in reverse.
+// Note that the container must have begin()/end() methods which return
+// bidirectional iterators for this to work.
+template <typename ContainerTy>
+auto reverse(
+ ContainerTy &&C,
+ typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
+ -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
+ llvm::make_reverse_iterator(std::begin(C)))) {
+ return make_range(llvm::make_reverse_iterator(std::end(C)),
+ llvm::make_reverse_iterator(std::begin(C)));
+}
+
+/// An iterator adaptor that filters the elements of given inner iterators.
+///
+/// The predicate parameter should be a callable object that accepts the wrapped
+/// iterator's reference type and returns a bool. When incrementing or
+/// decrementing the iterator, it will call the predicate on each element and
+/// skip any where it returns false.
+///
+/// \code
+/// int A[] = { 1, 2, 3, 4 };
+/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
+/// // R contains { 1, 3 }.
+/// \endcode
+///
+/// Note: filter_iterator_base implements support for forward iteration.
+/// filter_iterator_impl exists to provide support for bidirectional iteration,
+/// conditional on whether the wrapped iterator supports it.
+template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
+class filter_iterator_base
+ : public iterator_adaptor_base<
+ filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
+ WrappedIteratorT,
+ typename std::common_type<
+ IterTag, typename std::iterator_traits<
+ WrappedIteratorT>::iterator_category>::type> {
+ using BaseT = iterator_adaptor_base<
+ filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
+ WrappedIteratorT,
+ typename std::common_type<
+ IterTag, typename std::iterator_traits<
+ WrappedIteratorT>::iterator_category>::type>;
+
+protected:
+ WrappedIteratorT End;
+ PredicateT Pred;
+
+ void findNextValid() {
+ while (this->I != End && !Pred(*this->I))
+ BaseT::operator++();
+ }
+
+ // Construct the iterator. The begin iterator needs to know where the end
+ // is, so that it can properly stop when it gets there. The end iterator only
+ // needs the predicate to support bidirectional iteration.
+ filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin), End(End), Pred(Pred) {
+ findNextValid();
+ }
+
+public:
+ using BaseT::operator++;
+
+ filter_iterator_base &operator++() {
+ BaseT::operator++();
+ findNextValid();
+ return *this;
+ }
+};
+
+/// Specialization of filter_iterator_base for forward iteration only.
+template <typename WrappedIteratorT, typename PredicateT,
+ typename IterTag = std::forward_iterator_tag>
+class filter_iterator_impl
+ : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
+ using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
+
+public:
+ filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin, End, Pred) {}
+};
+
+/// Specialization of filter_iterator_base for bidirectional iteration.
+template <typename WrappedIteratorT, typename PredicateT>
+class filter_iterator_impl<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag>
+ : public filter_iterator_base<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag> {
+ using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag>;
+ void findPrevValid() {
+ while (!this->Pred(*this->I))
+ BaseT::operator--();
+ }
+
+public:
+ using BaseT::operator--;
+
+ filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin, End, Pred) {}
+
+ filter_iterator_impl &operator--() {
+ BaseT::operator--();
+ findPrevValid();
+ return *this;
+ }
+};
+
+namespace detail {
+
+template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
+ using type = std::forward_iterator_tag;
+};
+
+template <> struct fwd_or_bidi_tag_impl<true> {
+ using type = std::bidirectional_iterator_tag;
+};
+
+/// Helper which sets its type member to forward_iterator_tag if the category
+/// of \p IterT does not derive from bidirectional_iterator_tag, and to
+/// bidirectional_iterator_tag otherwise.
+template <typename IterT> struct fwd_or_bidi_tag {
+ using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
+ std::bidirectional_iterator_tag,
+ typename std::iterator_traits<IterT>::iterator_category>::value>::type;
+};
+
+} // namespace detail
+
+/// Defines filter_iterator to a suitable specialization of
+/// filter_iterator_impl, based on the underlying iterator's category.
+template <typename WrappedIteratorT, typename PredicateT>
+using filter_iterator = filter_iterator_impl<
+ WrappedIteratorT, PredicateT,
+ typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
+
+/// Convenience function that takes a range of elements and a predicate,
+/// and return a new filter_iterator range.
+///
+/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
+/// lifetime of that temporary is not kept by the returned range object, and the
+/// temporary is going to be dropped on the floor after the make_iterator_range
+/// full expression that contains this function call.
+template <typename RangeT, typename PredicateT>
+iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
+make_filter_range(RangeT &&Range, PredicateT Pred) {
+ using FilterIteratorT =
+ filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
+ return make_range(
+ FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
+ std::end(std::forward<RangeT>(Range)), Pred),
+ FilterIteratorT(std::end(std::forward<RangeT>(Range)),
+ std::end(std::forward<RangeT>(Range)), Pred));
+}
+
+/// A pseudo-iterator adaptor that is designed to implement "early increment"
+/// style loops.
+///
+/// This is *not a normal iterator* and should almost never be used directly. It
+/// is intended primarily to be used with range based for loops and some range
+/// algorithms.
+///
+/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
+/// somewhere between them. The constraints of these iterators are:
+///
+/// - On construction or after being incremented, it is comparable and
+/// dereferencable. It is *not* incrementable.
+/// - After being dereferenced, it is neither comparable nor dereferencable, it
+/// is only incrementable.
+///
+/// This means you can only dereference the iterator once, and you can only
+/// increment it once between dereferences.
+template <typename WrappedIteratorT>
+class early_inc_iterator_impl
+ : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
+ WrappedIteratorT, std::input_iterator_tag> {
+ using BaseT =
+ iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
+ WrappedIteratorT, std::input_iterator_tag>;
+
+ using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
+
+protected:
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ bool IsEarlyIncremented = false;
+#endif
+
+public:
+ early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
+
+ using BaseT::operator*;
+ typename BaseT::reference operator*() {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(!IsEarlyIncremented && "Cannot dereference twice!");
+ IsEarlyIncremented = true;
+#endif
+ return *(this->I)++;
+ }
+
+ using BaseT::operator++;
+ early_inc_iterator_impl &operator++() {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
+ IsEarlyIncremented = false;
+#endif
+ return *this;
+ }
+
+ using BaseT::operator==;
+ bool operator==(const early_inc_iterator_impl &RHS) const {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
+#endif
+ return BaseT::operator==(RHS);
+ }
+};
+
+/// Make a range that does early increment to allow mutation of the underlying
+/// range without disrupting iteration.
+///
+/// The underlying iterator will be incremented immediately after it is
+/// dereferenced, allowing deletion of the current node or insertion of nodes to
+/// not disrupt iteration provided they do not invalidate the *next* iterator --
+/// the current iterator can be invalidated.
+///
+/// This requires a very exact pattern of use that is only really suitable to
+/// range based for loops and other range algorithms that explicitly guarantee
+/// to dereference exactly once each element, and to increment exactly once each
+/// element.
+template <typename RangeT>
+iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
+make_early_inc_range(RangeT &&Range) {
+ using EarlyIncIteratorT =
+ early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
+ return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
+ EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
+}
+
+// forward declarations required by zip_shortest/zip_first/zip_longest
+template <typename R, typename UnaryPredicate>
+bool all_of(R &&range, UnaryPredicate P);
+template <typename R, typename UnaryPredicate>
+bool any_of(R &&range, UnaryPredicate P);
+
+namespace detail {
+
+using std::declval;
+
+// We have to alias this since inlining the actual type at the usage site
+// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
+template<typename... Iters> struct ZipTupleType {
+ using type = std::tuple<decltype(*declval<Iters>())...>;
+};
+
+template <typename ZipType, typename... Iters>
+using zip_traits = iterator_facade_base<
+ ZipType, typename std::common_type<std::bidirectional_iterator_tag,
+ typename std::iterator_traits<
+ Iters>::iterator_category...>::type,
+ // ^ TODO: Implement random access methods.
+ typename ZipTupleType<Iters...>::type,
+ typename std::iterator_traits<typename std::tuple_element<
+ 0, std::tuple<Iters...>>::type>::difference_type,
+ // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
+ // inner iterators have the same difference_type. It would fail if, for
+ // instance, the second field's difference_type were non-numeric while the
+ // first is.
+ typename ZipTupleType<Iters...>::type *,
+ typename ZipTupleType<Iters...>::type>;
+
+template <typename ZipType, typename... Iters>
+struct zip_common : public zip_traits<ZipType, Iters...> {
+ using Base = zip_traits<ZipType, Iters...>;
+ using value_type = typename Base::value_type;
+
+ std::tuple<Iters...> iterators;
+
+protected:
+ template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
+ return value_type(*std::get<Ns>(iterators)...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
+ }
+
+public:
+ zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
+
+ value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
+
+ const value_type operator*() const {
+ return deref(std::index_sequence_for<Iters...>{});
+ }
+
+ ZipType &operator++() {
+ iterators = tup_inc(std::index_sequence_for<Iters...>{});
+ return *reinterpret_cast<ZipType *>(this);
+ }
+
+ ZipType &operator--() {
+ static_assert(Base::IsBidirectional,
+ "All inner iterators must be at least bidirectional.");
+ iterators = tup_dec(std::index_sequence_for<Iters...>{});
+ return *reinterpret_cast<ZipType *>(this);
+ }
+};
+
+template <typename... Iters>
+struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
+ using Base = zip_common<zip_first<Iters...>, Iters...>;
+
+ bool operator==(const zip_first<Iters...> &other) const {
+ return std::get<0>(this->iterators) == std::get<0>(other.iterators);
+ }
+
+ zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
+};
+
+template <typename... Iters>
+class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
+ template <size_t... Ns>
+ bool test(const zip_shortest<Iters...> &other,
+ std::index_sequence<Ns...>) const {
+ return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
+ std::get<Ns>(other.iterators)...},
+ identity<bool>{});
+ }
+
+public:
+ using Base = zip_common<zip_shortest<Iters...>, Iters...>;
+
+ zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
+
+ bool operator==(const zip_shortest<Iters...> &other) const {
+ return !test(other, std::index_sequence_for<Iters...>{});
+ }
+};
+
+template <template <typename...> class ItType, typename... Args> class zippy {
+public:
+ using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
+ using iterator_category = typename iterator::iterator_category;
+ using value_type = typename iterator::value_type;
+ using difference_type = typename iterator::difference_type;
+ using pointer = typename iterator::pointer;
+ using reference = typename iterator::reference;
+
+private:
+ std::tuple<Args...> ts;
+
+ template <size_t... Ns>
+ iterator begin_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::begin(std::get<Ns>(ts))...);
+ }
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::end(std::get<Ns>(ts))...);
+ }
+
+public:
+ zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
+
+ iterator begin() const {
+ return begin_impl(std::index_sequence_for<Args...>{});
+ }
+ iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
+};
+
+} // end namespace detail
+
+/// zip iterator for two or more iteratable types.
+template <typename T, typename U, typename... Args>
+detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zippy<detail::zip_shortest, T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
+/// be the shortest.
+template <typename T, typename U, typename... Args>
+detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zippy<detail::zip_first, T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+namespace detail {
+template <typename Iter>
+static Iter next_or_end(const Iter &I, const Iter &End) {
+ if (I == End)
+ return End;
+ return std::next(I);
+}
+
+template <typename Iter>
+static auto deref_or_none(const Iter &I, const Iter &End)
+ -> llvm::Optional<typename std::remove_const<
+ typename std::remove_reference<decltype(*I)>::type>::type> {
+ if (I == End)
+ return None;
+ return *I;
+}
+
+template <typename Iter> struct ZipLongestItemType {
+ using type =
+ llvm::Optional<typename std::remove_const<typename std::remove_reference<
+ decltype(*std::declval<Iter>())>::type>::type>;
+};
+
+template <typename... Iters> struct ZipLongestTupleType {
+ using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
+};
+
+template <typename... Iters>
+class zip_longest_iterator
+ : public iterator_facade_base<
+ zip_longest_iterator<Iters...>,
+ typename std::common_type<
+ std::forward_iterator_tag,
+ typename std::iterator_traits<Iters>::iterator_category...>::type,
+ typename ZipLongestTupleType<Iters...>::type,
+ typename std::iterator_traits<typename std::tuple_element<
+ 0, std::tuple<Iters...>>::type>::difference_type,
+ typename ZipLongestTupleType<Iters...>::type *,
+ typename ZipLongestTupleType<Iters...>::type> {
+public:
+ using value_type = typename ZipLongestTupleType<Iters...>::type;
+
+private:
+ std::tuple<Iters...> iterators;
+ std::tuple<Iters...> end_iterators;
+
+ template <size_t... Ns>
+ bool test(const zip_longest_iterator<Iters...> &other,
+ std::index_sequence<Ns...>) const {
+ return llvm::any_of(
+ std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
+ std::get<Ns>(other.iterators)...},
+ identity<bool>{});
+ }
+
+ template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
+ return value_type(
+ deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(
+ next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
+ }
+
+public:
+ zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
+ : iterators(std::forward<Iters>(ts.first)...),
+ end_iterators(std::forward<Iters>(ts.second)...) {}
+
+ value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
+
+ value_type operator*() const {
+ return deref(std::index_sequence_for<Iters...>{});
+ }
+
+ zip_longest_iterator<Iters...> &operator++() {
+ iterators = tup_inc(std::index_sequence_for<Iters...>{});
+ return *this;
+ }
+
+ bool operator==(const zip_longest_iterator<Iters...> &other) const {
+ return !test(other, std::index_sequence_for<Iters...>{});
+ }
+};
+
+template <typename... Args> class zip_longest_range {
+public:
+ using iterator =
+ zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
+ using iterator_category = typename iterator::iterator_category;
+ using value_type = typename iterator::value_type;
+ using difference_type = typename iterator::difference_type;
+ using pointer = typename iterator::pointer;
+ using reference = typename iterator::reference;
+
+private:
+ std::tuple<Args...> ts;
+
+ template <size_t... Ns>
+ iterator begin_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
+ adl_end(std::get<Ns>(ts)))...);
+ }
+
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
+ adl_end(std::get<Ns>(ts)))...);
+ }
+
+public:
+ zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
+
+ iterator begin() const {
+ return begin_impl(std::index_sequence_for<Args...>{});
+ }
+ iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
+};
+} // namespace detail
+
+/// Iterate over two or more iterators at the same time. Iteration continues
+/// until all iterators reach the end. The llvm::Optional only contains a value
+/// if the iterator has not reached the end.
+template <typename T, typename U, typename... Args>
+detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zip_longest_range<T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+/// Iterator wrapper that concatenates sequences together.
+///
+/// This can concatenate different iterators, even with different types, into
+/// a single iterator provided the value types of all the concatenated
+/// iterators expose `reference` and `pointer` types that can be converted to
+/// `ValueT &` and `ValueT *` respectively. It doesn't support more
+/// interesting/customized pointer or reference types.
+///
+/// Currently this only supports forward or higher iterator categories as
+/// inputs and always exposes a forward iterator interface.
+template <typename ValueT, typename... IterTs>
+class concat_iterator
+ : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
+ std::forward_iterator_tag, ValueT> {
+ using BaseT = typename concat_iterator::iterator_facade_base;
+
+ /// We store both the current and end iterators for each concatenated
+ /// sequence in a tuple of pairs.
+ ///
+ /// Note that something like iterator_range seems nice at first here, but the
+ /// range properties are of little benefit and end up getting in the way
+ /// because we need to do mutation on the current iterators.
+ std::tuple<IterTs...> Begins;
+ std::tuple<IterTs...> Ends;
+
+ /// Attempts to increment a specific iterator.
+ ///
+ /// Returns true if it was able to increment the iterator. Returns false if
+ /// the iterator is already at the end iterator.
+ template <size_t Index> bool incrementHelper() {
+ auto &Begin = std::get<Index>(Begins);
+ auto &End = std::get<Index>(Ends);
+ if (Begin == End)
+ return false;
+
+ ++Begin;
+ return true;
+ }
+
+ /// Increments the first non-end iterator.
+ ///
+ /// It is an error to call this with all iterators at the end.
+ template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
+ // Build a sequence of functions to increment each iterator if possible.
+ bool (concat_iterator::*IncrementHelperFns[])() = {
+ &concat_iterator::incrementHelper<Ns>...};
+
+ // Loop over them, and stop as soon as we succeed at incrementing one.
+ for (auto &IncrementHelperFn : IncrementHelperFns)
+ if ((this->*IncrementHelperFn)())
+ return;
+
+ llvm_unreachable("Attempted to increment an end concat iterator!");
+ }
+
+ /// Returns null if the specified iterator is at the end. Otherwise,
+ /// dereferences the iterator and returns the address of the resulting
+ /// reference.
+ template <size_t Index> ValueT *getHelper() const {
+ auto &Begin = std::get<Index>(Begins);
+ auto &End = std::get<Index>(Ends);
+ if (Begin == End)
+ return nullptr;
+
+ return &*Begin;
+ }
+
+ /// Finds the first non-end iterator, dereferences, and returns the resulting
+ /// reference.
+ ///
+ /// It is an error to call this with all iterators at the end.
+ template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
+ // Build a sequence of functions to get from iterator if possible.
+ ValueT *(concat_iterator::*GetHelperFns[])() const = {
+ &concat_iterator::getHelper<Ns>...};
+
+ // Loop over them, and return the first result we find.
+ for (auto &GetHelperFn : GetHelperFns)
+ if (ValueT *P = (this->*GetHelperFn)())
+ return *P;
+
+ llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
+ }
+
+public:
+ /// Constructs an iterator from a squence of ranges.
+ ///
+ /// We need the full range to know how to switch between each of the
+ /// iterators.
+ template <typename... RangeTs>
+ explicit concat_iterator(RangeTs &&... Ranges)
+ : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
+
+ using BaseT::operator++;
+
+ concat_iterator &operator++() {
+ increment(std::index_sequence_for<IterTs...>());
+ return *this;
+ }
+
+ ValueT &operator*() const {
+ return get(std::index_sequence_for<IterTs...>());
+ }
+
+ bool operator==(const concat_iterator &RHS) const {
+ return Begins == RHS.Begins && Ends == RHS.Ends;
+ }
+};
+
+namespace detail {
+
+/// Helper to store a sequence of ranges being concatenated and access them.
+///
+/// This is designed to facilitate providing actual storage when temporaries
+/// are passed into the constructor such that we can use it as part of range
+/// based for loops.
+template <typename ValueT, typename... RangeTs> class concat_range {
+public:
+ using iterator =
+ concat_iterator<ValueT,
+ decltype(std::begin(std::declval<RangeTs &>()))...>;
+
+private:
+ std::tuple<RangeTs...> Ranges;
+
+ template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
+ return iterator(std::get<Ns>(Ranges)...);
+ }
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
+ return iterator(make_range(std::end(std::get<Ns>(Ranges)),
+ std::end(std::get<Ns>(Ranges)))...);
+ }
+
+public:
+ concat_range(RangeTs &&... Ranges)
+ : Ranges(std::forward<RangeTs>(Ranges)...) {}
+
+ iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
+ iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
+};
+
+} // end namespace detail
+
+/// Concatenated range across two or more ranges.
+///
+/// The desired value type must be explicitly specified.
+template <typename ValueT, typename... RangeTs>
+detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
+ static_assert(sizeof...(RangeTs) > 1,
+ "Need more than one range to concatenate!");
+ return detail::concat_range<ValueT, RangeTs...>(
+ std::forward<RangeTs>(Ranges)...);
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <utility>
+//===----------------------------------------------------------------------===//
+
+/// Function object to check whether the first component of a std::pair
+/// compares less than the first component of another std::pair.
+struct less_first {
+ template <typename T> bool operator()(const T &lhs, const T &rhs) const {
+ return lhs.first < rhs.first;
+ }
+};
+
+/// Function object to check whether the second component of a std::pair
+/// compares less than the second component of another std::pair.
+struct less_second {
+ template <typename T> bool operator()(const T &lhs, const T &rhs) const {
+ return lhs.second < rhs.second;
+ }
+};
+
+/// \brief Function object to apply a binary function to the first component of
+/// a std::pair.
+template<typename FuncTy>
+struct on_first {
+ FuncTy func;
+
+ template <typename T>
+ auto operator()(const T &lhs, const T &rhs) const
+ -> decltype(func(lhs.first, rhs.first)) {
+ return func(lhs.first, rhs.first);
+ }
+};
+
+/// Utility type to build an inheritance chain that makes it easy to rank
+/// overload candidates.
+template <int N> struct rank : rank<N - 1> {};
+template <> struct rank<0> {};
+
+/// traits class for checking whether type T is one of any of the given
+/// types in the variadic list.
+template <typename T, typename... Ts> struct is_one_of {
+ static const bool value = false;
+};
+
+template <typename T, typename U, typename... Ts>
+struct is_one_of<T, U, Ts...> {
+ static const bool value =
+ std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
+};
+
+/// traits class for checking whether type T is a base class for all
+/// the given types in the variadic list.
+template <typename T, typename... Ts> struct are_base_of {
+ static const bool value = true;
+};
+
+template <typename T, typename U, typename... Ts>
+struct are_base_of<T, U, Ts...> {
+ static const bool value =
+ std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
+};
+
+//===----------------------------------------------------------------------===//
+// Extra additions for arrays
+//===----------------------------------------------------------------------===//
+
+/// Find the length of an array.
+template <class T, std::size_t N>
+constexpr inline size_t array_lengthof(T (&)[N]) {
+ return N;
+}
+
+/// Adapt std::less<T> for array_pod_sort.
+template<typename T>
+inline int array_pod_sort_comparator(const void *P1, const void *P2) {
+ if (std::less<T>()(*reinterpret_cast<const T*>(P1),
+ *reinterpret_cast<const T*>(P2)))
+ return -1;
+ if (std::less<T>()(*reinterpret_cast<const T*>(P2),
+ *reinterpret_cast<const T*>(P1)))
+ return 1;
+ return 0;
+}
+
+/// get_array_pod_sort_comparator - This is an internal helper function used to
+/// get type deduction of T right.
+template<typename T>
+inline int (*get_array_pod_sort_comparator(const T &))
+ (const void*, const void*) {
+ return array_pod_sort_comparator<T>;
+}
+
+/// array_pod_sort - This sorts an array with the specified start and end
+/// extent. This is just like std::sort, except that it calls qsort instead of
+/// using an inlined template. qsort is slightly slower than std::sort, but
+/// most sorts are not performance critical in LLVM and std::sort has to be
+/// template instantiated for each type, leading to significant measured code
+/// bloat. This function should generally be used instead of std::sort where
+/// possible.
+///
+/// This function assumes that you have simple POD-like types that can be
+/// compared with std::less and can be moved with memcpy. If this isn't true,
+/// you should use std::sort.
+///
+/// NOTE: If qsort_r were portable, we could allow a custom comparator and
+/// default to std::less.
+template<class IteratorTy>
+inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
+ // Don't inefficiently call qsort with one element or trigger undefined
+ // behavior with an empty sequence.
+ auto NElts = End - Start;
+ if (NElts <= 1) return;
+#ifdef EXPENSIVE_CHECKS
+ std::mt19937 Generator(std::random_device{}());
+ std::shuffle(Start, End, Generator);
+#endif
+ qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
+}
+
+template <class IteratorTy>
+inline void array_pod_sort(
+ IteratorTy Start, IteratorTy End,
+ int (*Compare)(
+ const typename std::iterator_traits<IteratorTy>::value_type *,
+ const typename std::iterator_traits<IteratorTy>::value_type *)) {
+ // Don't inefficiently call qsort with one element or trigger undefined
+ // behavior with an empty sequence.
+ auto NElts = End - Start;
+ if (NElts <= 1) return;
+#ifdef EXPENSIVE_CHECKS
+ std::mt19937 Generator(std::random_device{}());
+ std::shuffle(Start, End, Generator);
+#endif
+ qsort(&*Start, NElts, sizeof(*Start),
+ reinterpret_cast<int (*)(const void *, const void *)>(Compare));
+}
+
+// Provide wrappers to std::sort which shuffle the elements before sorting
+// to help uncover non-deterministic behavior (PR35135).
+template <typename IteratorTy>
+inline void sort(IteratorTy Start, IteratorTy End) {
+#ifdef EXPENSIVE_CHECKS
+ std::mt19937 Generator(std::random_device{}());
+ std::shuffle(Start, End, Generator);
+#endif
+ std::sort(Start, End);
+}
+
+template <typename Container> inline void sort(Container &&C) {
+ llvm::sort(adl_begin(C), adl_end(C));
+}
+
+template <typename IteratorTy, typename Compare>
+inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
+#ifdef EXPENSIVE_CHECKS
+ std::mt19937 Generator(std::random_device{}());
+ std::shuffle(Start, End, Generator);
+#endif
+ std::sort(Start, End, Comp);
+}
+
+template <typename Container, typename Compare>
+inline void sort(Container &&C, Compare Comp) {
+ llvm::sort(adl_begin(C), adl_end(C), Comp);
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <algorithm>
+//===----------------------------------------------------------------------===//
+
+/// For a container of pointers, deletes the pointers and then clears the
+/// container.
+template<typename Container>
+void DeleteContainerPointers(Container &C) {
+ for (auto V : C)
+ delete V;
+ C.clear();
+}
+
+/// In a container of pairs (usually a map) whose second element is a pointer,
+/// deletes the second elements and then clears the container.
+template<typename Container>
+void DeleteContainerSeconds(Container &C) {
+ for (auto &V : C)
+ delete V.second;
+ C.clear();
+}
+
+/// Get the size of a range. This is a wrapper function around std::distance
+/// which is only enabled when the operation is O(1).
+template <typename R>
+auto size(R &&Range, typename std::enable_if<
+ std::is_same<typename std::iterator_traits<decltype(
+ Range.begin())>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void>::type * = nullptr)
+ -> decltype(std::distance(Range.begin(), Range.end())) {
+ return std::distance(Range.begin(), Range.end());
+}
+
+/// Provide wrappers to std::for_each which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
+ return std::for_each(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::all_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool all_of(R &&Range, UnaryPredicate P) {
+ return std::all_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::any_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool any_of(R &&Range, UnaryPredicate P) {
+ return std::any_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::none_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool none_of(R &&Range, UnaryPredicate P) {
+ return std::none_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::find which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename T>
+auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
+ return std::find(adl_begin(Range), adl_end(Range), Val);
+}
+
+/// Provide wrappers to std::find_if which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
+ return std::find_if(adl_begin(Range), adl_end(Range), P);
+}
+
+template <typename R, typename UnaryPredicate>
+auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
+ return std::find_if_not(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::remove_if which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
+ return std::remove_if(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::copy_if which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename OutputIt, typename UnaryPredicate>
+OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
+ return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
+}
+
+template <typename R, typename OutputIt>
+OutputIt copy(R &&Range, OutputIt Out) {
+ return std::copy(adl_begin(Range), adl_end(Range), Out);
+}
+
+/// Wrapper function around std::find to detect if an element exists
+/// in a container.
+template <typename R, typename E>
+bool is_contained(R &&Range, const E &Element) {
+ return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
+}
+
+/// Wrapper function around std::count to count the number of times an element
+/// \p Element occurs in the given range \p Range.
+template <typename R, typename E>
+auto count(R &&Range, const E &Element) ->
+ typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
+ return std::count(adl_begin(Range), adl_end(Range), Element);
+}
+
+/// Wrapper function around std::count_if to count the number of times an
+/// element satisfying a given predicate occurs in a range.
+template <typename R, typename UnaryPredicate>
+auto count_if(R &&Range, UnaryPredicate P) ->
+ typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
+ return std::count_if(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Wrapper function around std::transform to apply a function to a range and
+/// store the result elsewhere.
+template <typename R, typename OutputIt, typename UnaryPredicate>
+OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
+ return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
+}
+
+/// Provide wrappers to std::partition which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
+ return std::partition(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::lower_bound which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename T>
+auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
+ return std::lower_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value));
+}
+
+template <typename R, typename T, typename Compare>
+auto lower_bound(R &&Range, T &&Value, Compare C)
+ -> decltype(adl_begin(Range)) {
+ return std::lower_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value), C);
+}
+
+/// Provide wrappers to std::upper_bound which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename T>
+auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
+ return std::upper_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value));
+}
+
+template <typename R, typename T, typename Compare>
+auto upper_bound(R &&Range, T &&Value, Compare C)
+ -> decltype(adl_begin(Range)) {
+ return std::upper_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value), C);
+}
+
+template <typename R>
+void stable_sort(R &&Range) {
+ std::stable_sort(adl_begin(Range), adl_end(Range));
+}
+
+template <typename R, typename Compare>
+void stable_sort(R &&Range, Compare C) {
+ std::stable_sort(adl_begin(Range), adl_end(Range), C);
+}
+
+/// Binary search for the first iterator in a range where a predicate is false.
+/// Requires that C is always true below some limit, and always false above it.
+template <typename R, typename Predicate,
+ typename Val = decltype(*adl_begin(std::declval<R>()))>
+auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
+ return std::partition_point(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Wrapper function around std::equal to detect if all elements
+/// in a container are same.
+template <typename R>
+bool is_splat(R &&Range) {
+ size_t range_size = size(Range);
+ return range_size != 0 && (range_size == 1 ||
+ std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
+}
+
+/// Given a range of type R, iterate the entire range and return a
+/// SmallVector with elements of the vector. This is useful, for example,
+/// when you want to iterate a range and then sort the results.
+template <unsigned Size, typename R>
+SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
+to_vector(R &&Range) {
+ return {adl_begin(Range), adl_end(Range)};
+}
+
+/// Provide a container algorithm similar to C++ Library Fundamentals v2's
+/// `erase_if` which is equivalent to:
+///
+/// C.erase(remove_if(C, pred), C.end());
+///
+/// This version works for any container with an erase method call accepting
+/// two iterators.
+template <typename Container, typename UnaryPredicate>
+void erase_if(Container &C, UnaryPredicate P) {
+ C.erase(remove_if(C, P), C.end());
+}
+
+/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
+/// the range [ValIt, ValEnd) (which is not from the same container).
+template<typename Container, typename RandomAccessIterator>
+void replace(Container &Cont, typename Container::iterator ContIt,
+ typename Container::iterator ContEnd, RandomAccessIterator ValIt,
+ RandomAccessIterator ValEnd) {
+ while (true) {
+ if (ValIt == ValEnd) {
+ Cont.erase(ContIt, ContEnd);
+ return;
+ } else if (ContIt == ContEnd) {
+ Cont.insert(ContIt, ValIt, ValEnd);
+ return;
+ }
+ *ContIt++ = *ValIt++;
+ }
+}
+
+/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
+/// the range R.
+template<typename Container, typename Range = std::initializer_list<
+ typename Container::value_type>>
+void replace(Container &Cont, typename Container::iterator ContIt,
+ typename Container::iterator ContEnd, Range R) {
+ replace(Cont, ContIt, ContEnd, R.begin(), R.end());
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <memory>
+//===----------------------------------------------------------------------===//
+
+struct FreeDeleter {
+ void operator()(void* v) {
+ ::free(v);
+ }
+};
+
+template<typename First, typename Second>
+struct pair_hash {
+ size_t operator()(const std::pair<First, Second> &P) const {
+ return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
+ }
+};
+
+/// Binary functor that adapts to any other binary functor after dereferencing
+/// operands.
+template <typename T> struct deref {
+ T func;
+
+ // Could be further improved to cope with non-derivable functors and
+ // non-binary functors (should be a variadic template member function
+ // operator()).
+ template <typename A, typename B>
+ auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
+ assert(lhs);
+ assert(rhs);
+ return func(*lhs, *rhs);
+ }
+};
+
+namespace detail {
+
+template <typename R> class enumerator_iter;
+
+template <typename R> struct result_pair {
+ using value_reference =
+ typename std::iterator_traits<IterOfRange<R>>::reference;
+
+ friend class enumerator_iter<R>;
+
+ result_pair() = default;
+ result_pair(std::size_t Index, IterOfRange<R> Iter)
+ : Index(Index), Iter(Iter) {}
+
+ result_pair<R> &operator=(const result_pair<R> &Other) {
+ Index = Other.Index;
+ Iter = Other.Iter;
+ return *this;
+ }
+
+ std::size_t index() const { return Index; }
+ const value_reference value() const { return *Iter; }
+ value_reference value() { return *Iter; }
+
+private:
+ std::size_t Index = std::numeric_limits<std::size_t>::max();
+ IterOfRange<R> Iter;
+};
+
+template <typename R>
+class enumerator_iter
+ : public iterator_facade_base<
+ enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
+ typename std::iterator_traits<IterOfRange<R>>::difference_type,
+ typename std::iterator_traits<IterOfRange<R>>::pointer,
+ typename std::iterator_traits<IterOfRange<R>>::reference> {
+ using result_type = result_pair<R>;
+
+public:
+ explicit enumerator_iter(IterOfRange<R> EndIter)
+ : Result(std::numeric_limits<size_t>::max(), EndIter) {}
+
+ enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
+ : Result(Index, Iter) {}
+
+ result_type &operator*() { return Result; }
+ const result_type &operator*() const { return Result; }
+
+ enumerator_iter<R> &operator++() {
+ assert(Result.Index != std::numeric_limits<size_t>::max());
+ ++Result.Iter;
+ ++Result.Index;
+ return *this;
+ }
+
+ bool operator==(const enumerator_iter<R> &RHS) const {
+ // Don't compare indices here, only iterators. It's possible for an end
+ // iterator to have different indices depending on whether it was created
+ // by calling std::end() versus incrementing a valid iterator.
+ return Result.Iter == RHS.Result.Iter;
+ }
+
+ enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
+ Result = Other.Result;
+ return *this;
+ }
+
+private:
+ result_type Result;
+};
+
+template <typename R> class enumerator {
+public:
+ explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
+
+ enumerator_iter<R> begin() {
+ return enumerator_iter<R>(0, std::begin(TheRange));
+ }
+
+ enumerator_iter<R> end() {
+ return enumerator_iter<R>(std::end(TheRange));
+ }
+
+private:
+ R TheRange;
+};
+
+} // end namespace detail
+
+/// Given an input range, returns a new range whose values are are pair (A,B)
+/// such that A is the 0-based index of the item in the sequence, and B is
+/// the value from the original sequence. Example:
+///
+/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
+/// for (auto X : enumerate(Items)) {
+/// printf("Item %d - %c\n", X.index(), X.value());
+/// }
+///
+/// Output:
+/// Item 0 - A
+/// Item 1 - B
+/// Item 2 - C
+/// Item 3 - D
+///
+template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
+ return detail::enumerator<R>(std::forward<R>(TheRange));
+}
+
+namespace detail {
+
+template <typename F, typename Tuple, std::size_t... I>
+auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>)
+ -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
+ return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
+}
+
+} // end namespace detail
+
+/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
+/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
+/// return the result.
+template <typename F, typename Tuple>
+auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
+ std::forward<F>(f), std::forward<Tuple>(t),
+ std::make_index_sequence<
+ std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
+ using Indices = std::make_index_sequence<
+ std::tuple_size<typename std::decay<Tuple>::type>::value>;
+
+ return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
+ Indices{});
+}
+
+/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
+/// time. Not meant for use with random-access iterators.
+template <typename IterTy>
+bool hasNItems(
+ IterTy &&Begin, IterTy &&End, unsigned N,
+ typename std::enable_if<
+ !std::is_same<
+ typename std::iterator_traits<typename std::remove_reference<
+ decltype(Begin)>::type>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void>::type * = nullptr) {
+ for (; N; --N, ++Begin)
+ if (Begin == End)
+ return false; // Too few.
+ return Begin == End;
+}
+
+/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
+/// time. Not meant for use with random-access iterators.
+template <typename IterTy>
+bool hasNItemsOrMore(
+ IterTy &&Begin, IterTy &&End, unsigned N,
+ typename std::enable_if<
+ !std::is_same<
+ typename std::iterator_traits<typename std::remove_reference<
+ decltype(Begin)>::type>::iterator_category,
+ std::random_access_iterator_tag>::value,
+ void>::type * = nullptr) {
+ for (; N; --N, ++Begin)
+ if (Begin == End)
+ return false; // Too few.
+ return true;
+}
+
+/// Returns a raw pointer that represents the same address as the argument.
+///
+/// The late bound return should be removed once we move to C++14 to better
+/// align with the C++20 declaration. Also, this implementation can be removed
+/// once we move to C++20 where it's defined as std::to_addres()
+///
+/// The std::pointer_traits<>::to_address(p) variations of these overloads has
+/// not been implemented.
