summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/include/llvm/ADT/APFloat.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/APFloat.h')
-rw-r--r--third_party/llvm-project/include/llvm/ADT/APFloat.h1290
1 files changed, 1290 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/APFloat.h b/third_party/llvm-project/include/llvm/ADT/APFloat.h
new file mode 100644
index 000000000..1c4969733
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/APFloat.h
@@ -0,0 +1,1290 @@
+//===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief
+/// This file declares a class to represent arbitrary precision floating point
+/// values and provide a variety of arithmetic operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APFLOAT_H
+#define LLVM_ADT_APFLOAT_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <memory>
+
+#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \
+ do { \
+ if (usesLayout<IEEEFloat>(getSemantics())) \
+ return U.IEEE.METHOD_CALL; \
+ if (usesLayout<DoubleAPFloat>(getSemantics())) \
+ return U.Double.METHOD_CALL; \
+ llvm_unreachable("Unexpected semantics"); \
+ } while (false)
+
+namespace llvm {
+
+struct fltSemantics;
+class APSInt;
+class StringRef;
+class APFloat;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+
+/// Enum that represents what fraction of the LSB truncated bits of an fp number
+/// represent.
+///
+/// This essentially combines the roles of guard and sticky bits.
+enum lostFraction { // Example of truncated bits:
+ lfExactlyZero, // 000000
+ lfLessThanHalf, // 0xxxxx x's not all zero
+ lfExactlyHalf, // 100000
+ lfMoreThanHalf // 1xxxxx x's not all zero
+};
+
+/// A self-contained host- and target-independent arbitrary-precision
+/// floating-point software implementation.
+///
+/// APFloat uses bignum integer arithmetic as provided by static functions in
+/// the APInt class. The library will work with bignum integers whose parts are
+/// any unsigned type at least 16 bits wide, but 64 bits is recommended.
+///
+/// Written for clarity rather than speed, in particular with a view to use in
+/// the front-end of a cross compiler so that target arithmetic can be correctly
+/// performed on the host. Performance should nonetheless be reasonable,
+/// particularly for its intended use. It may be useful as a base
+/// implementation for a run-time library during development of a faster
+/// target-specific one.
+///
+/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
+/// implemented operations. Currently implemented operations are add, subtract,
+/// multiply, divide, fused-multiply-add, conversion-to-float,
+/// conversion-to-integer and conversion-from-integer. New rounding modes
+/// (e.g. away from zero) can be added with three or four lines of code.
+///
+/// Four formats are built-in: IEEE single precision, double precision,
+/// quadruple precision, and x87 80-bit extended double (when operating with
+/// full extended precision). Adding a new format that obeys IEEE semantics
+/// only requires adding two lines of code: a declaration and definition of the
+/// format.
+///
+/// All operations return the status of that operation as an exception bit-mask,
+/// so multiple operations can be done consecutively with their results or-ed
+/// together. The returned status can be useful for compiler diagnostics; e.g.,
+/// inexact, underflow and overflow can be easily diagnosed on constant folding,
+/// and compiler optimizers can determine what exceptions would be raised by
+/// folding operations and optimize, or perhaps not optimize, accordingly.
+///
+/// At present, underflow tininess is detected after rounding; it should be
+/// straight forward to add support for the before-rounding case too.
+///
+/// The library reads hexadecimal floating point numbers as per C99, and
+/// correctly rounds if necessary according to the specified rounding mode.
+/// Syntax is required to have been validated by the caller. It also converts
+/// floating point numbers to hexadecimal text as per the C99 %a and %A
+/// conversions. The output precision (or alternatively the natural minimal
+/// precision) can be specified; if the requested precision is less than the
+/// natural precision the output is correctly rounded for the specified rounding
+/// mode.
+///
+/// It also reads decimal floating point numbers and correctly rounds according
+/// to the specified rounding mode.
+///
+/// Conversion to decimal text is not currently implemented.
+///
+/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
+/// signed exponent, and the significand as an array of integer parts. After
+/// normalization of a number of precision P the exponent is within the range of
+/// the format, and if the number is not denormal the P-th bit of the
+/// significand is set as an explicit integer bit. For denormals the most
+/// significant bit is shifted right so that the exponent is maintained at the
+/// format's minimum, so that the smallest denormal has just the least
+/// significant bit of the significand set. The sign of zeroes and infinities
+/// is significant; the exponent and significand of such numbers is not stored,
+/// but has a known implicit (deterministic) value: 0 for the significands, 0
+/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
+/// significand are deterministic, although not really meaningful, and preserved
+/// in non-conversion operations. The exponent is implicitly all 1 bits.
+///
+/// APFloat does not provide any exception handling beyond default exception
+/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
+/// by encoding Signaling NaNs with the first bit of its trailing significand as
+/// 0.
+///
+/// TODO
+/// ====
+///
+/// Some features that may or may not be worth adding:
+///
+/// Binary to decimal conversion (hard).
