diff options
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/STLExtras.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/ADT/STLExtras.h | 1578 |
1 files changed, 1578 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/STLExtras.h b/third_party/llvm-project/include/llvm/ADT/STLExtras.h new file mode 100644 index 000000000..274933bc5 --- /dev/null +++ b/third_party/llvm-project/include/llvm/ADT/STLExtras.h @@ -0,0 +1,1578 @@ +//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains some templates that are useful if you are working with the +// STL at all. +// +// No library is required when using these functions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_STLEXTRAS_H +#define LLVM_ADT_STLEXTRAS_H + +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/iterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Config/abi-breaking.h" +#include "llvm/Support/ErrorHandling.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstdlib> +#include <functional> +#include <initializer_list> +#include <iterator> +#include <limits> +#include <memory> +#include <tuple> +#include <type_traits> +#include <utility> + +#ifdef EXPENSIVE_CHECKS +#include <random> // for std::mt19937 +#endif + +namespace llvm { + +// Only used by compiler if both template types are the same. Useful when +// using SFINAE to test for the existence of member functions. +template <typename T, T> struct SameType; + +namespace detail { + +template <typename RangeT> +using IterOfRange = decltype(std::begin(std::declval<RangeT &>())); + +template <typename RangeT> +using ValueOfRange = typename std::remove_reference<decltype( + *std::begin(std::declval<RangeT &>()))>::type; + +} // end namespace detail + +//===----------------------------------------------------------------------===// +// Extra additions to <type_traits> +//===----------------------------------------------------------------------===// + +template <typename T> +struct negation : std::integral_constant<bool, !bool(T::value)> {}; + +template <typename...> struct conjunction : std::true_type {}; +template <typename B1> struct conjunction<B1> : B1 {}; +template <typename B1, typename... Bn> +struct conjunction<B1, Bn...> + : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {}; + +template <typename T> struct make_const_ptr { + using type = + typename std::add_pointer<typename std::add_const<T>::type>::type; +}; + +template <typename T> struct make_const_ref { + using type = typename std::add_lvalue_reference< + typename std::add_const<T>::type>::type; +}; + +//===----------------------------------------------------------------------===// +// Extra additions to <functional> +//===----------------------------------------------------------------------===// + +template <class Ty> struct identity { + using argument_type = Ty; + + Ty &operator()(Ty &self) const { + return self; + } + const Ty &operator()(const Ty &self) const { + return self; + } +}; + +/// An efficient, type-erasing, non-owning reference to a callable. This is +/// intended for use as the type of a function parameter that is not used +/// after the function in question returns. +/// +/// This class does not own the callable, so it is not in general safe to store +/// a function_ref. +template<typename Fn> class function_ref; + +template<typename Ret, typename ...Params> +class function_ref<Ret(Params...)> { + Ret (*callback)(intptr_t callable, Params ...params) = nullptr; + intptr_t callable; + + template<typename Callable> + static Ret callback_fn(intptr_t callable, Params ...params) { + return (*reinterpret_cast<Callable*>(callable))( + std::forward<Params>(params)...); + } + +public: + function_ref() = default; + function_ref(std::nullptr_t) {} + + template <typename Callable> + function_ref(Callable &&callable, + typename std::enable_if< + !std::is_same<typename std::remove_reference<Callable>::type, + function_ref>::value>::type * = nullptr) + : callback(callback_fn<typename std::remove_reference<Callable>::type>), + callable(reinterpret_cast<intptr_t>(&callable)) {} + + Ret operator()(Params ...params) const { + return callback(callable, std::forward<Params>(params)...); + } + + operator bool() const { return callback; } +}; + +// deleter - Very very very simple method that is used to invoke operator +// delete on something. It is used like this: +// +// for_each(V.begin(), B.end(), deleter<Interval>); +template <class T> +inline void deleter(T *Ptr) { + delete Ptr; +} + +//===----------------------------------------------------------------------===// +// Extra additions to <iterator> +//===----------------------------------------------------------------------===// + +namespace adl_detail { + +using std::begin; + +template <typename ContainerTy> +auto adl_begin(ContainerTy &&container) + -> decltype(begin(std::forward<ContainerTy>(container))) { + return begin(std::forward<ContainerTy>(container)); +} + +using std::end; + +template <typename ContainerTy> +auto adl_end(ContainerTy &&container) + -> decltype(end(std::forward<ContainerTy>(container))) { + return end(std::forward<ContainerTy>(container)); +} + +using std::swap; + +template <typename T> +void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(), + std::declval<T>()))) { + swap(std::forward<T>(lhs), std::forward<T>(rhs)); +} + +} // end namespace adl_detail + +template <typename ContainerTy> +auto adl_begin(ContainerTy &&container) + -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) { + return adl_detail::adl_begin(std::forward<ContainerTy>(container)); +} + +template <typename ContainerTy> +auto adl_end(ContainerTy &&container) + -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) { + return adl_detail::adl_end(std::forward<ContainerTy>(container)); +} + +template <typename T> +void adl_swap(T &&lhs, T &&rhs) noexcept( + noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) { + adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs)); +} + +/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty. +template <typename T> +constexpr bool empty(const T &RangeOrContainer) { + return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer); +} + +// mapped_iterator - This is a simple iterator adapter that causes a function to +// be applied whenever operator* is invoked on the iterator. + +template <typename ItTy, typename FuncTy, + typename FuncReturnTy = + decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> +class mapped_iterator + : public iterator_adaptor_base< + mapped_iterator<ItTy, FuncTy>, ItTy, + typename std::iterator_traits<ItTy>::iterator_category, + typename