+template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
+ return P.operator->();
+}
+template <class T> constexpr T *to_address(T *P) { return P; }
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STLEXTRAS_H
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallPtrSet.h b/third_party/llvm-project/include/llvm/ADT/SmallPtrSet.h
new file mode 100644
index 000000000..1d8280063
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/SmallPtrSet.h
@@ -0,0 +1,511 @@
+//===- llvm/ADT/SmallPtrSet.h - 'Normally small' pointer set ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SmallPtrSet class. See the doxygen comment for
+// SmallPtrSetImplBase for more details on the algorithm used.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SMALLPTRSET_H
+#define LLVM_ADT_SMALLPTRSET_H
+
+#include "llvm/ADT/EpochTracker.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ReverseIteration.h"
+#include "llvm/Support/type_traits.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdlib>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <utility>
+
+namespace llvm {
+
+/// SmallPtrSetImplBase - This is the common code shared among all the
+/// SmallPtrSet<>'s, which is almost everything. SmallPtrSet has two modes, one
+/// for small and one for large sets.
+///
+/// Small sets use an array of pointers allocated in the SmallPtrSet object,
+/// which is treated as a simple array of pointers. When a pointer is added to
+/// the set, the array is scanned to see if the element already exists, if not
+/// the element is 'pushed back' onto the array. If we run out of space in the
+/// array, we grow into the 'large set' case. SmallSet should be used when the
+/// sets are often small. In this case, no memory allocation is used, and only
+/// light-weight and cache-efficient scanning is used.
+///
+/// Large sets use a classic exponentially-probed hash table. Empty buckets are
+/// represented with an illegal pointer value (-1) to allow null pointers to be
+/// inserted. Tombstones are represented with another illegal pointer value
+/// (-2), to allow deletion. The hash table is resized when the table is 3/4 or
+/// more. When this happens, the table is doubled in size.
+///
+class SmallPtrSetImplBase : public DebugEpochBase {
+ friend class SmallPtrSetIteratorImpl;
+
+protected:
+ /// SmallArray - Points to a fixed size set of buckets, used in 'small mode'.
+ const void **SmallArray;
+ /// CurArray - This is the current set of buckets. If equal to SmallArray,
+ /// then the set is in 'small mode'.
+ const void **CurArray;
+ /// CurArraySize - The allocated size of CurArray, always a power of two.
+ unsigned CurArraySize;
+
+ /// Number of elements in CurArray that contain a value or are a tombstone.
+ /// If small, all these elements are at the beginning of CurArray and the rest
+ /// is uninitialized.
+ unsigned NumNonEmpty;
+ /// Number of tombstones in CurArray.
+ unsigned NumTombstones;
+
+ // Helpers to copy and move construct a SmallPtrSet.
+ SmallPtrSetImplBase(const void **SmallStorage,
+ const SmallPtrSetImplBase &that);
+ SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize,
+ SmallPtrSetImplBase &&that);
+
+ explicit SmallPtrSetImplBase(const void **SmallStorage, unsigned SmallSize)
+ : SmallArray(SmallStorage), CurArray(SmallStorage),
+ CurArraySize(SmallSize), NumNonEmpty(0), NumTombstones(0) {
+ assert(SmallSize && (SmallSize & (SmallSize-1)) == 0 &&
+ "Initial size must be a power of two!");
+ }
+
+ ~SmallPtrSetImplBase() {
+ if (!isSmall())
+ free(CurArray);
+ }
+
+public:
+ using size_type = unsigned;
+
+ SmallPtrSetImplBase &operator=(const SmallPtrSetImplBase &) = delete;
+
+ LLVM_NODISCARD bool empty() const { return size() == 0; }
+ size_type size() const { return NumNonEmpty - NumTombstones; }
+
+ void clear() {
+ incrementEpoch();
+ // If the capacity of the array is huge, and the # elements used is small,
+ // shrink the array.
+ if (!isSmall()) {
+ if (size() * 4 < CurArraySize && CurArraySize > 32)
+ return shrink_and_clear();
+ // Fill the array with empty markers.
+ memset(CurArray, -1, CurArraySize * sizeof(void *));
+ }
+
+ NumNonEmpty = 0;
+ NumTombstones = 0;
+ }
+
+protected:
+ static void *getTombstoneMarker() { return reinterpret_cast<void*>(-2); }
+
+ static void *getEmptyMarker() {
+ // Note that -1 is chosen to make clear() efficiently implementable with
+ // memset and because it's not a valid pointer value.
+ return reinterpret_cast<void*>(-1);
+ }
+
+ const void **EndPointer() const {
+ return isSmall() ? CurArray + NumNonEmpty : CurArray + CurArraySize;
+ }
+
+ /// insert_imp - This returns true if the pointer was new to the set, false if
+ /// it was already in the set. This is hidden from the client so that the
+ /// derived class can check that the right type of pointer is passed in.
+ std::pair<const void *const *, bool> insert_imp(const void *Ptr) {
+ if (isSmall()) {
+ // Check to see if it is already in the set.
+ const void **LastTombstone = nullptr;
+ for (const void **APtr = SmallArray, **E = SmallArray + NumNonEmpty;
+ APtr != E; ++APtr) {
+ const void *Value = *APtr;
+ if (Value == Ptr)
+ return std::make_pair(APtr, false);
+ if (Value == getTombstoneMarker())
+ LastTombstone = APtr;
+ }
+
+ // Did we find any tombstone marker?
+ if (LastTombstone != nullptr) {
+ *LastTombstone = Ptr;
+ --NumTombstones;
+ incrementEpoch();
+ return std::make_pair(LastTombstone, true);
+ }
+
+ // Nope, there isn't. If we stay small, just 'pushback' now.
+ if (NumNonEmpty < CurArraySize) {
+ SmallArray[NumNonEmpty++] = Ptr;
+ incrementEpoch();
+ return std::make_pair(SmallArray + (NumNonEmpty - 1), true);
+ }
+ // Otherwise, hit the big set case, which will call grow.
+ }
+ return insert_imp_big(Ptr);
+ }
+
+ /// erase_imp - If the set contains the specified pointer, remove it and
+ /// return true, otherwise return false. This is hidden from the client so
+ /// that the derived class can check that the right type of pointer is passed
+ /// in.
+ bool erase_imp(const void * Ptr) {
+ const void *const *P = find_imp(Ptr);
+ if (P == EndPointer())
+ return false;
+
+ const void **Loc = const_cast<const void **>(P);
+ assert(*Loc == Ptr && "broken find!");
+ *Loc = getTombstoneMarker();
+ NumTombstones++;
+ return true;
+ }
+
+ /// Returns the raw pointer needed to construct an iterator. If element not
+ /// found, this will be EndPointer. Otherwise, it will be a pointer to the
+ /// slot which stores Ptr;
+ const void *const * find_imp(const void * Ptr) const {
+ if (isSmall()) {
+ // Linear search for the item.
+ for (const void *const *APtr = SmallArray,
+ *const *E = SmallArray + NumNonEmpty; APtr != E; ++APtr)
+ if (*APtr == Ptr)
+ return APtr;
+ return EndPointer();
+ }
+
+ // Big set case.
+ auto *Bucket = FindBucketFor(Ptr);
+ if (*Bucket == Ptr)
+ return Bucket;
+ return EndPointer();
+ }
+
+private:
+ bool isSmall() const { return CurArray == SmallArray; }
+
+ std::pair<const void *const *, bool> insert_imp_big(const void *Ptr);
+
+ const void * const *FindBucketFor(const void *Ptr) const;
+ void shrink_and_clear();
+
+ /// Grow - Allocate a larger backing store for the buckets and move it over.
+ void Grow(unsigned NewSize);
+
+protected:
+ /// swap - Swaps the elements of two sets.
+ /// Note: This method assumes that both sets have the same small size.
+ void swap(SmallPtrSetImplBase &RHS);
+
+ void CopyFrom(const SmallPtrSetImplBase &RHS);
+ void MoveFrom(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
+
+private:
+ /// Code shared by MoveFrom() and move constructor.
+ void MoveHelper(unsigned SmallSize, SmallPtrSetImplBase &&RHS);
+ /// Code shared by CopyFrom() and copy constructor.
+ void CopyHelper(const SmallPtrSetImplBase &RHS);
+};
+
+/// SmallPtrSetIteratorImpl - This is the common base class shared between all
+/// instances of SmallPtrSetIterator.
+class SmallPtrSetIteratorImpl {
+protected:
+ const void *const *Bucket;
+ const void *const *End;
+
+public:
+ explicit SmallPtrSetIteratorImpl(const void *const *BP, const void*const *E)
+ : Bucket(BP), End(E) {
+ if (shouldReverseIterate()) {
+ RetreatIfNotValid();
+ return;
+ }
+ AdvanceIfNotValid();
+ }
+
+ bool operator==(const SmallPtrSetIteratorImpl &RHS) const {
+ return Bucket == RHS.Bucket;
+ }
+ bool operator!=(const SmallPtrSetIteratorImpl &RHS) const {
+ return Bucket != RHS.Bucket;
+ }
+
+protected:
+ /// AdvanceIfNotValid - If the current bucket isn't valid, advance to a bucket
+ /// that is. This is guaranteed to stop because the end() bucket is marked
+ /// valid.
+ void AdvanceIfNotValid() {
+ assert(Bucket <= End);
+ while (Bucket != End &&
+ (*Bucket == SmallPtrSetImplBase::getEmptyMarker() ||
+ *Bucket == SmallPtrSetImplBase::getTombstoneMarker()))
+ ++Bucket;
+ }
+ void RetreatIfNotValid() {
+ assert(Bucket >= End);
+ while (Bucket != End &&
+ (Bucket[-1] == SmallPtrSetImplBase::getEmptyMarker() ||
+ Bucket[-1] == SmallPtrSetImplBase::getTombstoneMarker())) {
+ --Bucket;
+ }
+ }
+};
+
+/// SmallPtrSetIterator - This implements a const_iterator for SmallPtrSet.
+template <typename PtrTy>
+class SmallPtrSetIterator : public SmallPtrSetIteratorImpl,
+ DebugEpochBase::HandleBase {
+ using PtrTraits = PointerLikeTypeTraits<PtrTy>;
+
+public:
+ using value_type = PtrTy;
+ using reference = PtrTy;
+ using pointer = PtrTy;
+ using difference_type = std::ptrdiff_t;
+ using iterator_category = std::forward_iterator_tag;
+
+ explicit SmallPtrSetIterator(const void *const *BP, const void *const *E,
+ const DebugEpochBase &Epoch)
+ : SmallPtrSetIteratorImpl(BP, E), DebugEpochBase::HandleBase(&Epoch) {}
+
+ // Most methods provided by baseclass.
+
+ const PtrTy operator*() const {
+ assert(isHandleInSync() && "invalid iterator access!");
+ if (shouldReverseIterate()) {
+ assert(Bucket > End);
+ return PtrTraits::getFromVoidPointer(const_cast<void *>(Bucket[-1]));
+ }
+ assert(Bucket < End);
+ return PtrTraits::getFromVoidPointer(const_cast<void*>(*Bucket));
+ }
+
+ inline SmallPtrSetIterator& operator++() { // Preincrement
+ assert(isHandleInSync() && "invalid iterator access!");
+ if (shouldReverseIterate()) {
+ --Bucket;
+ RetreatIfNotValid();
+ return *this;
+ }
+ ++Bucket;
+ AdvanceIfNotValid();
+ return *this;
+ }
+
+ SmallPtrSetIterator operator++(int) { // Postincrement
+ SmallPtrSetIterator tmp = *this;
+ ++*this;
+ return tmp;
+ }
+};
+
+/// RoundUpToPowerOfTwo - This is a helper template that rounds N up to the next
+/// power of two (which means N itself if N is already a power of two).
+template<unsigned N>
+struct RoundUpToPowerOfTwo;
+
+/// RoundUpToPowerOfTwoH - If N is not a power of two, increase it. This is a
+/// helper template used to implement RoundUpToPowerOfTwo.
+template<unsigned N, bool isPowerTwo>
+struct RoundUpToPowerOfTwoH {
+ enum { Val = N };
+};
+template<unsigned N>
+struct RoundUpToPowerOfTwoH<N, false> {
+ enum {
+ // We could just use NextVal = N+1, but this converges faster. N|(N-1) sets
+ // the right-most zero bits to one all at once, e.g. 0b0011000 -> 0b0011111.
+ Val = RoundUpToPowerOfTwo<(N|(N-1)) + 1>::Val
+ };
+};
+
+template<unsigned N>
+struct RoundUpToPowerOfTwo {
+ enum { Val = RoundUpToPowerOfTwoH<N, (N&(N-1)) == 0>::Val };
+};
+
+/// A templated base class for \c SmallPtrSet which provides the
+/// typesafe interface that is common across all small sizes.
+///
+/// This is particularly useful for passing around between interface boundaries
+/// to avoid encoding a particular small size in the interface boundary.
+template <typename PtrType>
+class SmallPtrSetImpl : public SmallPtrSetImplBase {
+ using ConstPtrType = typename add_const_past_pointer<PtrType>::type;
+ using PtrTraits = PointerLikeTypeTraits<PtrType>;
+ using ConstPtrTraits = PointerLikeTypeTraits<ConstPtrType>;
+
+protected:
+ // Constructors that forward to the base.
+ SmallPtrSetImpl(const void **SmallStorage, const SmallPtrSetImpl &that)
+ : SmallPtrSetImplBase(SmallStorage, that) {}
+ SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize,
+ SmallPtrSetImpl &&that)
+ : SmallPtrSetImplBase(SmallStorage, SmallSize, std::move(that)) {}
+ explicit SmallPtrSetImpl(const void **SmallStorage, unsigned SmallSize)
+ : SmallPtrSetImplBase(SmallStorage, SmallSize) {}
+
+public:
+ using iterator = SmallPtrSetIterator<PtrType>;
+ using const_iterator = SmallPtrSetIterator<PtrType>;
+ using key_type = ConstPtrType;
+ using value_type = PtrType;
+
+ SmallPtrSetImpl(const SmallPtrSetImpl &) = delete;
+
+ /// Inserts Ptr if and only if there is no element in the container equal to
+ /// Ptr. The bool component of the returned pair is true if and only if the
+ /// insertion takes place, and the iterator component of the pair points to
+ /// the element equal to Ptr.
+ std::pair<iterator, bool> insert(PtrType Ptr) {
+ auto p = insert_imp(PtrTraits::getAsVoidPointer(Ptr));
+ return std::make_pair(makeIterator(p.first), p.second);
+ }
+
+ /// erase - If the set contains the specified pointer, remove it and return
+ /// true, otherwise return false.
+ bool erase(PtrType Ptr) {
+ return erase_imp(PtrTraits::getAsVoidPointer(Ptr));
+ }
+ /// count - Return 1 if the specified pointer is in the set, 0 otherwise.
+ size_type count(ConstPtrType Ptr) const { return find(Ptr) != end() ? 1 : 0; }
+ iterator find(ConstPtrType Ptr) const {
+ return makeIterator(find_imp(ConstPtrTraits::getAsVoidPointer(Ptr)));
+ }
+
+ template <typename IterT>
+ void insert(IterT I, IterT E) {
+ for (; I != E; ++I)
+ insert(*I);
+ }
+
+ void insert(std::initializer_list<PtrType> IL) {
+ insert(IL.begin(), IL.end());
+ }
+
+ iterator begin() const {
+ if (shouldReverseIterate())
+ return makeIterator(EndPointer() - 1);
+ return makeIterator(CurArray);
+ }
+ iterator end() const { return makeIterator(EndPointer()); }
+
+private:
+ /// Create an iterator that dereferences to same place as the given pointer.
+ iterator makeIterator(const void *const *P) const {
+ if (shouldReverseIterate())
+ return iterator(P == EndPointer() ? CurArray : P + 1, CurArray, *this);
+ return iterator(P, EndPointer(), *this);
+ }
+};
+
+/// Equality comparison for SmallPtrSet.
+///
+/// Iterates over elements of LHS confirming that each value from LHS is also in
+/// RHS, and that no additional values are in RHS.
+template <typename PtrType>
+bool operator==(const SmallPtrSetImpl<PtrType> &LHS,
+ const SmallPtrSetImpl<PtrType> &RHS) {
+ if (LHS.size() != RHS.size())
+ return false;
+
+ for (const auto *KV : LHS)
+ if (!RHS.count(KV))
+ return false;
+
+ return true;
+}
+
+/// Inequality comparison for SmallPtrSet.
+///
+/// Equivalent to !(LHS == RHS).
+template <typename PtrType>
+bool operator!=(const SmallPtrSetImpl<PtrType> &LHS,
+ const SmallPtrSetImpl<PtrType> &RHS) {
+ return !(LHS == RHS);
+}
+
+/// SmallPtrSet - This class implements a set which is optimized for holding
+/// SmallSize or less elements. This internally rounds up SmallSize to the next
+/// power of two if it is not already a power of two. See the comments above
+/// SmallPtrSetImplBase for details of the algorithm.
+template<class PtrType, unsigned SmallSize>
+class SmallPtrSet : public SmallPtrSetImpl<PtrType> {
+ // In small mode SmallPtrSet uses linear search for the elements, so it is
+ // not a good idea to choose this value too high. You may consider using a
+ // DenseSet<> instead if you expect many elements in the set.
+ static_assert(SmallSize <= 32, "SmallSize should be small");
+
+ using BaseT = SmallPtrSetImpl<PtrType>;
+
+ // Make sure that SmallSize is a power of two, round up if not.
+ enum { SmallSizePowTwo = RoundUpToPowerOfTwo<SmallSize>::Val };
+ /// SmallStorage - Fixed size storage used in 'small mode'.
+ const void *SmallStorage[SmallSizePowTwo];
+
+public:
+ SmallPtrSet() : BaseT(SmallStorage, SmallSizePowTwo) {}
+ SmallPtrSet(const SmallPtrSet &that) : BaseT(SmallStorage, that) {}
+ SmallPtrSet(SmallPtrSet &&that)
+ : BaseT(SmallStorage, SmallSizePowTwo, std::move(that)) {}
+
+ template<typename It>
+ SmallPtrSet(It I, It E) : BaseT(SmallStorage, SmallSizePowTwo) {
+ this->insert(I, E);
+ }
+
+ SmallPtrSet(std::initializer_list<PtrType> IL)
+ : BaseT(SmallStorage, SmallSizePowTwo) {
+ this->insert(IL.begin(), IL.end());
+ }
+
+ SmallPtrSet<PtrType, SmallSize> &
+ operator=(const SmallPtrSet<PtrType, SmallSize> &RHS) {
+ if (&RHS != this)
+ this->CopyFrom(RHS);
+ return *this;
+ }
+
+ SmallPtrSet<PtrType, SmallSize> &
+ operator=(SmallPtrSet<PtrType, SmallSize> &&RHS) {
+ if (&RHS != this)
+ this->MoveFrom(SmallSizePowTwo, std::move(RHS));
+ return *this;
+ }
+
+ SmallPtrSet<PtrType, SmallSize> &
+ operator=(std::initializer_list<PtrType> IL) {
+ this->clear();
+ this->insert(IL.begin(), IL.end());
+ return *this;
+ }
+
+ /// swap - Swaps the elements of two sets.
+ void swap(SmallPtrSet<PtrType, SmallSize> &RHS) {
+ SmallPtrSetImplBase::swap(RHS);
+ }
+};
+
+} // end namespace llvm
+
+namespace std {
+
+ /// Implement std::swap in terms of SmallPtrSet swap.
+ template<class T, unsigned N>
+ inline void swap(llvm::SmallPtrSet<T, N> &LHS, llvm::SmallPtrSet<T, N> &RHS) {
+ LHS.swap(RHS);
+ }
+
+} // end namespace std
+
+#endif // LLVM_ADT_SMALLPTRSET_H
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallSet.h b/third_party/llvm-project/include/llvm/ADT/SmallSet.h
new file mode 100644
index 000000000..a03fa7dd8
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/SmallSet.h
@@ -0,0 +1,278 @@
+//===- llvm/ADT/SmallSet.h - 'Normally small' sets --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SmallSet class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SMALLSET_H
+#define LLVM_ADT_SMALLSET_H
+
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/type_traits.h"
+#include <cstddef>
+#include <functional>
+#include <set>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+/// SmallSetIterator - This class implements a const_iterator for SmallSet by
+/// delegating to the underlying SmallVector or Set iterators.
+template <typename T, unsigned N, typename C>
+class SmallSetIterator
+ : public iterator_facade_base<SmallSetIterator<T, N, C>,
+ std::forward_iterator_tag, T> {
+private:
+ using SetIterTy = typename std::set<T, C>::const_iterator;
+ using VecIterTy = typename SmallVector<T, N>::const_iterator;
+ using SelfTy = SmallSetIterator<T, N, C>;
+
+ /// Iterators to the parts of the SmallSet containing the data. They are set
+ /// depending on isSmall.
+ union {
+ SetIterTy SetIter;
+ VecIterTy VecIter;
+ };
+
+ bool isSmall;
+
+public:
+ SmallSetIterator(SetIterTy SetIter) : SetIter(SetIter), isSmall(false) {}
+
+ SmallSetIterator(VecIterTy VecIter) : VecIter(VecIter), isSmall(true) {}
+
+ // Spell out destructor, copy/move constructor and assignment operators for
+ // MSVC STL, where set<T>::const_iterator is not trivially copy constructible.
+ ~SmallSetIterator() {
+ if (isSmall)
+ VecIter.~VecIterTy();
+ else
+ SetIter.~SetIterTy();
+ }
+
+ SmallSetIterator(const SmallSetIterator &Other) : isSmall(Other.isSmall) {
+ if (isSmall)
+ VecIter = Other.VecIter;
+ else
+ // Use placement new, to make sure SetIter is properly constructed, even
+ // if it is not trivially copy-able (e.g. in MSVC).
+ new (&SetIter) SetIterTy(Other.SetIter);
+ }
+
+ SmallSetIterator(SmallSetIterator &&Other) : isSmall(Other.isSmall) {
+ if (isSmall)
+ VecIter = std::move(Other.VecIter);
+ else
+ // Use placement new, to make sure SetIter is properly constructed, even
+ // if it is not trivially copy-able (e.g. in MSVC).
+ new (&SetIter) SetIterTy(std::move(Other.SetIter));
+ }
+
+ SmallSetIterator& operator=(const SmallSetIterator& Other) {
+ // Call destructor for SetIter, so it gets properly destroyed if it is
+ // not trivially destructible in case we are setting VecIter.
+ if (!isSmall)
+ SetIter.~SetIterTy();
+
+ isSmall = Other.isSmall;
+ if (isSmall)
+ VecIter = Other.VecIter;
+ else
+ new (&SetIter) SetIterTy(Other.SetIter);
+ return *this;
+ }
+
+ SmallSetIterator& operator=(SmallSetIterator&& Other) {
+ // Call destructor for SetIter, so it gets properly destroyed if it is
+ // not trivially destructible in case we are setting VecIter.
+ if (!isSmall)
+ SetIter.~SetIterTy();
+
+ isSmall = Other.isSmall;
+ if (isSmall)
+ VecIter = std::move(Other.VecIter);
+ else
+ new (&SetIter) SetIterTy(std::move(Other.SetIter));
+ return *this;
+ }
+
+ bool operator==(const SmallSetIterator &RHS) const {
+ if (isSmall != RHS.isSmall)
+ return false;
+ if (isSmall)
+ return VecIter == RHS.VecIter;
+ return SetIter == RHS.SetIter;
+ }
+
+ SmallSetIterator &operator++() { // Preincrement
+ if (isSmall)
+ VecIter++;
+ else
+ SetIter++;
+ return *this;
+ }
+
+ const T &operator*() const { return isSmall ? *VecIter : *SetIter; }
+};
+
+/// SmallSet - This maintains a set of unique values, optimizing for the case
+/// when the set is small (less than N). In this case, the set can be
+/// maintained with no mallocs. If the set gets large, we expand to using an
+/// std::set to maintain reasonable lookup times.
+template <typename T, unsigned N, typename C = std::less<T>>
+class SmallSet {
+ /// Use a SmallVector to hold the elements here (even though it will never
+ /// reach its 'large' stage) to avoid calling the default ctors of elements
+ /// we will never use.
+ SmallVector<T, N> Vector;
+ std::set<T, C> Set;
+
+ using VIterator = typename SmallVector<T, N>::const_iterator;
+ using mutable_iterator = typename SmallVector<T, N>::iterator;
+
+ // In small mode SmallPtrSet uses linear search for the elements, so it is
+ // not a good idea to choose this value too high. You may consider using a
+ // DenseSet<> instead if you expect many elements in the set.
+ static_assert(N <= 32, "N should be small");
+
+public:
+ using size_type = size_t;
+ using const_iterator = SmallSetIterator<T, N, C>;
+
+ SmallSet() = default;
+
+ LLVM_NODISCARD bool empty() const {
+ return Vector.empty() && Set.empty();
+ }
+
+ size_type size() const {
+ return isSmall() ? Vector.size() : Set.size();
+ }
+
+ /// count - Return 1 if the element is in the set, 0 otherwise.
+ size_type count(const T &V) const {
+ if (isSmall()) {
+ // Since the collection is small, just do a linear search.
+ return vfind(V) == Vector.end() ? 0 : 1;
+ } else {
+ return Set.count(V);
+ }
+ }
+
+ /// insert - Insert an element into the set if it isn't already there.
+ /// Returns true if the element is inserted (it was not in the set before).
+ /// The first value of the returned pair is unused and provided for
+ /// partial compatibility with the standard library self-associative container
+ /// concept.
+ // FIXME: Add iterators that abstract over the small and large form, and then
+ // return those here.
+ std::pair<NoneType, bool> insert(const T &V) {
+ if (!isSmall())
+ return std::make_pair(None, Set.insert(V).second);
+
+ VIterator I = vfind(V);
+ if (I != Vector.end()) // Don't reinsert if it already exists.
+ return std::make_pair(None, false);
+ if (Vector.size() < N) {
+ Vector.push_back(V);
+ return std::make_pair(None, true);
+ }
+
+ // Otherwise, grow from vector to set.
+ while (!Vector.empty()) {
+ Set.insert(Vector.back());
+ Vector.pop_back();
+ }
+ Set.insert(V);
+ return std::make_pair(None, true);
+ }
+
+ template <typename IterT>
+ void insert(IterT I, IterT E) {
+ for (; I != E; ++I)
+ insert(*I);
+ }
+
+ bool erase(const T &V) {
+ if (!isSmall())
+ return Set.erase(V);
+ for (mutable_iterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
+ if (*I == V) {
+ Vector.erase(I);
+ return true;
+ }
+ return false;
+ }
+
+ void clear() {
+ Vector.clear();
+ Set.clear();
+ }
+
+ const_iterator begin() const {
+ if (isSmall())
+ return {Vector.begin()};
+ return {Set.begin()};
+ }
+
+ const_iterator end() const {
+ if (isSmall())
+ return {Vector.end()};
+ return {Set.end()};
+ }
+
+private:
+ bool isSmall() const { return Set.empty(); }
+
+ VIterator vfind(const T &V) const {
+ for (VIterator I = Vector.begin(), E = Vector.end(); I != E; ++I)
+ if (*I == V)
+ return I;
+ return Vector.end();
+ }
+};
+
+/// If this set is of pointer values, transparently switch over to using
+/// SmallPtrSet for performance.
+template <typename PointeeType, unsigned N>
+class SmallSet<PointeeType*, N> : public SmallPtrSet<PointeeType*, N> {};
+
+/// Equality comparison for SmallSet.
+///
+/// Iterates over elements of LHS confirming that each element is also a member
+/// of RHS, and that RHS contains no additional values.
+/// Equivalent to N calls to RHS.count.
+/// For small-set mode amortized complexity is O(N^2)
+/// For large-set mode amortized complexity is linear, worst case is O(N^2) (if
+/// every hash collides).
+template <typename T, unsigned LN, unsigned RN, typename C>
+bool operator==(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
+ if (LHS.size() != RHS.size())
+ return false;
+
+ // All elements in LHS must also be in RHS
+ return all_of(LHS, [&RHS](const T &E) { return RHS.count(E); });
+}
+
+/// Inequality comparison for SmallSet.
+///
+/// Equivalent to !(LHS == RHS). See operator== for performance notes.
+template <typename T, unsigned LN, unsigned RN, typename C>
+bool operator!=(const SmallSet<T, LN, C> &LHS, const SmallSet<T, RN, C> &RHS) {
+ return !(LHS == RHS);
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_SMALLSET_H
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallString.h b/third_party/llvm-project/include/llvm/ADT/SmallString.h
new file mode 100644
index 000000000..898be80d0
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/SmallString.h
@@ -0,0 +1,296 @@
+//===- llvm/ADT/SmallString.h - 'Normally small' strings --------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SmallString class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SMALLSTRING_H
+#define LLVM_ADT_SMALLSTRING_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include <cstddef>
+
+namespace llvm {
+
+/// SmallString - A SmallString is just a SmallVector with methods and accessors
+/// that make it work better as a string (e.g. operator+ etc).
+template<unsigned InternalLen>
+class SmallString : public SmallVector<char, InternalLen> {
+public:
+ /// Default ctor - Initialize to empty.
+ SmallString() = default;
+
+ /// Initialize from a StringRef.
+ SmallString(StringRef S) : SmallVector<char, InternalLen>(S.begin(), S.end()) {}
+
+ /// Initialize with a range.
+ template<typename ItTy>
+ SmallString(ItTy S, ItTy E) : SmallVector<char, InternalLen>(S, E) {}
+
+ // Note that in order to add new overloads for append & assign, we have to
+ // duplicate the inherited versions so as not to inadvertently hide them.
+
+ /// @}
+ /// @name String Assignment
+ /// @{
+
+ /// Assign from a repeated element.
+ void assign(size_t NumElts, char Elt) {
+ this->SmallVectorImpl<char>::assign(NumElts, Elt);
+ }
+
+ /// Assign from an iterator pair.
+ template<typename in_iter>
+ void assign(in_iter S, in_iter E) {
+ this->clear();
+ SmallVectorImpl<char>::append(S, E);
+ }
+
+ /// Assign from a StringRef.
+ void assign(StringRef RHS) {
+ this->clear();
+ SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
+ }
+
+ /// Assign from a SmallVector.
+ void assign(const SmallVectorImpl<char> &RHS) {
+ this->clear();
+ SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
+ }
+
+ /// @}
+ /// @name String Concatenation
+ /// @{
+
+ /// Append from an iterator pair.
+ template<typename in_iter>
+ void append(in_iter S, in_iter E) {
+ SmallVectorImpl<char>::append(S, E);
+ }
+
+ void append(size_t NumInputs, char Elt) {
+ SmallVectorImpl<char>::append(NumInputs, Elt);
+ }
+
+ /// Append from a StringRef.
+ void append(StringRef RHS) {
+ SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
+ }
+
+ /// Append from a SmallVector.
+ void append(const SmallVectorImpl<char> &RHS) {
+ SmallVectorImpl<char>::append(RHS.begin(), RHS.end());
+ }
+
+ /// @}
+ /// @name String Comparison
+ /// @{
+
+ /// Check for string equality. This is more efficient than compare() when
+ /// the relative ordering of inequal strings isn't needed.
+ bool equals(StringRef RHS) const {
+ return str().equals(RHS);
+ }
+
+ /// Check for string equality, ignoring case.
+ bool equals_lower(StringRef RHS) const {
+ return str().equals_lower(RHS);
+ }
+
+ /// Compare two strings; the result is -1, 0, or 1 if this string is
+ /// lexicographically less than, equal to, or greater than the \p RHS.
+ int compare(StringRef RHS) const {
+ return str().compare(RHS);
+ }
+
+ /// compare_lower - Compare two strings, ignoring case.
+ int compare_lower(StringRef RHS) const {
+ return str().compare_lower(RHS);
+ }
+
+ /// compare_numeric - Compare two strings, treating sequences of digits as
+ /// numbers.
+ int compare_numeric(StringRef RHS) const {
+ return str().compare_numeric(RHS);
+ }
+
+ /// @}
+ /// @name String Predicates
+ /// @{
+
+ /// startswith - Check if this string starts with the given \p Prefix.
+ bool startswith(StringRef Prefix) const {
+ return str().startswith(Prefix);
+ }
+
+ /// endswith - Check if this string ends with the given \p Suffix.
+ bool endswith(StringRef Suffix) const {
+ return str().endswith(Suffix);
+ }
+
+ /// @}
+ /// @name String Searching
+ /// @{
+
+ /// find - Search for the first character \p C in the string.
+ ///
+ /// \return - The index of the first occurrence of \p C, or npos if not
+ /// found.
+ size_t find(char C, size_t From = 0) const {
+ return str().find(C, From);
+ }
+
+ /// Search for the first string \p Str in the string.
+ ///
+ /// \returns The index of the first occurrence of \p Str, or npos if not
+ /// found.
+ size_t find(StringRef Str, size_t From = 0) const {
+ return str().find(Str, From);
+ }
+
+ /// Search for the last character \p C in the string.
+ ///
+ /// \returns The index of the last occurrence of \p C, or npos if not
+ /// found.
+ size_t rfind(char C, size_t From = StringRef::npos) const {
+ return str().rfind(C, From);
+ }
+
+ /// Search for the last string \p Str in the string.
+ ///
+ /// \returns The index of the last occurrence of \p Str, or npos if not
+ /// found.
+ size_t rfind(StringRef Str) const {
+ return str().rfind(Str);
+ }
+
+ /// Find the first character in the string that is \p C, or npos if not
+ /// found. Same as find.
+ size_t find_first_of(char C, size_t From = 0) const {
+ return str().find_first_of(C, From);
+ }
+
+ /// Find the first character in the string that is in \p Chars, or npos if
+ /// not found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ size_t find_first_of(StringRef Chars, size_t From = 0) const {
+ return str().find_first_of(Chars, From);
+ }
+
+ /// Find the first character in the string that is not \p C or npos if not
+ /// found.
+ size_t find_first_not_of(char C, size_t From = 0) const {
+ return str().find_first_not_of(C, From);
+ }
+
+ /// Find the first character in the string that is not in the string
+ /// \p Chars, or npos if not found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ size_t find_first_not_of(StringRef Chars, size_t From = 0) const {
+ return str().find_first_not_of(Chars, From);
+ }
+
+ /// Find the last character in the string that is \p C, or npos if not
+ /// found.
+ size_t find_last_of(char C, size_t From = StringRef::npos) const {
+ return str().find_last_of(C, From);
+ }
+
+ /// Find the last character in the string that is in \p C, or npos if not
+ /// found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ size_t find_last_of(
+ StringRef Chars, size_t From = StringRef::npos) const {
+ return str().find_last_of(Chars, From);
+ }
+
+ /// @}
+ /// @name Helpful Algorithms
+ /// @{
+
+ /// Return the number of occurrences of \p C in the string.
+ size_t count(char C) const {
+ return str().count(C);
+ }
+
+ /// Return the number of non-overlapped occurrences of \p Str in the
+ /// string.
+ size_t count(StringRef Str) const {
+ return str().count(Str);
+ }
+
+ /// @}
+ /// @name Substring Operations
+ /// @{
+
+ /// Return a reference to the substring from [Start, Start + N).
+ ///
+ /// \param Start The index of the starting character in the substring; if
+ /// the index is npos or greater than the length of the string then the
+ /// empty substring will be returned.
+ ///
+ /// \param N The number of characters to included in the substring. If \p N
+ /// exceeds the number of characters remaining in the string, the string
+ /// suffix (starting with \p Start) will be returned.
+ StringRef substr(size_t Start, size_t N = StringRef::npos) const {
+ return str().substr(Start, N);
+ }
+
+ /// Return a reference to the substring from [Start, End).
+ ///
+ /// \param Start The index of the starting character in the substring; if
+ /// the index is npos or greater than the length of the string then the
+ /// empty substring will be returned.
+ ///
+ /// \param End The index following the last character to include in the
+ /// substring. If this is npos, or less than \p Start, or exceeds the
+ /// number of characters remaining in the string, the string suffix
+ /// (starting with \p Start) will be returned.
+ StringRef slice(size_t Start, size_t End) const {
+ return str().slice(Start, End);
+ }
+
+ // Extra methods.
+
+ /// Explicit conversion to StringRef.
+ StringRef str() const { return StringRef(this->begin(), this->size()); }
+
+ // TODO: Make this const, if it's safe...