+///
+/// Optional ability to detect underflow tininess before rounding.
+///
+/// New formats: x87 in single and double precision mode (IEEE apart from
+/// extended exponent range) (hard).
+///
+/// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
+///
+
+// This is the common type definitions shared by APFloat and its internal
+// implementation classes. This struct should not define any non-static data
+// members.
+struct APFloatBase {
+ typedef APInt::WordType integerPart;
+ static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD;
+
+ /// A signed type to represent a floating point numbers unbiased exponent.
+ typedef signed short ExponentType;
+
+ /// \name Floating Point Semantics.
+ /// @{
+ enum Semantics {
+ S_IEEEhalf,
+ S_IEEEsingle,
+ S_IEEEdouble,
+ S_x87DoubleExtended,
+ S_IEEEquad,
+ S_PPCDoubleDouble
+ };
+
+ static const llvm::fltSemantics &EnumToSemantics(Semantics S);
+ static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem);
+
+ static const fltSemantics &IEEEhalf() LLVM_READNONE;
+ static const fltSemantics &IEEEsingle() LLVM_READNONE;
+ static const fltSemantics &IEEEdouble() LLVM_READNONE;
+ static const fltSemantics &IEEEquad() LLVM_READNONE;
+ static const fltSemantics &PPCDoubleDouble() LLVM_READNONE;
+ static const fltSemantics &x87DoubleExtended() LLVM_READNONE;
+
+ /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
+ /// anything real.
+ static const fltSemantics &Bogus() LLVM_READNONE;
+
+ /// @}
+
+ /// IEEE-754R 5.11: Floating Point Comparison Relations.
+ enum cmpResult {
+ cmpLessThan,
+ cmpEqual,
+ cmpGreaterThan,
+ cmpUnordered
+ };
+
+ /// IEEE-754R 4.3: Rounding-direction attributes.
+ enum roundingMode {
+ rmNearestTiesToEven,
+ rmTowardPositive,
+ rmTowardNegative,
+ rmTowardZero,
+ rmNearestTiesToAway
+ };
+
+ /// IEEE-754R 7: Default exception handling.
+ ///
+ /// opUnderflow or opOverflow are always returned or-ed with opInexact.
+ ///
+ /// APFloat models this behavior specified by IEEE-754:
+ /// "For operations producing results in floating-point format, the default
+ /// result of an operation that signals the invalid operation exception
+ /// shall be a quiet NaN."
+ enum opStatus {
+ opOK = 0x00,
+ opInvalidOp = 0x01,
+ opDivByZero = 0x02,
+ opOverflow = 0x04,
+ opUnderflow = 0x08,
+ opInexact = 0x10
+ };
+
+ /// Category of internally-represented number.
+ enum fltCategory {
+ fcInfinity,
+ fcNaN,
+ fcNormal,
+ fcZero
+ };
+
+ /// Convenience enum used to construct an uninitialized APFloat.
+ enum uninitializedTag {
+ uninitialized
+ };
+
+ /// Enumeration of \c ilogb error results.
+ enum IlogbErrorKinds {
+ IEK_Zero = INT_MIN + 1,
+ IEK_NaN = INT_MIN,
+ IEK_Inf = INT_MAX
+ };
+
+ static unsigned int semanticsPrecision(const fltSemantics &);
+ static ExponentType semanticsMinExponent(const fltSemantics &);
+ static ExponentType semanticsMaxExponent(const fltSemantics &);
+ static unsigned int semanticsSizeInBits(const fltSemantics &);
+
+ /// Returns the size of the floating point number (in bits) in the given
+ /// semantics.
+ static unsigned getSizeInBits(const fltSemantics &Sem);
+};
+
+namespace detail {
+
+class IEEEFloat final : public APFloatBase {
+public:
+ /// \name Constructors
+ /// @{
+
+ IEEEFloat(const fltSemantics &); // Default construct to 0.0
+ IEEEFloat(const fltSemantics &, integerPart);
+ IEEEFloat(const fltSemantics &, uninitializedTag);
+ IEEEFloat(const fltSemantics &, const APInt &);
+ explicit IEEEFloat(double d);
+ explicit IEEEFloat(float f);
+ IEEEFloat(const IEEEFloat &);
+ IEEEFloat(IEEEFloat &&);
+ ~IEEEFloat();
+
+ /// @}
+
+ /// Returns whether this instance allocated memory.
+ bool needsCleanup() const { return partCount() > 1; }
+
+ /// \name Convenience "constructors"
+ /// @{
+
+ /// @}
+
+ /// \name Arithmetic
+ /// @{
+
+ opStatus add(const IEEEFloat &, roundingMode);
+ opStatus subtract(const IEEEFloat &, roundingMode);
+ opStatus multiply(const IEEEFloat &, roundingMode);
+ opStatus divide(const IEEEFloat &, roundingMode);
+ /// IEEE remainder.
+ opStatus remainder(const IEEEFloat &);
+ /// C fmod, or llvm frem.