std::remove_reference<FuncReturnTy>::type> { +public: + mapped_iterator(ItTy U, FuncTy F) + : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} + + ItTy getCurrent() { return this->I; } + + FuncReturnTy operator*() { return F(*this->I); } + +private: + FuncTy F; +}; + +// map_iterator - Provide a convenient way to create mapped_iterators, just like +// make_pair is useful for creating pairs... +template <class ItTy, class FuncTy> +inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { + return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); +} + +template <class ContainerTy, class FuncTy> +auto map_range(ContainerTy &&C, FuncTy F) + -> decltype(make_range(map_iterator(C.begin(), F), + map_iterator(C.end(), F))) { + return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F)); +} + +/// Helper to determine if type T has a member called rbegin(). +template <typename Ty> class has_rbegin_impl { + using yes = char[1]; + using no = char[2]; + + template <typename Inner> + static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr); + + template <typename> + static no& test(...); + +public: + static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes); +}; + +/// Metafunction to determine if T& or T has a member called rbegin(). +template <typename Ty> +struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> { +}; + +// Returns an iterator_range over the given container which iterates in reverse. +// Note that the container must have rbegin()/rend() methods for this to work. +template <typename ContainerTy> +auto reverse(ContainerTy &&C, + typename std::enable_if<has_rbegin<ContainerTy>::value>::type * = + nullptr) -> decltype(make_range(C.rbegin(), C.rend())) { + return make_range(C.rbegin(), C.rend()); +} + +// Returns a std::reverse_iterator wrapped around the given iterator. +template <typename IteratorTy> +std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) { + return std::reverse_iterator<IteratorTy>(It); +} + +// Returns an iterator_range over the given container which iterates in reverse. +// Note that the container must have begin()/end() methods which return +// bidirectional iterators for this to work. +template <typename ContainerTy> +auto reverse( + ContainerTy &&C, + typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr) + -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)), + llvm::make_reverse_iterator(std::begin(C)))) { + return make_range(llvm::make_reverse_iterator(std::end(C)), + llvm::make_reverse_iterator(std::begin(C))); +} + +/// An iterator adaptor that filters the elements of given inner iterators. +/// +/// The predicate parameter should be a callable object that accepts the wrapped +/// iterator's reference type and returns a bool. When incrementing or +/// decrementing the iterator, it will call the predicate on each element and +/// skip any where it returns false. +/// +/// \code +/// int A[] = { 1, 2, 3, 4 }; +/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); +/// // R contains { 1, 3 }. +/// \endcode +/// +/// Note: filter_iterator_base implements support for forward iteration. +/// filter_iterator_impl exists to provide support for bidirectional iteration, +/// conditional on whether the wrapped iterator supports it. +template <typename WrappedIteratorT, typename PredicateT, typename IterTag> +class filter_iterator_base + : public iterator_adaptor_base< + filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, + WrappedIteratorT, + typename std::common_type< + IterTag, typename std::iterator_traits< + WrappedIteratorT>::iterator_category>::type> { + using BaseT = iterator_adaptor_base< + filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, + WrappedIteratorT, + typename std::common_type< + IterTag, typename std::iterator_traits< + WrappedIteratorT>::iterator_category>::type>; + +protected: + WrappedIteratorT End; + PredicateT Pred; + + void findNextValid() { + while (this->I != End && !Pred(*this->I)) + BaseT::operator++(); + } + + // Construct the iterator. The begin iterator needs to know where the end + // is, so that it can properly stop when it gets there. The end iterator only + // needs the predicate to support bidirectional iteration. + filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, + PredicateT Pred) + : BaseT(Begin), End(End), Pred(Pred) { + findNextValid(); + } + +public: + using BaseT::operator++; + + filter_iterator_base &operator++() { + BaseT::operator++(); + findNextValid(); + return *this; + } +}; + +/// Specialization of filter_iterator_base for forward iteration only. +template <typename WrappedIteratorT, typename PredicateT, + typename IterTag = std::forward_iterator_tag> +class filter_iterator_impl + : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { + using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>; + +public: + filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, + PredicateT Pred) + : BaseT(Begin, End, Pred) {} +}; + +/// Specialization of filter_iterator_base for bidirectional iteration. +template <typename WrappedIteratorT, typename PredicateT> +class filter_iterator_impl<WrappedIteratorT, PredicateT, + std::bidirectional_iterator_tag> + : public filter_iterator_base<WrappedIteratorT, PredicateT, + std::bidirectional_iterator_tag> { + using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, + std::bidirectional_iterator_tag>; + void findPrevValid() { + while (!this->Pred(*this->I)) + BaseT::operator--(); + } + +public: + using BaseT::operator--; + + filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, + PredicateT Pred) + : BaseT(Begin, End, Pred) {} + + filter_iterator_impl &operator--() { + BaseT::operator--(); + findPrevValid(); + return *this; + } +}; + +namespace detail { + +template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { + using type = std::forward_iterator_tag; +}; + +template <> struct fwd_or_bidi_tag_impl<true> { + using type = std::bidirectional_iterator_tag; +}; + +/// Helper which sets its type member to forward_iterator_tag if the category +/// of \p IterT does not derive from bidirectional_iterator_tag, and to +/// bidirectional_iterator_tag otherwise. +template <typename IterT> struct fwd_or_bidi_tag { + using type = typename fwd_or_bidi_tag_impl<std::is_base_of< + std::bidirectional_iterator_tag, + typename std::iterator_traits<IterT>::iterator_category>::value>::type; +}; + +} // namespace detail + +/// Defines filter_iterator to a suitable specialization of +/// filter_iterator_impl, based on the underlying iterator's category. +template <typename WrappedIteratorT, typename PredicateT> +using filter_iterator = filter_iterator_impl< + WrappedIteratorT, PredicateT, + typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; + +/// Convenience function that takes a range of elements and a predicate, +/// and return a new filter_iterator range. +/// +/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the +/// lifetime of that temporary is not kept by the returned range object, and the +/// temporary is going to be dropped on the floor after the make_iterator_range +/// full expression that contains this function call. +template <typename RangeT, typename PredicateT> +iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> +make_filter_range(RangeT &&Range, PredicateT Pred) { + using FilterIteratorT = + filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; + return make_range( + FilterIteratorT(std::begin(std::forward<RangeT>(Range)), + std::end(std::forward<RangeT>(Range)), Pred), + FilterIteratorT(std::end(std::forward<RangeT>(Range)), + std::end(std::forward<RangeT>(Range)), Pred)); +} + +/// A pseudo-iterator adaptor that is designed to implement "early increment" +/// style loops. +/// +/// This is *not a normal iterator* and should almost never be used directly. It +/// is intended primarily to be used with range based for loops and some range +/// algorithms. +/// +/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but +/// somewhere between them. The constraints of these iterators are: +/// +/// - On construction or after being incremented, it is comparable and +/// dereferencable. It is *not* incrementable. +/// - After being dereferenced, it is neither comparable nor dereferencable, it +/// is only incrementable. +/// +/// This means you can only dereference the iterator once, and you can only +/// increment it once between dereferences. +template <typename WrappedIteratorT> +class early_inc_iterator_impl + : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, + WrappedIteratorT, std::input_iterator_tag> { + using BaseT = + iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, + WrappedIteratorT, std::input_iterator_tag>; + + using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; + +protected: +#if LLVM_ENABLE_ABI_BREAKING_CHECKS + bool IsEarlyIncremented = false; +#endif + +public: + early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} + + using BaseT::operator*; + typename BaseT::reference operator*() { +#if LLVM_ENABLE_ABI_BREAKING_CHECKS + assert(!IsEarlyIncremented && "Cannot dereference twice!"); + IsEarlyIncremented = true; +#endif + return *(this->I)++; + } + + using BaseT::operator++; + early_inc_iterator_impl &operator++() { +#if LLVM_ENABLE_ABI_BREAKING_CHECKS + assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); + IsEarlyIncremented = false; +#endif + return *this; + } + + using BaseT::operator==; + bool operator==(const early_inc_iterator_impl &RHS) const { +#if LLVM_ENABLE_ABI_BREAKING_CHECKS + assert(!IsEarlyIncremented && "Cannot compare after dereferencing!"); +#endif + return BaseT::operator==(RHS); + } +}; + +/// Make a range that does early increment to allow mutation of the underlying +/// range without disrupting iteration. +/// +/// The underlying iterator will be incremented immediately after it is +/// dereferenced, allowing deletion of the current node or insertion of nodes to +/// not disrupt iteration provided they do not invalidate the *next* iterator -- +/// the current iterator can be invalidated. +/// +/// This requires a very exact pattern of use that is only really suitable to +/// range based for loops and other range algorithms that explicitly guarantee +/// to dereference exactly once each element, and to increment exactly once each +/// element. +template <typename RangeT> +iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> +make_early_inc_range(RangeT &&Range) { + using EarlyIncIteratorT = + early_inc_iterator_impl<detail::IterOfRange<RangeT>>; + return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), + EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); +} + +// forward declarations required by zip_shortest/zip_first/zip_longest +template <typename R, typename UnaryPredicate> +bool all_of(R &&range, UnaryPredicate P); +template <typename R, typename UnaryPredicate> +bool any_of(R &&range, UnaryPredicate P); + +namespace detail { + +using std::declval; + +// We have to alias this since inlining the actual type at the usage site +// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. +template<typename... Iters> struct ZipTupleType { + using type = std::tuple<decltype(*declval<Iters>())...>; +}; + +template <typename ZipType, typename... Iters> +using zip_traits = iterator_facade_base< + ZipType, typename std::common_type<std::bidirectional_iterator_tag, + typename std::iterator_traits< + Iters>::iterator_category...>::type, + // ^ TODO: Implement random access methods. + typename ZipTupleType<Iters...>::type, + typename std::iterator_traits<typename std::tuple_element< + 0, std::tuple<Iters...>>::type>::difference_type, + // ^ FIXME: This follows boost::make_zip_iterator's assumption that all + // inner iterators have the same difference_type. It would fail if, for + // instance, the second field's difference_type were non-numeric while the + // first is. + typename ZipTupleType<Iters...>::type *, + typename ZipTupleType<Iters...>::type>; + +template <typename ZipType, typename... Iters> +struct zip_common : public zip_traits<ZipType, Iters...> { + using Base = zip_traits<ZipType, Iters...>; + using value_type = typename Base::value_type; + + std::tuple<Iters...> iterators; + +protected: + template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { + return value_type(*std::get<Ns>(iterators)...); + } + + template <size_t... Ns> + decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { + return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...); + } + + template <size_t... Ns> + decltype(iterators) tup_dec(std::index_sequence<Ns...>) const { + return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...); + } + +public: + zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} + + value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } + + const value_type operator*() const { + return deref(std::index_sequence_for<Iters...>{}); + } + + ZipType &operator++() { + iterators = tup_inc(std::index_sequence_for<Iters...>{}); + return *reinterpret_cast<ZipType *>(this); + } + + ZipType &operator--() { + static_assert(Base::IsBidirectional, + "All inner iterators must be at least bidirectional."); + iterators = tup_dec(std::index_sequence_for<Iters...