+ const char* c_str() {
+ this->push_back(0);
+ this->pop_back();
+ return this->data();
+ }
+
+ /// Implicit conversion to StringRef.
+ operator StringRef() const { return str(); }
+
+ // Extra operators.
+ const SmallString &operator=(StringRef RHS) {
+ this->clear();
+ return *this += RHS;
+ }
+
+ SmallString &operator+=(StringRef RHS) {
+ this->append(RHS.begin(), RHS.end());
+ return *this;
+ }
+ SmallString &operator+=(char C) {
+ this->push_back(C);
+ return *this;
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_SMALLSTRING_H
diff --git a/third_party/llvm-project/include/llvm/ADT/SmallVector.h b/third_party/llvm-project/include/llvm/ADT/SmallVector.h
new file mode 100644
index 000000000..17586904d
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/SmallVector.h
@@ -0,0 +1,930 @@
+//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the SmallVector class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SMALLVECTOR_H
+#define LLVM_ADT_SMALLVECTOR_H
+
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/AlignOf.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/MemAlloc.h"
+#include "llvm/Support/type_traits.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdlib>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <memory>
+#include <new>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+/// This is all the non-templated stuff common to all SmallVectors.
+class SmallVectorBase {
+protected:
+ void *BeginX;
+ unsigned Size = 0, Capacity;
+
+ SmallVectorBase() = delete;
+ SmallVectorBase(void *FirstEl, size_t TotalCapacity)
+ : BeginX(FirstEl), Capacity(TotalCapacity) {}
+
+ /// This is an implementation of the grow() method which only works
+ /// on POD-like data types and is out of line to reduce code duplication.
+ void grow_pod(void *FirstEl, size_t MinCapacity, size_t TSize);
+
+public:
+ size_t size() const { return Size; }
+ size_t capacity() const { return Capacity; }
+
+ LLVM_NODISCARD bool empty() const { return !Size; }
+
+ /// Set the array size to \p N, which the current array must have enough
+ /// capacity for.
+ ///
+ /// This does not construct or destroy any elements in the vector.
+ ///
+ /// Clients can use this in conjunction with capacity() to write past the end
+ /// of the buffer when they know that more elements are available, and only
+ /// update the size later. This avoids the cost of value initializing elements
+ /// which will only be overwritten.
+ void set_size(size_t N) {
+ assert(N <= capacity());
+ Size = N;
+ }
+};
+
+/// Figure out the offset of the first element.
+template <class T, typename = void> struct SmallVectorAlignmentAndSize {
+ AlignedCharArrayUnion<SmallVectorBase> Base;
+ AlignedCharArrayUnion<T> FirstEl;
+};
+
+/// This is the part of SmallVectorTemplateBase which does not depend on whether
+/// the type T is a POD. The extra dummy template argument is used by ArrayRef
+/// to avoid unnecessarily requiring T to be complete.
+template <typename T, typename = void>
+class SmallVectorTemplateCommon : public SmallVectorBase {
+ /// Find the address of the first element. For this pointer math to be valid
+ /// with small-size of 0 for T with lots of alignment, it's important that
+ /// SmallVectorStorage is properly-aligned even for small-size of 0.
+ void *getFirstEl() const {
+ return const_cast<void *>(reinterpret_cast<const void *>(
+ reinterpret_cast<const char *>(this) +
+ offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)));
+ }
+ // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
+
+protected:
+ SmallVectorTemplateCommon(size_t Size)
+ : SmallVectorBase(getFirstEl(), Size) {}
+
+ void grow_pod(size_t MinCapacity, size_t TSize) {
+ SmallVectorBase::grow_pod(getFirstEl(), MinCapacity, TSize);
+ }
+
+ /// Return true if this is a smallvector which has not had dynamic
+ /// memory allocated for it.
+ bool isSmall() const { return BeginX == getFirstEl(); }
+
+ /// Put this vector in a state of being small.
+ void resetToSmall() {
+ BeginX = getFirstEl();
+ Size = Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
+ }
+
+public:
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+ using value_type = T;
+ using iterator = T *;
+ using const_iterator = const T *;
+
+ using const_reverse_iterator = std::reverse_iterator<const_iterator>;
+ using reverse_iterator = std::reverse_iterator<iterator>;
+
+ using reference = T &;
+ using const_reference = const T &;
+ using pointer = T *;
+ using const_pointer = const T *;
+
+ // forward iterator creation methods.
+ iterator begin() { return (iterator)this->BeginX; }
+ const_iterator begin() const { return (const_iterator)this->BeginX; }
+ iterator end() { return begin() + size(); }
+ const_iterator end() const { return begin() + size(); }
+
+ // reverse iterator creation methods.
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+ const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+ const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
+
+ size_type size_in_bytes() const { return size() * sizeof(T); }
+ size_type max_size() const { return size_type(-1) / sizeof(T); }
+
+ size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
+
+ /// Return a pointer to the vector's buffer, even if empty().
+ pointer data() { return pointer(begin()); }
+ /// Return a pointer to the vector's buffer, even if empty().
+ const_pointer data() const { return const_pointer(begin()); }
+
+ reference operator[](size_type idx) {
+ assert(idx < size());
+ return begin()[idx];
+ }
+ const_reference operator[](size_type idx) const {
+ assert(idx < size());
+ return begin()[idx];
+ }
+
+ reference front() {
+ assert(!empty());
+ return begin()[0];
+ }
+ const_reference front() const {
+ assert(!empty());
+ return begin()[0];
+ }
+
+ reference back() {
+ assert(!empty());
+ return end()[-1];
+ }
+ const_reference back() const {
+ assert(!empty());
+ return end()[-1];
+ }
+};
+
+/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put method
+/// implementations that are designed to work with non-POD-like T's.
+template <typename T, bool = is_trivially_copyable<T>::value>
+class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
+protected:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
+
+ static void destroy_range(T *S, T *E) {
+ while (S != E) {
+ --E;
+ E->~T();
+ }
+ }
+
+ /// Move the range [I, E) into the uninitialized memory starting with "Dest",
+ /// constructing elements as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_move(It1 I, It1 E, It2 Dest) {
+ std::uninitialized_copy(std::make_move_iterator(I),
+ std::make_move_iterator(E), Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
+ /// constructing elements as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ std::uninitialized_copy(I, E, Dest);
+ }
+
+ /// Grow the allocated memory (without initializing new elements), doubling
+ /// the size of the allocated memory. Guarantees space for at least one more
+ /// element, or MinSize more elements if specified.
+ void grow(size_t MinSize = 0);
+
+public:
+ void push_back(const T &Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void*) this->end()) T(Elt);
+ this->set_size(this->size() + 1);
+ }
+
+ void push_back(T &&Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void*) this->end()) T(::std::move(Elt));
+ this->set_size(this->size() + 1);
+ }
+
+ void pop_back() {
+ this->set_size(this->size() - 1);
+ this->end()->~T();
+ }
+};
+
+// Define this out-of-line to dissuade the C++ compiler from inlining it.
+template <typename T, bool TriviallyCopyable>
+void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
+ if (MinSize > UINT32_MAX)
+ report_bad_alloc_error("SmallVector capacity overflow during allocation");
+
+ // Always grow, even from zero.
+ size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
+ NewCapacity = std::min(std::max(NewCapacity, MinSize), size_t(UINT32_MAX));
+ T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
+
+ // Move the elements over.
+ this->uninitialized_move(this->begin(), this->end(), NewElts);
+
+ // Destroy the original elements.
+ destroy_range(this->begin(), this->end());
+
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ free(this->begin());
+
+ this->BeginX = NewElts;
+ this->Capacity = NewCapacity;
+}
+
+/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
+/// method implementations that are designed to work with POD-like T's.
+template <typename T>
+class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
+protected:
+ SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
+
+ // No need to do a destroy loop for POD's.
+ static void destroy_range(T *, T *) {}
+
+ /// Move the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_move(It1 I, It1 E, It2 Dest) {
+ // Just do a copy.
+ uninitialized_copy(I, E, Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template<typename It1, typename It2>
+ static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
+ // Arbitrary iterator types; just use the basic implementation.
+ std::uninitialized_copy(I, E, Dest);
+ }
+
+ /// Copy the range [I, E) onto the uninitialized memory
+ /// starting with "Dest", constructing elements into it as needed.
+ template <typename T1, typename T2>
+ static void uninitialized_copy(
+ T1 *I, T1 *E, T2 *Dest,
+ typename std::enable_if<std::is_same<typename std::remove_const<T1>::type,
+ T2>::value>::type * = nullptr) {
+ // Use memcpy for PODs iterated by pointers (which includes SmallVector
+ // iterators): std::uninitialized_copy optimizes to memmove, but we can
+ // use memcpy here. Note that I and E are iterators and thus might be
+ // invalid for memcpy if they are equal.
+ if (I != E)
+ memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
+ }
+
+ /// Double the size of the allocated memory, guaranteeing space for at
+ /// least one more element or MinSize if specified.
+ void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
+
+public:
+ void push_back(const T &Elt) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
+ this->set_size(this->size() + 1);
+ }
+
+ void pop_back() { this->set_size(this->size() - 1); }
+};
+
+/// This class consists of common code factored out of the SmallVector class to
+/// reduce code duplication based on the SmallVector 'N' template parameter.
+template <typename T>
+class SmallVectorImpl : public SmallVectorTemplateBase<T> {
+ using SuperClass = SmallVectorTemplateBase<T>;
+
+public:
+ using iterator = typename SuperClass::iterator;
+ using const_iterator = typename SuperClass::const_iterator;
+ using reference = typename SuperClass::reference;
+ using size_type = typename SuperClass::size_type;
+
+protected:
+ // Default ctor - Initialize to empty.
+ explicit SmallVectorImpl(unsigned N)
+ : SmallVectorTemplateBase<T>(N) {}
+
+public:
+ SmallVectorImpl(const SmallVectorImpl &) = delete;
+
+ ~SmallVectorImpl() {
+ // Subclass has already destructed this vector's elements.
+ // If this wasn't grown from the inline copy, deallocate the old space.
+ if (!this->isSmall())
+ free(this->begin());
+ }
+
+ void clear() {
+ this->destroy_range(this->begin(), this->end());
+ this->Size = 0;
+ }
+
+ void resize(size_type N) {
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->set_size(N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
+ new (&*I) T();
+ this->set_size(N);
+ }
+ }
+
+ void resize(size_type N, const T &NV) {
+ if (N < this->size()) {
+ this->destroy_range(this->begin()+N, this->end());
+ this->set_size(N);
+ } else if (N > this->size()) {
+ if (this->capacity() < N)
+ this->grow(N);
+ std::uninitialized_fill(this->end(), this->begin()+N, NV);
+ this->set_size(N);
+ }
+ }
+
+ void reserve(size_type N) {
+ if (this->capacity() < N)
+ this->grow(N);
+ }
+
+ LLVM_NODISCARD T pop_back_val() {
+ T Result = ::std::move(this->back());
+ this->pop_back();
+ return Result;
+ }
+
+ void swap(SmallVectorImpl &RHS);
+
+ /// Add the specified range to the end of the SmallVector.
+ template <typename in_iter,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<in_iter>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ void append(in_iter in_start, in_iter in_end) {
+ size_type NumInputs = std::distance(in_start, in_end);
+ if (NumInputs > this->capacity() - this->size())
+ this->grow(this->size()+NumInputs);
+
+ this->uninitialized_copy(in_start, in_end, this->end());
+ this->set_size(this->size() + NumInputs);
+ }
+
+ /// Append \p NumInputs copies of \p Elt to the end.
+ void append(size_type NumInputs, const T &Elt) {
+ if (NumInputs > this->capacity() - this->size())
+ this->grow(this->size()+NumInputs);
+
+ std::uninitialized_fill_n(this->end(), NumInputs, Elt);
+ this->set_size(this->size() + NumInputs);
+ }
+
+ void append(std::initializer_list<T> IL) {
+ append(IL.begin(), IL.end());
+ }
+
+ // FIXME: Consider assigning over existing elements, rather than clearing &
+ // re-initializing them - for all assign(...) variants.
+
+ void assign(size_type NumElts, const T &Elt) {
+ clear();
+ if (this->capacity() < NumElts)
+ this->grow(NumElts);
+ this->set_size(NumElts);
+ std::uninitialized_fill(this->begin(), this->end(), Elt);
+ }
+
+ template <typename in_iter,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<in_iter>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ void assign(in_iter in_start, in_iter in_end) {
+ clear();
+ append(in_start, in_end);
+ }
+
+ void assign(std::initializer_list<T> IL) {
+ clear();
+ append(IL);
+ }
+
+ iterator erase(const_iterator CI) {
+ // Just cast away constness because this is a non-const member function.
+ iterator I = const_cast<iterator>(CI);
+
+ assert(I >= this->begin() && "Iterator to erase is out of bounds.");
+ assert(I < this->end() && "Erasing at past-the-end iterator.");
+
+ iterator N = I;
+ // Shift all elts down one.
+ std::move(I+1, this->end(), I);
+ // Drop the last elt.
+ this->pop_back();
+ return(N);
+ }
+
+ iterator erase(const_iterator CS, const_iterator CE) {
+ // Just cast away constness because this is a non-const member function.
+ iterator S = const_cast<iterator>(CS);
+ iterator E = const_cast<iterator>(CE);
+
+ assert(S >= this->begin() && "Range to erase is out of bounds.");
+ assert(S <= E && "Trying to erase invalid range.");
+ assert(E <= this->end() && "Trying to erase past the end.");
+
+ iterator N = S;
+ // Shift all elts down.
+ iterator I = std::move(E, this->end(), S);
+ // Drop the last elts.
+ this->destroy_range(I, this->end());
+ this->set_size(I - this->begin());
+ return(N);
+ }
+
+ iterator insert(iterator I, T &&Elt) {
+ if (I == this->end()) { // Important special case for empty vector.
+ this->push_back(::std::move(Elt));
+ return this->end()-1;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ if (this->size() >= this->capacity()) {
+ size_t EltNo = I-this->begin();
+ this->grow();
+ I = this->begin()+EltNo;
+ }
+
+ ::new ((void*) this->end()) T(::std::move(this->back()));
+ // Push everything else over.
+ std::move_backward(I, this->end()-1, this->end());
+ this->set_size(this->size() + 1);
+
+ // If we just moved the element we're inserting, be sure to update
+ // the reference.
+ T *EltPtr = &Elt;
+ if (I <= EltPtr && EltPtr < this->end())
+ ++EltPtr;
+
+ *I = ::std::move(*EltPtr);
+ return I;
+ }
+
+ iterator insert(iterator I, const T &Elt) {
+ if (I == this->end()) { // Important special case for empty vector.
+ this->push_back(Elt);
+ return this->end()-1;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ if (this->size() >= this->capacity()) {
+ size_t EltNo = I-this->begin();
+ this->grow();
+ I = this->begin()+EltNo;
+ }
+ ::new ((void*) this->end()) T(std::move(this->back()));
+ // Push everything else over.
+ std::move_backward(I, this->end()-1, this->end());
+ this->set_size(this->size() + 1);
+
+ // If we just moved the element we're inserting, be sure to update
+ // the reference.
+ const T *EltPtr = &Elt;
+ if (I <= EltPtr && EltPtr < this->end())
+ ++EltPtr;
+
+ *I = *EltPtr;
+ return I;
+ }
+
+ iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
+ // Convert iterator to elt# to avoid invalidating iterator when we reserve()
+ size_t InsertElt = I - this->begin();
+
+ if (I == this->end()) { // Important special case for empty vector.
+ append(NumToInsert, Elt);
+ return this->begin()+InsertElt;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ // Ensure there is enough space.
+ reserve(this->size() + NumToInsert);
+
+ // Uninvalidate the iterator.
+ I = this->begin()+InsertElt;
+
+ // If there are more elements between the insertion point and the end of the
+ // range than there are being inserted, we can use a simple approach to
+ // insertion. Since we already reserved space, we know that this won't
+ // reallocate the vector.
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(std::move_iterator<iterator>(this->end() - NumToInsert),
+ std::move_iterator<iterator>(this->end()));
+
+ // Copy the existing elements that get replaced.
+ std::move_backward(I, OldEnd-NumToInsert, OldEnd);
+
+ std::fill_n(I, NumToInsert, Elt);
+ return I;
+ }
+
+ // Otherwise, we're inserting more elements than exist already, and we're
+ // not inserting at the end.
+
+ // Move over the elements that we're about to overwrite.
+ T *OldEnd = this->end();
+ this->set_size(this->size() + NumToInsert);
+ size_t NumOverwritten = OldEnd-I;
+ this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
+
+ // Replace the overwritten part.
+ std::fill_n(I, NumOverwritten, Elt);
+
+ // Insert the non-overwritten middle part.
+ std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
+ return I;
+ }
+
+ template <typename ItTy,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<ItTy>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ iterator insert(iterator I, ItTy From, ItTy To) {
+ // Convert iterator to elt# to avoid invalidating iterator when we reserve()
+ size_t InsertElt = I - this->begin();
+
+ if (I == this->end()) { // Important special case for empty vector.
+ append(From, To);
+ return this->begin()+InsertElt;
+ }
+
+ assert(I >= this->begin() && "Insertion iterator is out of bounds.");
+ assert(I <= this->end() && "Inserting past the end of the vector.");
+
+ size_t NumToInsert = std::distance(From, To);
+
+ // Ensure there is enough space.
+ reserve(this->size() + NumToInsert);
+
+ // Uninvalidate the iterator.
+ I = this->begin()+InsertElt;
+
+ // If there are more elements between the insertion point and the end of the
+ // range than there are being inserted, we can use a simple approach to
+ // insertion. Since we already reserved space, we know that this won't
+ // reallocate the vector.
+ if (size_t(this->end()-I) >= NumToInsert) {
+ T *OldEnd = this->end();
+ append(std::move_iterator<iterator>(this->end() - NumToInsert),
+ std::move_iterator<iterator>(this->end()));
+
+ // Copy the existing elements that get replaced.
+ std::move_backward(I, OldEnd-NumToInsert, OldEnd);
+
+ std::copy(From, To, I);
+ return I;
+ }
+
+ // Otherwise, we're inserting more elements than exist already, and we're
+ // not inserting at the end.
+
+ // Move over the elements that we're about to overwrite.
+ T *OldEnd = this->end();
+ this->set_size(this->size() + NumToInsert);
+ size_t NumOverwritten = OldEnd-I;
+ this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
+
+ // Replace the overwritten part.
+ for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
+ *J = *From;
+ ++J; ++From;
+ }
+
+ // Insert the non-overwritten middle part.
+ this->uninitialized_copy(From, To, OldEnd);
+ return I;
+ }
+
+ void insert(iterator I, std::initializer_list<T> IL) {
+ insert(I, IL.begin(), IL.end());
+ }
+
+ template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
+ if (LLVM_UNLIKELY(this->size() >= this->capacity()))
+ this->grow();
+ ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
+ this->set_size(this->size() + 1);
+ return this->back();
+ }
+
+ SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
+
+ SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
+
+ bool operator==(const SmallVectorImpl &RHS) const {
+ if (this->size() != RHS.size()) return false;
+ return std::equal(this->begin(), this->end(), RHS.begin());
+ }
+ bool operator!=(const SmallVectorImpl &RHS) const {
+ return !(*this == RHS);
+ }
+
+ bool operator<(const SmallVectorImpl &RHS) const {
+ return std::lexicographical_compare(this->begin(), this->end(),
+ RHS.begin(), RHS.end());
+ }
+};
+
+template <typename T>
+void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
+ if (this == &RHS) return;
+
+ // We can only avoid copying elements if neither vector is small.
+ if (!this->isSmall() && !RHS.isSmall()) {
+ std::swap(this->BeginX, RHS.BeginX);
+ std::swap(this->Size, RHS.Size);
+ std::swap(this->Capacity, RHS.Capacity);
+ return;
+ }
+ if (RHS.size() > this->capacity())
+ this->grow(RHS.size());
+ if (this->size() > RHS.capacity())
+ RHS.grow(this->size());
+
+ // Swap the shared elements.
+ size_t NumShared = this->size();
+ if (NumShared > RHS.size()) NumShared = RHS.size();
+ for (size_type i = 0; i != NumShared; ++i)
+ std::swap((*this)[i], RHS[i]);
+
+ // Copy over the extra elts.
+ if (this->size() > RHS.size()) {
+ size_t EltDiff = this->size() - RHS.size();
+ this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
+ RHS.set_size(RHS.size() + EltDiff);
+ this->destroy_range(this->begin()+NumShared, this->end());
+ this->set_size(NumShared);
+ } else if (RHS.size() > this->size()) {
+ size_t EltDiff = RHS.size() - this->size();
+ this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
+ this->set_size(this->size() + EltDiff);
+ this->destroy_range(RHS.begin()+NumShared, RHS.end());
+ RHS.set_size(NumShared);
+ }
+}
+
+template <typename T>
+SmallVectorImpl<T> &SmallVectorImpl<T>::
+ operator=(const SmallVectorImpl<T> &RHS) {
+ // Avoid self-assignment.
+ if (this == &RHS) return *this;
+
+ // If we already have sufficient space, assign the common elements, then
+ // destroy any excess.
+ size_t RHSSize = RHS.size();
+ size_t CurSize = this->size();
+ if (CurSize >= RHSSize) {
+ // Assign common elements.
+ iterator NewEnd;
+ if (RHSSize)
+ NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
+ else
+ NewEnd = this->begin();
+
+ // Destroy excess elements.
+ this->destroy_range(NewEnd, this->end());
+
+ // Trim.
+ this->set_size(RHSSize);
+ return *this;
+ }
+
+ // If we have to grow to have enough elements, destroy the current elements.
+ // This allows us to avoid copying them during the grow.
+ // FIXME: don't do this if they're efficiently moveable.
+ if (this->capacity() < RHSSize) {
+ // Destroy current elements.
+ this->destroy_range(this->begin(), this->end());
+ this->set_size(0);
+ CurSize = 0;
+ this->grow(RHSSize);
+ } else if (CurSize) {
+ // Otherwise, use assignment for the already-constructed elements.
+ std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
+ }
+
+ // Copy construct the new elements in place.
+ this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
+ this->begin()+CurSize);
+
+ // Set end.
+ this->set_size(RHSSize);
+ return *this;
+}
+
+template <typename T>
+SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
+ // Avoid self-assignment.
+ if (this == &RHS) return *this;
+
+ // If the RHS isn't small, clear this vector and then steal its buffer.
+ if (!RHS.isSmall()) {
+ this->destroy_range(this->begin(), this->end());
+ if (!this->isSmall()) free(this->begin());
+ this->BeginX = RHS.BeginX;
+ this->Size = RHS.Size;
+ this->Capacity = RHS.Capacity;
+ RHS.resetToSmall();
+ return *this;
+ }
+
+ // If we already have sufficient space, assign the common elements, then
+ // destroy any excess.
+ size_t RHSSize = RHS.size();
+ size_t CurSize = this->size();
+ if (CurSize >= RHSSize) {
+ // Assign common elements.
+ iterator NewEnd = this->begin();
+ if (RHSSize)
+ NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
+
+ // Destroy excess elements and trim the bounds.
+ this->destroy_range(NewEnd, this->end());
+ this->set_size(RHSSize);
+
+ // Clear the RHS.
+ RHS.clear();
+
+ return *this;
+ }
+
+ // If we have to grow to have enough elements, destroy the current elements.
+ // This allows us to avoid copying them during the grow.
+ // FIXME: this may not actually make any sense if we can efficiently move
+ // elements.
+ if (this->capacity() < RHSSize) {
+ // Destroy current elements.
+ this->destroy_range(this->begin(), this->end());
+ this->set_size(0);
+ CurSize = 0;
+ this->grow(RHSSize);
+ } else if (CurSize) {
+ // Otherwise, use assignment for the already-constructed elements.
+ std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
+ }
+
+ // Move-construct the new elements in place.
+ this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
+ this->begin()+CurSize);
+
+ // Set end.
+ this->set_size(RHSSize);
+
+ RHS.clear();
+ return *this;
+}
+
+/// Storage for the SmallVector elements. This is specialized for the N=0 case
+/// to avoid allocating unnecessary storage.
+template <typename T, unsigned N>
+struct SmallVectorStorage {
+ AlignedCharArrayUnion<T> InlineElts[N];
+};
+
+/// We need the storage to be properly aligned even for small-size of 0 so that
+/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
+/// well-defined.
+template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
+
+/// This is a 'vector' (really, a variable-sized array), optimized
+/// for the case when the array is small. It contains some number of elements
+/// in-place, which allows it to avoid heap allocation when the actual number of
+/// elements is below that threshold. This allows normal "small" cases to be
+/// fast without losing generality for large inputs.
+///
+/// Note that this does not attempt to be exception safe.
+///
+template <typename T, unsigned N>
+class SmallVector : public SmallVectorImpl<T>, SmallVectorStorage<T, N> {
+public:
+ SmallVector() : SmallVectorImpl<T>(N) {}
+
+ ~SmallVector() {
+ // Destroy the constructed elements in the vector.
+ this->destroy_range(this->begin(), this->end());
+ }
+
+ explicit SmallVector(size_t Size, const T &Value = T())
+ : SmallVectorImpl<T>(N) {
+ this->assign(Size, Value);
+ }
+
+ template <typename ItTy,
+ typename = typename std::enable_if<std::is_convertible<
+ typename std::iterator_traits<ItTy>::iterator_category,
+ std::input_iterator_tag>::value>::type>
+ SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
+ this->append(S, E);
+ }
+
+ template <typename RangeTy>
+ explicit SmallVector(const iterator_range<RangeTy> &R)
+ : SmallVectorImpl<T>(N) {
+ this->append(R.begin(), R.end());
+ }
+
+ SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
+ this->assign(IL);
+ }
+
+ SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(RHS);
+ }
+
+ const SmallVector &operator=(const SmallVector &RHS) {
+ SmallVectorImpl<T>::operator=(RHS);
+ return *this;
+ }
+
+ SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ }
+
+ SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
+ if (!RHS.empty())
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ }
+
+ const SmallVector &operator=(SmallVector &&RHS) {
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ return *this;
+ }
+
+ const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
+ SmallVectorImpl<T>::operator=(::std::move(RHS));
+ return *this;
+ }
+
+ const SmallVector &operator=(std::initializer_list<T> IL) {
+ this->assign(IL);
+ return *this;
+ }
+};
+
+template <typename T, unsigned N>
+inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
+ return X.capacity_in_bytes();
+}
+
+} // end namespace llvm
+
+namespace std {
+
+ /// Implement std::swap in terms of SmallVector swap.
+ template<typename T>
+ inline void
+ swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
+ LHS.swap(RHS);
+ }
+
+ /// Implement std::swap in terms of SmallVector swap.
+ template<typename T, unsigned N>
+ inline void
+ swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
+ LHS.swap(RHS);
+ }
+
+} // end namespace std
+
+#endif // LLVM_ADT_SMALLVECTOR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/StringExtras.h b/third_party/llvm-project/include/llvm/ADT/StringExtras.h
new file mode 100644
index 000000000..ef1a11e06
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/StringExtras.h
@@ -0,0 +1,401 @@
+//===- llvm/ADT/StringExtras.h - Useful string functions --------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains some functions that are useful when dealing with strings.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRINGEXTRAS_H
+#define LLVM_ADT_STRINGEXTRAS_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <iterator>
+#include <string>
+#include <utility>
+
+namespace llvm {
+
+template<typename T> class SmallVectorImpl;
+class raw_ostream;
+
+/// hexdigit - Return the hexadecimal character for the
+/// given number \p X (which should be less than 16).
+inline char hexdigit(unsigned X, bool LowerCase = false) {
+ const char HexChar = LowerCase ? 'a' : 'A';
+ return X < 10 ? '0' + X : HexChar + X - 10;
+}
+
+/// Given an array of c-style strings terminated by a null pointer, construct
+/// a vector of StringRefs representing the same strings without the terminating
+/// null string.
+inline std::vector<StringRef> toStringRefArray(const char *const *Strings) {
+ std::vector<StringRef> Result;
+ while (*Strings)
+ Result.push_back(*Strings++);
+ return Result;
+}
+
+/// Construct a string ref from a boolean.
+inline StringRef toStringRef(bool B) { return StringRef(B ? "true" : "false"); }
+
+/// Construct a string ref from an array ref of unsigned chars.
+inline StringRef toStringRef(ArrayRef<uint8_t> Input) {
+ return StringRef(reinterpret_cast<const char *>(Input.begin()), Input.size());
+}
+
+/// Construct a string ref from an array ref of unsigned chars.
+inline ArrayRef<uint8_t> arrayRefFromStringRef(StringRef Input) {
+ return {Input.bytes_begin(), Input.bytes_end()};
+}
+
+/// Interpret the given character \p C as a hexadecimal digit and return its
+/// value.
+///
+/// If \p C is not a valid hex digit, -1U is returned.
+inline unsigned hexDigitValue(char C) {
+ if (C >= '0' && C <= '9') return C-'0';
+ if (C >= 'a' && C <= 'f') return C-'a'+10U;
+ if (C >= 'A' && C <= 'F') return C-'A'+10U;
+ return -1U;
+}
+
+/// Checks if character \p C is one of the 10 decimal digits.
+inline bool isDigit(char C) { return C >= '0' && C <= '9'; }
+
+/// Checks if character \p C is a hexadecimal numeric character.
+inline bool isHexDigit(char C) { return hexDigitValue(C) != -1U; }
+
+/// Checks if character \p C is a valid letter as classified by "C" locale.
+inline bool isAlpha(char C) {
+ return ('a' <= C && C <= 'z') || ('A' <= C && C <= 'Z');
+}
+
+/// Checks whether character \p C is either a decimal digit or an uppercase or
+/// lowercase letter as classified by "C" locale.
+inline bool isAlnum(char C) { return isAlpha(C) || isDigit(C); }
+
+/// Checks whether character \p C is valid ASCII (high bit is zero).
+inline bool isASCII(char C) { return static_cast<unsigned char>(C) <= 127; }
+
+/// Checks whether all characters in S are ASCII.
+inline bool isASCII(llvm::StringRef S) {
+ for (char C : S)
+ if (LLVM_UNLIKELY(!isASCII(C)))
+ return false;
+ return true;
+}
+
+/// Checks whether character \p C is printable.
+///
+/// Locale-independent version of the C standard library isprint whose results
+/// may differ on different platforms.
+inline bool isPrint(char C) {
+ unsigned char UC = static_cast<unsigned char>(C);
+ return (0x20 <= UC) && (UC <= 0x7E);
+}
+
+/// Returns the corresponding lowercase character if \p x is uppercase.
+inline char toLower(char x) {
+ if (x >= 'A' && x <= 'Z')
+ return x - 'A' + 'a';
+ return x;
+}
+
+/// Returns the corresponding uppercase character if \p x is lowercase.
+inline char toUpper(char x) {
+ if (x >= 'a' && x <= 'z')
+ return x - 'a' + 'A';
+ return x;
+}
+
+inline std::string utohexstr(uint64_t X, bool LowerCase = false) {
+ char Buffer[17];
+ char *BufPtr = std::end(Buffer);
+
+ if (X == 0) *--BufPtr = '0';
+
+ while (X) {
+ unsigned char Mod = static_cast<unsigned char>(X) & 15;
+ *--BufPtr = hexdigit(Mod, LowerCase);
+ X >>= 4;
+ }
+
+ return std::string(BufPtr, std::end(Buffer));
+}
+
+/// Convert buffer \p Input to its hexadecimal representation.
+/// The returned string is double the size of \p Input.
+inline std::string toHex(StringRef Input, bool LowerCase = false) {
+ static const char *const LUT = "0123456789ABCDEF";
+ const uint8_t Offset = LowerCase ? 32 : 0;
+ size_t Length = Input.size();
+
+ std::string Output;
+ Output.reserve(2 * Length);
+ for (size_t i = 0; i < Length; ++i) {
+ const unsigned char c = Input[i];
+ Output.push_back(LUT[c >> 4] | Offset);
+ Output.push_back(LUT[c & 15] | Offset);
+ }
+ return Output;
+}
+
+inline std::string toHex(ArrayRef<uint8_t> Input, bool LowerCase = false) {
+ return toHex(toStringRef(Input), LowerCase);
+}
+
+inline uint8_t hexFromNibbles(char MSB, char LSB) {
+ unsigned U1 = hexDigitValue(MSB);
+ unsigned U2 = hexDigitValue(LSB);
+ assert(U1 != -1U && U2 != -1U);
+
+ return static_cast<uint8_t>((U1 << 4) | U2);
+}
+
+/// Convert hexadecimal string \p Input to its binary representation.
+/// The return string is half the size of \p Input.
+inline std::string fromHex(StringRef Input) {
+ if (Input.empty())
+ return std::string();
+
+ std::string Output;
+ Output.reserve((Input.size() + 1) / 2);
+ if (Input.size() % 2 == 1) {
+ Output.push_back(hexFromNibbles('0', Input.front()));
+ Input = Input.drop_front();
+ }
+
+ assert(Input.size() % 2 == 0);
+ while (!Input.empty()) {
+ uint8_t Hex = hexFromNibbles(Input[0], Input[1]);
+ Output.push_back(Hex);
+ Input = Input.drop_front(2);
+ }
+ return Output;
+}
+
+/// Convert the string \p S to an integer of the specified type using
+/// the radix \p Base. If \p Base is 0, auto-detects the radix.
+/// Returns true if the number was successfully converted, false otherwise.
+template <typename N> bool to_integer(StringRef S, N &Num, unsigned Base = 0) {
+ return !S.getAsInteger(Base, Num);
+}
+
+namespace detail {
+template <typename N>
+inline bool to_float(const Twine &T, N &Num, N (*StrTo)(const char *, char **)) {
+ SmallString<32> Storage;
+ StringRef S = T.toNullTerminatedStringRef(Storage);
+ char *End;
+ N Temp = StrTo(S.data(), &End);
+ if (*End != '\0')
+ return false;
+ Num = Temp;
+ return true;
+}
+}
+
+inline bool to_float(const Twine &T, float &Num) {
+ return detail::to_float(T, Num, strtof);
+}
+
+inline bool to_float(const Twine &T, double &Num) {
+ return detail::to_float(T, Num, strtod);
+}
+
+inline bool to_float(const Twine &T, long double &Num) {
+ return detail::to_float(T, Num, strtold);
+}
+
+inline std::string utostr(uint64_t X, bool isNeg = false) {
+ char Buffer[21];
+ char *BufPtr = std::end(Buffer);
+
+ if (X == 0) *--BufPtr = '0'; // Handle special case...
+
+ while (X) {
+ *--BufPtr = '0' + char(X % 10);
+ X /= 10;
+ }
+
+ if (isNeg) *--BufPtr = '-'; // Add negative sign...
+ return std::string(BufPtr, std::end(Buffer));
+}
+
+inline std::string itostr(int64_t X) {
+ if (X < 0)
+ return utostr(static_cast<uint64_t>(-X), true);
+ else
+ return utostr(static_cast<uint64_t>(X));
+}
+
+/// StrInStrNoCase - Portable version of strcasestr. Locates the first
+/// occurrence of string 's1' in string 's2', ignoring case. Returns
+/// the offset of s2 in s1 or npos if s2 cannot be found.
+StringRef::size_type StrInStrNoCase(StringRef s1, StringRef s2);
+
+/// getToken - This function extracts one token from source, ignoring any
+/// leading characters that appear in the Delimiters string, and ending the
+/// token at any of the characters that appear in the Delimiters string. If
+/// there are no tokens in the source string, an empty string is returned.
+/// The function returns a pair containing the extracted token and the
+/// remaining tail string.
+std::pair<StringRef, StringRef> getToken(StringRef Source,
+ StringRef Delimiters = " \t\n\v\f\r");
+
+/// SplitString - Split up the specified string according to the specified
+/// delimiters, appending the result fragments to the output list.
+void SplitString(StringRef Source,
+ SmallVectorImpl<StringRef> &OutFragments,
+ StringRef Delimiters = " \t\n\v\f\r");
+
+/// Returns the English suffix for an ordinal integer (-st, -nd, -rd, -th).
+inline StringRef getOrdinalSuffix(unsigned Val) {
+ // It is critically important that we do this perfectly for
+ // user-written sequences with over 100 elements.