+ opStatus mod(const IEEEFloat &);
+ opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode);
+ opStatus roundToIntegral(roundingMode);
+ /// IEEE-754R 5.3.1: nextUp/nextDown.
+ opStatus next(bool nextDown);
+
+ /// @}
+
+ /// \name Sign operations.
+ /// @{
+
+ void changeSign();
+
+ /// @}
+
+ /// \name Conversions
+ /// @{
+
+ opStatus convert(const fltSemantics &, roundingMode, bool *);
+ opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool,
+ roundingMode, bool *) const;
+ opStatus convertFromAPInt(const APInt &, bool, roundingMode);
+ opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
+ bool, roundingMode);
+ opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
+ bool, roundingMode);
+ opStatus convertFromString(StringRef, roundingMode);
+ APInt bitcastToAPInt() const;
+ double convertToDouble() const;
+ float convertToFloat() const;
+
+ /// @}
+
+ /// The definition of equality is not straightforward for floating point, so
+ /// we won't use operator==. Use one of the following, or write whatever it
+ /// is you really mean.
+ bool operator==(const IEEEFloat &) const = delete;
+
+ /// IEEE comparison with another floating point number (NaNs compare
+ /// unordered, 0==-0).
+ cmpResult compare(const IEEEFloat &) const;
+
+ /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
+ bool bitwiseIsEqual(const IEEEFloat &) const;
+
+ /// Write out a hexadecimal representation of the floating point value to DST,
+ /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
+ /// Return the number of characters written, excluding the terminating NUL.
+ unsigned int convertToHexString(char *dst, unsigned int hexDigits,
+ bool upperCase, roundingMode) const;
+
+ /// \name IEEE-754R 5.7.2 General operations.
+ /// @{
+
+ /// IEEE-754R isSignMinus: Returns true if and only if the current value is
+ /// negative.
+ ///
+ /// This applies to zeros and NaNs as well.
+ bool isNegative() const { return sign; }
+
+ /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
+ ///
+ /// This implies that the current value of the float is not zero, subnormal,
+ /// infinite, or NaN following the definition of normality from IEEE-754R.
+ bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+
+ /// Returns true if and only if the current value is zero, subnormal, or
+ /// normal.
+ ///
+ /// This means that the value is not infinite or NaN.
+ bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+ /// Returns true if and only if the float is plus or minus zero.
+ bool isZero() const { return category == fcZero; }
+
+ /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
+ /// denormal.
+ bool isDenormal() const;
+
+ /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
+ bool isInfinity() const { return category == fcInfinity; }
+
+ /// Returns true if and only if the float is a quiet or signaling NaN.
+ bool isNaN() const { return category == fcNaN; }
+
+ /// Returns true if and only if the float is a signaling NaN.
+ bool isSignaling() const;
+
+ /// @}
+
+ /// \name Simple Queries
+ /// @{
+
+ fltCategory getCategory() const { return category; }
+ const fltSemantics &getSemantics() const { return *semantics; }
+ bool isNonZero() const { return category != fcZero; }
+ bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+ bool isPosZero() const { return isZero() && !isNegative(); }
+ bool isNegZero() const { return isZero() && isNegative(); }
+
+ /// Returns true if and only if the number has the smallest possible non-zero
+ /// magnitude in the current semantics.
+ bool isSmallest() const;
+
+ /// Returns true if and only if the number has the largest possible finite
+ /// magnitude in the current semantics.
+ bool isLargest() const;
+
+ /// Returns true if and only if the number is an exact integer.
+ bool isInteger() const;
+
+ /// @}
+
+ IEEEFloat &operator=(const IEEEFloat &);
+ IEEEFloat &operator=(IEEEFloat &&);
+
+ /// Overload to compute a hash code for an APFloat value.
+ ///
+ /// Note that the use of hash codes for floating point values is in general
+ /// frought with peril. Equality is hard to define for these values. For
+ /// example, should negative and positive zero hash to different codes? Are
+ /// they equal or not? This hash value implementation specifically
+ /// emphasizes producing different codes for different inputs in order to
+ /// be used in canonicalization and memoization. As such, equality is
+ /// bitwiseIsEqual, and 0 != -0.
+ friend hash_code hash_value(const IEEEFloat &Arg);
+
+ /// Converts this value into a decimal string.
+ ///
+ /// \param FormatPrecision The maximum number of digits of
+ /// precision to output. If there are fewer digits available,
+ /// zero padding will not be used unless the value is
+ /// integral and small enough to be expressed in
+ /// FormatPrecision digits. 0 means to use the natural
+ /// precision of the number.
+ /// \param FormatMaxPadding The maximum number of zeros to
+ /// consider inserting before falling back to scientific
+ /// notation. 0 means to always use scientific notation.
+ ///
+ /// \param TruncateZero Indicate whether to remove the trailing zero in
+ /// fraction part or not. Also setting this parameter to false forcing
+ /// producing of output more similar to default printf behavior.
