summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/include/llvm/ADT/APInt.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/APInt.h')
-rw-r--r--third_party/llvm-project/include/llvm/ADT/APInt.h2258
1 files changed, 2258 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/APInt.h b/third_party/llvm-project/include/llvm/ADT/APInt.h
new file mode 100644
index 000000000..60a0db7e9
--- /dev/null
+++ b/third_party/llvm-project/include/llvm/ADT/APInt.h
@@ -0,0 +1,2258 @@
+//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements a class to represent arbitrary precision
+/// integral constant values and operations on them.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_APINT_H
+#define LLVM_ADT_APINT_H
+
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/MathExtras.h"
+#include <cassert>
+#include <climits>
+#include <cstring>
+#include <string>
+
+namespace llvm {
+class FoldingSetNodeID;
+class StringRef;
+class hash_code;
+class raw_ostream;
+
+template <typename T> class SmallVectorImpl;
+template <typename T> class ArrayRef;
+template <typename T> class Optional;
+
+class APInt;
+
+inline APInt operator-(APInt);
+
+//===----------------------------------------------------------------------===//
+// APInt Class
+//===----------------------------------------------------------------------===//
+
+/// Class for arbitrary precision integers.
+///
+/// APInt is a functional replacement for common case unsigned integer type like
+/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
+/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
+/// than 64-bits of precision. APInt provides a variety of arithmetic operators
+/// and methods to manipulate integer values of any bit-width. It supports both
+/// the typical integer arithmetic and comparison operations as well as bitwise
+/// manipulation.
+///
+/// The class has several invariants worth noting:
+/// * All bit, byte, and word positions are zero-based.
+/// * Once the bit width is set, it doesn't change except by the Truncate,
+/// SignExtend, or ZeroExtend operations.
+/// * All binary operators must be on APInt instances of the same bit width.
+/// Attempting to use these operators on instances with different bit
+/// widths will yield an assertion.
+/// * The value is stored canonically as an unsigned value. For operations
+/// where it makes a difference, there are both signed and unsigned variants
+/// of the operation. For example, sdiv and udiv. However, because the bit
+/// widths must be the same, operations such as Mul and Add produce the same
+/// results regardless of whether the values are interpreted as signed or
+/// not.
+/// * In general, the class tries to follow the style of computation that LLVM
+/// uses in its IR. This simplifies its use for LLVM.
+///
+class LLVM_NODISCARD APInt {
+public:
+ typedef uint64_t WordType;
+
+ /// This enum is used to hold the constants we needed for APInt.
+ enum : unsigned {
+ /// Byte size of a word.
+ APINT_WORD_SIZE = sizeof(WordType),
+ /// Bits in a word.
+ APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
+ };
+
+ enum class Rounding {
+ DOWN,
+ TOWARD_ZERO,
+ UP,
+ };
+
+ static const WordType WORDTYPE_MAX = ~WordType(0);
+
+private:
+ /// This union is used to store the integer value. When the
+ /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
+ union {
+ uint64_t VAL; ///< Used to store the <= 64 bits integer value.
+ uint64_t *pVal; ///< Used to store the >64 bits integer value.
+ } U;
+
+ unsigned BitWidth; ///< The number of bits in this APInt.
+
+ friend struct DenseMapAPIntKeyInfo;
+
+ friend class APSInt;
+
+ /// Fast internal constructor
+ ///
+ /// This constructor is used only internally for speed of construction of
+ /// temporaries. It is unsafe for general use so it is not public.
+ APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
+ U.pVal = val;
+ }
+
+ /// Determine if this APInt just has one word to store value.
+ ///
+ /// \returns true if the number of bits <= 64, false otherwise.
+ bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
+
+ /// Determine which word a bit is in.
+ ///
+ /// \returns the word position for the specified bit position.
+ static unsigned whichWord(unsigned bitPosition) {
+ return bitPosition / APINT_BITS_PER_WORD;
+ }
+
+ /// Determine which bit in a word a bit is in.
+ ///
+ /// \returns the bit position in a word for the specified bit position
+ /// in the APInt.
+ static unsigned whichBit(unsigned bitPosition) {
+ return bitPosition % APINT_BITS_PER_WORD;
+ }
+
+ /// Get a single bit mask.
+ ///
+ /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
+ /// This method generates and returns a uint64_t (word) mask for a single
+ /// bit at a specific bit position. This is used to mask the bit in the
+ /// corresponding word.