+ switch (Val % 100) {
+ case 11:
+ case 12:
+ case 13:
+ return "th";
+ default:
+ switch (Val % 10) {
+ case 1: return "st";
+ case 2: return "nd";
+ case 3: return "rd";
+ default: return "th";
+ }
+ }
+}
+
+/// Print each character of the specified string, escaping it if it is not
+/// printable or if it is an escape char.
+void printEscapedString(StringRef Name, raw_ostream &Out);
+
+/// Print each character of the specified string, escaping HTML special
+/// characters.
+void printHTMLEscaped(StringRef String, raw_ostream &Out);
+
+/// printLowerCase - Print each character as lowercase if it is uppercase.
+void printLowerCase(StringRef String, raw_ostream &Out);
+
+namespace detail {
+
+template <typename IteratorT>
+inline std::string join_impl(IteratorT Begin, IteratorT End,
+ StringRef Separator, std::input_iterator_tag) {
+ std::string S;
+ if (Begin == End)
+ return S;
+
+ S += (*Begin);
+ while (++Begin != End) {
+ S += Separator;
+ S += (*Begin);
+ }
+ return S;
+}
+
+template <typename IteratorT>
+inline std::string join_impl(IteratorT Begin, IteratorT End,
+ StringRef Separator, std::forward_iterator_tag) {
+ std::string S;
+ if (Begin == End)
+ return S;
+
+ size_t Len = (std::distance(Begin, End) - 1) * Separator.size();
+ for (IteratorT I = Begin; I != End; ++I)
+ Len += (*Begin).size();
+ S.reserve(Len);
+ S += (*Begin);
+ while (++Begin != End) {
+ S += Separator;
+ S += (*Begin);
+ }
+ return S;
+}
+
+template <typename Sep>
+inline void join_items_impl(std::string &Result, Sep Separator) {}
+
+template <typename Sep, typename Arg>
+inline void join_items_impl(std::string &Result, Sep Separator,
+ const Arg &Item) {
+ Result += Item;
+}
+
+template <typename Sep, typename Arg1, typename... Args>
+inline void join_items_impl(std::string &Result, Sep Separator, const Arg1 &A1,
+ Args &&... Items) {
+ Result += A1;
+ Result += Separator;
+ join_items_impl(Result, Separator, std::forward<Args>(Items)...);
+}
+
+inline size_t join_one_item_size(char) { return 1; }
+inline size_t join_one_item_size(const char *S) { return S ? ::strlen(S) : 0; }
+
+template <typename T> inline size_t join_one_item_size(const T &Str) {
+ return Str.size();
+}
+
+inline size_t join_items_size() { return 0; }
+
+template <typename A1> inline size_t join_items_size(const A1 &A) {
+ return join_one_item_size(A);
+}
+template <typename A1, typename... Args>
+inline size_t join_items_size(const A1 &A, Args &&... Items) {
+ return join_one_item_size(A) + join_items_size(std::forward<Args>(Items)...);
+}
+
+} // end namespace detail
+
+/// Joins the strings in the range [Begin, End), adding Separator between
+/// the elements.
+template <typename IteratorT>
+inline std::string join(IteratorT Begin, IteratorT End, StringRef Separator) {
+ using tag = typename std::iterator_traits<IteratorT>::iterator_category;
+ return detail::join_impl(Begin, End, Separator, tag());
+}
+
+/// Joins the strings in the range [R.begin(), R.end()), adding Separator
+/// between the elements.
+template <typename Range>
+inline std::string join(Range &&R, StringRef Separator) {
+ return join(R.begin(), R.end(), Separator);
+}
+
+/// Joins the strings in the parameter pack \p Items, adding \p Separator
+/// between the elements. All arguments must be implicitly convertible to
+/// std::string, or there should be an overload of std::string::operator+=()
+/// that accepts the argument explicitly.
+template <typename Sep, typename... Args>
+inline std::string join_items(Sep Separator, Args &&... Items) {
+ std::string Result;
+ if (sizeof...(Items) == 0)
+ return Result;
+
+ size_t NS = detail::join_one_item_size(Separator);
+ size_t NI = detail::join_items_size(std::forward<Args>(Items)...);
+ Result.reserve(NI + (sizeof...(Items) - 1) * NS + 1);
+ detail::join_items_impl(Result, Separator, std::forward<Args>(Items)...);
+ return Result;
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STRINGEXTRAS_H
diff --git a/third_party/llvm-project/include/llvm/ADT/StringMap.h b/third_party/llvm-project/include/llvm/ADT/StringMap.h
new file mode 100644
index 000000000..108185bd0
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/StringMap.h
@@ -0,0 +1,593 @@
+//===- StringMap.h - String Hash table map interface ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the StringMap class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRINGMAP_H
+#define LLVM_ADT_STRINGMAP_H
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/PointerLikeTypeTraits.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <cstdlib>
+#include <cstring>
+#include <initializer_list>
+#include <iterator>
+#include <utility>
+
+namespace llvm {
+
+template<typename ValueTy> class StringMapConstIterator;
+template<typename ValueTy> class StringMapIterator;
+template<typename ValueTy> class StringMapKeyIterator;
+
+/// StringMapEntryBase - Shared base class of StringMapEntry instances.
+class StringMapEntryBase {
+ size_t StrLen;
+
+public:
+ explicit StringMapEntryBase(size_t Len) : StrLen(Len) {}
+
+ size_t getKeyLength() const { return StrLen; }
+};
+
+/// StringMapImpl - This is the base class of StringMap that is shared among
+/// all of its instantiations.
+class StringMapImpl {
+protected:
+ // Array of NumBuckets pointers to entries, null pointers are holes.
+ // TheTable[NumBuckets] contains a sentinel value for easy iteration. Followed
+ // by an array of the actual hash values as unsigned integers.
+ StringMapEntryBase **TheTable = nullptr;
+ unsigned NumBuckets = 0;
+ unsigned NumItems = 0;
+ unsigned NumTombstones = 0;
+ unsigned ItemSize;
+
+protected:
+ explicit StringMapImpl(unsigned itemSize)
+ : ItemSize(itemSize) {}
+ StringMapImpl(StringMapImpl &&RHS)
+ : TheTable(RHS.TheTable), NumBuckets(RHS.NumBuckets),
+ NumItems(RHS.NumItems), NumTombstones(RHS.NumTombstones),
+ ItemSize(RHS.ItemSize) {
+ RHS.TheTable = nullptr;
+ RHS.NumBuckets = 0;
+ RHS.NumItems = 0;
+ RHS.NumTombstones = 0;
+ }
+
+ StringMapImpl(unsigned InitSize, unsigned ItemSize);
+ unsigned RehashTable(unsigned BucketNo = 0);
+
+ /// LookupBucketFor - Look up the bucket that the specified string should end
+ /// up in. If it already exists as a key in the map, the Item pointer for the
+ /// specified bucket will be non-null. Otherwise, it will be null. In either
+ /// case, the FullHashValue field of the bucket will be set to the hash value
+ /// of the string.
+ unsigned LookupBucketFor(StringRef Key);
+
+ /// FindKey - Look up the bucket that contains the specified key. If it exists
+ /// in the map, return the bucket number of the key. Otherwise return -1.
+ /// This does not modify the map.
+ int FindKey(StringRef Key) const;
+
+ /// RemoveKey - Remove the specified StringMapEntry from the table, but do not
+ /// delete it. This aborts if the value isn't in the table.
+ void RemoveKey(StringMapEntryBase *V);
+
+ /// RemoveKey - Remove the StringMapEntry for the specified key from the
+ /// table, returning it. If the key is not in the table, this returns null.
+ StringMapEntryBase *RemoveKey(StringRef Key);
+
+ /// Allocate the table with the specified number of buckets and otherwise
+ /// setup the map as empty.
+ void init(unsigned Size);
+
+public:
+ static StringMapEntryBase *getTombstoneVal() {
+ uintptr_t Val = static_cast<uintptr_t>(-1);
+ Val <<= PointerLikeTypeTraits<StringMapEntryBase *>::NumLowBitsAvailable;
+ return reinterpret_cast<StringMapEntryBase *>(Val);
+ }
+
+ unsigned getNumBuckets() const { return NumBuckets; }
+ unsigned getNumItems() const { return NumItems; }
+
+ bool empty() const { return NumItems == 0; }
+ unsigned size() const { return NumItems; }
+
+ void swap(StringMapImpl &Other) {
+ std::swap(TheTable, Other.TheTable);
+ std::swap(NumBuckets, Other.NumBuckets);
+ std::swap(NumItems, Other.NumItems);
+ std::swap(NumTombstones, Other.NumTombstones);
+ }
+};
+
+/// StringMapEntryStorage - Holds the value in a StringMapEntry.
+///
+/// Factored out into a separate base class to make it easier to specialize.
+/// This is primarily intended to support StringSet, which doesn't need a value
+/// stored at all.
+template<typename ValueTy>
+class StringMapEntryStorage : public StringMapEntryBase {
+public:
+ ValueTy second;
+
+ explicit StringMapEntryStorage(size_t strLen)
+ : StringMapEntryBase(strLen), second() {}
+ template <typename... InitTy>
+ StringMapEntryStorage(size_t strLen, InitTy &&... InitVals)
+ : StringMapEntryBase(strLen), second(std::forward<InitTy>(InitVals)...) {}
+ StringMapEntryStorage(StringMapEntryStorage &E) = delete;
+
+ const ValueTy &getValue() const { return second; }
+ ValueTy &getValue() { return second; }
+
+ void setValue(const ValueTy &V) { second = V; }
+};
+
+template<>
+class StringMapEntryStorage<NoneType> : public StringMapEntryBase {
+public:
+ explicit StringMapEntryStorage(size_t strLen, NoneType none = None)
+ : StringMapEntryBase(strLen) {}
+ StringMapEntryStorage(StringMapEntryStorage &E) = delete;
+
+ NoneType getValue() const { return None; }
+};
+
+/// StringMapEntry - This is used to represent one value that is inserted into
+/// a StringMap. It contains the Value itself and the key: the string length
+/// and data.
+template<typename ValueTy>
+class StringMapEntry final : public StringMapEntryStorage<ValueTy> {
+public:
+ using StringMapEntryStorage<ValueTy>::StringMapEntryStorage;
+
+ StringRef getKey() const {
+ return StringRef(getKeyData(), this->getKeyLength());
+ }
+
+ /// getKeyData - Return the start of the string data that is the key for this
+ /// value. The string data is always stored immediately after the
+ /// StringMapEntry object.
+ const char *getKeyData() const {return reinterpret_cast<const char*>(this+1);}
+
+ StringRef first() const {
+ return StringRef(getKeyData(), this->getKeyLength());
+ }
+
+ /// Create a StringMapEntry for the specified key construct the value using
+ /// \p InitiVals.
+ template <typename AllocatorTy, typename... InitTy>
+ static StringMapEntry *Create(StringRef Key, AllocatorTy &Allocator,
+ InitTy &&... InitVals) {
+ size_t KeyLength = Key.size();
+
+ // Allocate a new item with space for the string at the end and a null
+ // terminator.
+ size_t AllocSize = sizeof(StringMapEntry) + KeyLength + 1;
+ size_t Alignment = alignof(StringMapEntry);
+
+ StringMapEntry *NewItem =
+ static_cast<StringMapEntry*>(Allocator.Allocate(AllocSize,Alignment));
+ assert(NewItem && "Unhandled out-of-memory");
+
+ // Construct the value.
+ new (NewItem) StringMapEntry(KeyLength, std::forward<InitTy>(InitVals)...);
+
+ // Copy the string information.
+ char *StrBuffer = const_cast<char*>(NewItem->getKeyData());
+ if (KeyLength > 0)
+ memcpy(StrBuffer, Key.data(), KeyLength);
+ StrBuffer[KeyLength] = 0; // Null terminate for convenience of clients.
+ return NewItem;
+ }
+
+ /// Create - Create a StringMapEntry with normal malloc/free.
+ template <typename... InitType>
+ static StringMapEntry *Create(StringRef Key, InitType &&... InitVal) {
+ MallocAllocator A;
+ return Create(Key, A, std::forward<InitType>(InitVal)...);
+ }
+
+ static StringMapEntry *Create(StringRef Key) {
+ return Create(Key, ValueTy());
+ }
+
+ /// GetStringMapEntryFromKeyData - Given key data that is known to be embedded
+ /// into a StringMapEntry, return the StringMapEntry itself.
+ static StringMapEntry &GetStringMapEntryFromKeyData(const char *KeyData) {
+ char *Ptr = const_cast<char*>(KeyData) - sizeof(StringMapEntry<ValueTy>);
+ return *reinterpret_cast<StringMapEntry*>(Ptr);
+ }
+
+ /// Destroy - Destroy this StringMapEntry, releasing memory back to the
+ /// specified allocator.
+ template<typename AllocatorTy>
+ void Destroy(AllocatorTy &Allocator) {
+ // Free memory referenced by the item.
+ size_t AllocSize = sizeof(StringMapEntry) + this->getKeyLength() + 1;
+ this->~StringMapEntry();
+ Allocator.Deallocate(static_cast<void *>(this), AllocSize);
+ }
+
+ /// Destroy this object, releasing memory back to the malloc allocator.
+ void Destroy() {
+ MallocAllocator A;
+ Destroy(A);
+ }
+};
+
+/// StringMap - This is an unconventional map that is specialized for handling
+/// keys that are "strings", which are basically ranges of bytes. This does some
+/// funky memory allocation and hashing things to make it extremely efficient,
+/// storing the string data *after* the value in the map.
+template<typename ValueTy, typename AllocatorTy = MallocAllocator>
+class StringMap : public StringMapImpl {
+ AllocatorTy Allocator;
+
+public:
+ using MapEntryTy = StringMapEntry<ValueTy>;
+
+ StringMap() : StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))) {}
+
+ explicit StringMap(unsigned InitialSize)
+ : StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))) {}
+
+ explicit StringMap(AllocatorTy A)
+ : StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))), Allocator(A) {}
+
+ StringMap(unsigned InitialSize, AllocatorTy A)
+ : StringMapImpl(InitialSize, static_cast<unsigned>(sizeof(MapEntryTy))),
+ Allocator(A) {}
+
+ StringMap(std::initializer_list<std::pair<StringRef, ValueTy>> List)
+ : StringMapImpl(List.size(), static_cast<unsigned>(sizeof(MapEntryTy))) {
+ for (const auto &P : List) {
+ insert(P);
+ }
+ }
+
+ StringMap(StringMap &&RHS)
+ : StringMapImpl(std::move(RHS)), Allocator(std::move(RHS.Allocator)) {}
+
+ StringMap(const StringMap &RHS) :
+ StringMapImpl(static_cast<unsigned>(sizeof(MapEntryTy))),
+ Allocator(RHS.Allocator) {
+ if (RHS.empty())
+ return;
+
+ // Allocate TheTable of the same size as RHS's TheTable, and set the
+ // sentinel appropriately (and NumBuckets).
+ init(RHS.NumBuckets);
+ unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1),
+ *RHSHashTable = (unsigned *)(RHS.TheTable + NumBuckets + 1);
+
+ NumItems = RHS.NumItems;
+ NumTombstones = RHS.NumTombstones;
+ for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
+ StringMapEntryBase *Bucket = RHS.TheTable[I];
+ if (!Bucket || Bucket == getTombstoneVal()) {
+ TheTable[I] = Bucket;
+ continue;
+ }
+
+ TheTable[I] = MapEntryTy::Create(
+ static_cast<MapEntryTy *>(Bucket)->getKey(), Allocator,
+ static_cast<MapEntryTy *>(Bucket)->getValue());
+ HashTable[I] = RHSHashTable[I];
+ }
+
+ // Note that here we've copied everything from the RHS into this object,
+ // tombstones included. We could, instead, have re-probed for each key to
+ // instantiate this new object without any tombstone buckets. The
+ // assumption here is that items are rarely deleted from most StringMaps,
+ // and so tombstones are rare, so the cost of re-probing for all inputs is
+ // not worthwhile.
+ }
+
+ StringMap &operator=(StringMap RHS) {
+ StringMapImpl::swap(RHS);
+ std::swap(Allocator, RHS.Allocator);
+ return *this;
+ }
+
+ ~StringMap() {
+ // Delete all the elements in the map, but don't reset the elements
+ // to default values. This is a copy of clear(), but avoids unnecessary
+ // work not required in the destructor.
+ if (!empty()) {
+ for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
+ StringMapEntryBase *Bucket = TheTable[I];
+ if (Bucket && Bucket != getTombstoneVal()) {
+ static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
+ }
+ }
+ }
+ free(TheTable);
+ }
+
+ AllocatorTy &getAllocator() { return Allocator; }
+ const AllocatorTy &getAllocator() const { return Allocator; }
+
+ using key_type = const char*;
+ using mapped_type = ValueTy;
+ using value_type = StringMapEntry<ValueTy>;
+ using size_type = size_t;
+
+ using const_iterator = StringMapConstIterator<ValueTy>;
+ using iterator = StringMapIterator<ValueTy>;
+
+ iterator begin() {
+ return iterator(TheTable, NumBuckets == 0);
+ }
+ iterator end() {
+ return iterator(TheTable+NumBuckets, true);
+ }
+ const_iterator begin() const {
+ return const_iterator(TheTable, NumBuckets == 0);
+ }
+ const_iterator end() const {
+ return const_iterator(TheTable+NumBuckets, true);
+ }
+
+ iterator_range<StringMapKeyIterator<ValueTy>> keys() const {
+ return make_range(StringMapKeyIterator<ValueTy>(begin()),
+ StringMapKeyIterator<ValueTy>(end()));
+ }
+
+ iterator find(StringRef Key) {
+ int Bucket = FindKey(Key);
+ if (Bucket == -1) return end();
+ return iterator(TheTable+Bucket, true);
+ }
+
+ const_iterator find(StringRef Key) const {
+ int Bucket = FindKey(Key);
+ if (Bucket == -1) return end();
+ return const_iterator(TheTable+Bucket, true);
+ }
+
+ /// lookup - Return the entry for the specified key, or a default
+ /// constructed value if no such entry exists.
+ ValueTy lookup(StringRef Key) const {
+ const_iterator it = find(Key);
+ if (it != end())
+ return it->second;
+ return ValueTy();
+ }
+
+ /// Lookup the ValueTy for the \p Key, or create a default constructed value
+ /// if the key is not in the map.
+ ValueTy &operator[](StringRef Key) { return try_emplace(Key).first->second; }
+
+ /// count - Return 1 if the element is in the map, 0 otherwise.
+ size_type count(StringRef Key) const {
+ return find(Key) == end() ? 0 : 1;
+ }
+
+ template <typename InputTy>
+ size_type count(const StringMapEntry<InputTy> &MapEntry) const {
+ return count(MapEntry.getKey());
+ }
+
+ /// insert - Insert the specified key/value pair into the map. If the key
+ /// already exists in the map, return false and ignore the request, otherwise
+ /// insert it and return true.
+ bool insert(MapEntryTy *KeyValue) {
+ unsigned BucketNo = LookupBucketFor(KeyValue->getKey());
+ StringMapEntryBase *&Bucket = TheTable[BucketNo];
+ if (Bucket && Bucket != getTombstoneVal())
+ return false; // Already exists in map.
+
+ if (Bucket == getTombstoneVal())
+ --NumTombstones;
+ Bucket = KeyValue;
+ ++NumItems;
+ assert(NumItems + NumTombstones <= NumBuckets);
+
+ RehashTable();
+ return true;
+ }
+
+ /// insert - Inserts the specified key/value pair into the map if the key
+ /// isn't already in the map. The bool component of the returned pair is true
+ /// if and only if the insertion takes place, and the iterator component of
+ /// the pair points to the element with key equivalent to the key of the pair.
+ std::pair<iterator, bool> insert(std::pair<StringRef, ValueTy> KV) {
+ return try_emplace(KV.first, std::move(KV.second));
+ }
+
+ /// Inserts an element or assigns to the current element if the key already
+ /// exists. The return type is the same as try_emplace.
+ template <typename V>
+ std::pair<iterator, bool> insert_or_assign(StringRef Key, V &&Val) {
+ auto Ret = try_emplace(Key, std::forward<V>(Val));
+ if (!Ret.second)
+ Ret.first->second = std::forward<V>(Val);
+ return Ret;
+ }
+
+ /// Emplace a new element for the specified key into the map if the key isn't
+ /// already in the map. The bool component of the returned pair is true
+ /// if and only if the insertion takes place, and the iterator component of
+ /// the pair points to the element with key equivalent to the key of the pair.
+ template <typename... ArgsTy>
+ std::pair<iterator, bool> try_emplace(StringRef Key, ArgsTy &&... Args) {
+ unsigned BucketNo = LookupBucketFor(Key);
+ StringMapEntryBase *&Bucket = TheTable[BucketNo];
+ if (Bucket && Bucket != getTombstoneVal())
+ return std::make_pair(iterator(TheTable + BucketNo, false),
+ false); // Already exists in map.
+
+ if (Bucket == getTombstoneVal())
+ --NumTombstones;
+ Bucket = MapEntryTy::Create(Key, Allocator, std::forward<ArgsTy>(Args)...);
+ ++NumItems;
+ assert(NumItems + NumTombstones <= NumBuckets);
+
+ BucketNo = RehashTable(BucketNo);
+ return std::make_pair(iterator(TheTable + BucketNo, false), true);
+ }
+
+ // clear - Empties out the StringMap
+ void clear() {
+ if (empty()) return;
+
+ // Zap all values, resetting the keys back to non-present (not tombstone),
+ // which is safe because we're removing all elements.
+ for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
+ StringMapEntryBase *&Bucket = TheTable[I];
+ if (Bucket && Bucket != getTombstoneVal()) {
+ static_cast<MapEntryTy*>(Bucket)->Destroy(Allocator);
+ }
+ Bucket = nullptr;
+ }
+
+ NumItems = 0;
+ NumTombstones = 0;
+ }
+
+ /// remove - Remove the specified key/value pair from the map, but do not
+ /// erase it. This aborts if the key is not in the map.
+ void remove(MapEntryTy *KeyValue) {
+ RemoveKey(KeyValue);
+ }
+
+ void erase(iterator I) {
+ MapEntryTy &V = *I;
+ remove(&V);
+ V.Destroy(Allocator);
+ }
+
+ bool erase(StringRef Key) {
+ iterator I = find(Key);
+ if (I == end()) return false;
+ erase(I);
+ return true;
+ }
+};
+
+template <typename DerivedTy, typename ValueTy>
+class StringMapIterBase
+ : public iterator_facade_base<DerivedTy, std::forward_iterator_tag,
+ ValueTy> {
+protected:
+ StringMapEntryBase **Ptr = nullptr;
+
+public:
+ StringMapIterBase() = default;
+
+ explicit StringMapIterBase(StringMapEntryBase **Bucket,
+ bool NoAdvance = false)
+ : Ptr(Bucket) {
+ if (!NoAdvance) AdvancePastEmptyBuckets();
+ }
+
+ DerivedTy &operator=(const DerivedTy &Other) {
+ Ptr = Other.Ptr;
+ return static_cast<DerivedTy &>(*this);
+ }
+
+ bool operator==(const DerivedTy &RHS) const { return Ptr == RHS.Ptr; }
+
+ DerivedTy &operator++() { // Preincrement
+ ++Ptr;
+ AdvancePastEmptyBuckets();
+ return static_cast<DerivedTy &>(*this);
+ }
+
+ DerivedTy operator++(int) { // Post-increment
+ DerivedTy Tmp(Ptr);
+ ++*this;
+ return Tmp;
+ }
+
+private:
+ void AdvancePastEmptyBuckets() {
+ while (*Ptr == nullptr || *Ptr == StringMapImpl::getTombstoneVal())
+ ++Ptr;
+ }
+};
+
+template <typename ValueTy>
+class StringMapConstIterator
+ : public StringMapIterBase<StringMapConstIterator<ValueTy>,
+ const StringMapEntry<ValueTy>> {
+ using base = StringMapIterBase<StringMapConstIterator<ValueTy>,
+ const StringMapEntry<ValueTy>>;
+
+public:
+ StringMapConstIterator() = default;
+ explicit StringMapConstIterator(StringMapEntryBase **Bucket,
+ bool NoAdvance = false)
+ : base(Bucket, NoAdvance) {}
+
+ const StringMapEntry<ValueTy> &operator*() const {
+ return *static_cast<const StringMapEntry<ValueTy> *>(*this->Ptr);
+ }
+};
+
+template <typename ValueTy>
+class StringMapIterator : public StringMapIterBase<StringMapIterator<ValueTy>,
+ StringMapEntry<ValueTy>> {
+ using base =
+ StringMapIterBase<StringMapIterator<ValueTy>, StringMapEntry<ValueTy>>;
+
+public:
+ StringMapIterator() = default;
+ explicit StringMapIterator(StringMapEntryBase **Bucket,
+ bool NoAdvance = false)
+ : base(Bucket, NoAdvance) {}
+
+ StringMapEntry<ValueTy> &operator*() const {
+ return *static_cast<StringMapEntry<ValueTy> *>(*this->Ptr);
+ }
+
+ operator StringMapConstIterator<ValueTy>() const {
+ return StringMapConstIterator<ValueTy>(this->Ptr, true);
+ }
+};
+
+template <typename ValueTy>
+class StringMapKeyIterator
+ : public iterator_adaptor_base<StringMapKeyIterator<ValueTy>,
+ StringMapConstIterator<ValueTy>,
+ std::forward_iterator_tag, StringRef> {
+ using base = iterator_adaptor_base<StringMapKeyIterator<ValueTy>,
+ StringMapConstIterator<ValueTy>,
+ std::forward_iterator_tag, StringRef>;
+
+public:
+ StringMapKeyIterator() = default;
+ explicit StringMapKeyIterator(StringMapConstIterator<ValueTy> Iter)
+ : base(std::move(Iter)) {}
+
+ StringRef &operator*() {
+ Key = this->wrapped()->getKey();
+ return Key;
+ }
+
+private:
+ StringRef Key;
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STRINGMAP_H
diff --git a/third_party/llvm-project/include/llvm/ADT/StringRef.h b/third_party/llvm-project/include/llvm/ADT/StringRef.h
new file mode 100644
index 000000000..e87a08f7e
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/StringRef.h
@@ -0,0 +1,920 @@
+//===- StringRef.h - Constant String Reference Wrapper ----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRINGREF_H
+#define LLVM_ADT_STRINGREF_H
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstring>
+#include <limits>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+// Declare the __builtin_strlen intrinsic for MSVC so it can be used in
+// constexpr context.
+#if defined(_MSC_VER)
+extern "C" size_t __builtin_strlen(const char *);
+#endif
+
+namespace llvm {
+
+ class APInt;
+ class hash_code;
+ template <typename T> class SmallVectorImpl;
+ class StringRef;
+
+ /// Helper functions for StringRef::getAsInteger.
+ bool getAsUnsignedInteger(StringRef Str, unsigned Radix,
+ unsigned long long &Result);
+
+ bool getAsSignedInteger(StringRef Str, unsigned Radix, long long &Result);
+
+ bool consumeUnsignedInteger(StringRef &Str, unsigned Radix,
+ unsigned long long &Result);
+ bool consumeSignedInteger(StringRef &Str, unsigned Radix, long long &Result);
+
+ /// StringRef - Represent a constant reference to a string, i.e. a character
+ /// array and a length, which need not be null terminated.
+ ///
+ /// This class does not own the string data, it is expected to be used in
+ /// situations where the character data resides in some other buffer, whose
+ /// lifetime extends past that of the StringRef. For this reason, it is not in
+ /// general safe to store a StringRef.
+ class StringRef {
+ public:
+ static const size_t npos = ~size_t(0);
+
+ using iterator = const char *;
+ using const_iterator = const char *;
+ using size_type = size_t;
+
+ private:
+ /// The start of the string, in an external buffer.
+ const char *Data = nullptr;
+
+ /// The length of the string.
+ size_t Length = 0;
+
+ // Workaround memcmp issue with null pointers (undefined behavior)
+ // by providing a specialized version
+ static int compareMemory(const char *Lhs, const char *Rhs, size_t Length) {
+ if (Length == 0) { return 0; }
+ return ::memcmp(Lhs,Rhs,Length);
+ }
+
+ // Constexpr version of std::strlen.
+ static constexpr size_t strLen(const char *Str) {
+#if __cplusplus > 201402L
+ return std::char_traits<char>::length(Str);
+#elif __has_builtin(__builtin_strlen) || defined(__GNUC__) || defined(_MSC_VER)
+ return __builtin_strlen(Str);
+#else
+ const char *Begin = Str;
+ while (*Str != '\0')
+ ++Str;
+ return Str - Begin;
+#endif
+ }
+
+ public:
+ /// @name Constructors
+ /// @{
+
+ /// Construct an empty string ref.
+ /*implicit*/ StringRef() = default;
+
+ /// Disable conversion from nullptr. This prevents things like
+ /// if (S == nullptr)
+ StringRef(std::nullptr_t) = delete;
+
+ /// Construct a string ref from a cstring.
+ /*implicit*/ constexpr StringRef(const char *Str)
+ : Data(Str), Length(Str ? strLen(Str) : 0) {}
+
+ /// Construct a string ref from a pointer and length.
+ /*implicit*/ constexpr StringRef(const char *data, size_t length)
+ : Data(data), Length(length) {}
+
+ /// Construct a string ref from an std::string.
+ /*implicit*/ StringRef(const std::string &Str)
+ : Data(Str.data()), Length(Str.length()) {}
+
+ static StringRef withNullAsEmpty(const char *data) {
+ return StringRef(data ? data : "");
+ }
+
+ /// @}
+ /// @name Iterators
+ /// @{
+
+ iterator begin() const { return Data; }
+
+ iterator end() const { return Data + Length; }
+
+ const unsigned char *bytes_begin() const {
+ return reinterpret_cast<const unsigned char *>(begin());
+ }
+ const unsigned char *bytes_end() const {
+ return reinterpret_cast<const unsigned char *>(end());
+ }
+ iterator_range<const unsigned char *> bytes() const {
+ return make_range(bytes_begin(), bytes_end());
+ }
+
+ /// @}
+ /// @name String Operations
+ /// @{
+
+ /// data - Get a pointer to the start of the string (which may not be null
+ /// terminated).
+ LLVM_NODISCARD
+ const char *data() const { return Data; }
+
+ /// empty - Check if the string is empty.
+ LLVM_NODISCARD
+ bool empty() const { return Length == 0; }
+
+ /// size - Get the string size.
+ LLVM_NODISCARD
+ size_t size() const { return Length; }
+
+ /// front - Get the first character in the string.
+ LLVM_NODISCARD
+ char front() const {
+ assert(!empty());
+ return Data[0];
+ }
+
+ /// back - Get the last character in the string.
+ LLVM_NODISCARD
+ char back() const {
+ assert(!empty());
+ return Data[Length-1];
+ }
+
+ // copy - Allocate copy in Allocator and return StringRef to it.
+ template <typename Allocator>
+ LLVM_NODISCARD StringRef copy(Allocator &A) const {
+ // Don't request a length 0 copy from the allocator.
+ if (empty())
+ return StringRef();
+ char *S = A.template Allocate<char>(Length);
+ std::copy(begin(), end(), S);
+ return StringRef(S, Length);
+ }
+
+ /// equals - Check for string equality, this is more efficient than
+ /// compare() when the relative ordering of inequal strings isn't needed.
+ LLVM_NODISCARD
+ bool equals(StringRef RHS) const {
+ return (Length == RHS.Length &&
+ compareMemory(Data, RHS.Data, RHS.Length) == 0);
+ }
+
+ /// equals_lower - Check for string equality, ignoring case.
+ LLVM_NODISCARD
+ bool equals_lower(StringRef RHS) const {
+ return Length == RHS.Length && compare_lower(RHS) == 0;
+ }
+
+ /// compare - Compare two strings; the result is -1, 0, or 1 if this string
+ /// is lexicographically less than, equal to, or greater than the \p RHS.
+ LLVM_NODISCARD
+ int compare(StringRef RHS) const {
+ // Check the prefix for a mismatch.
+ if (int Res = compareMemory(Data, RHS.Data, std::min(Length, RHS.Length)))
+ return Res < 0 ? -1 : 1;
+
+ // Otherwise the prefixes match, so we only need to check the lengths.
+ if (Length == RHS.Length)
+ return 0;
+ return Length < RHS.Length ? -1 : 1;
+ }
+
+ /// compare_lower - Compare two strings, ignoring case.
+ LLVM_NODISCARD
+ int compare_lower(StringRef RHS) const;
+
+ /// compare_numeric - Compare two strings, treating sequences of digits as
+ /// numbers.
+ LLVM_NODISCARD
+ int compare_numeric(StringRef RHS) const;
+
+ /// Determine the edit distance between this string and another
+ /// string.
+ ///
+ /// \param Other the string to compare this string against.
+ ///
+ /// \param AllowReplacements whether to allow character
+ /// replacements (change one character into another) as a single
+ /// operation, rather than as two operations (an insertion and a
+ /// removal).
+ ///
+ /// \param MaxEditDistance If non-zero, the maximum edit distance that
+ /// this routine is allowed to compute. If the edit distance will exceed
+ /// that maximum, returns \c MaxEditDistance+1.
+ ///
+ /// \returns the minimum number of character insertions, removals,
+ /// or (if \p AllowReplacements is \c true) replacements needed to
+ /// transform one of the given strings into the other. If zero,
+ /// the strings are identical.
+ LLVM_NODISCARD
+ unsigned edit_distance(StringRef Other, bool AllowReplacements = true,
+ unsigned MaxEditDistance = 0) const;
+
+ /// str - Get the contents as an std::string.
+ LLVM_NODISCARD
+ std::string str() const {
+ if (!Data) return std::string();
+ return std::string(Data, Length);
+ }
+
+ /// @}
+ /// @name Operator Overloads
+ /// @{
+
+ LLVM_NODISCARD
+ char operator[](size_t Index) const {
+ assert(Index < Length && "Invalid index!");
+ return Data[Index];
+ }
+
+ /// Disallow accidental assignment from a temporary std::string.
+ ///
+ /// The declaration here is extra complicated so that `stringRef = {}`
+ /// and `stringRef = "abc"` continue to select the move assignment operator.
+ template <typename T>
+ typename std::enable_if<std::is_same<T, std::string>::value,
+ StringRef>::type &
+ operator=(T &&Str) = delete;
+
+ /// @}
+ /// @name Type Conversions
+ /// @{
+
+ operator std::string() const {
+ return str();
+ }
+
+ /// @}
+ /// @name String Predicates
+ /// @{
+
+ /// Check if this string starts with the given \p Prefix.
+ LLVM_NODISCARD
+ bool startswith(StringRef Prefix) const {
+ return Length >= Prefix.Length &&
+ compareMemory(Data, Prefix.Data, Prefix.Length) == 0;
+ }
+
+ /// Check if this string starts with the given \p Prefix, ignoring case.
+ LLVM_NODISCARD
+ bool startswith_lower(StringRef Prefix) const;
+
+ /// Check if this string ends with the given \p Suffix.
+ LLVM_NODISCARD
+ bool endswith(StringRef Suffix) const {
+ return Length >= Suffix.Length &&
+ compareMemory(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
+ }
+
+ /// Check if this string ends with the given \p Suffix, ignoring case.
+ LLVM_NODISCARD
+ bool endswith_lower(StringRef Suffix) const;
+
+ /// @}
+ /// @name String Searching
+ /// @{
+
+ /// Search for the first character \p C in the string.
+ ///
+ /// \returns The index of the first occurrence of \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find(char C, size_t From = 0) const {
+ size_t FindBegin = std::min(From, Length);
+ if (FindBegin < Length) { // Avoid calling memchr with nullptr.
+ // Just forward to memchr, which is faster than a hand-rolled loop.
+ if (const void *P = ::memchr(Data + FindBegin, C, Length - FindBegin))
+ return static_cast<const char *>(P) - Data;
+ }
+ return npos;
+ }
+
+ /// Search for the first character \p C in the string, ignoring case.
+ ///
+ /// \returns The index of the first occurrence of \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find_lower(char C, size_t From = 0) const;
+
+ /// Search for the first character satisfying the predicate \p F
+ ///
+ /// \returns The index of the first character satisfying \p F starting from
+ /// \p From, or npos if not found.