>{}); + return *reinterpret_cast<ZipType *>(this); + } +}; + +template <typename... Iters> +struct zip_first : public zip_common<zip_first<Iters...>, Iters...> { + using Base = zip_common<zip_first<Iters...>, Iters...>; + + bool operator==(const zip_first<Iters...> &other) const { + return std::get<0>(this->iterators) == std::get<0>(other.iterators); + } + + zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} +}; + +template <typename... Iters> +class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> { + template <size_t... Ns> + bool test(const zip_shortest<Iters...> &other, + std::index_sequence<Ns...>) const { + return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) != + std::get<Ns>(other.iterators)...}, + identity<bool>{}); + } + +public: + using Base = zip_common<zip_shortest<Iters...>, Iters...>; + + zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {} + + bool operator==(const zip_shortest<Iters...> &other) const { + return !test(other, std::index_sequence_for<Iters...>{}); + } +}; + +template <template <typename...> class ItType, typename... Args> class zippy { +public: + using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>; + using iterator_category = typename iterator::iterator_category; + using value_type = typename iterator::value_type; + using difference_type = typename iterator::difference_type; + using pointer = typename iterator::pointer; + using reference = typename iterator::reference; + +private: + std::tuple<Args...> ts; + + template <size_t... Ns> + iterator begin_impl(std::index_sequence<Ns...>) const { + return iterator(std::begin(std::get<Ns>(ts))...); + } + template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { + return iterator(std::end(std::get<Ns>(ts))...); + } + +public: + zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} + + iterator begin() const { + return begin_impl(std::index_sequence_for<Args...>{}); + } + iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } +}; + +} // end namespace detail + +/// zip iterator for two or more iteratable types. +template <typename T, typename U, typename... Args> +detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, + Args &&... args) { + return detail::zippy<detail::zip_shortest, T, U, Args...>( + std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); +} + +/// zip iterator that, for the sake of efficiency, assumes the first iteratee to +/// be the shortest. +template <typename T, typename U, typename... Args> +detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, + Args &&... args) { + return detail::zippy<detail::zip_first, T, U, Args...>( + std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); +} + +namespace detail { +template <typename Iter> +static Iter next_or_end(const Iter &I, const Iter &End) { + if (I == End) + return End; + return std::next(I); +} + +template <typename Iter> +static auto deref_or_none(const Iter &I, const Iter &End) + -> llvm::Optional<typename std::remove_const< + typename std::remove_reference<decltype(*I)>::type>::type> { + if (I == End) + return None; + return *I; +} + +template <typename Iter> struct ZipLongestItemType { + using type = + llvm::Optional<typename std::remove_const<typename std::remove_reference< + decltype(*std::declval<Iter>())>::type>::type>; +}; + +template <typename... Iters> struct ZipLongestTupleType { + using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; +}; + +template <typename... Iters> +class zip_longest_iterator + : public iterator_facade_base< + zip_longest_iterator<Iters...>, + typename std::common_type< + std::forward_iterator_tag, + typename std::iterator_traits<Iters>::iterator_category...>::type, + typename ZipLongestTupleType<Iters...>::type, + typename std::iterator_traits<typename std::tuple_element< + 0, std::tuple<Iters...>>::type>::difference_type, + typename ZipLongestTupleType<Iters...>::type *, + typename ZipLongestTupleType<Iters...>::type> { +public: + using value_type = typename ZipLongestTupleType<Iters...>::type; + +private: + std::tuple<Iters...> iterators; + std::tuple<Iters...> end_iterators; + + template <size_t... Ns> + bool test(const zip_longest_iterator<Iters...> &other, + std::index_sequence<Ns...>) const { + return llvm::any_of( + std::initializer_list<bool>{std::get<Ns>(this->iterators) != + std::get<Ns>(other.iterators)...}, + identity<bool>{}); + } + + template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { + return value_type( + deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); + } + + template <size_t... Ns> + decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { + return std::tuple<Iters...>( + next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); + } + +public: + zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) + : iterators(std::forward<Iters>(ts.first)...), + end_iterators(std::forward<Iters>(ts.second)...) {} + + value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); } + + value_type operator*() const { + return deref(std::index_sequence_for<Iters...>{}); + } + + zip_longest_iterator<Iters...> &operator++() { + iterators = tup_inc(std::index_sequence_for<Iters...>{}); + return *this; + } + + bool operator==(const zip_longest_iterator<Iters...> &other) const { + return !test(other, std::index_sequence_for<Iters...>{}); + } +}; + +template <typename... Args> class zip_longest_range { +public: + using iterator = + zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; + using iterator_category = typename iterator::iterator_category; + using value_type = typename iterator::value_type; + using difference_type = typename iterator::difference_type; + using pointer = typename iterator::pointer; + using reference = typename iterator::reference; + +private: + std::tuple<Args...> ts; + + template <size_t... Ns> + iterator begin_impl(std::index_sequence<Ns...>) const { + return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), + adl_end(std::get<Ns>(ts)))...); + } + + template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { + return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), + adl_end(std::get<Ns>(ts)))...); + } + +public: + zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} + + iterator begin() const { + return begin_impl(std::index_sequence_for<Args...>{}); + } + iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } +}; +} // namespace detail + +/// Iterate over two or more iterators at the same time. Iteration continues +/// until all iterators reach the end. The llvm::Optional only contains a value +/// if the iterator has not reached the end. +template <typename T, typename U, typename... Args> +detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, + Args &&... args) { + return detail::zip_longest_range<T, U, Args...