+ static uint64_t maskBit(unsigned bitPosition) {
+ return 1ULL << whichBit(bitPosition);
+ }
+
+ /// Clear unused high order bits
+ ///
+ /// This method is used internally to clear the top "N" bits in the high order
+ /// word that are not used by the APInt. This is needed after the most
+ /// significant word is assigned a value to ensure that those bits are
+ /// zero'd out.
+ APInt &clearUnusedBits() {
+ // Compute how many bits are used in the final word
+ unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
+
+ // Mask out the high bits.
+ uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
+ if (isSingleWord())
+ U.VAL &= mask;
+ else
+ U.pVal[getNumWords() - 1] &= mask;
+ return *this;
+ }
+
+ /// Get the word corresponding to a bit position
+ /// \returns the corresponding word for the specified bit position.
+ uint64_t getWord(unsigned bitPosition) const {
+ return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
+ }
+
+ /// Utility method to change the bit width of this APInt to new bit width,
+ /// allocating and/or deallocating as necessary. There is no guarantee on the
+ /// value of any bits upon return. Caller should populate the bits after.
+ void reallocate(unsigned NewBitWidth);
+
+ /// Convert a char array into an APInt
+ ///
+ /// \param radix 2, 8, 10, 16, or 36
+ /// Converts a string into a number. The string must be non-empty
+ /// and well-formed as a number of the given base. The bit-width
+ /// must be sufficient to hold the result.
+ ///
+ /// This is used by the constructors that take string arguments.
+ ///
+ /// StringRef::getAsInteger is superficially similar but (1) does
+ /// not assume that the string is well-formed and (2) grows the
+ /// result to hold the input.
+ void fromString(unsigned numBits, StringRef str, uint8_t radix);
+
+ /// An internal division function for dividing APInts.
+ ///
+ /// This is used by the toString method to divide by the radix. It simply
+ /// provides a more convenient form of divide for internal use since KnuthDiv
+ /// has specific constraints on its inputs. If those constraints are not met
+ /// then it provides a simpler form of divide.
+ static void divide(const WordType *LHS, unsigned lhsWords,
+ const WordType *RHS, unsigned rhsWords, WordType *Quotient,
+ WordType *Remainder);
+
+ /// out-of-line slow case for inline constructor
+ void initSlowCase(uint64_t val, bool isSigned);
+
+ /// shared code between two array constructors
+ void initFromArray(ArrayRef<uint64_t> array);
+
+ /// out-of-line slow case for inline copy constructor
+ void initSlowCase(const APInt &that);
+
+ /// out-of-line slow case for shl
+ void shlSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for lshr.
+ void lshrSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for ashr.
+ void ashrSlowCase(unsigned ShiftAmt);
+
+ /// out-of-line slow case for operator=
+ void AssignSlowCase(const APInt &RHS);
+
+ /// out-of-line slow case for operator==
+ bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for countLeadingZeros
+ unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countLeadingOnes.
+ unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countTrailingZeros.
+ unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countTrailingOnes
+ unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for countPopulation
+ unsigned countPopulationSlowCase() const LLVM_READONLY;
+
+ /// out-of-line slow case for intersects.
+ bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for isSubsetOf.
+ bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
+
+ /// out-of-line slow case for setBits.
+ void setBitsSlowCase(unsigned loBit, unsigned hiBit);
+
+ /// out-of-line slow case for flipAllBits.
+ void flipAllBitsSlowCase();
+
+ /// out-of-line slow case for operator&=.
+ void AndAssignSlowCase(const APInt& RHS);
+
+ /// out-of-line slow case for operator|=.
+ void OrAssignSlowCase(const APInt& RHS);
+
+ /// out-of-line slow case for operator^=.
+ void XorAssignSlowCase(const APInt& RHS);
+
+ /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+ /// to, or greater than RHS.
+ int compare(const APInt &RHS) const LLVM_READONLY;
+
+ /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
+ /// to, or greater than RHS.
+ int compareSigned(const APInt &RHS) const LLVM_READONLY;
+
+public:
+ /// \name Constructors
+ /// @{
+
+ /// Create a new APInt of numBits width, initialized as val.
+ ///
+ /// If isSigned is true then val is treated as if it were a signed value
+ /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
+ /// will be done. Otherwise, no sign extension occurs (high order bits beyond
+ /// the range of val are zero filled).
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param val the initial value of the APInt
+ /// \param isSigned how to treat signedness of val
+ APInt(unsigned numBits, uint64_t val, bool isSigned = false)
+ : BitWidth(numBits) {
+ assert(BitWidth && "bitwidth too small");
+ if (isSingleWord()) {
+ U.VAL = val;
+ clearUnusedBits();
+ } else {
+ initSlowCase(val, isSigned);
+ }
+ }
+
+ /// Construct an APInt of numBits width, initialized as bigVal[].