+ LLVM_NODISCARD
+ size_t find_if(function_ref<bool(char)> F, size_t From = 0) const {
+ StringRef S = drop_front(From);
+ while (!S.empty()) {
+ if (F(S.front()))
+ return size() - S.size();
+ S = S.drop_front();
+ }
+ return npos;
+ }
+
+ /// Search for the first character not satisfying the predicate \p F
+ ///
+ /// \returns The index of the first character not satisfying \p F starting
+ /// from \p From, or npos if not found.
+ LLVM_NODISCARD
+ size_t find_if_not(function_ref<bool(char)> F, size_t From = 0) const {
+ return find_if([F](char c) { return !F(c); }, From);
+ }
+
+ /// Search for the first string \p Str in the string.
+ ///
+ /// \returns The index of the first occurrence of \p Str, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find(StringRef Str, size_t From = 0) const;
+
+ /// Search for the first string \p Str in the string, ignoring case.
+ ///
+ /// \returns The index of the first occurrence of \p Str, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find_lower(StringRef Str, size_t From = 0) const;
+
+ /// Search for the last character \p C in the string.
+ ///
+ /// \returns The index of the last occurrence of \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t rfind(char C, size_t From = npos) const {
+ From = std::min(From, Length);
+ size_t i = From;
+ while (i != 0) {
+ --i;
+ if (Data[i] == C)
+ return i;
+ }
+ return npos;
+ }
+
+ /// Search for the last character \p C in the string, ignoring case.
+ ///
+ /// \returns The index of the last occurrence of \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t rfind_lower(char C, size_t From = npos) const;
+
+ /// Search for the last string \p Str in the string.
+ ///
+ /// \returns The index of the last occurrence of \p Str, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t rfind(StringRef Str) const;
+
+ /// Search for the last string \p Str in the string, ignoring case.
+ ///
+ /// \returns The index of the last occurrence of \p Str, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t rfind_lower(StringRef Str) const;
+
+ /// Find the first character in the string that is \p C, or npos if not
+ /// found. Same as find.
+ LLVM_NODISCARD
+ size_t find_first_of(char C, size_t From = 0) const {
+ return find(C, From);
+ }
+
+ /// Find the first character in the string that is in \p Chars, or npos if
+ /// not found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ LLVM_NODISCARD
+ size_t find_first_of(StringRef Chars, size_t From = 0) const;
+
+ /// Find the first character in the string that is not \p C or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find_first_not_of(char C, size_t From = 0) const;
+
+ /// Find the first character in the string that is not in the string
+ /// \p Chars, or npos if not found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ LLVM_NODISCARD
+ size_t find_first_not_of(StringRef Chars, size_t From = 0) const;
+
+ /// Find the last character in the string that is \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find_last_of(char C, size_t From = npos) const {
+ return rfind(C, From);
+ }
+
+ /// Find the last character in the string that is in \p C, or npos if not
+ /// found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ LLVM_NODISCARD
+ size_t find_last_of(StringRef Chars, size_t From = npos) const;
+
+ /// Find the last character in the string that is not \p C, or npos if not
+ /// found.
+ LLVM_NODISCARD
+ size_t find_last_not_of(char C, size_t From = npos) const;
+
+ /// Find the last character in the string that is not in \p Chars, or
+ /// npos if not found.
+ ///
+ /// Complexity: O(size() + Chars.size())
+ LLVM_NODISCARD
+ size_t find_last_not_of(StringRef Chars, size_t From = npos) const;
+
+ /// Return true if the given string is a substring of *this, and false
+ /// otherwise.
+ LLVM_NODISCARD
+ bool contains(StringRef Other) const { return find(Other) != npos; }
+
+ /// Return true if the given character is contained in *this, and false
+ /// otherwise.
+ LLVM_NODISCARD
+ bool contains(char C) const { return find_first_of(C) != npos; }
+
+ /// Return true if the given string is a substring of *this, and false
+ /// otherwise.
+ LLVM_NODISCARD
+ bool contains_lower(StringRef Other) const {
+ return find_lower(Other) != npos;
+ }
+
+ /// Return true if the given character is contained in *this, and false
+ /// otherwise.
+ LLVM_NODISCARD
+ bool contains_lower(char C) const { return find_lower(C) != npos; }
+
+ /// @}
+ /// @name Helpful Algorithms
+ /// @{
+
+ /// Return the number of occurrences of \p C in the string.
+ LLVM_NODISCARD
+ size_t count(char C) const {
+ size_t Count = 0;
+ for (size_t i = 0, e = Length; i != e; ++i)
+ if (Data[i] == C)
+ ++Count;
+ return Count;
+ }
+
+ /// Return the number of non-overlapped occurrences of \p Str in
+ /// the string.
+ size_t count(StringRef Str) const;
+
+ /// Parse the current string as an integer of the specified radix. If
+ /// \p Radix is specified as zero, this does radix autosensing using
+ /// extended C rules: 0 is octal, 0x is hex, 0b is binary.
+ ///
+ /// If the string is invalid or if only a subset of the string is valid,
+ /// this returns true to signify the error. The string is considered
+ /// erroneous if empty or if it overflows T.
+ template <typename T>
+ typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
+ getAsInteger(unsigned Radix, T &Result) const {
+ long long LLVal;
+ if (getAsSignedInteger(*this, Radix, LLVal) ||
+ static_cast<T>(LLVal) != LLVal)
+ return true;
+ Result = LLVal;
+ return false;
+ }
+
+ template <typename T>
+ typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
+ getAsInteger(unsigned Radix, T &Result) const {
+ unsigned long long ULLVal;
+ // The additional cast to unsigned long long is required to avoid the
+ // Visual C++ warning C4805: '!=' : unsafe mix of type 'bool' and type
+ // 'unsigned __int64' when instantiating getAsInteger with T = bool.
+ if (getAsUnsignedInteger(*this, Radix, ULLVal) ||
+ static_cast<unsigned long long>(static_cast<T>(ULLVal)) != ULLVal)
+ return true;
+ Result = ULLVal;
+ return false;
+ }
+
+ /// Parse the current string as an integer of the specified radix. If
+ /// \p Radix is specified as zero, this does radix autosensing using
+ /// extended C rules: 0 is octal, 0x is hex, 0b is binary.
+ ///
+ /// If the string does not begin with a number of the specified radix,
+ /// this returns true to signify the error. The string is considered
+ /// erroneous if empty or if it overflows T.
+ /// The portion of the string representing the discovered numeric value
+ /// is removed from the beginning of the string.
+ template <typename T>
+ typename std::enable_if<std::numeric_limits<T>::is_signed, bool>::type
+ consumeInteger(unsigned Radix, T &Result) {
+ long long LLVal;
+ if (consumeSignedInteger(*this, Radix, LLVal) ||
+ static_cast<long long>(static_cast<T>(LLVal)) != LLVal)
+ return true;
+ Result = LLVal;
+ return false;
+ }
+
+ template <typename T>
+ typename std::enable_if<!std::numeric_limits<T>::is_signed, bool>::type
+ consumeInteger(unsigned Radix, T &Result) {
+ unsigned long long ULLVal;
+ if (consumeUnsignedInteger(*this, Radix, ULLVal) ||
+ static_cast<unsigned long long>(static_cast<T>(ULLVal)) != ULLVal)
+ return true;
+ Result = ULLVal;
+ return false;
+ }
+
+ /// Parse the current string as an integer of the specified \p Radix, or of
+ /// an autosensed radix if the \p Radix given is 0. The current value in
+ /// \p Result is discarded, and the storage is changed to be wide enough to
+ /// store the parsed integer.
+ ///
+ /// \returns true if the string does not solely consist of a valid
+ /// non-empty number in the appropriate base.
+ ///
+ /// APInt::fromString is superficially similar but assumes the
+ /// string is well-formed in the given radix.
+ bool getAsInteger(unsigned Radix, APInt &Result) const;
+
+ /// Parse the current string as an IEEE double-precision floating
+ /// point value. The string must be a well-formed double.
+ ///
+ /// If \p AllowInexact is false, the function will fail if the string
+ /// cannot be represented exactly. Otherwise, the function only fails
+ /// in case of an overflow or underflow.
+ bool getAsDouble(double &Result, bool AllowInexact = true) const;
+
+ /// @}
+ /// @name String Operations
+ /// @{
+
+ // Convert the given ASCII string to lowercase.
+ LLVM_NODISCARD
+ std::string lower() const;
+
+ /// Convert the given ASCII string to uppercase.
+ LLVM_NODISCARD
+ std::string upper() const;
+
+ /// @}
+ /// @name Substring Operations
+ /// @{
+
+ /// Return a reference to the substring from [Start, Start + N).
+ ///
+ /// \param Start The index of the starting character in the substring; if
+ /// the index is npos or greater than the length of the string then the
+ /// empty substring will be returned.
+ ///
+ /// \param N The number of characters to included in the substring. If N
+ /// exceeds the number of characters remaining in the string, the string
+ /// suffix (starting with \p Start) will be returned.
+ LLVM_NODISCARD
+ StringRef substr(size_t Start, size_t N = npos) const {
+ Start = std::min(Start, Length);
+ return StringRef(Data + Start, std::min(N, Length - Start));
+ }
+
+ /// Return a StringRef equal to 'this' but with only the first \p N
+ /// elements remaining. If \p N is greater than the length of the
+ /// string, the entire string is returned.
+ LLVM_NODISCARD
+ StringRef take_front(size_t N = 1) const {
+ if (N >= size())
+ return *this;
+ return drop_back(size() - N);
+ }
+
+ /// Return a StringRef equal to 'this' but with only the last \p N
+ /// elements remaining. If \p N is greater than the length of the
+ /// string, the entire string is returned.
+ LLVM_NODISCARD
+ StringRef take_back(size_t N = 1) const {
+ if (N >= size())
+ return *this;
+ return drop_front(size() - N);
+ }
+
+ /// Return the longest prefix of 'this' such that every character
+ /// in the prefix satisfies the given predicate.
+ LLVM_NODISCARD
+ StringRef take_while(function_ref<bool(char)> F) const {
+ return substr(0, find_if_not(F));
+ }
+
+ /// Return the longest prefix of 'this' such that no character in
+ /// the prefix satisfies the given predicate.
+ LLVM_NODISCARD
+ StringRef take_until(function_ref<bool(char)> F) const {
+ return substr(0, find_if(F));
+ }
+
+ /// Return a StringRef equal to 'this' but with the first \p N elements
+ /// dropped.
+ LLVM_NODISCARD
+ StringRef drop_front(size_t N = 1) const {
+ assert(size() >= N && "Dropping more elements than exist");
+ return substr(N);
+ }
+
+ /// Return a StringRef equal to 'this' but with the last \p N elements
+ /// dropped.
+ LLVM_NODISCARD
+ StringRef drop_back(size_t N = 1) const {
+ assert(size() >= N && "Dropping more elements than exist");
+ return substr(0, size()-N);
+ }
+
+ /// Return a StringRef equal to 'this', but with all characters satisfying
+ /// the given predicate dropped from the beginning of the string.
+ LLVM_NODISCARD
+ StringRef drop_while(function_ref<bool(char)> F) const {
+ return substr(find_if_not(F));
+ }
+
+ /// Return a StringRef equal to 'this', but with all characters not
+ /// satisfying the given predicate dropped from the beginning of the string.
+ LLVM_NODISCARD
+ StringRef drop_until(function_ref<bool(char)> F) const {
+ return substr(find_if(F));
+ }
+
+ /// Returns true if this StringRef has the given prefix and removes that
+ /// prefix.
+ bool consume_front(StringRef Prefix) {
+ if (!startswith(Prefix))
+ return false;
+
+ *this = drop_front(Prefix.size());
+ return true;
+ }
+
+ /// Returns true if this StringRef has the given suffix and removes that
+ /// suffix.
+ bool consume_back(StringRef Suffix) {
+ if (!endswith(Suffix))
+ return false;
+
+ *this = drop_back(Suffix.size());
+ return true;
+ }
+
+ /// Return a reference to the substring from [Start, End).
+ ///
+ /// \param Start The index of the starting character in the substring; if
+ /// the index is npos or greater than the length of the string then the
+ /// empty substring will be returned.
+ ///
+ /// \param End The index following the last character to include in the
+ /// substring. If this is npos or exceeds the number of characters
+ /// remaining in the string, the string suffix (starting with \p Start)
+ /// will be returned. If this is less than \p Start, an empty string will
+ /// be returned.
+ LLVM_NODISCARD
+ StringRef slice(size_t Start, size_t End) const {
+ Start = std::min(Start, Length);
+ End = std::min(std::max(Start, End), Length);
+ return StringRef(Data + Start, End - Start);
+ }
+
+ /// Split into two substrings around the first occurrence of a separator
+ /// character.
+ ///
+ /// If \p Separator is in the string, then the result is a pair (LHS, RHS)
+ /// such that (*this == LHS + Separator + RHS) is true and RHS is
+ /// maximal. If \p Separator is not in the string, then the result is a
+ /// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
+ ///
+ /// \param Separator The character to split on.
+ /// \returns The split substrings.
+ LLVM_NODISCARD
+ std::pair<StringRef, StringRef> split(char Separator) const {
+ return split(StringRef(&Separator, 1));
+ }
+
+ /// Split into two substrings around the first occurrence of a separator
+ /// string.
+ ///
+ /// If \p Separator is in the string, then the result is a pair (LHS, RHS)
+ /// such that (*this == LHS + Separator + RHS) is true and RHS is
+ /// maximal. If \p Separator is not in the string, then the result is a
+ /// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
+ ///
+ /// \param Separator - The string to split on.
+ /// \return - The split substrings.
+ LLVM_NODISCARD
+ std::pair<StringRef, StringRef> split(StringRef Separator) const {
+ size_t Idx = find(Separator);
+ if (Idx == npos)
+ return std::make_pair(*this, StringRef());
+ return std::make_pair(slice(0, Idx), slice(Idx + Separator.size(), npos));
+ }
+
+ /// Split into two substrings around the last occurrence of a separator
+ /// string.
+ ///
+ /// If \p Separator is in the string, then the result is a pair (LHS, RHS)
+ /// such that (*this == LHS + Separator + RHS) is true and RHS is
+ /// minimal. If \p Separator is not in the string, then the result is a
+ /// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
+ ///
+ /// \param Separator - The string to split on.
+ /// \return - The split substrings.
+ LLVM_NODISCARD
+ std::pair<StringRef, StringRef> rsplit(StringRef Separator) const {
+ size_t Idx = rfind(Separator);
+ if (Idx == npos)
+ return std::make_pair(*this, StringRef());
+ return std::make_pair(slice(0, Idx), slice(Idx + Separator.size(), npos));
+ }
+
+ /// Split into substrings around the occurrences of a separator string.
+ ///
+ /// Each substring is stored in \p A. If \p MaxSplit is >= 0, at most
+ /// \p MaxSplit splits are done and consequently <= \p MaxSplit + 1
+ /// elements are added to A.
+ /// If \p KeepEmpty is false, empty strings are not added to \p A. They
+ /// still count when considering \p MaxSplit
+ /// An useful invariant is that
+ /// Separator.join(A) == *this if MaxSplit == -1 and KeepEmpty == true
+ ///
+ /// \param A - Where to put the substrings.
+ /// \param Separator - The string to split on.
+ /// \param MaxSplit - The maximum number of times the string is split.
+ /// \param KeepEmpty - True if empty substring should be added.
+ void split(SmallVectorImpl<StringRef> &A,
+ StringRef Separator, int MaxSplit = -1,
+ bool KeepEmpty = true) const;
+
+ /// Split into substrings around the occurrences of a separator character.
+ ///
+ /// Each substring is stored in \p A. If \p MaxSplit is >= 0, at most
+ /// \p MaxSplit splits are done and consequently <= \p MaxSplit + 1
+ /// elements are added to A.
+ /// If \p KeepEmpty is false, empty strings are not added to \p A. They
+ /// still count when considering \p MaxSplit
+ /// An useful invariant is that
+ /// Separator.join(A) == *this if MaxSplit == -1 and KeepEmpty == true
+ ///
+ /// \param A - Where to put the substrings.
+ /// \param Separator - The string to split on.
+ /// \param MaxSplit - The maximum number of times the string is split.
+ /// \param KeepEmpty - True if empty substring should be added.
+ void split(SmallVectorImpl<StringRef> &A, char Separator, int MaxSplit = -1,
+ bool KeepEmpty = true) const;
+
+ /// Split into two substrings around the last occurrence of a separator
+ /// character.
+ ///
+ /// If \p Separator is in the string, then the result is a pair (LHS, RHS)
+ /// such that (*this == LHS + Separator + RHS) is true and RHS is
+ /// minimal. If \p Separator is not in the string, then the result is a
+ /// pair (LHS, RHS) where (*this == LHS) and (RHS == "").
+ ///
+ /// \param Separator - The character to split on.
+ /// \return - The split substrings.
+ LLVM_NODISCARD
+ std::pair<StringRef, StringRef> rsplit(char Separator) const {
+ return rsplit(StringRef(&Separator, 1));
+ }
+
+ /// Return string with consecutive \p Char characters starting from the
+ /// the left removed.
+ LLVM_NODISCARD
+ StringRef ltrim(char Char) const {
+ return drop_front(std::min(Length, find_first_not_of(Char)));
+ }
+
+ /// Return string with consecutive characters in \p Chars starting from
+ /// the left removed.
+ LLVM_NODISCARD
+ StringRef ltrim(StringRef Chars = " \t\n\v\f\r") const {
+ return drop_front(std::min(Length, find_first_not_of(Chars)));
+ }
+
+ /// Return string with consecutive \p Char characters starting from the
+ /// right removed.
+ LLVM_NODISCARD
+ StringRef rtrim(char Char) const {
+ return drop_back(Length - std::min(Length, find_last_not_of(Char) + 1));
+ }
+
+ /// Return string with consecutive characters in \p Chars starting from
+ /// the right removed.
+ LLVM_NODISCARD
+ StringRef rtrim(StringRef Chars = " \t\n\v\f\r") const {
+ return drop_back(Length - std::min(Length, find_last_not_of(Chars) + 1));
+ }
+
+ /// Return string with consecutive \p Char characters starting from the
+ /// left and right removed.
+ LLVM_NODISCARD
+ StringRef trim(char Char) const {
+ return ltrim(Char).rtrim(Char);
+ }
+
+ /// Return string with consecutive characters in \p Chars starting from
+ /// the left and right removed.
+ LLVM_NODISCARD
+ StringRef trim(StringRef Chars = " \t\n\v\f\r") const {
+ return ltrim(Chars).rtrim(Chars);
+ }
+
+ /// @}
+ };
+
+ /// A wrapper around a string literal that serves as a proxy for constructing
+ /// global tables of StringRefs with the length computed at compile time.
+ /// In order to avoid the invocation of a global constructor, StringLiteral
+ /// should *only* be used in a constexpr context, as such:
+ ///
+ /// constexpr StringLiteral S("test");
+ ///
+ class StringLiteral : public StringRef {
+ private:
+ constexpr StringLiteral(const char *Str, size_t N) : StringRef(Str, N) {
+ }
+
+ public:
+ template <size_t N>
+ constexpr StringLiteral(const char (&Str)[N])
+#if defined(__clang__) && __has_attribute(enable_if)
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wgcc-compat"
+ __attribute((enable_if(__builtin_strlen(Str) == N - 1,
+ "invalid string literal")))
+#pragma clang diagnostic pop
+#endif
+ : StringRef(Str, N - 1) {
+ }
+
+ // Explicit construction for strings like "foo\0bar".
+ template <size_t N>
+ static constexpr StringLiteral withInnerNUL(const char (&Str)[N]) {
+ return StringLiteral(Str, N - 1);
+ }
+ };
+
+ /// @name StringRef Comparison Operators
+ /// @{
+
+ inline bool operator==(StringRef LHS, StringRef RHS) {
+ return LHS.equals(RHS);
+ }
+
+ inline bool operator!=(StringRef LHS, StringRef RHS) { return !(LHS == RHS); }
+
+ inline bool operator<(StringRef LHS, StringRef RHS) {
+ return LHS.compare(RHS) == -1;
+ }
+
+ inline bool operator<=(StringRef LHS, StringRef RHS) {
+ return LHS.compare(RHS) != 1;
+ }
+
+ inline bool operator>(StringRef LHS, StringRef RHS) {
+ return LHS.compare(RHS) == 1;
+ }
+
+ inline bool operator>=(StringRef LHS, StringRef RHS) {
+ return LHS.compare(RHS) != -1;
+ }
+
+ inline std::string &operator+=(std::string &buffer, StringRef string) {
+ return buffer.append(string.data(), string.size());
+ }
+
+ /// @}
+
+ /// Compute a hash_code for a StringRef.
+ LLVM_NODISCARD
+ hash_code hash_value(StringRef S);
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STRINGREF_H
diff --git a/third_party/llvm-project/include/llvm/ADT/StringSet.h b/third_party/llvm-project/include/llvm/ADT/StringSet.h
new file mode 100644
index 000000000..60be09d3c
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/StringSet.h
@@ -0,0 +1,58 @@
+//===- StringSet.h - The LLVM Compiler Driver -------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// StringSet - A set-like wrapper for the StringMap.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STRINGSET_H
+#define LLVM_ADT_STRINGSET_H
+
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Allocator.h"
+#include <cassert>
+#include <initializer_list>
+#include <utility>
+
+namespace llvm {
+
+ /// StringSet - A wrapper for StringMap that provides set-like functionality.
+ template <class AllocatorTy = MallocAllocator>
+ class StringSet : public StringMap<NoneType, AllocatorTy> {
+ using base = StringMap<NoneType, AllocatorTy>;
+
+ public:
+ StringSet() = default;
+ StringSet(std::initializer_list<StringRef> S) {
+ for (StringRef X : S)
+ insert(X);
+ }
+ explicit StringSet(AllocatorTy A) : base(A) {}
+
+ std::pair<typename base::iterator, bool> insert(StringRef Key) {
+ assert(!Key.empty());
+ return base::insert(std::make_pair(Key, None));
+ }
+
+ template <typename InputIt>
+ void insert(const InputIt &Begin, const InputIt &End) {
+ for (auto It = Begin; It != End; ++It)
+ base::insert(std::make_pair(*It, None));
+ }
+
+ template <typename ValueTy>
+ std::pair<typename base::iterator, bool>
+ insert(const StringMapEntry<ValueTy> &MapEntry) {
+ return insert(MapEntry.getKey());
+ }
+ };
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STRINGSET_H
diff --git a/third_party/llvm-project/include/llvm/ADT/StringSwitch.h b/third_party/llvm-project/include/llvm/ADT/StringSwitch.h
new file mode 100644
index 000000000..fea911f69
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/StringSwitch.h
@@ -0,0 +1,196 @@
+//===--- StringSwitch.h - Switch-on-literal-string Construct --------------===/
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//===----------------------------------------------------------------------===/
+//
+// This file implements the StringSwitch template, which mimics a switch()
+// statement whose cases are string literals.
+//
+//===----------------------------------------------------------------------===/
+#ifndef LLVM_ADT_STRINGSWITCH_H
+#define LLVM_ADT_STRINGSWITCH_H
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/Compiler.h"
+#include <cassert>
+#include <cstring>
+
+namespace llvm {
+
+/// A switch()-like statement whose cases are string literals.
+///
+/// The StringSwitch class is a simple form of a switch() statement that
+/// determines whether the given string matches one of the given string
+/// literals. The template type parameter \p T is the type of the value that
+/// will be returned from the string-switch expression. For example,
+/// the following code switches on the name of a color in \c argv[i]:
+///
+/// \code
+/// Color color = StringSwitch<Color>(argv[i])
+/// .Case("red", Red)
+/// .Case("orange", Orange)
+/// .Case("yellow", Yellow)
+/// .Case("green", Green)
+/// .Case("blue", Blue)
+/// .Case("indigo", Indigo)
+/// .Cases("violet", "purple", Violet)
+/// .Default(UnknownColor);
+/// \endcode
+template<typename T, typename R = T>
+class StringSwitch {
+ /// The string we are matching.
+ const StringRef Str;
+
+ /// The pointer to the result of this switch statement, once known,
+ /// null before that.
+ Optional<T> Result;
+
+public:
+ explicit StringSwitch(StringRef S)
+ : Str(S), Result() { }
+
+ // StringSwitch is not copyable.
+ StringSwitch(const StringSwitch &) = delete;
+
+ // StringSwitch is not assignable due to 'Str' being 'const'.
+ void operator=(const StringSwitch &) = delete;
+ void operator=(StringSwitch &&other) = delete;
+
+ StringSwitch(StringSwitch &&other)
+ : Str(other.Str), Result(std::move(other.Result)) { }
+
+ ~StringSwitch() = default;
+
+ // Case-sensitive case matchers
+ StringSwitch &Case(StringLiteral S, T Value) {
+ if (!Result && Str == S) {
+ Result = std::move(Value);
+ }
+ return *this;
+ }
+
+ StringSwitch& EndsWith(StringLiteral S, T Value) {
+ if (!Result && Str.endswith(S)) {
+ Result = std::move(Value);
+ }
+ return *this;
+ }
+
+ StringSwitch& StartsWith(StringLiteral S, T Value) {
+ if (!Result && Str.startswith(S)) {
+ Result = std::move(Value);
+ }
+ return *this;
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, T Value) {
+ return Case(S0, Value).Case(S1, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ T Value) {
+ return Case(S0, Value).Cases(S1, S2, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, StringLiteral S5,
+ T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, S5, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, StringLiteral S5,
+ StringLiteral S6, T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, S5, S6, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, StringLiteral S5,
+ StringLiteral S6, StringLiteral S7, T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, S5, S6, S7, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, StringLiteral S5,
+ StringLiteral S6, StringLiteral S7, StringLiteral S8,
+ T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, S5, S6, S7, S8, Value);
+ }
+
+ StringSwitch &Cases(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, StringLiteral S5,
+ StringLiteral S6, StringLiteral S7, StringLiteral S8,
+ StringLiteral S9, T Value) {
+ return Case(S0, Value).Cases(S1, S2, S3, S4, S5, S6, S7, S8, S9, Value);
+ }
+
+ // Case-insensitive case matchers.
+ StringSwitch &CaseLower(StringLiteral S, T Value) {
+ if (!Result && Str.equals_lower(S))
+ Result = std::move(Value);
+
+ return *this;
+ }
+
+ StringSwitch &EndsWithLower(StringLiteral S, T Value) {
+ if (!Result && Str.endswith_lower(S))
+ Result = Value;
+
+ return *this;
+ }
+
+ StringSwitch &StartsWithLower(StringLiteral S, T Value) {
+ if (!Result && Str.startswith_lower(S))
+ Result = std::move(Value);
+
+ return *this;
+ }
+
+ StringSwitch &CasesLower(StringLiteral S0, StringLiteral S1, T Value) {
+ return CaseLower(S0, Value).CaseLower(S1, Value);
+ }
+
+ StringSwitch &CasesLower(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ T Value) {
+ return CaseLower(S0, Value).CasesLower(S1, S2, Value);
+ }
+
+ StringSwitch &CasesLower(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, T Value) {
+ return CaseLower(S0, Value).CasesLower(S1, S2, S3, Value);
+ }
+
+ StringSwitch &CasesLower(StringLiteral S0, StringLiteral S1, StringLiteral S2,
+ StringLiteral S3, StringLiteral S4, T Value) {
+ return CaseLower(S0, Value).CasesLower(S1, S2, S3, S4, Value);
+ }
+
+ LLVM_NODISCARD
+ R Default(T Value) {
+ if (Result)
+ return std::move(*Result);
+ return Value;
+ }
+
+ LLVM_NODISCARD
+ operator R() {
+ assert(Result && "Fell off the end of a string-switch");
+ return std::move(*Result);
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STRINGSWITCH_H
diff --git a/third_party/llvm-project/include/llvm/ADT/Triple.h b/third_party/llvm-project/include/llvm/ADT/Triple.h
new file mode 100644
index 000000000..edeb31efa
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/Triple.h
@@ -0,0 +1,881 @@
+//===-- llvm/ADT/Triple.h - Target triple helper class ----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_TRIPLE_H
+#define LLVM_ADT_TRIPLE_H
+
+#include "llvm/ADT/Twine.h"
+
+// Some system headers or GCC predefined macros conflict with identifiers in
+// this file. Undefine them here.
+#undef NetBSD
+#undef mips
+#undef sparc
+
+namespace llvm {
+
+/// Triple - Helper class for working with autoconf configuration names. For
+/// historical reasons, we also call these 'triples' (they used to contain
+/// exactly three fields).
+///
+/// Configuration names are strings in the canonical form:
+/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM
+/// or
+/// ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
+///
+/// This class is used for clients which want to support arbitrary
+/// configuration names, but also want to implement certain special
+/// behavior for particular configurations. This class isolates the mapping
+/// from the components of the configuration name to well known IDs.
+///
+/// At its core the Triple class is designed to be a wrapper for a triple
+/// string; the constructor does not change or normalize the triple string.
+/// Clients that need to handle the non-canonical triples that users often
+/// specify should use the normalize method.
+///
+/// See autoconf/config.guess for a glimpse into what configuration names
+/// look like in practice.
+class Triple {
+public:
+ enum ArchType {
+ UnknownArch,
+
+ arm, // ARM (little endian): arm, armv.*, xscale
+ armeb, // ARM (big endian): armeb
+ aarch64, // AArch64 (little endian): aarch64
+ aarch64_be, // AArch64 (big endian): aarch64_be
+ aarch64_32, // AArch64 (little endian) ILP32: aarch64_32
+ arc, // ARC: Synopsys ARC
+ avr, // AVR: Atmel AVR microcontroller
+ bpfel, // eBPF or extended BPF or 64-bit BPF (little endian)
+ bpfeb, // eBPF or extended BPF or 64-bit BPF (big endian)
+ hexagon, // Hexagon: hexagon
+ mips, // MIPS: mips, mipsallegrex, mipsr6
+ mipsel, // MIPSEL: mipsel, mipsallegrexe, mipsr6el
+ mips64, // MIPS64: mips64, mips64r6, mipsn32, mipsn32r6
+ mips64el, // MIPS64EL: mips64el, mips64r6el, mipsn32el, mipsn32r6el
+ msp430, // MSP430: msp430
+ ppc, // PPC: powerpc
+ ppc64, // PPC64: powerpc64, ppu
+ ppc64le, // PPC64LE: powerpc64le
+ r600, // R600: AMD GPUs HD2XXX - HD6XXX
+ amdgcn, // AMDGCN: AMD GCN GPUs
+ riscv32, // RISC-V (32-bit): riscv32
+ riscv64, // RISC-V (64-bit): riscv64
+ sparc, // Sparc: sparc
+ sparcv9, // Sparcv9: Sparcv9
+ sparcel, // Sparc: (endianness = little). NB: 'Sparcle' is a CPU variant
+ systemz, // SystemZ: s390x
+ tce, // TCE (http://tce.cs.tut.fi/): tce
+ tcele, // TCE little endian (http://tce.cs.tut.fi/): tcele
+ thumb, // Thumb (little endian): thumb, thumbv.*
+ thumbeb, // Thumb (big endian): thumbeb
+ x86, // X86: i[3-9]86
+ x86_64, // X86-64: amd64, x86_64
+ xcore, // XCore: xcore
+ nvptx, // NVPTX: 32-bit
+ nvptx64, // NVPTX: 64-bit
+ le32, // le32: generic little-endian 32-bit CPU (PNaCl)
+ le64, // le64: generic little-endian 64-bit CPU (PNaCl)
+ amdil, // AMDIL
+ amdil64, // AMDIL with 64-bit pointers
+ hsail, // AMD HSAIL
+ hsail64, // AMD HSAIL with 64-bit pointers
+ spir, // SPIR: standard portable IR for OpenCL 32-bit version
+ spir64, // SPIR: standard portable IR for OpenCL 64-bit version
+ kalimba, // Kalimba: generic kalimba
+ shave, // SHAVE: Movidius vector VLIW processors
+ lanai, // Lanai: Lanai 32-bit
+ wasm32, // WebAssembly with 32-bit pointers
+ wasm64, // WebAssembly with 64-bit pointers
+ renderscript32, // 32-bit RenderScript
+ renderscript64, // 64-bit RenderScript
+ LastArchType = renderscript64
+ };
+ enum SubArchType {
+ NoSubArch,
+
+ ARMSubArch_v8_5a,
+ ARMSubArch_v8_4a,
+ ARMSubArch_v8_3a,
+ ARMSubArch_v8_2a,
+ ARMSubArch_v8_1a,
+ ARMSubArch_v8,
+ ARMSubArch_v8r,
+ ARMSubArch_v8m_baseline,
+ ARMSubArch_v8m_mainline,
+ ARMSubArch_v8_1m_mainline,
+ ARMSubArch_v7,
+ ARMSubArch_v7em,
+ ARMSubArch_v7m,
+ ARMSubArch_v7s,
+ ARMSubArch_v7k,
+ ARMSubArch_v7ve,
+ ARMSubArch_v6,
+ ARMSubArch_v6m,
+ ARMSubArch_v6k,
+ ARMSubArch_v6t2,
+ ARMSubArch_v5,
+ ARMSubArch_v5te,
+ ARMSubArch_v4t,
+
+ KalimbaSubArch_v3,
+ KalimbaSubArch_v4,
+ KalimbaSubArch_v5,
+
+ MipsSubArch_r6
+ };
+ enum VendorType {
+ UnknownVendor,
+
+ Apple,
+ PC,
+ SCEI,
+ BGP,
+ BGQ,
+ Freescale,
+ IBM,
+ ImaginationTechnologies,
+ MipsTechnologies,
+ NVIDIA,
+ CSR,
+ Myriad,
+ AMD,
+ Mesa,
+ SUSE,
+ OpenEmbedded,
+ LastVendorType = OpenEmbedded
+ };
+ enum OSType {
+ UnknownOS,
+
+ Ananas,
+ CloudABI,
+ Darwin,
+ DragonFly,
+ FreeBSD,
+ Fuchsia,
+ IOS,
+ KFreeBSD,
+ Linux,
+ Lv2, // PS3
+ MacOSX,
+ NetBSD,
+ OpenBSD,
+ Solaris,
+ Win32,
+ Haiku,
+ Minix,
+ RTEMS,
+ NaCl, // Native Client
+ CNK, // BG/P Compute-Node Kernel
+ AIX,
+ CUDA, // NVIDIA CUDA
+ NVCL, // NVIDIA OpenCL
+ AMDHSA, // AMD HSA Runtime
+ PS4,
+ ELFIAMCU,
+ TvOS, // Apple tvOS
+ WatchOS, // Apple watchOS
+ Mesa3D,
+ Contiki,
+ AMDPAL, // AMD PAL Runtime
+ HermitCore, // HermitCore Unikernel/Multikernel
+ Hurd, // GNU/Hurd
+ WASI, // Experimental WebAssembly OS
+ Emscripten,
+ LastOSType = Emscripten
+ };
+ enum EnvironmentType {
+ UnknownEnvironment,
+
+ GNU,
+ GNUABIN32,
+ GNUABI64,
+ GNUEABI,
+ GNUEABIHF,
+ GNUX32,
+ CODE16,
+ EABI,
+ EABIHF,
+ ELFv1,
+ ELFv2,
+ Android,
+ Musl,
+ MuslEABI,
+ MuslEABIHF,
+
+ MSVC,
+ Itanium,
+ Cygnus,
+ CoreCLR,
+ Simulator, // Simulator variants of other systems, e.g., Apple's iOS
+ MacABI, // Mac Catalyst variant of Apple's iOS deployment target.
+ LastEnvironmentType = MacABI
+ };
+ enum ObjectFormatType {
+ UnknownObjectFormat,
+
+ COFF,
+ ELF,
+ MachO,
+ Wasm,
+ XCOFF,
+ };
+
+private:
+ std::string Data;
+
+ /// The parsed arch type.
+ ArchType Arch;
+
+ /// The parsed subarchitecture type.
+ SubArchType SubArch;
+
+ /// The parsed vendor type.
+ VendorType Vendor;
+
+ /// The parsed OS type.
+ OSType OS;
+
+ /// The parsed Environment type.
+ EnvironmentType Environment;
+
+ /// The object format type.
+ ObjectFormatType ObjectFormat;
+
+public:
+ /// @name Constructors
+ /// @{
+
+ /// Default constructor is the same as an empty string and leaves all
+ /// triple fields unknown.