>( + std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); +} + +/// Iterator wrapper that concatenates sequences together. +/// +/// This can concatenate different iterators, even with different types, into +/// a single iterator provided the value types of all the concatenated +/// iterators expose `reference` and `pointer` types that can be converted to +/// `ValueT &` and `ValueT *` respectively. It doesn't support more +/// interesting/customized pointer or reference types. +/// +/// Currently this only supports forward or higher iterator categories as +/// inputs and always exposes a forward iterator interface. +template <typename ValueT, typename... IterTs> +class concat_iterator + : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, + std::forward_iterator_tag, ValueT> { + using BaseT = typename concat_iterator::iterator_facade_base; + + /// We store both the current and end iterators for each concatenated + /// sequence in a tuple of pairs. + /// + /// Note that something like iterator_range seems nice at first here, but the + /// range properties are of little benefit and end up getting in the way + /// because we need to do mutation on the current iterators. + std::tuple<IterTs...> Begins; + std::tuple<IterTs...> Ends; + + /// Attempts to increment a specific iterator. + /// + /// Returns true if it was able to increment the iterator. Returns false if + /// the iterator is already at the end iterator. + template <size_t Index> bool incrementHelper() { + auto &Begin = std::get<Index>(Begins); + auto &End = std::get<Index>(Ends); + if (Begin == End) + return false; + + ++Begin; + return true; + } + + /// Increments the first non-end iterator. + /// + /// It is an error to call this with all iterators at the end. + template <size_t... Ns> void increment(std::index_sequence<Ns...>) { + // Build a sequence of functions to increment each iterator if possible. + bool (concat_iterator::*IncrementHelperFns[])() = { + &concat_iterator::incrementHelper<Ns>...}; + + // Loop over them, and stop as soon as we succeed at incrementing one. + for (auto &IncrementHelperFn : IncrementHelperFns) + if ((this->*IncrementHelperFn)()) + return; + + llvm_unreachable("Attempted to increment an end concat iterator!"); + } + + /// Returns null if the specified iterator is at the end. Otherwise, + /// dereferences the iterator and returns the address of the resulting + /// reference. + template <size_t Index> ValueT *getHelper() const { + auto &Begin = std::get<Index>(Begins); + auto &End = std::get<Index>(Ends); + if (Begin == End) + return nullptr; + + return &*Begin; + } + + /// Finds the first non-end iterator, dereferences, and returns the resulting + /// reference. + /// + /// It is an error to call this with all iterators at the end. + template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const { + // Build a sequence of functions to get from iterator if possible. + ValueT *(concat_iterator::*GetHelperFns[])() const = { + &concat_iterator::getHelper<Ns>...}; + + // Loop over them, and return the first result we find. + for (auto &GetHelperFn : GetHelperFns) + if (ValueT *P = (this->*GetHelperFn)()) + return *P; + + llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); + } + +public: + /// Constructs an iterator from a squence of ranges. + /// + /// We need the full range to know how to switch between each of the + /// iterators. + template <typename... RangeTs> + explicit concat_iterator(RangeTs &&... Ranges) + : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} + + using BaseT::operator++; + + concat_iterator &operator++() { + increment(std::index_sequence_for<IterTs...>()); + return *this; + } + + ValueT &operator*() const { + return get(std::index_sequence_for<IterTs...>()); + } + + bool operator==(const concat_iterator &RHS) const { + return Begins == RHS.Begins && Ends == RHS.Ends; + } +}; + +namespace detail { + +/// Helper to store a sequence of ranges being concatenated and access them. +/// +/// This is designed to facilitate providing actual storage when temporaries +/// are passed into the constructor such that we can use it as part of range +/// based for loops. +template <typename ValueT, typename... RangeTs> class concat_range { +public: + using iterator = + concat_iterator<ValueT, + decltype(std::begin(std::declval<RangeTs &>()))...>; + +private: + std::tuple<RangeTs...> Ranges; + + template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { + return iterator(std::get<Ns>(Ranges)...); + } + template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { + return iterator(make_range(std::end(std::get<Ns>(Ranges)), + std::end(std::get<Ns>(Ranges)))...); + } + +public: + concat_range(RangeTs &&... Ranges) + : Ranges(std::forward<RangeTs>(Ranges)...) {} + + iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); } + iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); } +}; + +} // end namespace detail + +/// Concatenated range across two or more ranges. +/// +/// The desired value type must be explicitly specified. +template <typename ValueT, typename... RangeTs> +detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) { + static_assert(sizeof...(RangeTs) > 1, + "Need more than one range to concatenate!"); + return detail::concat_range<ValueT, RangeTs...>( + std::forward<RangeTs>(Ranges)...); +} + +//===----------------------------------------------------------------------===// +// Extra additions to <utility> +//===----------------------------------------------------------------------===// + +/// Function object to check whether the first component of a std::pair +/// compares less than the first component of another std::pair. +struct less_first { + template <typename T> bool operator()(const T &lhs, const T &rhs) const { + return lhs.first < rhs.first; + } +}; + +/// Function object to check whether the second component of a std::pair +/// compares less than the second component of another std::pair. +struct less_second { + template <typename T> bool operator()(const T &lhs, const T &rhs) const { + return lhs.second < rhs.second; + } +}; + +/// \brief Function object to apply a binary function to the first component of +/// a std::pair. +template<typename FuncTy> +struct on_first { + FuncTy func; + + template <typename T> + auto operator()(const T &lhs, const T &rhs) const + -> decltype(func(lhs.first, rhs.first)) { + return func(lhs.first, rhs.first); + } +}; + +/// Utility type to build an inheritance chain that makes it easy to rank +/// overload candidates. +template <int N> struct rank : rank<N - 1> {}; +template <> struct rank<0> {}; + +/// traits class for checking whether type T is one of any of the given +/// types in the variadic list. +template <typename T, typename... Ts> struct is_one_of { + static const bool value = false; +}; + +template <typename T, typename U, typename... Ts> +struct is_one_of<T, U, Ts...