+ /// Specifically the lower e is used as exponent delimiter and exponent
+ /// always contains no less than two digits.
+ ///
+ /// Number Precision MaxPadding Result
+ /// ------ --------- ---------- ------
+ /// 1.01E+4 5 2 10100
+ /// 1.01E+4 4 2 1.01E+4
+ /// 1.01E+4 5 1 1.01E+4
+ /// 1.01E-2 5 2 0.0101
+ /// 1.01E-2 4 2 0.0101
+ /// 1.01E-2 4 1 1.01E-2
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+ unsigned FormatMaxPadding = 3, bool TruncateZero = true) const;
+
+ /// If this value has an exact multiplicative inverse, store it in inv and
+ /// return true.
+ bool getExactInverse(APFloat *inv) const;
+
+ /// Returns the exponent of the internal representation of the APFloat.
+ ///
+ /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)).
+ /// For special APFloat values, this returns special error codes:
+ ///
+ /// NaN -> \c IEK_NaN
+ /// 0 -> \c IEK_Zero
+ /// Inf -> \c IEK_Inf
+ ///
+ friend int ilogb(const IEEEFloat &Arg);
+
+ /// Returns: X * 2^Exp for integral exponents.
+ friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode);
+
+ friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode);
+
+ /// \name Special value setters.
+ /// @{
+
+ void makeLargest(bool Neg = false);
+ void makeSmallest(bool Neg = false);
+ void makeNaN(bool SNaN = false, bool Neg = false,
+ const APInt *fill = nullptr);
+ void makeInf(bool Neg = false);
+ void makeZero(bool Neg = false);
+ void makeQuiet();
+
+ /// Returns the smallest (by magnitude) normalized finite number in the given
+ /// semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ void makeSmallestNormalized(bool Negative = false);
+
+ /// @}
+
+ cmpResult compareAbsoluteValue(const IEEEFloat &) const;
+
+private:
+ /// \name Simple Queries
+ /// @{
+
+ integerPart *significandParts();
+ const integerPart *significandParts() const;
+ unsigned int partCount() const;
+
+ /// @}
+
+ /// \name Significand operations.
+ /// @{
+
+ integerPart addSignificand(const IEEEFloat &);
+ integerPart subtractSignificand(const IEEEFloat &, integerPart);
+ lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract);
+ lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *);
+ lostFraction divideSignificand(const IEEEFloat &);
+ void incrementSignificand();
+ void initialize(const fltSemantics *);
+ void shiftSignificandLeft(unsigned int);
+ lostFraction shiftSignificandRight(unsigned int);
+ unsigned int significandLSB() const;
+ unsigned int significandMSB() const;
+ void zeroSignificand();
+ /// Return true if the significand excluding the integral bit is all ones.
+ bool isSignificandAllOnes() const;
+ /// Return true if the significand excluding the integral bit is all zeros.
+ bool isSignificandAllZeros() const;
+
+ /// @}
+
+ /// \name Arithmetic on special values.
+ /// @{
+
+ opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract);
+ opStatus divideSpecials(const IEEEFloat &);
+ opStatus multiplySpecials(const IEEEFloat &);
+ opStatus modSpecials(const IEEEFloat &);
+
+ /// @}
+
+ /// \name Miscellany
+ /// @{
+
+ bool convertFromStringSpecials(StringRef str);
+ opStatus normalize(roundingMode, lostFraction);
+ opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract);
+ opStatus handleOverflow(roundingMode);
+ bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
+ opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>,
+ unsigned int, bool, roundingMode,
+ bool *) const;
+ opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
+ roundingMode);
+ opStatus convertFromHexadecimalString(StringRef, roundingMode);
+ opStatus convertFromDecimalString(StringRef, roundingMode);
+ char *convertNormalToHexString(char *, unsigned int, bool,
+ roundingMode) const;
+ opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
+ roundingMode);
+
+ /// @}
+
+ APInt convertHalfAPFloatToAPInt() const;
+ APInt convertFloatAPFloatToAPInt() const;
+ APInt convertDoubleAPFloatToAPInt() const;
+ APInt convertQuadrupleAPFloatToAPInt() const;
+ APInt convertF80LongDoubleAPFloatToAPInt() const;
+ APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
+ void initFromAPInt(const fltSemantics *Sem, const APInt &api);
+ void initFromHalfAPInt(const APInt &api);
+ void initFromFloatAPInt(const APInt &api);
+ void initFromDoubleAPInt(const APInt &api);
+ void initFromQuadrupleAPInt(const APInt &api);
+ void initFromF80LongDoubleAPInt(const APInt &api);
+ void initFromPPCDoubleDoubleAPInt(const APInt &api);
+
+ void assign(const IEEEFloat &);
+ void copySignificand(const IEEEFloat &);
+ void freeSignificand();
+
+ /// Note: this must be the first data member.
+ /// The semantics that this value obeys.
+ const fltSemantics *semantics;
+
+ /// A binary fraction with an explicit integer bit.