+ Triple()
+ : Data(), Arch(), SubArch(), Vendor(), OS(), Environment(),
+ ObjectFormat() {}
+
+ explicit Triple(const Twine &Str);
+ Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr);
+ Triple(const Twine &ArchStr, const Twine &VendorStr, const Twine &OSStr,
+ const Twine &EnvironmentStr);
+
+ bool operator==(const Triple &Other) const {
+ return Arch == Other.Arch && SubArch == Other.SubArch &&
+ Vendor == Other.Vendor && OS == Other.OS &&
+ Environment == Other.Environment &&
+ ObjectFormat == Other.ObjectFormat;
+ }
+
+ bool operator!=(const Triple &Other) const {
+ return !(*this == Other);
+ }
+
+ /// @}
+ /// @name Normalization
+ /// @{
+
+ /// normalize - Turn an arbitrary machine specification into the canonical
+ /// triple form (or something sensible that the Triple class understands if
+ /// nothing better can reasonably be done). In particular, it handles the
+ /// common case in which otherwise valid components are in the wrong order.
+ static std::string normalize(StringRef Str);
+
+ /// Return the normalized form of this triple's string.
+ std::string normalize() const { return normalize(Data); }
+
+ /// @}
+ /// @name Typed Component Access
+ /// @{
+
+ /// getArch - Get the parsed architecture type of this triple.
+ ArchType getArch() const { return Arch; }
+
+ /// getSubArch - get the parsed subarchitecture type for this triple.
+ SubArchType getSubArch() const { return SubArch; }
+
+ /// getVendor - Get the parsed vendor type of this triple.
+ VendorType getVendor() const { return Vendor; }
+
+ /// getOS - Get the parsed operating system type of this triple.
+ OSType getOS() const { return OS; }
+
+ /// hasEnvironment - Does this triple have the optional environment
+ /// (fourth) component?
+ bool hasEnvironment() const {
+ return getEnvironmentName() != "";
+ }
+
+ /// getEnvironment - Get the parsed environment type of this triple.
+ EnvironmentType getEnvironment() const { return Environment; }
+
+ /// Parse the version number from the OS name component of the
+ /// triple, if present.
+ ///
+ /// For example, "fooos1.2.3" would return (1, 2, 3).
+ ///
+ /// If an entry is not defined, it will be returned as 0.
+ void getEnvironmentVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const;
+
+ /// getFormat - Get the object format for this triple.
+ ObjectFormatType getObjectFormat() const { return ObjectFormat; }
+
+ /// getOSVersion - Parse the version number from the OS name component of the
+ /// triple, if present.
+ ///
+ /// For example, "fooos1.2.3" would return (1, 2, 3).
+ ///
+ /// If an entry is not defined, it will be returned as 0.
+ void getOSVersion(unsigned &Major, unsigned &Minor, unsigned &Micro) const;
+
+ /// getOSMajorVersion - Return just the major version number, this is
+ /// specialized because it is a common query.
+ unsigned getOSMajorVersion() const {
+ unsigned Maj, Min, Micro;
+ getOSVersion(Maj, Min, Micro);
+ return Maj;
+ }
+
+ /// getMacOSXVersion - Parse the version number as with getOSVersion and then
+ /// translate generic "darwin" versions to the corresponding OS X versions.
+ /// This may also be called with IOS triples but the OS X version number is
+ /// just set to a constant 10.4.0 in that case. Returns true if successful.
+ bool getMacOSXVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const;
+
+ /// getiOSVersion - Parse the version number as with getOSVersion. This should
+ /// only be called with IOS or generic triples.
+ void getiOSVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const;
+
+ /// getWatchOSVersion - Parse the version number as with getOSVersion. This
+ /// should only be called with WatchOS or generic triples.
+ void getWatchOSVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const;
+
+ /// @}
+ /// @name Direct Component Access
+ /// @{
+
+ const std::string &str() const { return Data; }
+
+ const std::string &getTriple() const { return Data; }
+
+ /// getArchName - Get the architecture (first) component of the
+ /// triple.
+ StringRef getArchName() const;
+
+ /// getVendorName - Get the vendor (second) component of the triple.
+ StringRef getVendorName() const;
+
+ /// getOSName - Get the operating system (third) component of the
+ /// triple.
+ StringRef getOSName() const;
+
+ /// getEnvironmentName - Get the optional environment (fourth)
+ /// component of the triple, or "" if empty.
+ StringRef getEnvironmentName() const;
+
+ /// getOSAndEnvironmentName - Get the operating system and optional
+ /// environment components as a single string (separated by a '-'
+ /// if the environment component is present).
+ StringRef getOSAndEnvironmentName() const;
+
+ /// @}
+ /// @name Convenience Predicates
+ /// @{
+
+ /// Test whether the architecture is 64-bit
+ ///
+ /// Note that this tests for 64-bit pointer width, and nothing else. Note
+ /// that we intentionally expose only three predicates, 64-bit, 32-bit, and
+ /// 16-bit. The inner details of pointer width for particular architectures
+ /// is not summed up in the triple, and so only a coarse grained predicate
+ /// system is provided.
+ bool isArch64Bit() const;
+
+ /// Test whether the architecture is 32-bit
+ ///
+ /// Note that this tests for 32-bit pointer width, and nothing else.
+ bool isArch32Bit() const;
+
+ /// Test whether the architecture is 16-bit
+ ///
+ /// Note that this tests for 16-bit pointer width, and nothing else.
+ bool isArch16Bit() const;
+
+ /// isOSVersionLT - Helper function for doing comparisons against version
+ /// numbers included in the target triple.
+ bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
+ unsigned Micro = 0) const {
+ unsigned LHS[3];
+ getOSVersion(LHS[0], LHS[1], LHS[2]);
+
+ if (LHS[0] != Major)
+ return LHS[0] < Major;
+ if (LHS[1] != Minor)
+ return LHS[1] < Minor;
+ if (LHS[2] != Micro)
+ return LHS[2] < Micro;
+
+ return false;
+ }
+
+ bool isOSVersionLT(const Triple &Other) const {
+ unsigned RHS[3];
+ Other.getOSVersion(RHS[0], RHS[1], RHS[2]);
+ return isOSVersionLT(RHS[0], RHS[1], RHS[2]);
+ }
+
+ /// isMacOSXVersionLT - Comparison function for checking OS X version
+ /// compatibility, which handles supporting skewed version numbering schemes
+ /// used by the "darwin" triples.
+ bool isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
+ unsigned Micro = 0) const {
+ assert(isMacOSX() && "Not an OS X triple!");
+
+ // If this is OS X, expect a sane version number.
+ if (getOS() == Triple::MacOSX)
+ return isOSVersionLT(Major, Minor, Micro);
+
+ // Otherwise, compare to the "Darwin" number.
+ assert(Major == 10 && "Unexpected major version");
+ return isOSVersionLT(Minor + 4, Micro, 0);
+ }
+
+ /// isMacOSX - Is this a Mac OS X triple. For legacy reasons, we support both
+ /// "darwin" and "osx" as OS X triples.
+ bool isMacOSX() const {
+ return getOS() == Triple::Darwin || getOS() == Triple::MacOSX;
+ }
+
+ /// Is this an iOS triple.
+ /// Note: This identifies tvOS as a variant of iOS. If that ever
+ /// changes, i.e., if the two operating systems diverge or their version
+ /// numbers get out of sync, that will need to be changed.
+ /// watchOS has completely different version numbers so it is not included.
+ bool isiOS() const {
+ return getOS() == Triple::IOS || isTvOS();
+ }
+
+ /// Is this an Apple tvOS triple.
+ bool isTvOS() const {
+ return getOS() == Triple::TvOS;
+ }
+
+ /// Is this an Apple watchOS triple.
+ bool isWatchOS() const {
+ return getOS() == Triple::WatchOS;
+ }
+
+ bool isWatchABI() const {
+ return getSubArch() == Triple::ARMSubArch_v7k;
+ }
+
+ /// isOSDarwin - Is this a "Darwin" OS (OS X, iOS, or watchOS).
+ bool isOSDarwin() const {
+ return isMacOSX() || isiOS() || isWatchOS();
+ }
+
+ bool isSimulatorEnvironment() const {
+ return getEnvironment() == Triple::Simulator;
+ }
+
+ bool isMacCatalystEnvironment() const {
+ return getEnvironment() == Triple::MacABI;
+ }
+
+ bool isOSNetBSD() const {
+ return getOS() == Triple::NetBSD;
+ }
+
+ bool isOSOpenBSD() const {
+ return getOS() == Triple::OpenBSD;
+ }
+
+ bool isOSFreeBSD() const {
+ return getOS() == Triple::FreeBSD;
+ }
+
+ bool isOSFuchsia() const {
+ return getOS() == Triple::Fuchsia;
+ }
+
+ bool isOSDragonFly() const { return getOS() == Triple::DragonFly; }
+
+ bool isOSSolaris() const {
+ return getOS() == Triple::Solaris;
+ }
+
+ bool isOSIAMCU() const {
+ return getOS() == Triple::ELFIAMCU;
+ }
+
+ bool isOSUnknown() const { return getOS() == Triple::UnknownOS; }
+
+ bool isGNUEnvironment() const {
+ EnvironmentType Env = getEnvironment();
+ return Env == Triple::GNU || Env == Triple::GNUABIN32 ||
+ Env == Triple::GNUABI64 || Env == Triple::GNUEABI ||
+ Env == Triple::GNUEABIHF || Env == Triple::GNUX32;
+ }
+
+ bool isOSContiki() const {
+ return getOS() == Triple::Contiki;
+ }
+
+ /// Tests whether the OS is Haiku.
+ bool isOSHaiku() const {
+ return getOS() == Triple::Haiku;
+ }
+
+ /// Tests whether the OS is Windows.
+ bool isOSWindows() const {
+ return getOS() == Triple::Win32;
+ }
+
+ /// Checks if the environment is MSVC.
+ bool isKnownWindowsMSVCEnvironment() const {
+ return isOSWindows() && getEnvironment() == Triple::MSVC;
+ }
+
+ /// Checks if the environment could be MSVC.
+ bool isWindowsMSVCEnvironment() const {
+ return isKnownWindowsMSVCEnvironment() ||
+ (isOSWindows() && getEnvironment() == Triple::UnknownEnvironment);
+ }
+
+ bool isWindowsCoreCLREnvironment() const {
+ return isOSWindows() && getEnvironment() == Triple::CoreCLR;
+ }
+
+ bool isWindowsItaniumEnvironment() const {
+ return isOSWindows() && getEnvironment() == Triple::Itanium;
+ }
+
+ bool isWindowsCygwinEnvironment() const {
+ return isOSWindows() && getEnvironment() == Triple::Cygnus;
+ }
+
+ bool isWindowsGNUEnvironment() const {
+ return isOSWindows() && getEnvironment() == Triple::GNU;
+ }
+
+ /// Tests for either Cygwin or MinGW OS
+ bool isOSCygMing() const {
+ return isWindowsCygwinEnvironment() || isWindowsGNUEnvironment();
+ }
+
+ /// Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
+ bool isOSMSVCRT() const {
+ return isWindowsMSVCEnvironment() || isWindowsGNUEnvironment() ||
+ isWindowsItaniumEnvironment();
+ }
+
+ /// Tests whether the OS is NaCl (Native Client)
+ bool isOSNaCl() const {
+ return getOS() == Triple::NaCl;
+ }
+
+ /// Tests whether the OS is Linux.
+ bool isOSLinux() const {
+ return getOS() == Triple::Linux;
+ }
+
+ /// Tests whether the OS is kFreeBSD.
+ bool isOSKFreeBSD() const {
+ return getOS() == Triple::KFreeBSD;
+ }
+
+ /// Tests whether the OS is Hurd.
+ bool isOSHurd() const {
+ return getOS() == Triple::Hurd;
+ }
+
+ /// Tests whether the OS is WASI.
+ bool isOSWASI() const {
+ return getOS() == Triple::WASI;
+ }
+
+ /// Tests whether the OS is Emscripten.
+ bool isOSEmscripten() const {
+ return getOS() == Triple::Emscripten;
+ }
+
+ /// Tests whether the OS uses glibc.
+ bool isOSGlibc() const {
+ return (getOS() == Triple::Linux || getOS() == Triple::KFreeBSD ||
+ getOS() == Triple::Hurd) &&
+ !isAndroid();
+ }
+
+ /// Tests whether the OS is AIX.
+ bool isOSAIX() const {
+ return getOS() == Triple::AIX;
+ }
+
+ /// Tests whether the OS uses the ELF binary format.
+ bool isOSBinFormatELF() const {
+ return getObjectFormat() == Triple::ELF;
+ }
+
+ /// Tests whether the OS uses the COFF binary format.
+ bool isOSBinFormatCOFF() const {
+ return getObjectFormat() == Triple::COFF;
+ }
+
+ /// Tests whether the environment is MachO.
+ bool isOSBinFormatMachO() const {
+ return getObjectFormat() == Triple::MachO;
+ }
+
+ /// Tests whether the OS uses the Wasm binary format.
+ bool isOSBinFormatWasm() const {
+ return getObjectFormat() == Triple::Wasm;
+ }
+
+ /// Tests whether the OS uses the XCOFF binary format.
+ bool isOSBinFormatXCOFF() const {
+ return getObjectFormat() == Triple::XCOFF;
+ }
+
+ /// Tests whether the target is the PS4 CPU
+ bool isPS4CPU() const {
+ return getArch() == Triple::x86_64 &&
+ getVendor() == Triple::SCEI &&
+ getOS() == Triple::PS4;
+ }
+
+ /// Tests whether the target is the PS4 platform
+ bool isPS4() const {
+ return getVendor() == Triple::SCEI &&
+ getOS() == Triple::PS4;
+ }
+
+ /// Tests whether the target is Android
+ bool isAndroid() const { return getEnvironment() == Triple::Android; }
+
+ bool isAndroidVersionLT(unsigned Major) const {
+ assert(isAndroid() && "Not an Android triple!");
+
+ unsigned Env[3];
+ getEnvironmentVersion(Env[0], Env[1], Env[2]);
+
+ // 64-bit targets did not exist before API level 21 (Lollipop).
+ if (isArch64Bit() && Env[0] < 21)
+ Env[0] = 21;
+
+ return Env[0] < Major;
+ }
+
+ /// Tests whether the environment is musl-libc
+ bool isMusl() const {
+ return getEnvironment() == Triple::Musl ||
+ getEnvironment() == Triple::MuslEABI ||
+ getEnvironment() == Triple::MuslEABIHF;
+ }
+
+ /// Tests whether the target is SPIR (32- or 64-bit).
+ bool isSPIR() const {
+ return getArch() == Triple::spir || getArch() == Triple::spir64;
+ }
+
+ /// Tests whether the target is NVPTX (32- or 64-bit).
+ bool isNVPTX() const {
+ return getArch() == Triple::nvptx || getArch() == Triple::nvptx64;
+ }
+
+ /// Tests whether the target is Thumb (little and big endian).
+ bool isThumb() const {
+ return getArch() == Triple::thumb || getArch() == Triple::thumbeb;
+ }
+
+ /// Tests whether the target is ARM (little and big endian).
+ bool isARM() const {
+ return getArch() == Triple::arm || getArch() == Triple::armeb;
+ }
+
+ /// Tests whether the target is AArch64 (little and big endian).
+ bool isAArch64() const {
+ return getArch() == Triple::aarch64 || getArch() == Triple::aarch64_be;
+ }
+
+ /// Tests whether the target is MIPS 32-bit (little and big endian).
+ bool isMIPS32() const {
+ return getArch() == Triple::mips || getArch() == Triple::mipsel;
+ }
+
+ /// Tests whether the target is MIPS 64-bit (little and big endian).
+ bool isMIPS64() const {
+ return getArch() == Triple::mips64 || getArch() == Triple::mips64el;
+ }
+
+ /// Tests whether the target is MIPS (little and big endian, 32- or 64-bit).
+ bool isMIPS() const {
+ return isMIPS32() || isMIPS64();
+ }
+
+ /// Tests whether the target is 64-bit PowerPC (little and big endian).
+ bool isPPC64() const {
+ return getArch() == Triple::ppc64 || getArch() == Triple::ppc64le;
+ }
+
+ /// Tests whether the target is RISC-V (32- and 64-bit).
+ bool isRISCV() const {
+ return getArch() == Triple::riscv32 || getArch() == Triple::riscv64;
+ }
+
+ /// Tests whether the target supports comdat
+ bool supportsCOMDAT() const {
+ return !isOSBinFormatMachO();
+ }
+
+ /// Tests whether the target uses emulated TLS as default.
+ bool hasDefaultEmulatedTLS() const {
+ return isAndroid() || isOSOpenBSD() || isWindowsCygwinEnvironment();
+ }
+
+ /// @}
+ /// @name Mutators
+ /// @{
+
+ /// setArch - Set the architecture (first) component of the triple
+ /// to a known type.
+ void setArch(ArchType Kind);
+
+ /// setVendor - Set the vendor (second) component of the triple to a
+ /// known type.
+ void setVendor(VendorType Kind);
+
+ /// setOS - Set the operating system (third) component of the triple
+ /// to a known type.
+ void setOS(OSType Kind);
+
+ /// setEnvironment - Set the environment (fourth) component of the triple
+ /// to a known type.
+ void setEnvironment(EnvironmentType Kind);
+
+ /// setObjectFormat - Set the object file format
+ void setObjectFormat(ObjectFormatType Kind);
+
+ /// setTriple - Set all components to the new triple \p Str.
+ void setTriple(const Twine &Str);
+
+ /// setArchName - Set the architecture (first) component of the
+ /// triple by name.
+ void setArchName(StringRef Str);
+
+ /// setVendorName - Set the vendor (second) component of the triple
+ /// by name.
+ void setVendorName(StringRef Str);
+
+ /// setOSName - Set the operating system (third) component of the
+ /// triple by name.
+ void setOSName(StringRef Str);
+
+ /// setEnvironmentName - Set the optional environment (fourth)
+ /// component of the triple by name.
+ void setEnvironmentName(StringRef Str);
+
+ /// setOSAndEnvironmentName - Set the operating system and optional
+ /// environment components with a single string.
+ void setOSAndEnvironmentName(StringRef Str);
+
+ /// @}
+ /// @name Helpers to build variants of a particular triple.
+ /// @{
+
+ /// Form a triple with a 32-bit variant of the current architecture.
+ ///
+ /// This can be used to move across "families" of architectures where useful.
+ ///
+ /// \returns A new triple with a 32-bit architecture or an unknown
+ /// architecture if no such variant can be found.
+ llvm::Triple get32BitArchVariant() const;
+
+ /// Form a triple with a 64-bit variant of the current architecture.
+ ///
+ /// This can be used to move across "families" of architectures where useful.
+ ///
+ /// \returns A new triple with a 64-bit architecture or an unknown
+ /// architecture if no such variant can be found.
+ llvm::Triple get64BitArchVariant() const;
+
+ /// Form a triple with a big endian variant of the current architecture.
+ ///
+ /// This can be used to move across "families" of architectures where useful.
+ ///
+ /// \returns A new triple with a big endian architecture or an unknown
+ /// architecture if no such variant can be found.
+ llvm::Triple getBigEndianArchVariant() const;
+
+ /// Form a triple with a little endian variant of the current architecture.
+ ///
+ /// This can be used to move across "families" of architectures where useful.
+ ///
+ /// \returns A new triple with a little endian architecture or an unknown
+ /// architecture if no such variant can be found.
+ llvm::Triple getLittleEndianArchVariant() const;
+
+ /// Get the (LLVM) name of the minimum ARM CPU for the arch we are targeting.
+ ///
+ /// \param Arch the architecture name (e.g., "armv7s"). If it is an empty
+ /// string then the triple's arch name is used.
+ StringRef getARMCPUForArch(StringRef Arch = StringRef()) const;
+
+ /// Tests whether the target triple is little endian.
+ ///
+ /// \returns true if the triple is little endian, false otherwise.
+ bool isLittleEndian() const;
+
+ /// Test whether target triples are compatible.
+ bool isCompatibleWith(const Triple &Other) const;
+
+ /// Merge target triples.
+ std::string merge(const Triple &Other) const;
+
+ /// @}
+ /// @name Static helpers for IDs.
+ /// @{
+
+ /// getArchTypeName - Get the canonical name for the \p Kind architecture.
+ static StringRef getArchTypeName(ArchType Kind);
+
+ /// getArchTypePrefix - Get the "prefix" canonical name for the \p Kind
+ /// architecture. This is the prefix used by the architecture specific
+ /// builtins, and is suitable for passing to \see
+ /// Intrinsic::getIntrinsicForGCCBuiltin().
+ ///
+ /// \return - The architecture prefix, or 0 if none is defined.
+ static StringRef getArchTypePrefix(ArchType Kind);
+
+ /// getVendorTypeName - Get the canonical name for the \p Kind vendor.
+ static StringRef getVendorTypeName(VendorType Kind);
+
+ /// getOSTypeName - Get the canonical name for the \p Kind operating system.
+ static StringRef getOSTypeName(OSType Kind);
+
+ /// getEnvironmentTypeName - Get the canonical name for the \p Kind
+ /// environment.
+ static StringRef getEnvironmentTypeName(EnvironmentType Kind);
+
+ /// @}
+ /// @name Static helpers for converting alternate architecture names.
+ /// @{
+
+ /// getArchTypeForLLVMName - The canonical type for the given LLVM
+ /// architecture name (e.g., "x86").
+ static ArchType getArchTypeForLLVMName(StringRef Str);
+
+ /// @}
+};
+
+} // End llvm namespace
+
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/Twine.h b/third_party/llvm-project/include/llvm/ADT/Twine.h
new file mode 100644
index 000000000..2dc7486c9
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/Twine.h
@@ -0,0 +1,544 @@
+//===- Twine.h - Fast Temporary String Concatenation ------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_TWINE_H
+#define LLVM_ADT_TWINE_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+
+namespace llvm {
+
+ class formatv_object_base;
+ class raw_ostream;
+
+ /// Twine - A lightweight data structure for efficiently representing the
+ /// concatenation of temporary values as strings.
+ ///
+ /// A Twine is a kind of rope, it represents a concatenated string using a
+ /// binary-tree, where the string is the preorder of the nodes. Since the
+ /// Twine can be efficiently rendered into a buffer when its result is used,
+ /// it avoids the cost of generating temporary values for intermediate string
+ /// results -- particularly in cases when the Twine result is never
+ /// required. By explicitly tracking the type of leaf nodes, we can also avoid
+ /// the creation of temporary strings for conversions operations (such as
+ /// appending an integer to a string).
+ ///
+ /// A Twine is not intended for use directly and should not be stored, its
+ /// implementation relies on the ability to store pointers to temporary stack
+ /// objects which may be deallocated at the end of a statement. Twines should
+ /// only be used accepted as const references in arguments, when an API wishes
+ /// to accept possibly-concatenated strings.
+ ///
+ /// Twines support a special 'null' value, which always concatenates to form
+ /// itself, and renders as an empty string. This can be returned from APIs to
+ /// effectively nullify any concatenations performed on the result.
+ ///
+ /// \b Implementation
+ ///
+ /// Given the nature of a Twine, it is not possible for the Twine's
+ /// concatenation method to construct interior nodes; the result must be
+ /// represented inside the returned value. For this reason a Twine object
+ /// actually holds two values, the left- and right-hand sides of a
+ /// concatenation. We also have nullary Twine objects, which are effectively
+ /// sentinel values that represent empty strings.
+ ///
+ /// Thus, a Twine can effectively have zero, one, or two children. The \see
+ /// isNullary(), \see isUnary(), and \see isBinary() predicates exist for
+ /// testing the number of children.
+ ///
+ /// We maintain a number of invariants on Twine objects (FIXME: Why):
+ /// - Nullary twines are always represented with their Kind on the left-hand
+ /// side, and the Empty kind on the right-hand side.
+ /// - Unary twines are always represented with the value on the left-hand
+ /// side, and the Empty kind on the right-hand side.
+ /// - If a Twine has another Twine as a child, that child should always be
+ /// binary (otherwise it could have been folded into the parent).
+ ///
+ /// These invariants are check by \see isValid().
+ ///
+ /// \b Efficiency Considerations
+ ///
+ /// The Twine is designed to yield efficient and small code for common
+ /// situations. For this reason, the concat() method is inlined so that
+ /// concatenations of leaf nodes can be optimized into stores directly into a
+ /// single stack allocated object.
+ ///
+ /// In practice, not all compilers can be trusted to optimize concat() fully,
+ /// so we provide two additional methods (and accompanying operator+
+ /// overloads) to guarantee that particularly important cases (cstring plus
+ /// StringRef) codegen as desired.
+ class Twine {
+ /// NodeKind - Represent the type of an argument.
+ enum NodeKind : unsigned char {
+ /// An empty string; the result of concatenating anything with it is also
+ /// empty.
+ NullKind,
+
+ /// The empty string.
+ EmptyKind,
+
+ /// A pointer to a Twine instance.
+ TwineKind,
+
+ /// A pointer to a C string instance.
+ CStringKind,
+
+ /// A pointer to an std::string instance.
+ StdStringKind,
+
+ /// A pointer to a StringRef instance.
+ StringRefKind,
+
+ /// A pointer to a SmallString instance.
+ SmallStringKind,
+
+ /// A pointer to a formatv_object_base instance.
+ FormatvObjectKind,
+
+ /// A char value, to render as a character.
+ CharKind,
+
+ /// An unsigned int value, to render as an unsigned decimal integer.
+ DecUIKind,
+
+ /// An int value, to render as a signed decimal integer.
+ DecIKind,
+
+ /// A pointer to an unsigned long value, to render as an unsigned decimal
+ /// integer.
+ DecULKind,
+
+ /// A pointer to a long value, to render as a signed decimal integer.
+ DecLKind,
+
+ /// A pointer to an unsigned long long value, to render as an unsigned
+ /// decimal integer.
+ DecULLKind,
+
+ /// A pointer to a long long value, to render as a signed decimal integer.
+ DecLLKind,
+
+ /// A pointer to a uint64_t value, to render as an unsigned hexadecimal
+ /// integer.
+ UHexKind
+ };
+
+ union Child
+ {
+ const Twine *twine;
+ const char *cString;
+ const std::string *stdString;
+ const StringRef *stringRef;
+ const SmallVectorImpl<char> *smallString;
+ const formatv_object_base *formatvObject;
+ char character;
+ unsigned int decUI;
+ int decI;
+ const unsigned long *decUL;
+ const long *decL;
+ const unsigned long long *decULL;
+ const long long *decLL;
+ const uint64_t *uHex;
+ };
+
+ /// LHS - The prefix in the concatenation, which may be uninitialized for
+ /// Null or Empty kinds.
+ Child LHS = {0};
+
+ /// RHS - The suffix in the concatenation, which may be uninitialized for
+ /// Null or Empty kinds.
+ Child RHS = {0};
+
+ /// LHSKind - The NodeKind of the left hand side, \see getLHSKind().
+ NodeKind LHSKind = EmptyKind;
+
+ /// RHSKind - The NodeKind of the right hand side, \see getRHSKind().
+ NodeKind RHSKind = EmptyKind;
+
+ /// Construct a nullary twine; the kind must be NullKind or EmptyKind.
+ explicit Twine(NodeKind Kind) : LHSKind(Kind) {
+ assert(isNullary() && "Invalid kind!");
+ }
+
+ /// Construct a binary twine.
+ explicit Twine(const Twine &LHS, const Twine &RHS)
+ : LHSKind(TwineKind), RHSKind(TwineKind) {
+ this->LHS.twine = &LHS;
+ this->RHS.twine = &RHS;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct a twine from explicit values.
+ explicit Twine(Child LHS, NodeKind LHSKind, Child RHS, NodeKind RHSKind)
+ : LHS(LHS), RHS(RHS), LHSKind(LHSKind), RHSKind(RHSKind) {
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Check for the null twine.
+ bool isNull() const {
+ return getLHSKind() == NullKind;
+ }
+
+ /// Check for the empty twine.
+ bool isEmpty() const {
+ return getLHSKind() == EmptyKind;
+ }
+
+ /// Check if this is a nullary twine (null or empty).
+ bool isNullary() const {
+ return isNull() || isEmpty();
+ }
+
+ /// Check if this is a unary twine.
+ bool isUnary() const {
+ return getRHSKind() == EmptyKind && !isNullary();
+ }
+
+ /// Check if this is a binary twine.
+ bool isBinary() const {
+ return getLHSKind() != NullKind && getRHSKind() != EmptyKind;
+ }
+
+ /// Check if this is a valid twine (satisfying the invariants on
+ /// order and number of arguments).
+ bool isValid() const {
+ // Nullary twines always have Empty on the RHS.
+ if (isNullary() && getRHSKind() != EmptyKind)
+ return false;
+
+ // Null should never appear on the RHS.
+ if (getRHSKind() == NullKind)
+ return false;
+
+ // The RHS cannot be non-empty if the LHS is empty.
+ if (getRHSKind() != EmptyKind && getLHSKind() == EmptyKind)
+ return false;
+
+ // A twine child should always be binary.
+ if (getLHSKind() == TwineKind &&
+ !LHS.twine->isBinary())
+ return false;
+ if (getRHSKind() == TwineKind &&
+ !RHS.twine->isBinary())
+ return false;
+
+ return true;
+ }
+
+ /// Get the NodeKind of the left-hand side.
+ NodeKind getLHSKind() const { return LHSKind; }
+
+ /// Get the NodeKind of the right-hand side.
+ NodeKind getRHSKind() const { return RHSKind; }
+
+ /// Print one child from a twine.
+ void printOneChild(raw_ostream &OS, Child Ptr, NodeKind Kind) const;
+
+ /// Print the representation of one child from a twine.
+ void printOneChildRepr(raw_ostream &OS, Child Ptr,
+ NodeKind Kind) const;
+
+ public:
+ /// @name Constructors
+ /// @{
+
+ /// Construct from an empty string.
+ /*implicit*/ Twine() {
+ assert(isValid() && "Invalid twine!");
+ }
+
+ Twine(const Twine &) = default;
+
+ /// Construct from a C string.
+ ///
+ /// We take care here to optimize "" into the empty twine -- this will be
+ /// optimized out for string constants. This allows Twine arguments have
+ /// default "" values, without introducing unnecessary string constants.
+ /*implicit*/ Twine(const char *Str) {
+ if (Str[0] != '\0') {
+ LHS.cString = Str;
+ LHSKind = CStringKind;
+ } else
+ LHSKind = EmptyKind;
+
+ assert(isValid() && "Invalid twine!");
+ }
+ /// Delete the implicit conversion from nullptr as Twine(const char *)
+ /// cannot take nullptr.
+ /*implicit*/ Twine(std::nullptr_t) = delete;
+
+ /// Construct from an std::string.
+ /*implicit*/ Twine(const std::string &Str) : LHSKind(StdStringKind) {
+ LHS.stdString = &Str;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct from a StringRef.
+ /*implicit*/ Twine(const StringRef &Str) : LHSKind(StringRefKind) {
+ LHS.stringRef = &Str;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct from a SmallString.
+ /*implicit*/ Twine(const SmallVectorImpl<char> &Str)
+ : LHSKind(SmallStringKind) {
+ LHS.smallString = &Str;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct from a formatv_object_base.
+ /*implicit*/ Twine(const formatv_object_base &Fmt)
+ : LHSKind(FormatvObjectKind) {
+ LHS.formatvObject = &Fmt;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct from a char.
+ explicit Twine(char Val) : LHSKind(CharKind) {
+ LHS.character = Val;
+ }
+
+ /// Construct from a signed char.
+ explicit Twine(signed char Val) : LHSKind(CharKind) {
+ LHS.character = static_cast<char>(Val);
+ }
+
+ /// Construct from an unsigned char.
+ explicit Twine(unsigned char Val) : LHSKind(CharKind) {
+ LHS.character = static_cast<char>(Val);
+ }
+
+ /// Construct a twine to print \p Val as an unsigned decimal integer.
+ explicit Twine(unsigned Val) : LHSKind(DecUIKind) {
+ LHS.decUI = Val;
+ }
+
+ /// Construct a twine to print \p Val as a signed decimal integer.
+ explicit Twine(int Val) : LHSKind(DecIKind) {
+ LHS.decI = Val;
+ }
+
+ /// Construct a twine to print \p Val as an unsigned decimal integer.
+ explicit Twine(const unsigned long &Val) : LHSKind(DecULKind) {
+ LHS.decUL = &Val;
+ }
+
+ /// Construct a twine to print \p Val as a signed decimal integer.
+ explicit Twine(const long &Val) : LHSKind(DecLKind) {
+ LHS.decL = &Val;
+ }
+
+ /// Construct a twine to print \p Val as an unsigned decimal integer.
+ explicit Twine(const unsigned long long &Val) : LHSKind(DecULLKind) {
+ LHS.decULL = &Val;
+ }
+
+ /// Construct a twine to print \p Val as a signed decimal integer.
+ explicit Twine(const long long &Val) : LHSKind(DecLLKind) {
+ LHS.decLL = &Val;
+ }
+
+ // FIXME: Unfortunately, to make sure this is as efficient as possible we
+ // need extra binary constructors from particular types. We can't rely on
+ // the compiler to be smart enough to fold operator+()/concat() down to the
+ // right thing. Yet.
+
+ /// Construct as the concatenation of a C string and a StringRef.
+ /*implicit*/ Twine(const char *LHS, const StringRef &RHS)
+ : LHSKind(CStringKind), RHSKind(StringRefKind) {
+ this->LHS.cString = LHS;
+ this->RHS.stringRef = &RHS;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Construct as the concatenation of a StringRef and a C string.
+ /*implicit*/ Twine(const StringRef &LHS, const char *RHS)
+ : LHSKind(StringRefKind), RHSKind(CStringKind) {
+ this->LHS.stringRef = &LHS;
+ this->RHS.cString = RHS;
+ assert(isValid() && "Invalid twine!");
+ }
+
+ /// Since the intended use of twines is as temporary objects, assignments
+ /// when concatenating might cause undefined behavior or stack corruptions
+ Twine &operator=(const Twine &) = delete;
+
+ /// Create a 'null' string, which is an empty string that always
+ /// concatenates to form another empty string.
+ static Twine createNull() {
+ return Twine(NullKind);
+ }
+
+ /// @}
+ /// @name Numeric Conversions
+ /// @{
+
+ // Construct a twine to print \p Val as an unsigned hexadecimal integer.
+ static Twine utohexstr(const uint64_t &Val) {
+ Child LHS, RHS;
+ LHS.uHex = &Val;
+ RHS.twine = nullptr;
+ return Twine(LHS, UHexKind, RHS, EmptyKind);
+ }
+
+ /// @}
+ /// @name Predicate Operations
+ /// @{
+
+ /// Check if this twine is trivially empty; a false return value does not
+ /// necessarily mean the twine is empty.
+ bool isTriviallyEmpty() const {
+ return isNullary();
+ }
+
+ /// Return true if this twine can be dynamically accessed as a single
+ /// StringRef value with getSingleStringRef().
+ bool isSingleStringRef() const {
+ if (getRHSKind() != EmptyKind) return false;
+
+ switch (getLHSKind()) {
+ case EmptyKind:
+ case CStringKind:
+ case StdStringKind:
+ case StringRefKind:
+ case SmallStringKind:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ /// @}
+ /// @name String Operations
+ /// @{
+
+ Twine concat(const Twine &Suffix) const;
+
+ /// @}
+ /// @name Output & Conversion.
+ /// @{
+
+ /// Return the twine contents as a std::string.
+ std::string str() const;
+
+ /// Append the concatenated string into the given SmallString or SmallVector.
+ void toVector(SmallVectorImpl<char> &Out) const;
+
+ /// This returns the twine as a single StringRef. This method is only valid
+ /// if isSingleStringRef() is true.
+ StringRef getSingleStringRef() const {
+ assert(isSingleStringRef() &&"This cannot be had as a single stringref!");
+ switch (getLHSKind()) {
+ default: llvm_unreachable("Out of sync with isSingleStringRef");
+ case EmptyKind: return StringRef();
+ case CStringKind: return StringRef(LHS.cString);
+ case StdStringKind: return StringRef(*LHS.stdString);
+ case StringRefKind: return *LHS.stringRef;
+ case SmallStringKind:
+ return StringRef(LHS.smallString->data(), LHS.smallString->size());
+ }
+ }
+
+ /// This returns the twine as a single StringRef if it can be
+ /// represented as such. Otherwise the twine is written into the given
+ /// SmallVector and a StringRef to the SmallVector's data is returned.