> { + static const bool value = + std::is_same<T, U>::value || is_one_of<T, Ts...>::value; +}; + +/// traits class for checking whether type T is a base class for all +/// the given types in the variadic list. +template <typename T, typename... Ts> struct are_base_of { + static const bool value = true; +}; + +template <typename T, typename U, typename... Ts> +struct are_base_of<T, U, Ts...> { + static const bool value = + std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value; +}; + +//===----------------------------------------------------------------------===// +// Extra additions for arrays +//===----------------------------------------------------------------------===// + +/// Find the length of an array. +template <class T, std::size_t N> +constexpr inline size_t array_lengthof(T (&)[N]) { + return N; +} + +/// Adapt std::less<T> for array_pod_sort. +template<typename T> +inline int array_pod_sort_comparator(const void *P1, const void *P2) { + if (std::less<T>()(*reinterpret_cast<const T*>(P1), + *reinterpret_cast<const T*>(P2))) + return -1; + if (std::less<T>()(*reinterpret_cast<const T*>(P2), + *reinterpret_cast<const T*>(P1))) + return 1; + return 0; +} + +/// get_array_pod_sort_comparator - This is an internal helper function used to +/// get type deduction of T right. +template<typename T> +inline int (*get_array_pod_sort_comparator(const T &)) + (const void*, const void*) { + return array_pod_sort_comparator<T>; +} + +/// array_pod_sort - This sorts an array with the specified start and end +/// extent. This is just like std::sort, except that it calls qsort instead of +/// using an inlined template. qsort is slightly slower than std::sort, but +/// most sorts are not performance critical in LLVM and std::sort has to be +/// template instantiated for each type, leading to significant measured code +/// bloat. This function should generally be used instead of std::sort where +/// possible. +/// +/// This function assumes that you have simple POD-like types that can be +/// compared with std::less and can be moved with memcpy. If this isn't true, +/// you should use std::sort. +/// +/// NOTE: If qsort_r were portable, we could allow a custom comparator and +/// default to std::less. +template<class IteratorTy> +inline void array_pod_sort(IteratorTy Start, IteratorTy End) { + // Don't inefficiently call qsort with one element or trigger undefined + // behavior with an empty sequence. + auto NElts = End - Start; + if (NElts <= 1) return; +#ifdef EXPENSIVE_CHECKS + std::mt19937 Generator(std::random_device{}()); + std::shuffle(Start, End, Generator); +#endif + qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); +} + +template <class IteratorTy> +inline void array_pod_sort( + IteratorTy Start, IteratorTy End, + int (*Compare)( + const typename std::iterator_traits<IteratorTy>::value_type *, + const typename std::iterator_traits<IteratorTy>::value_type *)) { + // Don't inefficiently call qsort with one element or trigger undefined + // behavior with an empty sequence. + auto NElts = End - Start; + if (NElts <= 1) return; +#ifdef EXPENSIVE_CHECKS + std::mt19937 Generator(std::random_device{}()); + std::shuffle(Start, End, Generator); +#endif + qsort(&*Start, NElts, sizeof(*Start), + reinterpret_cast<int (*)(const void *, const void *)>(Compare)); +} + +// Provide wrappers to std::sort which shuffle the elements before sorting +// to help uncover non-deterministic behavior (PR35135). +template <typename IteratorTy> +inline void sort(IteratorTy Start, IteratorTy End) { +#ifdef EXPENSIVE_CHECKS + std::mt19937 Generator(std::random_device{}()); + std::shuffle(Start, End, Generator); +#endif + std::sort(Start, End); +} + +template <typename Container> inline void sort(Container &&C) { + llvm::sort(adl_begin(C), adl_end(C)); +} + +template <typename IteratorTy, typename Compare> +inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { +#ifdef EXPENSIVE_CHECKS + std::mt19937 Generator(std::random_device{}()); + std::shuffle(Start, End, Generator); +#endif + std::sort(Start, End, Comp); +} + +template <typename Container, typename Compare> +inline void sort(Container &&C, Compare Comp) { + llvm::sort(adl_begin(C), adl_end(C), Comp); +} + +//===----------------------------------------------------------------------===// +// Extra additions to <algorithm> +//===----------------------------------------------------------------------===// + +/// For a container of pointers, deletes the pointers and then clears the +/// container. +template<typename Container> +void DeleteContainerPointers(Container &C) { + for (auto V : C) + delete V; + C.clear(); +} + +/// In a container of pairs (usually a map) whose second element is a pointer, +/// deletes the second elements and then clears the container. +template<typename Container> +void DeleteContainerSeconds(Container &C) { + for (auto &V : C) + delete V.second; + C.clear(); +} + +/// Get the size of a range. This is a wrapper function around std::distance +/// which is only enabled when the operation is O(1). +template <typename R> +auto size(R &&Range, typename std::enable_if< + std::is_same<typename std::iterator_traits<decltype( + Range.begin())>::iterator_category, + std::random_access_iterator_tag>::value, + void>::type * = nullptr) + -> decltype(std::distance(Range.begin(), Range.end())) { + return std::distance(Range.begin(), Range.end()); +} + +/// Provide wrappers to std::for_each which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename UnaryPredicate> +UnaryPredicate for_each(R &&Range, UnaryPredicate P) { + return std::for_each(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::all_of which take ranges instead of having to pass +/// begin/end explicitly. +template <typename R, typename UnaryPredicate> +bool all_of(R &&Range, UnaryPredicate P) { + return std::all_of(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::any_of which take ranges instead of having to pass +/// begin/end explicitly. +template <typename R, typename UnaryPredicate> +bool any_of(R &&Range, UnaryPredicate P) { + return std::any_of(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::none_of which take ranges instead of having to pass +/// begin/end explicitly. +template <typename R, typename UnaryPredicate> +bool none_of(R &&Range, UnaryPredicate P) { + return std::none_of(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::find which take ranges instead of having to pass +/// begin/end explicitly. +template <typename R, typename T> +auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) { + return std::find(adl_begin(Range), adl_end(Range), Val); +} + +/// Provide wrappers to std::find_if which take ranges instead of having to pass +/// begin/end explicitly. +template <typename R, typename UnaryPredicate> +auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { + return std::find_if(adl_begin(Range), adl_end(Range), P); +} + +template <typename R, typename UnaryPredicate> +auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { + return std::find_if_not(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::remove_if which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename UnaryPredicate> +auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { + return std::remove_if(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::copy_if which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename OutputIt, typename UnaryPredicate> +OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { + return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); +} + +template <typename R, typename OutputIt> +OutputIt copy(R &&Range, OutputIt Out) { + return std::copy(adl_begin(Range), adl_end(Range), Out); +} + +/// Wrapper function around std::find to detect if an element exists +/// in a container. +template <typename R, typename E> +bool is_contained(R &&Range, const E &Element) { + return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range); +} + +/// Wrapper function around std::count to count the number of times an element +/// \p Element occurs in the given range \p Range. +template <typename R, typename E> +auto count(R &&Range, const E &Element) -> + typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { + return std::count(adl_begin(Range), adl_end(Range), Element); +} + +/// Wrapper function around std::count_if to count the number of times an +/// element satisfying a given predicate occurs in a range. +template <typename R, typename UnaryPredicate> +auto count_if(R &&Range, UnaryPredicate P) -> + typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type { + return std::count_if(adl_begin(Range), adl_end(Range), P); +} + +/// Wrapper function around std::transform to apply a function to a range and +/// store the result elsewhere. +template <typename R, typename OutputIt, typename UnaryPredicate> +OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) { + return std::transform(adl_begin(Range), adl_end(Range), d_first, P); +} + +/// Provide wrappers to std::partition which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename UnaryPredicate> +auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) { + return std::partition(adl_begin(Range), adl_end(Range), P); +} + +/// Provide wrappers to std::lower_bound which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename T> +auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) { + return std::lower_bound(adl_begin(Range), adl_end(Range), + std::forward<T>(Value)); +} + +template <typename R, typename T, typename Compare> +auto lower_bound(R &&Range, T &&Value, Compare C) + -> decltype(adl_begin(Range)) { + return std::lower_bound(adl_begin(Range), adl_end(Range), + std::forward<T>(Value), C); +} + +/// Provide wrappers to std::upper_bound which take ranges instead of having to +/// pass begin/end explicitly. +template <typename R, typename T> +auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) { + return std::upper_bound(adl_begin(Range), adl_end(Range), + std::forward<T>(Value)); +} + +template <typename R, typename T, typename Compare> +auto upper_bound(R &&Range, T &&Value, Compare C) + -> decltype(adl_begin(Range)) { + return std::upper_bound(adl_begin(Range), adl_end(Range), + std::forward<T>(Value), C); +} + +template <typename R> +void stable_sort(R &&Range) { + std::stable_sort(adl_begin(Range), adl_end(Range)); +} + +template <typename R, typename Compare> +void stable_sort(R &&Range, Compare C) { + std::stable_sort(adl_begin(Range), adl_end(Range), C); +} + +/// Binary search for the first iterator in a range where a predicate is false. +/// Requires that C is always true below some limit, and always false above it. +template <typename R, typename Predicate, + typename Val = decltype(*adl_begin(std::declval<R>()))> +auto partition_point(R &&Range, Predicate P) -> decltype(adl_begin(Range)) { + return std::partition_point(adl_begin(Range), adl_end(Range), P); +} + +/// Wrapper function around std::equal to detect if all elements +/// in a container are same. +template <typename R> +bool is_splat(R &&Range) { + size_t range_size = size(Range); + return range_size != 0 && (range_size == 1 || + std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range))); +} + +/// Given a range of type R, iterate the entire range and return a +/// SmallVector with elements of the vector. This is useful, for example, +/// when you want to iterate a range and then sort the results. +template <unsigned Size, typename R> +SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size> +to_vector(R &&Range) { + return {adl_begin(Range), adl_end(Range)}; +} + +/// Provide a container algorithm similar to C++ Library Fundamentals v2's +/// `erase_if` which is equivalent to: +/// +/// C.erase(remove_if(C, pred), C.end()); +/// +/// This version works for any container with an erase method call accepting +/// two iterators. +template <typename Container, typename UnaryPredicate> +void erase_if(Container &C, UnaryPredicate P) { + C.erase(remove_if(C, P), C.end()); +} + +/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with +/// the range [ValIt, ValEnd) (which is not from the same container). +template<typename Container, typename RandomAccessIterator> +void replace(Container &Cont, typename Container::iterator ContIt, + typename Container::iterator ContEnd, RandomAccessIterator ValIt, + RandomAccessIterator ValEnd) { + while (true) { + if (ValIt == ValEnd) { + Cont.erase(ContIt, ContEnd); + return; + } else if (ContIt == ContEnd) { + Cont.insert(ContIt, ValIt, ValEnd); + return; + } + *ContIt++ = *ValIt++; + } +} + +/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with +/// the range R. +template<typename Container, typename Range = std::initializer_list< + typename Container::value_type>> +void replace(Container &Cont, typename Container::iterator ContIt, + typename