+ ///
+ /// The significand must be at least one bit wider than the target precision.
+ union Significand {
+ integerPart part;
+ integerPart *parts;
+ } significand;
+
+ /// The signed unbiased exponent of the value.
+ ExponentType exponent;
+
+ /// What kind of floating point number this is.
+ ///
+ /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
+ /// Using the extra bit keeps it from failing under VisualStudio.
+ fltCategory category : 3;
+
+ /// Sign bit of the number.
+ unsigned int sign : 1;
+};
+
+hash_code hash_value(const IEEEFloat &Arg);
+int ilogb(const IEEEFloat &Arg);
+IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode);
+IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM);
+
+// This mode implements more precise float in terms of two APFloats.
+// The interface and layout is designed for arbitray underlying semantics,
+// though currently only PPCDoubleDouble semantics are supported, whose
+// corresponding underlying semantics are IEEEdouble.
+class DoubleAPFloat final : public APFloatBase {
+ // Note: this must be the first data member.
+ const fltSemantics *Semantics;
+ std::unique_ptr<APFloat[]> Floats;
+
+ opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c,
+ const APFloat &cc, roundingMode RM);
+
+ opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS,
+ DoubleAPFloat &Out, roundingMode RM);
+
+public:
+ DoubleAPFloat(const fltSemantics &S);
+ DoubleAPFloat(const fltSemantics &S, uninitializedTag);
+ DoubleAPFloat(const fltSemantics &S, integerPart);
+ DoubleAPFloat(const fltSemantics &S, const APInt &I);
+ DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second);
+ DoubleAPFloat(const DoubleAPFloat &RHS);
+ DoubleAPFloat(DoubleAPFloat &&RHS);
+
+ DoubleAPFloat &operator=(const DoubleAPFloat &RHS);
+
+ DoubleAPFloat &operator=(DoubleAPFloat &&RHS) {
+ if (this != &RHS) {
+ this->~DoubleAPFloat();
+ new (this) DoubleAPFloat(std::move(RHS));
+ }
+ return *this;
+ }
+
+ bool needsCleanup() const { return Floats != nullptr; }
+
+ APFloat &getFirst() { return Floats[0]; }
+ const APFloat &getFirst() const { return Floats[0]; }
+ APFloat &getSecond() { return Floats[1]; }
+ const APFloat &getSecond() const { return Floats[1]; }
+
+ opStatus add(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus divide(const DoubleAPFloat &RHS, roundingMode RM);
+ opStatus remainder(const DoubleAPFloat &RHS);
+ opStatus mod(const DoubleAPFloat &RHS);
+ opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
+ const DoubleAPFloat &Addend, roundingMode RM);
+ opStatus roundToIntegral(roundingMode RM);
+ void changeSign();
+ cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const;
+
+ fltCategory getCategory() const;
+ bool isNegative() const;
+
+ void makeInf(bool Neg);
+ void makeZero(bool Neg);
+ void makeLargest(bool Neg);
+ void makeSmallest(bool Neg);
+ void makeSmallestNormalized(bool Neg);
+ void makeNaN(bool SNaN, bool Neg, const APInt *fill);
+
+ cmpResult compare(const DoubleAPFloat &RHS) const;
+ bool bitwiseIsEqual(const DoubleAPFloat &RHS) const;
+ APInt bitcastToAPInt() const;
+ opStatus convertFromString(StringRef, roundingMode);
+ opStatus next(bool nextDown);
+
+ opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+ unsigned int Width, bool IsSigned, roundingMode RM,
+ bool *IsExact) const;
+ opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM);
+ opStatus convertFromSignExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM);
+ opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM);
+ unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+ bool UpperCase, roundingMode RM) const;
+
+ bool isDenormal() const;
+ bool isSmallest() const;
+ bool isLargest() const;
+ bool isInteger() const;
+
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
+ unsigned FormatMaxPadding, bool TruncateZero = true) const;
+
+ bool getExactInverse(APFloat *inv) const;
+
+ friend int ilogb(const DoubleAPFloat &Arg);
+ friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode);
+ friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode);
+ friend hash_code hash_value(const DoubleAPFloat &Arg);
+};
+
+hash_code hash_value(const DoubleAPFloat &Arg);
+
+} // End detail namespace
+
+// This is a interface class that is currently forwarding functionalities from
+// detail::IEEEFloat.