+ StringRef toStringRef(SmallVectorImpl<char> &Out) const {
+ if (isSingleStringRef())
+ return getSingleStringRef();
+ toVector(Out);
+ return StringRef(Out.data(), Out.size());
+ }
+
+ /// This returns the twine as a single null terminated StringRef if it
+ /// can be represented as such. Otherwise the twine is written into the
+ /// given SmallVector and a StringRef to the SmallVector's data is returned.
+ ///
+ /// The returned StringRef's size does not include the null terminator.
+ StringRef toNullTerminatedStringRef(SmallVectorImpl<char> &Out) const;
+
+ /// Write the concatenated string represented by this twine to the
+ /// stream \p OS.
+ void print(raw_ostream &OS) const;
+
+ /// Dump the concatenated string represented by this twine to stderr.
+ void dump() const;
+
+ /// Write the representation of this twine to the stream \p OS.
+ void printRepr(raw_ostream &OS) const;
+
+ /// Dump the representation of this twine to stderr.
+ void dumpRepr() const;
+
+ /// @}
+ };
+
+ /// @name Twine Inline Implementations
+ /// @{
+
+ inline Twine Twine::concat(const Twine &Suffix) const {
+ // Concatenation with null is null.
+ if (isNull() || Suffix.isNull())
+ return Twine(NullKind);
+
+ // Concatenation with empty yields the other side.
+ if (isEmpty())
+ return Suffix;
+ if (Suffix.isEmpty())
+ return *this;
+
+ // Otherwise we need to create a new node, taking care to fold in unary
+ // twines.
+ Child NewLHS, NewRHS;
+ NewLHS.twine = this;
+ NewRHS.twine = &Suffix;
+ NodeKind NewLHSKind = TwineKind, NewRHSKind = TwineKind;
+ if (isUnary()) {
+ NewLHS = LHS;
+ NewLHSKind = getLHSKind();
+ }
+ if (Suffix.isUnary()) {
+ NewRHS = Suffix.LHS;
+ NewRHSKind = Suffix.getLHSKind();
+ }
+
+ return Twine(NewLHS, NewLHSKind, NewRHS, NewRHSKind);
+ }
+
+ inline Twine operator+(const Twine &LHS, const Twine &RHS) {
+ return LHS.concat(RHS);
+ }
+
+ /// Additional overload to guarantee simplified codegen; this is equivalent to
+ /// concat().
+
+ inline Twine operator+(const char *LHS, const StringRef &RHS) {
+ return Twine(LHS, RHS);
+ }
+
+ /// Additional overload to guarantee simplified codegen; this is equivalent to
+ /// concat().
+
+ inline Twine operator+(const StringRef &LHS, const char *RHS) {
+ return Twine(LHS, RHS);
+ }
+
+ inline raw_ostream &operator<<(raw_ostream &OS, const Twine &RHS) {
+ RHS.print(OS);
+ return OS;
+ }
+
+ /// @}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_TWINE_H
diff --git a/third_party/llvm-project/include/llvm/ADT/bit.h b/third_party/llvm-project/include/llvm/ADT/bit.h
new file mode 100644
index 000000000..a790d5ed2
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/bit.h
@@ -0,0 +1,58 @@
+//===-- llvm/ADT/bit.h - C++20 <bit> ----------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++20 <bit> header.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_BIT_H
+#define LLVM_ADT_BIT_H
+
+#include "llvm/Support/Compiler.h"
+#include <cstring>
+#include <type_traits>
+
+namespace llvm {
+
+// This implementation of bit_cast is different from the C++17 one in two ways:
+// - It isn't constexpr because that requires compiler support.
+// - It requires trivially-constructible To, to avoid UB in the implementation.
+template <typename To, typename From
+ , typename = typename std::enable_if<sizeof(To) == sizeof(From)>::type
+#if (__has_feature(is_trivially_constructible) && defined(_LIBCPP_VERSION)) || \
+ (defined(__GNUC__) && __GNUC__ >= 5)
+ , typename = typename std::is_trivially_constructible<To>::type
+#elif __has_feature(is_trivially_constructible)
+ , typename = typename std::enable_if<__is_trivially_constructible(To)>::type
+#else
+ // See comment below.
+#endif
+#if (__has_feature(is_trivially_copyable) && defined(_LIBCPP_VERSION)) || \
+ (defined(__GNUC__) && __GNUC__ >= 5)
+ , typename = typename std::enable_if<std::is_trivially_copyable<To>::value>::type
+ , typename = typename std::enable_if<std::is_trivially_copyable<From>::value>::type
+#elif __has_feature(is_trivially_copyable)
+ , typename = typename std::enable_if<__is_trivially_copyable(To)>::type
+ , typename = typename std::enable_if<__is_trivially_copyable(From)>::type
+#else
+// This case is GCC 4.x. clang with libc++ or libstdc++ never get here. Unlike
+// llvm/Support/type_traits.h's is_trivially_copyable we don't want to
+// provide a good-enough answer here: developers in that configuration will hit
+// compilation failures on the bots instead of locally. That's acceptable
+// because it's very few developers, and only until we move past C++11.
+#endif
+>
+inline To bit_cast(const From &from) noexcept {
+ To to;
+ std::memcpy(&to, &from, sizeof(To));
+ return to;
+}
+
+} // namespace llvm
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/edit_distance.h b/third_party/llvm-project/include/llvm/ADT/edit_distance.h
new file mode 100644
index 000000000..4f5134008
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/edit_distance.h
@@ -0,0 +1,102 @@
+//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a Levenshtein distance function that works for any two
+// sequences, with each element of each sequence being analogous to a character
+// in a string.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_EDIT_DISTANCE_H
+#define LLVM_ADT_EDIT_DISTANCE_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include <algorithm>
+#include <memory>
+
+namespace llvm {
+
+/// Determine the edit distance between two sequences.
+///
+/// \param FromArray the first sequence to compare.
+///
+/// \param ToArray the second sequence to compare.
+///
+/// \param AllowReplacements whether to allow element replacements (change one
+/// element into another) as a single operation, rather than as two operations
+/// (an insertion and a removal).
+///
+/// \param MaxEditDistance If non-zero, the maximum edit distance that this
+/// routine is allowed to compute. If the edit distance will exceed that
+/// maximum, returns \c MaxEditDistance+1.
+///
+/// \returns the minimum number of element insertions, removals, or (if
+/// \p AllowReplacements is \c true) replacements needed to transform one of
+/// the given sequences into the other. If zero, the sequences are identical.
+template<typename T>
+unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
+ bool AllowReplacements = true,
+ unsigned MaxEditDistance = 0) {
+ // The algorithm implemented below is the "classic"
+ // dynamic-programming algorithm for computing the Levenshtein
+ // distance, which is described here:
+ //
+ // http://en.wikipedia.org/wiki/Levenshtein_distance
+ //
+ // Although the algorithm is typically described using an m x n
+ // array, only one row plus one element are used at a time, so this
+ // implementation just keeps one vector for the row. To update one entry,
+ // only the entries to the left, top, and top-left are needed. The left
+ // entry is in Row[x-1], the top entry is what's in Row[x] from the last
+ // iteration, and the top-left entry is stored in Previous.
+ typename ArrayRef<T>::size_type m = FromArray.size();
+ typename ArrayRef<T>::size_type n = ToArray.size();
+
+ const unsigned SmallBufferSize = 64;
+ unsigned SmallBuffer[SmallBufferSize];
+ std::unique_ptr<unsigned[]> Allocated;
+ unsigned *Row = SmallBuffer;
+ if (n + 1 > SmallBufferSize) {
+ Row = new unsigned[n + 1];
+ Allocated.reset(Row);
+ }
+
+ for (unsigned i = 1; i <= n; ++i)
+ Row[i] = i;
+
+ for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
+ Row[0] = y;
+ unsigned BestThisRow = Row[0];
+
+ unsigned Previous = y - 1;
+ for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
+ int OldRow = Row[x];
+ if (AllowReplacements) {
+ Row[x] = std::min(
+ Previous + (FromArray[y-1] == ToArray[x-1] ? 0u : 1u),
+ std::min(Row[x-1], Row[x])+1);
+ }
+ else {
+ if (FromArray[y-1] == ToArray[x-1]) Row[x] = Previous;
+ else Row[x] = std::min(Row[x-1], Row[x]) + 1;
+ }
+ Previous = OldRow;
+ BestThisRow = std::min(BestThisRow, Row[x]);
+ }
+
+ if (MaxEditDistance && BestThisRow > MaxEditDistance)
+ return MaxEditDistance + 1;
+ }
+
+ unsigned Result = Row[n];
+ return Result;
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/fallible_iterator.h b/third_party/llvm-project/include/llvm/ADT/fallible_iterator.h
new file mode 100644
index 000000000..6501ad223
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/fallible_iterator.h
@@ -0,0 +1,243 @@
+//===--- fallible_iterator.h - Wrapper for fallible iterators ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_FALLIBLE_ITERATOR_H
+#define LLVM_ADT_FALLIBLE_ITERATOR_H
+
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Support/Error.h"
+
+#include <type_traits>
+
+namespace llvm {
+
+/// A wrapper class for fallible iterators.
+///
+/// The fallible_iterator template wraps an underlying iterator-like class
+/// whose increment and decrement operations are replaced with fallible versions
+/// like:
+///
+/// @code{.cpp}
+/// Error inc();
+/// Error dec();
+/// @endcode
+///
+/// It produces an interface that is (mostly) compatible with a traditional
+/// c++ iterator, including ++ and -- operators that do not fail.
+///
+/// Instances of the wrapper are constructed with an instance of the
+/// underlying iterator and (for non-end iterators) a reference to an Error
+/// instance. If the underlying increment/decrement operations fail, the Error
+/// is returned via this reference, and the resulting iterator value set to an
+/// end-of-range sentinel value. This enables the following loop idiom:
+///
+/// @code{.cpp}
+/// class Archive { // E.g. Potentially malformed on-disk archive
+/// public:
+/// fallible_iterator<ArchiveChildItr> children_begin(Error &Err);
+/// fallible_iterator<ArchiveChildItr> children_end();
+/// iterator_range<fallible_iterator<ArchiveChildItr>>
+/// children(Error &Err) {
+/// return make_range(children_begin(Err), children_end());
+/// //...
+/// };
+///
+/// void walk(Archive &A) {
+/// Error Err = Error::success();
+/// for (auto &C : A.children(Err)) {
+/// // Loop body only entered when increment succeeds.
+/// }
+/// if (Err) {
+/// // handle error.
+/// }
+/// }
+/// @endcode
+///
+/// The wrapper marks the referenced Error as unchecked after each increment
+/// and/or decrement operation, and clears the unchecked flag when a non-end
+/// value is compared against end (since, by the increment invariant, not being
+/// an end value proves that there was no error, and is equivalent to checking
+/// that the Error is success). This allows early exits from the loop body
+/// without requiring redundant error checks.
+template <typename Underlying> class fallible_iterator {
+private:
+ template <typename T>
+ using enable_if_struct_deref_supported = std::enable_if<
+ !std::is_void<decltype(std::declval<T>().operator->())>::value,
+ decltype(std::declval<T>().operator->())>;
+
+public:
+ /// Construct a fallible iterator that *cannot* be used as an end-of-range
+ /// value.
+ ///
+ /// A value created by this method can be dereferenced, incremented,
+ /// decremented and compared, providing the underlying type supports it.
+ ///
+ /// The error that is passed in will be initially marked as checked, so if the
+ /// iterator is not used at all the Error need not be checked.
+ static fallible_iterator itr(Underlying I, Error &Err) {
+ (void)!!Err;
+ return fallible_iterator(std::move(I), &Err);
+ }
+
+ /// Construct a fallible iteratro that can be used as an end-of-range value.
+ ///
+ /// A value created by this method can be dereferenced (if the underlying
+ /// value points at a valid value) and compared, but not incremented or
+ /// decremented.
+ static fallible_iterator end(Underlying I) {
+ return fallible_iterator(std::move(I), nullptr);
+ }
+
+ /// Forward dereference to the underlying iterator.
+ auto operator*() -> decltype(*std::declval<Underlying>()) { return *I; }
+
+ /// Forward const dereference to the underlying iterator.
+ auto operator*() const -> decltype(*std::declval<const Underlying>()) {
+ return *I;
+ }
+
+ /// Forward structure dereference to the underlying iterator (if the
+ /// underlying iterator supports it).
+ template <typename T = Underlying>
+ typename enable_if_struct_deref_supported<T>::type operator->() {
+ return I.operator->();
+ }
+
+ /// Forward const structure dereference to the underlying iterator (if the
+ /// underlying iterator supports it).
+ template <typename T = Underlying>
+ typename enable_if_struct_deref_supported<const T>::type operator->() const {
+ return I.operator->();
+ }
+
+ /// Increment the fallible iterator.
+ ///
+ /// If the underlying 'inc' operation fails, this will set the Error value
+ /// and update this iterator value to point to end-of-range.
+ ///
+ /// The Error value is marked as needing checking, regardless of whether the
+ /// 'inc' operation succeeds or fails.
+ fallible_iterator &operator++() {
+ assert(getErrPtr() && "Cannot increment end iterator");
+ if (auto Err = I.inc())
+ handleError(std::move(Err));
+ else
+ resetCheckedFlag();
+ return *this;
+ }
+
+ /// Decrement the fallible iterator.
+ ///
+ /// If the underlying 'dec' operation fails, this will set the Error value
+ /// and update this iterator value to point to end-of-range.
+ ///
+ /// The Error value is marked as needing checking, regardless of whether the
+ /// 'dec' operation succeeds or fails.
+ fallible_iterator &operator--() {
+ assert(getErrPtr() && "Cannot decrement end iterator");
+ if (auto Err = I.dec())
+ handleError(std::move(Err));
+ else
+ resetCheckedFlag();
+ return *this;
+ }
+
+ /// Compare fallible iterators for equality.
+ ///
+ /// Returns true if both LHS and RHS are end-of-range values, or if both are
+ /// non-end-of-range values whose underlying iterator values compare equal.
+ ///
+ /// If this is a comparison between an end-of-range iterator and a
+ /// non-end-of-range iterator, then the Error (referenced by the
+ /// non-end-of-range value) is marked as checked: Since all
+ /// increment/decrement operations result in an end-of-range value, comparing
+ /// false against end-of-range is equivalent to checking that the Error value
+ /// is success. This flag management enables early returns from loop bodies
+ /// without redundant Error checks.
+ friend bool operator==(const fallible_iterator &LHS,
+ const fallible_iterator &RHS) {
+ // If both iterators are in the end state they compare
+ // equal, regardless of whether either is valid.
+ if (LHS.isEnd() && RHS.isEnd())
+ return true;
+
+ assert(LHS.isValid() && RHS.isValid() &&
+ "Invalid iterators can only be compared against end");
+
+ bool Equal = LHS.I == RHS.I;
+
+ // If the iterators differ and this is a comparison against end then mark
+ // the Error as checked.
+ if (!Equal) {
+ if (LHS.isEnd())
+ (void)!!*RHS.getErrPtr();
+ else
+ (void)!!*LHS.getErrPtr();
+ }
+
+ return Equal;
+ }
+
+ /// Compare fallible iterators for inequality.
+ ///
+ /// See notes for operator==.
+ friend bool operator!=(const fallible_iterator &LHS,
+ const fallible_iterator &RHS) {
+ return !(LHS == RHS);
+ }
+
+private:
+ fallible_iterator(Underlying I, Error *Err)
+ : I(std::move(I)), ErrState(Err, false) {}
+
+ Error *getErrPtr() const { return ErrState.getPointer(); }
+
+ bool isEnd() const { return getErrPtr() == nullptr; }
+
+ bool isValid() const { return !ErrState.getInt(); }
+
+ void handleError(Error Err) {
+ *getErrPtr() = std::move(Err);
+ ErrState.setPointer(nullptr);
+ ErrState.setInt(true);
+ }
+
+ void resetCheckedFlag() {
+ *getErrPtr() = Error::success();
+ }
+
+ Underlying I;
+ mutable PointerIntPair<Error *, 1> ErrState;
+};
+
+/// Convenience wrapper to make a fallible_iterator value from an instance
+/// of an underlying iterator and an Error reference.
+template <typename Underlying>
+fallible_iterator<Underlying> make_fallible_itr(Underlying I, Error &Err) {
+ return fallible_iterator<Underlying>::itr(std::move(I), Err);
+}
+
+/// Convenience wrapper to make a fallible_iterator end value from an instance
+/// of an underlying iterator.
+template <typename Underlying>
+fallible_iterator<Underlying> make_fallible_end(Underlying E) {
+ return fallible_iterator<Underlying>::end(std::move(E));
+}
+
+template <typename Underlying>
+iterator_range<fallible_iterator<Underlying>>
+make_fallible_range(Underlying I, Underlying E, Error &Err) {
+ return make_range(make_fallible_itr(std::move(I), Err),
+ make_fallible_end(std::move(E)));
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_FALLIBLE_ITERATOR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ilist_base.h b/third_party/llvm-project/include/llvm/ADT/ilist_base.h
new file mode 100644
index 000000000..b8c098b95
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ilist_base.h
@@ -0,0 +1,92 @@
+//===- llvm/ADT/ilist_base.h - Intrusive List Base --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ILIST_BASE_H
+#define LLVM_ADT_ILIST_BASE_H
+
+#include "llvm/ADT/ilist_node_base.h"
+#include <cassert>
+
+namespace llvm {
+
+/// Implementations of list algorithms using ilist_node_base.
+template <bool EnableSentinelTracking> class ilist_base {
+public:
+ using node_base_type = ilist_node_base<EnableSentinelTracking>;
+
+ static void insertBeforeImpl(node_base_type &Next, node_base_type &N) {
+ node_base_type &Prev = *Next.getPrev();
+ N.setNext(&Next);
+ N.setPrev(&Prev);
+ Prev.setNext(&N);
+ Next.setPrev(&N);
+ }
+
+ static void removeImpl(node_base_type &N) {
+ node_base_type *Prev = N.getPrev();
+ node_base_type *Next = N.getNext();
+ Next->setPrev(Prev);
+ Prev->setNext(Next);
+
+ // Not strictly necessary, but helps catch a class of bugs.
+ N.setPrev(nullptr);
+ N.setNext(nullptr);
+ }
+
+ static void removeRangeImpl(node_base_type &First, node_base_type &Last) {
+ node_base_type *Prev = First.getPrev();
+ node_base_type *Final = Last.getPrev();
+ Last.setPrev(Prev);
+ Prev->setNext(&Last);
+
+ // Not strictly necessary, but helps catch a class of bugs.
+ First.setPrev(nullptr);
+ Final->setNext(nullptr);
+ }
+
+ static void transferBeforeImpl(node_base_type &Next, node_base_type &First,
+ node_base_type &Last) {
+ if (&Next == &Last || &First == &Last)
+ return;
+
+ // Position cannot be contained in the range to be transferred.
+ assert(&Next != &First &&
+ // Check for the most common mistake.
+ "Insertion point can't be one of the transferred nodes");
+
+ node_base_type &Final = *Last.getPrev();
+
+ // Detach from old list/position.
+ First.getPrev()->setNext(&Last);
+ Last.setPrev(First.getPrev());
+
+ // Splice [First, Final] into its new list/position.
+ node_base_type &Prev = *Next.getPrev();
+ Final.setNext(&Next);
+ First.setPrev(&Prev);
+ Prev.setNext(&First);
+ Next.setPrev(&Final);
+ }
+
+ template <class T> static void insertBefore(T &Next, T &N) {
+ insertBeforeImpl(Next, N);
+ }
+
+ template <class T> static void remove(T &N) { removeImpl(N); }
+ template <class T> static void removeRange(T &First, T &Last) {
+ removeRangeImpl(First, Last);
+ }
+
+ template <class T> static void transferBefore(T &Next, T &First, T &Last) {
+ transferBeforeImpl(Next, First, Last);
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ILIST_BASE_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ilist_iterator.h b/third_party/llvm-project/include/llvm/ADT/ilist_iterator.h
new file mode 100644
index 000000000..cbe5cefa9
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ilist_iterator.h
@@ -0,0 +1,198 @@
+//===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ILIST_ITERATOR_H
+#define LLVM_ADT_ILIST_ITERATOR_H
+
+#include "llvm/ADT/ilist_node.h"
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <type_traits>
+
+namespace llvm {
+
+namespace ilist_detail {
+
+/// Find const-correct node types.
+template <class OptionsT, bool IsConst> struct IteratorTraits;
+template <class OptionsT> struct IteratorTraits<OptionsT, false> {
+ using value_type = typename OptionsT::value_type;
+ using pointer = typename OptionsT::pointer;
+ using reference = typename OptionsT::reference;
+ using node_pointer = ilist_node_impl<OptionsT> *;
+ using node_reference = ilist_node_impl<OptionsT> &;
+};
+template <class OptionsT> struct IteratorTraits<OptionsT, true> {
+ using value_type = const typename OptionsT::value_type;
+ using pointer = typename OptionsT::const_pointer;
+ using reference = typename OptionsT::const_reference;
+ using node_pointer = const ilist_node_impl<OptionsT> *;
+ using node_reference = const ilist_node_impl<OptionsT> &;
+};
+
+template <bool IsReverse> struct IteratorHelper;
+template <> struct IteratorHelper<false> : ilist_detail::NodeAccess {
+ using Access = ilist_detail::NodeAccess;
+
+ template <class T> static void increment(T *&I) { I = Access::getNext(*I); }
+ template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); }
+};
+template <> struct IteratorHelper<true> : ilist_detail::NodeAccess {
+ using Access = ilist_detail::NodeAccess;
+
+ template <class T> static void increment(T *&I) { I = Access::getPrev(*I); }
+ template <class T> static void decrement(T *&I) { I = Access::getNext(*I); }
+};
+
+} // end namespace ilist_detail
+
+/// Iterator for intrusive lists based on ilist_node.
+template <class OptionsT, bool IsReverse, bool IsConst>
+class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> {
+ friend ilist_iterator<OptionsT, IsReverse, !IsConst>;
+ friend ilist_iterator<OptionsT, !IsReverse, IsConst>;
+ friend ilist_iterator<OptionsT, !IsReverse, !IsConst>;
+
+ using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>;
+ using Access = ilist_detail::SpecificNodeAccess<OptionsT>;
+
+public:
+ using value_type = typename Traits::value_type;
+ using pointer = typename Traits::pointer;
+ using reference = typename Traits::reference;
+ using difference_type = ptrdiff_t;
+ using iterator_category = std::bidirectional_iterator_tag;
+ using const_pointer = typename OptionsT::const_pointer;
+ using const_reference = typename OptionsT::const_reference;
+
+private:
+ using node_pointer = typename Traits::node_pointer;
+ using node_reference = typename Traits::node_reference;
+
+ node_pointer NodePtr = nullptr;
+
+public:
+ /// Create from an ilist_node.
+ explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
+
+ explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {}
+ explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {}
+ ilist_iterator() = default;
+
+ // This is templated so that we can allow constructing a const iterator from
+ // a nonconst iterator...
+ template <bool RHSIsConst>
+ ilist_iterator(
+ const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
+ typename std::enable_if<IsConst || !RHSIsConst, void *>::type = nullptr)
+ : NodePtr(RHS.NodePtr) {}
+
+ // This is templated so that we can allow assigning to a const iterator from
+ // a nonconst iterator...
+ template <bool RHSIsConst>
+ typename std::enable_if<IsConst || !RHSIsConst, ilist_iterator &>::type
+ operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
+ NodePtr = RHS.NodePtr;
+ return *this;
+ }
+
+ /// Explicit conversion between forward/reverse iterators.
+ ///
+ /// Translate between forward and reverse iterators without changing range
+ /// boundaries. The resulting iterator will dereference (and have a handle)
+ /// to the previous node, which is somewhat unexpected; but converting the
+ /// two endpoints in a range will give the same range in reverse.
+ ///
+ /// This matches std::reverse_iterator conversions.
+ explicit ilist_iterator(
+ const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS)
+ : ilist_iterator(++RHS.getReverse()) {}
+
+ /// Get a reverse iterator to the same node.
+ ///
+ /// Gives a reverse iterator that will dereference (and have a handle) to the
+ /// same node. Converting the endpoint iterators in a range will give a
+ /// different range; for range operations, use the explicit conversions.
+ ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const {
+ if (NodePtr)
+ return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr);
+ return ilist_iterator<OptionsT, !IsReverse, IsConst>();
+ }
+
+ /// Const-cast.
+ ilist_iterator<OptionsT, IsReverse, false> getNonConst() const {
+ if (NodePtr)
+ return ilist_iterator<OptionsT, IsReverse, false>(
+ const_cast<typename ilist_iterator<OptionsT, IsReverse,
+ false>::node_reference>(*NodePtr));
+ return ilist_iterator<OptionsT, IsReverse, false>();
+ }
+
+ // Accessors...
+ reference operator*() const {
+ assert(!NodePtr->isKnownSentinel());
+ return *Access::getValuePtr(NodePtr);
+ }
+ pointer operator->() const { return &operator*(); }
+
+ // Comparison operators
+ friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) {
+ return LHS.NodePtr == RHS.NodePtr;
+ }
+ friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) {
+ return LHS.NodePtr != RHS.NodePtr;
+ }
+
+ // Increment and decrement operators...
+ ilist_iterator &operator--() {
+ NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev();
+ return *this;
+ }
+ ilist_iterator &operator++() {
+ NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext();
+ return *this;
+ }
+ ilist_iterator operator--(int) {
+ ilist_iterator tmp = *this;
+ --*this;
+ return tmp;
+ }
+ ilist_iterator operator++(int) {
+ ilist_iterator tmp = *this;
+ ++*this;
+ return tmp;
+ }
+
+ /// Get the underlying ilist_node.
+ node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
+
+ /// Check for end. Only valid if ilist_sentinel_tracking<true>.
+ bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; }
+};
+
+template <typename From> struct simplify_type;
+
+/// Allow ilist_iterators to convert into pointers to a node automatically when
+/// used by the dyn_cast, cast, isa mechanisms...
+///
+/// FIXME: remove this, since there is no implicit conversion to NodeTy.
+template <class OptionsT, bool IsConst>
+struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> {
+ using iterator = ilist_iterator<OptionsT, false, IsConst>;
+ using SimpleType = typename iterator::pointer;
+
+ static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; }
+};
+template <class OptionsT, bool IsConst>
+struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>>
+ : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ILIST_ITERATOR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ilist_node.h b/third_party/llvm-project/include/llvm/ADT/ilist_node.h
new file mode 100644
index 000000000..e040d9630
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ilist_node.h
@@ -0,0 +1,305 @@
+//===- llvm/ADT/ilist_node.h - Intrusive Linked List Helper -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the ilist_node class template, which is a convenient
+// base class for creating classes that can be used with ilists.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ILIST_NODE_H
+#define LLVM_ADT_ILIST_NODE_H
+
+#include "llvm/ADT/ilist_node_base.h"
+#include "llvm/ADT/ilist_node_options.h"
+
+namespace llvm {
+
+namespace ilist_detail {
+
+struct NodeAccess;
+
+} // end namespace ilist_detail
+
+template <class OptionsT, bool IsReverse, bool IsConst> class ilist_iterator;
+template <class OptionsT> class ilist_sentinel;
+
+/// Implementation for an ilist node.
+///
+/// Templated on an appropriate \a ilist_detail::node_options, usually computed
+/// by \a ilist_detail::compute_node_options.
+///
+/// This is a wrapper around \a ilist_node_base whose main purpose is to
+/// provide type safety: you can't insert nodes of \a ilist_node_impl into the
+/// wrong \a simple_ilist or \a iplist.
+template <class OptionsT> class ilist_node_impl : OptionsT::node_base_type {
+ using value_type = typename OptionsT::value_type;
+ using node_base_type = typename OptionsT::node_base_type;
+ using list_base_type = typename OptionsT::list_base_type;
+
+ friend typename OptionsT::list_base_type;
+ friend struct ilist_detail::NodeAccess;
+ friend class ilist_sentinel<OptionsT>;
+ friend class ilist_iterator<OptionsT, false, false>;
+ friend class ilist_iterator<OptionsT, false, true>;
+ friend class ilist_iterator<OptionsT, true, false>;
+ friend class ilist_iterator<OptionsT, true, true>;
+
+protected:
+ using self_iterator = ilist_iterator<OptionsT, false, false>;
+ using const_self_iterator = ilist_iterator<OptionsT, false, true>;
+ using reverse_self_iterator = ilist_iterator<OptionsT, true, false>;
+ using const_reverse_self_iterator = ilist_iterator<OptionsT, true, true>;
+
+ ilist_node_impl() = default;
+
+private:
+ ilist_node_impl *getPrev() {
+ return static_cast<ilist_node_impl *>(node_base_type::getPrev());
+ }
+
+ ilist_node_impl *getNext() {
+ return static_cast<ilist_node_impl *>(node_base_type::getNext());
+ }
+
+ const ilist_node_impl *getPrev() const {
+ return static_cast<ilist_node_impl *>(node_base_type::getPrev());
+ }
+
+ const ilist_node_impl *getNext() const {
+ return static_cast<ilist_node_impl *>(node_base_type::getNext());
+ }
+
+ void setPrev(ilist_node_impl *N) { node_base_type::setPrev(N); }
+ void setNext(ilist_node_impl *N) { node_base_type::setNext(N); }
+
+public:
+ self_iterator getIterator() { return self_iterator(*this); }
+ const_self_iterator getIterator() const { return const_self_iterator(*this); }
+
+ reverse_self_iterator getReverseIterator() {
+ return reverse_self_iterator(*this);
+ }
+
+ const_reverse_self_iterator getReverseIterator() const {
+ return const_reverse_self_iterator(*this);
+ }
+
+ // Under-approximation, but always available for assertions.
+ using node_base_type::isKnownSentinel;
+
+ /// Check whether this is the sentinel node.
+ ///
+ /// This requires sentinel tracking to be explicitly enabled. Use the
+ /// ilist_sentinel_tracking<true> option to get this API.
+ bool isSentinel() const {
+ static_assert(OptionsT::is_sentinel_tracking_explicit,
+ "Use ilist_sentinel_tracking<true> to enable isSentinel()");
+ return node_base_type::isSentinel();
+ }
+};
+
+/// An intrusive list node.
+///
+/// A base class to enable membership in intrusive lists, including \a
+/// simple_ilist, \a iplist, and \a ilist. The first template parameter is the
+/// \a value_type for the list.
+///
+/// An ilist node can be configured with compile-time options to change
+/// behaviour and/or add API.
+///
+/// By default, an \a ilist_node knows whether it is the list sentinel (an
+/// instance of \a ilist_sentinel) if and only if
+/// LLVM_ENABLE_ABI_BREAKING_CHECKS. The function \a isKnownSentinel() always
+/// returns \c false tracking is off. Sentinel tracking steals a bit from the
+/// "prev" link, which adds a mask operation when decrementing an iterator, but
+/// enables bug-finding assertions in \a ilist_iterator.
+///
+/// To turn sentinel tracking on all the time, pass in the
+/// ilist_sentinel_tracking<true> template parameter. This also enables the \a
+/// isSentinel() function. The same option must be passed to the intrusive
+/// list. (ilist_sentinel_tracking<false> turns sentinel tracking off all the
+/// time.)
+///
+/// A type can inherit from ilist_node multiple times by passing in different
+/// \a ilist_tag options. This allows a single instance to be inserted into
+/// multiple lists simultaneously, where each list is given the same tag.
+///
+/// \example
+/// struct A {};
+/// struct B {};
+/// struct N : ilist_node<N, ilist_tag<A>>, ilist_node<N, ilist_tag<B>> {};
+///
+/// void foo() {
+/// simple_ilist<N, ilist_tag<A>> ListA;
+/// simple_ilist<N, ilist_tag<B>> ListB;
+/// N N1;
+/// ListA.push_back(N1);
+/// ListB.push_back(N1);
+/// }
+/// \endexample
+///
+/// See \a is_valid_option for steps on adding a new option.
+template <class T, class... Options>
+class ilist_node
+ : public ilist_node_impl<
+ typename ilist_detail::compute_node_options<T, Options...>::type> {
+ static_assert(ilist_detail::check_options<Options...>::value,
+ "Unrecognized node option!");
+};
+
+namespace ilist_detail {
+
+/// An access class for ilist_node private API.
+///
+/// This gives access to the private parts of ilist nodes. Nodes for an ilist
+/// should friend this class if they inherit privately from ilist_node.
+///
+/// Using this class outside of the ilist implementation is unsupported.
+struct NodeAccess {
+protected:
+ template <class OptionsT>
+ static ilist_node_impl<OptionsT> *getNodePtr(typename OptionsT::pointer N) {
+ return N;
+ }
+
+ template <class OptionsT>
+ static const ilist_node_impl<OptionsT> *
+ getNodePtr(typename OptionsT::const_pointer N) {
+ return N;
+ }
+
+ template <class OptionsT>
+ static typename OptionsT::pointer getValuePtr(ilist_node_impl<OptionsT> *N) {
+ return static_cast<typename OptionsT::pointer>(N);
+ }
+
+ template <class OptionsT>
+ static typename OptionsT::const_pointer
+ getValuePtr(const ilist_node_impl<OptionsT> *N) {
+ return static_cast<typename OptionsT::const_pointer>(N);
+ }
+
+ template <class OptionsT>
+ static ilist_node_impl<OptionsT> *getPrev(ilist_node_impl<OptionsT> &N) {
+ return N.getPrev();
+ }
+
+ template <class OptionsT>
+ static ilist_node_impl<OptionsT> *getNext(ilist_node_impl<OptionsT> &N) {
+ return N.getNext();
+ }
+
+ template <class OptionsT>
+ static const ilist_node_impl<OptionsT> *
+ getPrev(const ilist_node_impl<OptionsT> &N) {
+ return N.getPrev();
+ }
+
+ template <class OptionsT>
+ static const ilist_node_impl<OptionsT> *
+ getNext(const ilist_node_impl<OptionsT> &N) {
+ return N.getNext();
+ }
+};
+
+template <class OptionsT> struct SpecificNodeAccess : NodeAccess {
+protected:
+ using pointer = typename OptionsT::pointer;
+ using const_pointer = typename OptionsT::const_pointer;
+ using node_type = ilist_node_impl<OptionsT>;
+
+ static node_type *getNodePtr(pointer N) {
+ return NodeAccess::getNodePtr<OptionsT>(N);
+ }
+
+ static const node_type *getNodePtr(const_pointer N) {
+ return NodeAccess::getNodePtr<OptionsT>(N);
+ }
+
+ static pointer getValuePtr(node_type *N) {
+ return NodeAccess::getValuePtr<OptionsT>(N);
+ }
+
+ static const_pointer getValuePtr(const node_type *N) {
+ return NodeAccess::getValuePtr<OptionsT>(N);
+ }
+};
+
+} // end namespace ilist_detail
+
+template <class OptionsT>
+class ilist_sentinel : public ilist_node_impl<OptionsT> {
+public:
+ ilist_sentinel() {
+ this->initializeSentinel();
+ reset();
+ }
+
+ void reset() {
+ this->setPrev(this);
+ this->setNext(this);
+ }
+
+ bool empty() const { return this == this->getPrev(); }
+};
+
+/// An ilist node that can access its parent list.
+///
+/// Requires \c NodeTy to have \a getParent() to find the parent node, and the
+/// \c ParentTy to have \a getSublistAccess() to get a reference to the list.
+template <typename NodeTy, typename ParentTy, class... Options>
+class ilist_node_with_parent : public ilist_node<NodeTy, Options...> {
+protected:
+ ilist_node_with_parent() = default;
+
+private:
+ /// Forward to NodeTy::getParent().
+ ///
+ /// Note: do not use the name "getParent()". We want a compile error
+ /// (instead of recursion) when the subclass fails to implement \a
+ /// getParent().
+ const ParentTy *getNodeParent() const {
+ return static_cast<const NodeTy *>(this)->getParent();
+ }
+
+public:
+ /// @name Adjacent Node Accessors
+ /// @{
+ /// Get the previous node, or \c nullptr for the list head.
+ NodeTy *getPrevNode() {
+ // Should be separated to a reused function, but then we couldn't use auto
+ // (and would need the type of the list).
+ const auto &List =
+ getNodeParent()->*(ParentTy::getSublistAccess((NodeTy *)nullptr));
+ return List.getPrevNode(*static_cast<NodeTy *>(this));
+ }
+
+ /// Get the previous node, or \c nullptr for the list head.