Container::iterator ContEnd, Range R) { + replace(Cont, ContIt, ContEnd, R.begin(), R.end()); +} + +//===----------------------------------------------------------------------===// +// Extra additions to <memory> +//===----------------------------------------------------------------------===// + +struct FreeDeleter { + void operator()(void* v) { + ::free(v); + } +}; + +template<typename First, typename Second> +struct pair_hash { + size_t operator()(const std::pair<First, Second> &P) const { + return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); + } +}; + +/// Binary functor that adapts to any other binary functor after dereferencing +/// operands. +template <typename T> struct deref { + T func; + + // Could be further improved to cope with non-derivable functors and + // non-binary functors (should be a variadic template member function + // operator()). + template <typename A, typename B> + auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) { + assert(lhs); + assert(rhs); + return func(*lhs, *rhs); + } +}; + +namespace detail { + +template <typename R> class enumerator_iter; + +template <typename R> struct result_pair { + using value_reference = + typename std::iterator_traits<IterOfRange<R>>::reference; + + friend class enumerator_iter<R>; + + result_pair() = default; + result_pair(std::size_t Index, IterOfRange<R> Iter) + : Index(Index), Iter(Iter) {} + + result_pair<R> &operator=(const result_pair<R> &Other) { + Index = Other.Index; + Iter = Other.Iter; + return *this; + } + + std::size_t index() const { return Index; } + const value_reference value() const { return *Iter; } + value_reference value() { return *Iter; } + +private: + std::size_t Index = std::numeric_limits<std::size_t>::max(); + IterOfRange<R> Iter; +}; + +template <typename R> +class enumerator_iter + : public iterator_facade_base< + enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>, + typename std::iterator_traits<IterOfRange<R>>::difference_type, + typename std::iterator_traits<IterOfRange<R>>::pointer, + typename std::iterator_traits<IterOfRange<R>>::reference> { + using result_type = result_pair<R>; + +public: + explicit enumerator_iter(IterOfRange<R> EndIter) + : Result(std::numeric_limits<size_t>::max(), EndIter) {} + + enumerator_iter(std::size_t Index, IterOfRange<R> Iter) + : Result(Index, Iter) {} + + result_type &operator*() { return Result; } + const result_type &operator*() const { return Result; } + + enumerator_iter<R> &operator++() { + assert(Result.Index != std::numeric_limits<size_t>::max()); + ++Result.Iter; + ++Result.Index; + return *this; + } + + bool operator==(const enumerator_iter<R> &RHS) const { + // Don't compare indices here, only iterators. It's possible for an end + // iterator to have different indices depending on whether it was created + // by calling std::end() versus incrementing a valid iterator. + return Result.Iter == RHS.Result.Iter; + } + + enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) { + Result = Other.Result; + return *this; + } + +private: + result_type Result; +}; + +template <typename R> class enumerator { +public: + explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {} + + enumerator_iter<R> begin() { + return enumerator_iter<R>(0, std::begin(TheRange)); + } + + enumerator_iter<R> end() { + return enumerator_iter<R>(std::end(TheRange)); + } + +private: + R TheRange; +}; + +} // end namespace detail + +/// Given an input range, returns a new range whose values are are pair (A,B) +/// such that A is the 0-based index of the item in the sequence, and B is +/// the value from the original sequence. Example: +/// +/// std::vector<char> Items = {'A', 'B', 'C', 'D'}; +/// for (auto X : enumerate(Items)) { +/// printf("Item %d - %c\n", X.index(), X.value()); +/// } +/// +/// Output: +/// Item 0 - A +/// Item 1 - B +/// Item 2 - C +/// Item 3 - D +/// +template <typename R> detail::enumerator<R> enumerate(R &&TheRange) { + return detail::enumerator<R>(std::forward<R>(TheRange)); +} + +namespace detail { + +template <typename F, typename Tuple, std::size_t... I> +auto apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) + -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) { + return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...); +} + +} // end namespace detail + +/// Given an input tuple (a1, a2, ..., an), pass the arguments of the +/// tuple variadically to f as if by calling f(a1, a2, ..., an) and +/// return the result. +template <typename F, typename Tuple> +auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl( + std::forward<F>(f), std::forward<Tuple>(t), + std::make_index_sequence< + std::tuple_size<typename std::decay<Tuple>::type>::value>{})) { + using Indices = std::make_index_sequence< + std::tuple_size<typename std::decay<Tuple>::type>::value>; + + return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t), + Indices{}); +} + +/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) +/// time. Not meant for use with random-access iterators. +template <typename IterTy> +bool hasNItems( + IterTy &&Begin, IterTy &&End, unsigned N, + typename std::enable_if< + !std::is_same< + typename std::iterator_traits<typename std::remove_reference< + decltype(Begin)>::type>::iterator_category, + std::random_access_iterator_tag>::value, + void>::type * = nullptr) { + for (; N; --N, ++Begin) + if (Begin == End) + return false; // Too few. + return Begin == End; +} + +/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) +/// time. Not meant for use with random-access iterators. +template <typename IterTy> +bool hasNItemsOrMore( + IterTy &&Begin, IterTy &&End, unsigned N, + typename std::enable_if< + !std::is_same< + typename std::iterator_traits<typename std::remove_reference< + decltype(Begin)>::type>::iterator_category, + std::random_access_iterator_tag>::value, + void>::type * = nullptr) { + for (; N; --N, ++Begin) + if (Begin == End) + return false; // Too few. + return true; +} + +/// Returns a raw pointer that represents the same address as the argument. +/// +/// The late bound return should be removed once we move to C++14 to better +/// align with the C++20 declaration. Also, this implementation can be removed +/// once we move to C++20 where it's defined as std::to_addres() +/// +/// The std::pointer_traits<>::to_address(p) variations of these overloads has +/// not been implemented. +template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) { + return P.operator->(); +} +template <class T> constexpr T *to_address(T *P) { return P; } + +} // end namespace llvm + +#endif // LLVM_ADT_STLEXTRAS_H |