+class APFloat : public APFloatBase {
+ typedef detail::IEEEFloat IEEEFloat;
+ typedef detail::DoubleAPFloat DoubleAPFloat;
+
+ static_assert(std::is_standard_layout<IEEEFloat>::value, "");
+
+ union Storage {
+ const fltSemantics *semantics;
+ IEEEFloat IEEE;
+ DoubleAPFloat Double;
+
+ explicit Storage(IEEEFloat F, const fltSemantics &S);
+ explicit Storage(DoubleAPFloat F, const fltSemantics &S)
+ : Double(std::move(F)) {
+ assert(&S == &PPCDoubleDouble());
+ }
+
+ template <typename... ArgTypes>
+ Storage(const fltSemantics &Semantics, ArgTypes &&... Args) {
+ if (usesLayout<IEEEFloat>(Semantics)) {
+ new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...);
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(Semantics)) {
+ new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...);
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ ~Storage() {
+ if (usesLayout<IEEEFloat>(*semantics)) {
+ IEEE.~IEEEFloat();
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*semantics)) {
+ Double.~DoubleAPFloat();
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage(const Storage &RHS) {
+ if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+ new (this) IEEEFloat(RHS.IEEE);
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ new (this) DoubleAPFloat(RHS.Double);
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage(Storage &&RHS) {
+ if (usesLayout<IEEEFloat>(*RHS.semantics)) {
+ new (this) IEEEFloat(std::move(RHS.IEEE));
+ return;
+ }
+ if (usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ new (this) DoubleAPFloat(std::move(RHS.Double));
+ return;
+ }
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ Storage &operator=(const Storage &RHS) {
+ if (usesLayout<IEEEFloat>(*semantics) &&
+ usesLayout<IEEEFloat>(*RHS.semantics)) {
+ IEEE = RHS.IEEE;
+ } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+ usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ Double = RHS.Double;
+ } else if (this != &RHS) {
+ this->~Storage();
+ new (this) Storage(RHS);
+ }
+ return *this;
+ }
+
+ Storage &operator=(Storage &&RHS) {
+ if (usesLayout<IEEEFloat>(*semantics) &&
+ usesLayout<IEEEFloat>(*RHS.semantics)) {
+ IEEE = std::move(RHS.IEEE);
+ } else if (usesLayout<DoubleAPFloat>(*semantics) &&
+ usesLayout<DoubleAPFloat>(*RHS.semantics)) {
+ Double = std::move(RHS.Double);
+ } else if (this != &RHS) {
+ this->~Storage();
+ new (this) Storage(std::move(RHS));
+ }
+ return *this;
+ }
+ } U;
+
+ template <typename T> static bool usesLayout(const fltSemantics &Semantics) {
+ static_assert(std::is_same<T, IEEEFloat>::value ||
+ std::is_same<T, DoubleAPFloat>::value, "");
+ if (std::is_same<T, DoubleAPFloat>::value) {
+ return &Semantics == &PPCDoubleDouble();
+ }
+ return &Semantics != &PPCDoubleDouble();
+ }
+
+ IEEEFloat &getIEEE() {
+ if (usesLayout<IEEEFloat>(*U.semantics))
+ return U.IEEE;
+ if (usesLayout<DoubleAPFloat>(*U.semantics))
+ return U.Double.getFirst().U.IEEE;
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ const IEEEFloat &getIEEE() const {
+ if (usesLayout<IEEEFloat>(*U.semantics))
+ return U.IEEE;
+ if (usesLayout<DoubleAPFloat>(*U.semantics))
+ return U.Double.getFirst().U.IEEE;
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); }
+
+ void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); }
+
+ void makeNaN(bool SNaN, bool Neg, const APInt *fill) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill));
+ }
+
+ void makeLargest(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg));
+ }
+
+ void makeSmallest(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg));
+ }
+
+ void makeSmallestNormalized(bool Neg) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg));
+ }
+
+ // FIXME: This is due to clang 3.3 (or older version) always checks for the
+ // default constructor in an array aggregate initialization, even if no
+ // elements in the array is default initialized.
+ APFloat() : U(IEEEdouble()) {
+ llvm_unreachable("This is a workaround for old clang.");
+ }
+
+ explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {}
+ explicit APFloat(DoubleAPFloat F, const fltSemantics &S)
+ : U(std::move(F), S) {}
+
+ cmpResult compareAbsoluteValue(const APFloat &RHS) const {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only compare APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.compareAbsoluteValue(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.compareAbsoluteValue(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+public:
+ APFloat(const fltSemantics &Semantics) : U(Semantics) {}
+ APFloat(const fltSemantics &Semantics, StringRef S);
+ APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {}
+ // TODO: Remove this constructor. This isn't faster than the first one.
+ APFloat(const fltSemantics &Semantics, uninitializedTag)
+ : U(Semantics, uninitialized) {}
+ APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {}
+ explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {}
+ explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {}
+ APFloat(const APFloat &RHS) = default;
+ APFloat(APFloat &&RHS) = default;
+
+ ~APFloat() = default;
+
+ bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); }
+
+ /// Factory for Positive and Negative Zero.
+ ///
+ /// \param Negative True iff the number should be negative.
+ static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeZero(Negative);
+ return Val;
+ }
+
+ /// Factory for Positive and Negative Infinity.
+ ///
+ /// \param Negative True iff the number should be negative.
+ static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeInf(Negative);
+ return Val;
+ }
+
+ /// Factory for NaN values.
+ ///
+ /// \param Negative - True iff the NaN generated should be negative.