+ const NodeTy *getPrevNode() const {
+ return const_cast<ilist_node_with_parent *>(this)->getPrevNode();
+ }
+
+ /// Get the next node, or \c nullptr for the list tail.
+ NodeTy *getNextNode() {
+ // Should be separated to a reused function, but then we couldn't use auto
+ // (and would need the type of the list).
+ const auto &List =
+ getNodeParent()->*(ParentTy::getSublistAccess((NodeTy *)nullptr));
+ return List.getNextNode(*static_cast<NodeTy *>(this));
+ }
+
+ /// Get the next node, or \c nullptr for the list tail.
+ const NodeTy *getNextNode() const {
+ return const_cast<ilist_node_with_parent *>(this)->getNextNode();
+ }
+ /// @}
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ILIST_NODE_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ilist_node_base.h b/third_party/llvm-project/include/llvm/ADT/ilist_node_base.h
new file mode 100644
index 000000000..f6c518e6e
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ilist_node_base.h
@@ -0,0 +1,52 @@
+//===- llvm/ADT/ilist_node_base.h - Intrusive List Node Base -----*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ILIST_NODE_BASE_H
+#define LLVM_ADT_ILIST_NODE_BASE_H
+
+#include "llvm/ADT/PointerIntPair.h"
+
+namespace llvm {
+
+/// Base class for ilist nodes.
+///
+/// Optionally tracks whether this node is the sentinel.
+template <bool EnableSentinelTracking> class ilist_node_base;
+
+template <> class ilist_node_base<false> {
+ ilist_node_base *Prev = nullptr;
+ ilist_node_base *Next = nullptr;
+
+public:
+ void setPrev(ilist_node_base *Prev) { this->Prev = Prev; }
+ void setNext(ilist_node_base *Next) { this->Next = Next; }
+ ilist_node_base *getPrev() const { return Prev; }
+ ilist_node_base *getNext() const { return Next; }
+
+ bool isKnownSentinel() const { return false; }
+ void initializeSentinel() {}
+};
+
+template <> class ilist_node_base<true> {
+ PointerIntPair<ilist_node_base *, 1> PrevAndSentinel;
+ ilist_node_base *Next = nullptr;
+
+public:
+ void setPrev(ilist_node_base *Prev) { PrevAndSentinel.setPointer(Prev); }
+ void setNext(ilist_node_base *Next) { this->Next = Next; }
+ ilist_node_base *getPrev() const { return PrevAndSentinel.getPointer(); }
+ ilist_node_base *getNext() const { return Next; }
+
+ bool isSentinel() const { return PrevAndSentinel.getInt(); }
+ bool isKnownSentinel() const { return isSentinel(); }
+ void initializeSentinel() { PrevAndSentinel.setInt(true); }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ILIST_NODE_BASE_H
diff --git a/third_party/llvm-project/include/llvm/ADT/ilist_node_options.h b/third_party/llvm-project/include/llvm/ADT/ilist_node_options.h
new file mode 100644
index 000000000..9b95cdbe0
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/ilist_node_options.h
@@ -0,0 +1,131 @@
+//===- llvm/ADT/ilist_node_options.h - ilist_node Options -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ILIST_NODE_OPTIONS_H
+#define LLVM_ADT_ILIST_NODE_OPTIONS_H
+
+#include "llvm/Config/abi-breaking.h"
+
+#include <type_traits>
+
+namespace llvm {
+
+template <bool EnableSentinelTracking> class ilist_node_base;
+template <bool EnableSentinelTracking> class ilist_base;
+
+/// Option to choose whether to track sentinels.
+///
+/// This option affects the ABI for the nodes. When not specified explicitly,
+/// the ABI depends on LLVM_ENABLE_ABI_BREAKING_CHECKS. Specify explicitly to
+/// enable \a ilist_node::isSentinel().
+template <bool EnableSentinelTracking> struct ilist_sentinel_tracking {};
+
+/// Option to specify a tag for the node type.
+///
+/// This option allows a single value type to be inserted in multiple lists
+/// simultaneously. See \a ilist_node for usage examples.
+template <class Tag> struct ilist_tag {};
+
+namespace ilist_detail {
+
+/// Helper trait for recording whether an option is specified explicitly.
+template <bool IsExplicit> struct explicitness {
+ static const bool is_explicit = IsExplicit;
+};
+typedef explicitness<true> is_explicit;
+typedef explicitness<false> is_implicit;
+
+/// Check whether an option is valid.
+///
+/// The steps for adding and enabling a new ilist option include:
+/// \li define the option, ilist_foo<Bar>, above;
+/// \li add new parameters for Bar to \a ilist_detail::node_options;
+/// \li add an extraction meta-function, ilist_detail::extract_foo;
+/// \li call extract_foo from \a ilist_detail::compute_node_options and pass it
+/// into \a ilist_detail::node_options; and
+/// \li specialize \c is_valid_option<ilist_foo<Bar>> to inherit from \c
+/// std::true_type to get static assertions passing in \a simple_ilist and \a
+/// ilist_node.
+template <class Option> struct is_valid_option : std::false_type {};
+
+/// Extract sentinel tracking option.
+///
+/// Look through \p Options for the \a ilist_sentinel_tracking option, with the
+/// default depending on LLVM_ENABLE_ABI_BREAKING_CHECKS.
+template <class... Options> struct extract_sentinel_tracking;
+template <bool EnableSentinelTracking, class... Options>
+struct extract_sentinel_tracking<
+ ilist_sentinel_tracking<EnableSentinelTracking>, Options...>
+ : std::integral_constant<bool, EnableSentinelTracking>, is_explicit {};
+template <class Option1, class... Options>
+struct extract_sentinel_tracking<Option1, Options...>
+ : extract_sentinel_tracking<Options...> {};
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+template <> struct extract_sentinel_tracking<> : std::true_type, is_implicit {};
+#else
+template <>
+struct extract_sentinel_tracking<> : std::false_type, is_implicit {};
+#endif
+template <bool EnableSentinelTracking>
+struct is_valid_option<ilist_sentinel_tracking<EnableSentinelTracking>>
+ : std::true_type {};
+
+/// Extract custom tag option.
+///
+/// Look through \p Options for the \a ilist_tag option, pulling out the
+/// custom tag type, using void as a default.
+template <class... Options> struct extract_tag;
+template <class Tag, class... Options>
+struct extract_tag<ilist_tag<Tag>, Options...> {
+ typedef Tag type;
+};
+template <class Option1, class... Options>
+struct extract_tag<Option1, Options...> : extract_tag<Options...> {};
+template <> struct extract_tag<> { typedef void type; };
+template <class Tag> struct is_valid_option<ilist_tag<Tag>> : std::true_type {};
+
+/// Check whether options are valid.
+///
+/// The conjunction of \a is_valid_option on each individual option.
+template <class... Options> struct check_options;
+template <> struct check_options<> : std::true_type {};
+template <class Option1, class... Options>
+struct check_options<Option1, Options...>
+ : std::integral_constant<bool, is_valid_option<Option1>::value &&
+ check_options<Options...>::value> {};
+
+/// Traits for options for \a ilist_node.
+///
+/// This is usually computed via \a compute_node_options.
+template <class T, bool EnableSentinelTracking, bool IsSentinelTrackingExplicit,
+ class TagT>
+struct node_options {
+ typedef T value_type;
+ typedef T *pointer;
+ typedef T &reference;
+ typedef const T *const_pointer;
+ typedef const T &const_reference;
+
+ static const bool enable_sentinel_tracking = EnableSentinelTracking;
+ static const bool is_sentinel_tracking_explicit = IsSentinelTrackingExplicit;
+ typedef TagT tag;
+ typedef ilist_node_base<enable_sentinel_tracking> node_base_type;
+ typedef ilist_base<enable_sentinel_tracking> list_base_type;
+};
+
+template <class T, class... Options> struct compute_node_options {
+ typedef node_options<T, extract_sentinel_tracking<Options...>::value,
+ extract_sentinel_tracking<Options...>::is_explicit,
+ typename extract_tag<Options...>::type>
+ type;
+};
+
+} // end namespace ilist_detail
+} // end namespace llvm
+
+#endif // LLVM_ADT_ILIST_NODE_OPTIONS_H
diff --git a/third_party/llvm-project/include/llvm/ADT/iterator.h b/third_party/llvm-project/include/llvm/ADT/iterator.h
new file mode 100644
index 000000000..467fd4c00
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/iterator.h
@@ -0,0 +1,366 @@
+//===- iterator.h - Utilities for using and defining iterators --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ITERATOR_H
+#define LLVM_ADT_ITERATOR_H
+
+#include "llvm/ADT/iterator_range.h"
+#include <algorithm>
+#include <cstddef>
+#include <iterator>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+
+/// CRTP base class which implements the entire standard iterator facade
+/// in terms of a minimal subset of the interface.
+///
+/// Use this when it is reasonable to implement most of the iterator
+/// functionality in terms of a core subset. If you need special behavior or
+/// there are performance implications for this, you may want to override the
+/// relevant members instead.
+///
+/// Note, one abstraction that this does *not* provide is implementing
+/// subtraction in terms of addition by negating the difference. Negation isn't
+/// always information preserving, and I can see very reasonable iterator
+/// designs where this doesn't work well. It doesn't really force much added
+/// boilerplate anyways.
+///
+/// Another abstraction that this doesn't provide is implementing increment in
+/// terms of addition of one. These aren't equivalent for all iterator
+/// categories, and respecting that adds a lot of complexity for little gain.
+///
+/// Classes wishing to use `iterator_facade_base` should implement the following
+/// methods:
+///
+/// Forward Iterators:
+/// (All of the following methods)
+/// - DerivedT &operator=(const DerivedT &R);
+/// - bool operator==(const DerivedT &R) const;
+/// - const T &operator*() const;
+/// - T &operator*();
+/// - DerivedT &operator++();
+///
+/// Bidirectional Iterators:
+/// (All methods of forward iterators, plus the following)
+/// - DerivedT &operator--();
+///
+/// Random-access Iterators:
+/// (All methods of bidirectional iterators excluding the following)
+/// - DerivedT &operator++();
+/// - DerivedT &operator--();
+/// (and plus the following)
+/// - bool operator<(const DerivedT &RHS) const;
+/// - DifferenceTypeT operator-(const DerivedT &R) const;
+/// - DerivedT &operator+=(DifferenceTypeT N);
+/// - DerivedT &operator-=(DifferenceTypeT N);
+///
+template <typename DerivedT, typename IteratorCategoryT, typename T,
+ typename DifferenceTypeT = std::ptrdiff_t, typename PointerT = T *,
+ typename ReferenceT = T &>
+class iterator_facade_base
+ : public std::iterator<IteratorCategoryT, T, DifferenceTypeT, PointerT,
+ ReferenceT> {
+protected:
+ enum {
+ IsRandomAccess = std::is_base_of<std::random_access_iterator_tag,
+ IteratorCategoryT>::value,
+ IsBidirectional = std::is_base_of<std::bidirectional_iterator_tag,
+ IteratorCategoryT>::value,
+ };
+
+ /// A proxy object for computing a reference via indirecting a copy of an
+ /// iterator. This is used in APIs which need to produce a reference via
+ /// indirection but for which the iterator object might be a temporary. The
+ /// proxy preserves the iterator internally and exposes the indirected
+ /// reference via a conversion operator.
+ class ReferenceProxy {
+ friend iterator_facade_base;
+
+ DerivedT I;
+
+ ReferenceProxy(DerivedT I) : I(std::move(I)) {}
+
+ public:
+ operator ReferenceT() const { return *I; }
+ };
+
+public:
+ DerivedT operator+(DifferenceTypeT n) const {
+ static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value,
+ "Must pass the derived type to this template!");
+ static_assert(
+ IsRandomAccess,
+ "The '+' operator is only defined for random access iterators.");
+ DerivedT tmp = *static_cast<const DerivedT *>(this);
+ tmp += n;
+ return tmp;
+ }
+ friend DerivedT operator+(DifferenceTypeT n, const DerivedT &i) {
+ static_assert(
+ IsRandomAccess,
+ "The '+' operator is only defined for random access iterators.");
+ return i + n;
+ }
+ DerivedT operator-(DifferenceTypeT n) const {
+ static_assert(
+ IsRandomAccess,
+ "The '-' operator is only defined for random access iterators.");
+ DerivedT tmp = *static_cast<const DerivedT *>(this);
+ tmp -= n;
+ return tmp;
+ }
+
+ DerivedT &operator++() {
+ static_assert(std::is_base_of<iterator_facade_base, DerivedT>::value,
+ "Must pass the derived type to this template!");
+ return static_cast<DerivedT *>(this)->operator+=(1);
+ }
+ DerivedT operator++(int) {
+ DerivedT tmp = *static_cast<DerivedT *>(this);
+ ++*static_cast<DerivedT *>(this);
+ return tmp;
+ }
+ DerivedT &operator--() {
+ static_assert(
+ IsBidirectional,
+ "The decrement operator is only defined for bidirectional iterators.");
+ return static_cast<DerivedT *>(this)->operator-=(1);
+ }
+ DerivedT operator--(int) {
+ static_assert(
+ IsBidirectional,
+ "The decrement operator is only defined for bidirectional iterators.");
+ DerivedT tmp = *static_cast<DerivedT *>(this);
+ --*static_cast<DerivedT *>(this);
+ return tmp;
+ }
+
+ bool operator!=(const DerivedT &RHS) const {
+ return !static_cast<const DerivedT *>(this)->operator==(RHS);
+ }
+
+ bool operator>(const DerivedT &RHS) const {
+ static_assert(
+ IsRandomAccess,
+ "Relational operators are only defined for random access iterators.");
+ return !static_cast<const DerivedT *>(this)->operator<(RHS) &&
+ !static_cast<const DerivedT *>(this)->operator==(RHS);
+ }
+ bool operator<=(const DerivedT &RHS) const {
+ static_assert(
+ IsRandomAccess,
+ "Relational operators are only defined for random access iterators.");
+ return !static_cast<const DerivedT *>(this)->operator>(RHS);
+ }
+ bool operator>=(const DerivedT &RHS) const {
+ static_assert(
+ IsRandomAccess,
+ "Relational operators are only defined for random access iterators.");
+ return !static_cast<const DerivedT *>(this)->operator<(RHS);
+ }
+
+ PointerT operator->() { return &static_cast<DerivedT *>(this)->operator*(); }
+ PointerT operator->() const {
+ return &static_cast<const DerivedT *>(this)->operator*();
+ }
+ ReferenceProxy operator[](DifferenceTypeT n) {
+ static_assert(IsRandomAccess,
+ "Subscripting is only defined for random access iterators.");
+ return ReferenceProxy(static_cast<DerivedT *>(this)->operator+(n));
+ }
+ ReferenceProxy operator[](DifferenceTypeT n) const {
+ static_assert(IsRandomAccess,
+ "Subscripting is only defined for random access iterators.");
+ return ReferenceProxy(static_cast<const DerivedT *>(this)->operator+(n));
+ }
+};
+
+/// CRTP base class for adapting an iterator to a different type.
+///
+/// This class can be used through CRTP to adapt one iterator into another.
+/// Typically this is done through providing in the derived class a custom \c
+/// operator* implementation. Other methods can be overridden as well.
+template <
+ typename DerivedT, typename WrappedIteratorT,
+ typename IteratorCategoryT =
+ typename std::iterator_traits<WrappedIteratorT>::iterator_category,
+ typename T = typename std::iterator_traits<WrappedIteratorT>::value_type,
+ typename DifferenceTypeT =
+ typename std::iterator_traits<WrappedIteratorT>::difference_type,
+ typename PointerT = typename std::conditional<
+ std::is_same<T, typename std::iterator_traits<
+ WrappedIteratorT>::value_type>::value,
+ typename std::iterator_traits<WrappedIteratorT>::pointer, T *>::type,
+ typename ReferenceT = typename std::conditional<
+ std::is_same<T, typename std::iterator_traits<
+ WrappedIteratorT>::value_type>::value,
+ typename std::iterator_traits<WrappedIteratorT>::reference, T &>::type>
+class iterator_adaptor_base
+ : public iterator_facade_base<DerivedT, IteratorCategoryT, T,
+ DifferenceTypeT, PointerT, ReferenceT> {
+ using BaseT = typename iterator_adaptor_base::iterator_facade_base;
+
+protected:
+ WrappedIteratorT I;
+
+ iterator_adaptor_base() = default;
+
+ explicit iterator_adaptor_base(WrappedIteratorT u) : I(std::move(u)) {
+ static_assert(std::is_base_of<iterator_adaptor_base, DerivedT>::value,
+ "Must pass the derived type to this template!");
+ }
+
+ const WrappedIteratorT &wrapped() const { return I; }
+
+public:
+ using difference_type = DifferenceTypeT;
+
+ DerivedT &operator+=(difference_type n) {
+ static_assert(
+ BaseT::IsRandomAccess,
+ "The '+=' operator is only defined for random access iterators.");
+ I += n;
+ return *static_cast<DerivedT *>(this);
+ }
+ DerivedT &operator-=(difference_type n) {
+ static_assert(
+ BaseT::IsRandomAccess,
+ "The '-=' operator is only defined for random access iterators.");
+ I -= n;
+ return *static_cast<DerivedT *>(this);
+ }
+ using BaseT::operator-;
+ difference_type operator-(const DerivedT &RHS) const {
+ static_assert(
+ BaseT::IsRandomAccess,
+ "The '-' operator is only defined for random access iterators.");
+ return I - RHS.I;
+ }
+
+ // We have to explicitly provide ++ and -- rather than letting the facade
+ // forward to += because WrappedIteratorT might not support +=.
+ using BaseT::operator++;
+ DerivedT &operator++() {
+ ++I;
+ return *static_cast<DerivedT *>(this);
+ }
+ using BaseT::operator--;
+ DerivedT &operator--() {
+ static_assert(
+ BaseT::IsBidirectional,
+ "The decrement operator is only defined for bidirectional iterators.");
+ --I;
+ return *static_cast<DerivedT *>(this);
+ }
+
+ bool operator==(const DerivedT &RHS) const { return I == RHS.I; }
+ bool operator<(const DerivedT &RHS) const {
+ static_assert(
+ BaseT::IsRandomAccess,
+ "Relational operators are only defined for random access iterators.");
+ return I < RHS.I;
+ }
+
+ ReferenceT operator*() const { return *I; }
+};
+
+/// An iterator type that allows iterating over the pointees via some
+/// other iterator.
+///
+/// The typical usage of this is to expose a type that iterates over Ts, but
+/// which is implemented with some iterator over T*s:
+///
+/// \code
+/// using iterator = pointee_iterator<SmallVectorImpl<T *>::iterator>;
+/// \endcode
+template <typename WrappedIteratorT,
+ typename T = typename std::remove_reference<
+ decltype(**std::declval<WrappedIteratorT>())>::type>
+struct pointee_iterator
+ : iterator_adaptor_base<
+ pointee_iterator<WrappedIteratorT, T>, WrappedIteratorT,
+ typename std::iterator_traits<WrappedIteratorT>::iterator_category,
+ T> {
+ pointee_iterator() = default;
+ template <typename U>
+ pointee_iterator(U &&u)
+ : pointee_iterator::iterator_adaptor_base(std::forward<U &&>(u)) {}
+
+ T &operator*() const { return **this->I; }
+};
+
+template <typename RangeT, typename WrappedIteratorT =
+ decltype(std::begin(std::declval<RangeT>()))>
+iterator_range<pointee_iterator<WrappedIteratorT>>
+make_pointee_range(RangeT &&Range) {
+ using PointeeIteratorT = pointee_iterator<WrappedIteratorT>;
+ return make_range(PointeeIteratorT(std::begin(std::forward<RangeT>(Range))),
+ PointeeIteratorT(std::end(std::forward<RangeT>(Range))));
+}
+
+template <typename WrappedIteratorT,
+ typename T = decltype(&*std::declval<WrappedIteratorT>())>
+class pointer_iterator
+ : public iterator_adaptor_base<
+ pointer_iterator<WrappedIteratorT, T>, WrappedIteratorT,
+ typename std::iterator_traits<WrappedIteratorT>::iterator_category,
+ T> {
+ mutable T Ptr;
+
+public:
+ pointer_iterator() = default;
+
+ explicit pointer_iterator(WrappedIteratorT u)
+ : pointer_iterator::iterator_adaptor_base(std::move(u)) {}
+
+ T &operator*() { return Ptr = &*this->I; }
+ const T &operator*() const { return Ptr = &*this->I; }
+};
+
+template <typename RangeT, typename WrappedIteratorT =
+ decltype(std::begin(std::declval<RangeT>()))>
+iterator_range<pointer_iterator<WrappedIteratorT>>
+make_pointer_range(RangeT &&Range) {
+ using PointerIteratorT = pointer_iterator<WrappedIteratorT>;
+ return make_range(PointerIteratorT(std::begin(std::forward<RangeT>(Range))),
+ PointerIteratorT(std::end(std::forward<RangeT>(Range))));
+}
+
+// Wrapper iterator over iterator ItType, adding DataRef to the type of ItType,
+// to create NodeRef = std::pair<InnerTypeOfItType, DataRef>.
+template <typename ItType, typename NodeRef, typename DataRef>
+class WrappedPairNodeDataIterator
+ : public iterator_adaptor_base<
+ WrappedPairNodeDataIterator<ItType, NodeRef, DataRef>, ItType,
+ typename std::iterator_traits<ItType>::iterator_category, NodeRef,
+ std::ptrdiff_t, NodeRef *, NodeRef &> {
+ using BaseT = iterator_adaptor_base<
+ WrappedPairNodeDataIterator, ItType,
+ typename std::iterator_traits<ItType>::iterator_category, NodeRef,
+ std::ptrdiff_t, NodeRef *, NodeRef &>;
+
+ const DataRef DR;
+ mutable NodeRef NR;
+
+public:
+ WrappedPairNodeDataIterator(ItType Begin, const DataRef DR)
+ : BaseT(Begin), DR(DR) {
+ NR.first = DR;
+ }
+
+ NodeRef &operator*() const {
+ NR.second = *this->I;
+ return NR;
+ }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_ITERATOR_H
diff --git a/third_party/llvm-project/include/llvm/ADT/iterator_range.h b/third_party/llvm-project/include/llvm/ADT/iterator_range.h
new file mode 100644
index 000000000..aa8830943
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/iterator_range.h
@@ -0,0 +1,69 @@
+//===- iterator_range.h - A range adaptor for iterators ---------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This provides a very simple, boring adaptor for a begin and end iterator
+/// into a range type. This should be used to build range views that work well
+/// with range based for loops and range based constructors.
+///
+/// Note that code here follows more standards-based coding conventions as it
+/// is mirroring proposed interfaces for standardization.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_ITERATOR_RANGE_H
+#define LLVM_ADT_ITERATOR_RANGE_H
+
+#include <iterator>
+#include <utility>
+
+namespace llvm {
+
+/// A range adaptor for a pair of iterators.
+///
+/// This just wraps two iterators into a range-compatible interface. Nothing
+/// fancy at all.
+template <typename IteratorT>
+class iterator_range {
+ IteratorT begin_iterator, end_iterator;
+
+public:
+ //TODO: Add SFINAE to test that the Container's iterators match the range's
+ // iterators.
+ template <typename Container>
+ iterator_range(Container &&c)
+ //TODO: Consider ADL/non-member begin/end calls.
+ : begin_iterator(c.begin()), end_iterator(c.end()) {}
+ iterator_range(IteratorT begin_iterator, IteratorT end_iterator)
+ : begin_iterator(std::move(begin_iterator)),
+ end_iterator(std::move(end_iterator)) {}
+
+ IteratorT begin() const { return begin_iterator; }
+ IteratorT end() const { return end_iterator; }
+ bool empty() const { return begin_iterator == end_iterator; }
+};
+
+/// Convenience function for iterating over sub-ranges.
+///
+/// This provides a bit of syntactic sugar to make using sub-ranges
+/// in for loops a bit easier. Analogous to std::make_pair().
+template <class T> iterator_range<T> make_range(T x, T y) {
+ return iterator_range<T>(std::move(x), std::move(y));
+}
+
+template <typename T> iterator_range<T> make_range(std::pair<T, T> p) {
+ return iterator_range<T>(std::move(p.first), std::move(p.second));
+}
+
+template <typename T>
+iterator_range<decltype(adl_begin(std::declval<T>()))> drop_begin(T &&t,
+ int n) {
+ return make_range(std::next(adl_begin(t), n), adl_end(t));
+}
+}
+
+#endif
diff --git a/third_party/llvm-project/include/llvm/ADT/simple_ilist.h b/third_party/llvm-project/include/llvm/ADT/simple_ilist.h
new file mode 100644
index 000000000..9257b47b9
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/simple_ilist.h
@@ -0,0 +1,314 @@
+//===- llvm/ADT/simple_ilist.h - Simple Intrusive List ----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_SIMPLE_ILIST_H
+#define LLVM_ADT_SIMPLE_ILIST_H
+
+#include "llvm/ADT/ilist_base.h"
+#include "llvm/ADT/ilist_iterator.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/ilist_node_options.h"
+#include "llvm/Support/Compiler.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <functional>
+#include <iterator>
+#include <utility>
+
+namespace llvm {
+
+/// A simple intrusive list implementation.
+///
+/// This is a simple intrusive list for a \c T that inherits from \c
+/// ilist_node<T>. The list never takes ownership of anything inserted in it.
+///
+/// Unlike \a iplist<T> and \a ilist<T>, \a simple_ilist<T> never allocates or
+/// deletes values, and has no callback traits.
+///
+/// The API for adding nodes include \a push_front(), \a push_back(), and \a
+/// insert(). These all take values by reference (not by pointer), except for
+/// the range version of \a insert().
+///
+/// There are three sets of API for discarding nodes from the list: \a
+/// remove(), which takes a reference to the node to remove, \a erase(), which
+/// takes an iterator or iterator range and returns the next one, and \a
+/// clear(), which empties out the container. All three are constant time
+/// operations. None of these deletes any nodes; in particular, if there is a
+/// single node in the list, then these have identical semantics:
+/// \li \c L.remove(L.front());
+/// \li \c L.erase(L.begin());
+/// \li \c L.clear();
+///
+/// As a convenience for callers, there are parallel APIs that take a \c
+/// Disposer (such as \c std::default_delete<T>): \a removeAndDispose(), \a
+/// eraseAndDispose(), and \a clearAndDispose(). These have different names
+/// because the extra semantic is otherwise non-obvious. They are equivalent
+/// to calling \a std::for_each() on the range to be discarded.
+///
+/// The currently available \p Options customize the nodes in the list. The
+/// same options must be specified in the \a ilist_node instantation for
+/// compatibility (although the order is irrelevant).
+/// \li Use \a ilist_tag to designate which ilist_node for a given \p T this
+/// list should use. This is useful if a type \p T is part of multiple,
+/// independent lists simultaneously.
+/// \li Use \a ilist_sentinel_tracking to always (or never) track whether a
+/// node is a sentinel. Specifying \c true enables the \a
+/// ilist_node::isSentinel() API. Unlike \a ilist_node::isKnownSentinel(),
+/// which is only appropriate for assertions, \a ilist_node::isSentinel() is
+/// appropriate for real logic.
+///
+/// Here are examples of \p Options usage:
+/// \li \c simple_ilist<T> gives the defaults. \li \c
+/// simple_ilist<T,ilist_sentinel_tracking<true>> enables the \a
+/// ilist_node::isSentinel() API.
+/// \li \c simple_ilist<T,ilist_tag<A>,ilist_sentinel_tracking<false>>
+/// specifies a tag of A and that tracking should be off (even when
+/// LLVM_ENABLE_ABI_BREAKING_CHECKS are enabled).
+/// \li \c simple_ilist<T,ilist_sentinel_tracking<false>,ilist_tag<A>> is
+/// equivalent to the last.
+///
+/// See \a is_valid_option for steps on adding a new option.
+template <typename T, class... Options>
+class simple_ilist
+ : ilist_detail::compute_node_options<T, Options...>::type::list_base_type,
+ ilist_detail::SpecificNodeAccess<
+ typename ilist_detail::compute_node_options<T, Options...>::type> {
+ static_assert(ilist_detail::check_options<Options...>::value,
+ "Unrecognized node option!");
+ using OptionsT =
+ typename ilist_detail::compute_node_options<T, Options...>::type;
+ using list_base_type = typename OptionsT::list_base_type;
+ ilist_sentinel<OptionsT> Sentinel;
+
+public:
+ using value_type = typename OptionsT::value_type;
+ using pointer = typename OptionsT::pointer;
+ using reference = typename OptionsT::reference;
+ using const_pointer = typename OptionsT::const_pointer;
+ using const_reference = typename OptionsT::const_reference;
+ using iterator = ilist_iterator<OptionsT, false, false>;
+ using const_iterator = ilist_iterator<OptionsT, false, true>;
+ using reverse_iterator = ilist_iterator<OptionsT, true, false>;
+ using const_reverse_iterator = ilist_iterator<OptionsT, true, true>;
+ using size_type = size_t;
+ using difference_type = ptrdiff_t;
+
+ simple_ilist() = default;
+ ~simple_ilist() = default;
+
+ // No copy constructors.
+ simple_ilist(const simple_ilist &) = delete;
+ simple_ilist &operator=(const simple_ilist &) = delete;
+
+ // Move constructors.
+ simple_ilist(simple_ilist &&X) { splice(end(), X); }
+ simple_ilist &operator=(simple_ilist &&X) {
+ clear();
+ splice(end(), X);
+ return *this;
+ }
+
+ iterator begin() { return ++iterator(Sentinel); }
+ const_iterator begin() const { return ++const_iterator(Sentinel); }
+ iterator end() { return iterator(Sentinel); }
+ const_iterator end() const { return const_iterator(Sentinel); }
+ reverse_iterator rbegin() { return ++reverse_iterator(Sentinel); }
+ const_reverse_iterator rbegin() const {
+ return ++const_reverse_iterator(Sentinel);
+ }
+ reverse_iterator rend() { return reverse_iterator(Sentinel); }
+ const_reverse_iterator rend() const {
+ return const_reverse_iterator(Sentinel);
+ }
+
+ /// Check if the list is empty in constant time.
+ LLVM_NODISCARD bool empty() const { return Sentinel.empty(); }
+
+ /// Calculate the size of the list in linear time.
+ LLVM_NODISCARD size_type size() const {
+ return std::distance(begin(), end());
+ }
+
+ reference front() { return *begin(); }
+ const_reference front() const { return *begin(); }
+ reference back() { return *rbegin(); }
+ const_reference back() const { return *rbegin(); }
+
+ /// Insert a node at the front; never copies.
+ void push_front(reference Node) { insert(begin(), Node); }
+
+ /// Insert a node at the back; never copies.
+ void push_back(reference Node) { insert(end(), Node); }
+
+ /// Remove the node at the front; never deletes.
+ void pop_front() { erase(begin()); }
+
+ /// Remove the node at the back; never deletes.
+ void pop_back() { erase(--end()); }
+
+ /// Swap with another list in place using std::swap.
+ void swap(simple_ilist &X) { std::swap(*this, X); }
+
+ /// Insert a node by reference; never copies.
+ iterator insert(iterator I, reference Node) {
+ list_base_type::insertBefore(*I.getNodePtr(), *this->getNodePtr(&Node));
+ return iterator(&Node);
+ }
+
+ /// Insert a range of nodes; never copies.
+ template <class Iterator>
+ void insert(iterator I, Iterator First, Iterator Last) {
+ for (; First != Last; ++First)
+ insert(I, *First);
+ }
+
+ /// Clone another list.
+ template <class Cloner, class Disposer>
+ void cloneFrom(const simple_ilist &L2, Cloner clone, Disposer dispose) {
+ clearAndDispose(dispose);
+ for (const_reference V : L2)
+ push_back(*clone(V));
+ }
+
+ /// Remove a node by reference; never deletes.
+ ///
+ /// \see \a erase() for removing by iterator.
+ /// \see \a removeAndDispose() if the node should be deleted.
+ void remove(reference N) { list_base_type::remove(*this->getNodePtr(&N)); }
+
+ /// Remove a node by reference and dispose of it.
+ template <class Disposer>
+ void removeAndDispose(reference N, Disposer dispose) {
+ remove(N);
+ dispose(&N);
+ }
+
+ /// Remove a node by iterator; never deletes.
+ ///
+ /// \see \a remove() for removing by reference.
+ /// \see \a eraseAndDispose() it the node should be deleted.
+ iterator erase(iterator I) {
+ assert(I != end() && "Cannot remove end of list!");
+ remove(*I++);
+ return I;
+ }
+
+ /// Remove a range of nodes; never deletes.
+ ///
+ /// \see \a eraseAndDispose() if the nodes should be deleted.
+ iterator erase(iterator First, iterator Last) {
+ list_base_type::removeRange(*First.getNodePtr(), *Last.getNodePtr());
+ return Last;
+ }
+
+ /// Remove a node by iterator and dispose of it.
+ template <class Disposer>
+ iterator eraseAndDispose(iterator I, Disposer dispose) {
+ auto Next = std::next(I);
+ erase(I);
+ dispose(&*I);
+ return Next;
+ }
+
+ /// Remove a range of nodes and dispose of them.
+ template <class Disposer>
+ iterator eraseAndDispose(iterator First, iterator Last, Disposer dispose) {
+ while (First != Last)
+ First = eraseAndDispose(First, dispose);
+ return Last;
+ }
+
+ /// Clear the list; never deletes.
+ ///
+ /// \see \a clearAndDispose() if the nodes should be deleted.
+ void clear() { Sentinel.reset(); }
+
+ /// Clear the list and dispose of the nodes.
+ template <class Disposer> void clearAndDispose(Disposer dispose) {
+ eraseAndDispose(begin(), end(), dispose);
+ }
+
+ /// Splice in another list.
+ void splice(iterator I, simple_ilist &L2) {
+ splice(I, L2, L2.begin(), L2.end());
+ }
+
+ /// Splice in a node from another list.
+ void splice(iterator I, simple_ilist &L2, iterator Node) {
+ splice(I, L2, Node, std::next(Node));
+ }
+
+ /// Splice in a range of nodes from another list.
+ void splice(iterator I, simple_ilist &, iterator First, iterator Last) {
+ list_base_type::transferBefore(*I.getNodePtr(), *First.getNodePtr(),
+ *Last.getNodePtr());
+ }
+
+ /// Merge in another list.
+ ///
+ /// \pre \c this and \p RHS are sorted.
+ ///@{
+ void merge(simple_ilist &RHS) { merge(RHS, std::less<T>()); }
+ template <class Compare> void merge(simple_ilist &RHS, Compare comp);
+ ///@}
+
+ /// Sort the list.
+ ///@{
+ void sort() { sort(std::less<T>()); }
+ template <class Compare> void sort(Compare comp);
+ ///@}
+};
+
+template <class T, class... Options>
+template <class Compare>
+void simple_ilist<T, Options...>::merge(simple_ilist &RHS, Compare comp) {
+ if (this == &RHS || RHS.empty())
+ return;
+ iterator LI = begin(), LE = end();
+ iterator RI = RHS.begin(), RE = RHS.end();
+ while (LI != LE) {
+ if (comp(*RI, *LI)) {
+ // Transfer a run of at least size 1 from RHS to LHS.
+ iterator RunStart = RI++;
+ RI = std::find_if(RI, RE, [&](reference RV) { return !comp(RV, *LI); });
+ splice(LI, RHS, RunStart, RI);
+ if (RI == RE)
+ return;
+ }
+ ++LI;
+ }
+ // Transfer the remaining RHS nodes once LHS is finished.
+ splice(LE, RHS, RI, RE);
+}
+
+template <class T, class... Options>
+template <class Compare>
+void simple_ilist<T, Options...>::sort(Compare comp) {
+ // Vacuously sorted.
+ if (empty() || std::next(begin()) == end())
+ return;
+
+ // Split the list in the middle.
+ iterator Center = begin(), End = begin();
+ while (End != end() && ++End != end()) {
+ ++Center;
+ ++End;
+ }
+ simple_ilist RHS;
+ RHS.splice(RHS.end(), *this, Center, end());
+
+ // Sort the sublists and merge back together.
+ sort(comp);
+ RHS.sort(comp);
+ merge(RHS, comp);
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_SIMPLE_ILIST_H