+ /// \param payload - The unspecified fill bits for creating the NaN, 0 by
+ /// default. The value is truncated as necessary.
+ static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
+ uint64_t payload = 0) {
+ if (payload) {
+ APInt intPayload(64, payload);
+ return getQNaN(Sem, Negative, &intPayload);
+ } else {
+ return getQNaN(Sem, Negative, nullptr);
+ }
+ }
+
+ /// Factory for QNaN values.
+ static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
+ const APInt *payload = nullptr) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeNaN(false, Negative, payload);
+ return Val;
+ }
+
+ /// Factory for SNaN values.
+ static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
+ const APInt *payload = nullptr) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeNaN(true, Negative, payload);
+ return Val;
+ }
+
+ /// Returns the largest finite number in the given semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeLargest(Negative);
+ return Val;
+ }
+
+ /// Returns the smallest (by magnitude) finite number in the given semantics.
+ /// Might be denormalized, which implies a relative loss of precision.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeSmallest(Negative);
+ return Val;
+ }
+
+ /// Returns the smallest (by magnitude) normalized finite number in the given
+ /// semantics.
+ ///
+ /// \param Negative - True iff the number should be negative
+ static APFloat getSmallestNormalized(const fltSemantics &Sem,
+ bool Negative = false) {
+ APFloat Val(Sem, uninitialized);
+ Val.makeSmallestNormalized(Negative);
+ return Val;
+ }
+
+ /// Returns a float which is bitcasted from an all one value int.
+ ///
+ /// \param BitWidth - Select float type
+ /// \param isIEEE - If 128 bit number, select between PPC and IEEE
+ static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
+
+ /// Used to insert APFloat objects, or objects that contain APFloat objects,
+ /// into FoldingSets.
+ void Profile(FoldingSetNodeID &NID) const;
+
+ opStatus add(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.add(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.add(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus subtract(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.subtract(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.subtract(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus multiply(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.multiply(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.multiply(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus divide(const APFloat &RHS, roundingMode RM) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.divide(RHS.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.divide(RHS.U.Double, RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus remainder(const APFloat &RHS) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.remainder(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.remainder(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus mod(const APFloat &RHS) {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only call on two APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.mod(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.mod(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend,
+ roundingMode RM) {
+ assert(&getSemantics() == &Multiplicand.getSemantics() &&
+ "Should only call on APFloats with the same semantics");
+ assert(&getSemantics() == &Addend.getSemantics() &&
+ "Should only call on APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double,
+ RM);
+ llvm_unreachable("Unexpected semantics");
+ }
+ opStatus roundToIntegral(roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM));
+ }
+
+ // TODO: bool parameters are not readable and a source of bugs.
+ // Do something.
+ opStatus next(bool nextDown) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown));
+ }
+
+ /// Add two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator+(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.add(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Subtract two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator-(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.subtract(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Multiply two APFloats, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator*(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.multiply(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ /// Divide the first APFloat by the second, rounding ties to the nearest even.
+ /// No error checking.
+ APFloat operator/(const APFloat &RHS) const {
+ APFloat Result(*this);
+ (void)Result.divide(RHS, rmNearestTiesToEven);
+ return Result;
+ }
+
+ void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); }
+ void clearSign() {
+ if (isNegative())
+ changeSign();
+ }
+ void copySign(const APFloat &RHS) {
+ if (isNegative() != RHS.isNegative())
+ changeSign();
+ }
+
+ /// A static helper to produce a copy of an APFloat value with its sign
+ /// copied from some other APFloat.
+ static APFloat copySign(APFloat Value, const APFloat &Sign) {
+ Value.copySign(Sign);
+ return Value;
+ }
+
+ opStatus convert(const fltSemantics &ToSemantics, roundingMode RM,
+ bool *losesInfo);
+ opStatus convertToInteger(MutableArrayRef<integerPart> Input,
+ unsigned int Width, bool IsSigned, roundingMode RM,
+ bool *IsExact) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertToInteger(Input, Width, IsSigned, RM, IsExact));
+ }
+ opStatus convertToInteger(APSInt &Result, roundingMode RM,
+ bool *IsExact) const;
+ opStatus convertFromAPInt(const APInt &Input, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM));
+ }
+ opStatus convertFromSignExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM));
+ }
+ opStatus convertFromZeroExtendedInteger(const integerPart *Input,
+ unsigned int InputSize, bool IsSigned,
+ roundingMode RM) {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM));
+ }
+ opStatus convertFromString(StringRef, roundingMode);
+ APInt bitcastToAPInt() const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt());
+ }
+ double convertToDouble() const { return getIEEE().convertToDouble(); }
+ float convertToFloat() const { return getIEEE().convertToFloat(); }
+
+ bool operator==(const APFloat &) const = delete;
+
+ cmpResult compare(const APFloat &RHS) const {
+ assert(&getSemantics() == &RHS.getSemantics() &&
+ "Should only compare APFloats with the same semantics");
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.compare(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.compare(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ bool bitwiseIsEqual(const APFloat &RHS) const {
+ if (&getSemantics() != &RHS.getSemantics())
+ return false;
+ if (usesLayout<IEEEFloat>(getSemantics()))
+ return U.IEEE.bitwiseIsEqual(RHS.U.IEEE);
+ if (usesLayout<DoubleAPFloat>(getSemantics()))
+ return U.Double.bitwiseIsEqual(RHS.U.Double);
+ llvm_unreachable("Unexpected semantics");
+ }
+
+ /// We don't rely on operator== working on double values, as
+ /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values.
+ ///
+ /// We leave the version with the double argument here because it's just so
+ /// convenient to write "2.0" and the like. Without this function we'd
+ /// have to duplicate its logic everywhere it's called.
+ bool isExactlyValue(double V) const {
+ bool ignored;
+ APFloat Tmp(V);
+ Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
+ return bitwiseIsEqual(Tmp);
+ }
+
+ unsigned int convertToHexString(char *DST, unsigned int HexDigits,
+ bool UpperCase, roundingMode RM) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ convertToHexString(DST, HexDigits, UpperCase, RM));
+ }
+
+ bool isZero() const { return getCategory() == fcZero; }
+ bool isInfinity() const { return getCategory() == fcInfinity; }
+ bool isNaN() const { return getCategory() == fcNaN; }
+
+ bool isNegative() const { return getIEEE().isNegative(); }
+ bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); }
+ bool isSignaling() const { return getIEEE().isSignaling(); }
+
+ bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
+ bool isFinite() const { return !isNaN() && !isInfinity(); }
+
+ fltCategory getCategory() const { return getIEEE().getCategory(); }
+ const fltSemantics &getSemantics() const { return *U.semantics; }
+ bool isNonZero() const { return !isZero(); }
+ bool isFiniteNonZero() const { return isFinite() && !isZero(); }
+ bool isPosZero() const { return isZero() && !isNegative(); }
+ bool isNegZero() const { return isZero() && isNegative(); }
+ bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); }
+ bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); }
+ bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); }
+
+ APFloat &operator=(const APFloat &RHS) = default;
+ APFloat &operator=(APFloat &&RHS) = default;
+
+ void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
+ unsigned FormatMaxPadding = 3, bool TruncateZero = true) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(
+ toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero));
+ }
+
+ void print(raw_ostream &) const;
+ void dump() const;
+
+ bool getExactInverse(APFloat *inv) const {
+ APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv));
+ }
+
+ friend hash_code hash_value(const APFloat &Arg);
+ friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); }
+ friend APFloat scalbn(APFloat X, int Exp, roundingMode RM);
+ friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM);
+ friend IEEEFloat;
+ friend DoubleAPFloat;
+};
+
+/// See friend declarations above.
+///
+/// These additional declarations are required in order to compile LLVM with IBM
+/// xlC compiler.
+hash_code hash_value(const APFloat &Arg);
+inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) {
+ if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+ return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics());
+ if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+ return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics());
+ llvm_unreachable("Unexpected semantics");
+}
+
+/// Equivalent of C standard library function.
+///
+/// While the C standard says Exp is an unspecified value for infinity and nan,
+/// this returns INT_MAX for infinities, and INT_MIN for NaNs.
+inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) {
+ if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics()))
+ return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics());
+ if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics()))
+ return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics());
+ llvm_unreachable("Unexpected semantics");
+}
+/// Returns the absolute value of the argument.
+inline APFloat abs(APFloat X) {
+ X.clearSign();
+ return X;
+}
+
+/// Returns the negated value of the argument.
+inline APFloat neg(APFloat X) {
+ X.changeSign();
+ return X;
+}
+
+/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat minnum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return B;
+ if (B.isNaN())
+ return A;
+ return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
+/// both are not NaN. If either argument is a NaN, returns the other argument.
+LLVM_READONLY
+inline APFloat maxnum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return B;
+ if (B.isNaN())
+ return A;
+ return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2
+/// arguments, propagating NaNs and treating -0 as less than +0.
+LLVM_READONLY
+inline APFloat minimum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return A;
+ if (B.isNaN())
+ return B;
+ if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
+ return A.isNegative() ? A : B;
+ return (B.compare(A) == APFloat::cmpLessThan) ? B : A;
+}
+
+/// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2
+/// arguments, propagating NaNs and treating -0 as less than +0.
+LLVM_READONLY
+inline APFloat maximum(const APFloat &A, const APFloat &B) {
+ if (A.isNaN())
+ return A;
+ if (B.isNaN())
+ return B;
+ if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative()))
+ return A.isNegative() ? B : A;
+ return (A.compare(B) == APFloat::cmpLessThan) ? B : A;
+}
+
+} // namespace llvm
+
+#undef APFLOAT_DISPATCH_ON_SEMANTICS
+#endif // LLVM_ADT_APFLOAT_H