+ ///
+ /// Note that bigVal.size() can be smaller or larger than the corresponding
+ /// bit width but any extraneous bits will be dropped.
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param bigVal a sequence of words to form the initial value of the APInt
+ APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
+
+ /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
+ /// deprecated because this constructor is prone to ambiguity with the
+ /// APInt(unsigned, uint64_t, bool) constructor.
+ ///
+ /// If this overload is ever deleted, care should be taken to prevent calls
+ /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
+ /// constructor.
+ APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
+
+ /// Construct an APInt from a string representation.
+ ///
+ /// This constructor interprets the string \p str in the given radix. The
+ /// interpretation stops when the first character that is not suitable for the
+ /// radix is encountered, or the end of the string. Acceptable radix values
+ /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
+ /// string to require more bits than numBits.
+ ///
+ /// \param numBits the bit width of the constructed APInt
+ /// \param str the string to be interpreted
+ /// \param radix the radix to use for the conversion
+ APInt(unsigned numBits, StringRef str, uint8_t radix);
+
+ /// Simply makes *this a copy of that.
+ /// Copy Constructor.
+ APInt(const APInt &that) : BitWidth(that.BitWidth) {
+ if (isSingleWord())
+ U.VAL = that.U.VAL;
+ else
+ initSlowCase(that);
+ }
+
+ /// Move Constructor.
+ APInt(APInt &&that) : BitWidth(that.BitWidth) {
+ memcpy(&U, &that.U, sizeof(U));
+ that.BitWidth = 0;
+ }
+
+ /// Destructor.
+ ~APInt() {
+ if (needsCleanup())
+ delete[] U.pVal;
+ }
+
+ /// Default constructor that creates an uninteresting APInt
+ /// representing a 1-bit zero value.
+ ///
+ /// This is useful for object deserialization (pair this with the static
+ /// method Read).
+ explicit APInt() : BitWidth(1) { U.VAL = 0; }
+
+ /// Returns whether this instance allocated memory.
+ bool needsCleanup() const { return !isSingleWord(); }
+
+ /// Used to insert APInt objects, or objects that contain APInt objects, into
+ /// FoldingSets.
+ void Profile(FoldingSetNodeID &id) const;
+
+ /// @}
+ /// \name Value Tests
+ /// @{
+
+ /// Determine sign of this APInt.
+ ///
+ /// This tests the high bit of this APInt to determine if it is set.
+ ///
+ /// \returns true if this APInt is negative, false otherwise
+ bool isNegative() const { return (*this)[BitWidth - 1]; }
+
+ /// Determine if this APInt Value is non-negative (>= 0)
+ ///
+ /// This tests the high bit of the APInt to determine if it is unset.
+ bool isNonNegative() const { return !isNegative(); }
+
+ /// Determine if sign bit of this APInt is set.
+ ///
+ /// This tests the high bit of this APInt to determine if it is set.
+ ///
+ /// \returns true if this APInt has its sign bit set, false otherwise.
+ bool isSignBitSet() const { return (*this)[BitWidth-1]; }
+
+ /// Determine if sign bit of this APInt is clear.
+ ///
+ /// This tests the high bit of this APInt to determine if it is clear.
+ ///
+ /// \returns true if this APInt has its sign bit clear, false otherwise.
+ bool isSignBitClear() const { return !isSignBitSet(); }
+
+ /// Determine if this APInt Value is positive.
+ ///
+ /// This tests if the value of this APInt is positive (> 0). Note
+ /// that 0 is not a positive value.
+ ///
+ /// \returns true if this APInt is positive.
+ bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
+
+ /// Determine if all bits are set
+ ///
+ /// This checks to see if the value has all bits of the APInt are set or not.
+ bool isAllOnesValue() const {
+ if (isSingleWord())
+ return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
+ return countTrailingOnesSlowCase() == BitWidth;
+ }
+
+ /// Determine if all bits are clear
+ ///
+ /// This checks to see if the value has all bits of the APInt are clear or
+ /// not.
+ bool isNullValue() const { return !*this; }
+
+ /// Determine if this is a value of 1.
+ ///
+ /// This checks to see if the value of this APInt is one.
+ bool isOneValue() const {
+ if (isSingleWord())
+ return U.VAL == 1;
+ return countLeadingZerosSlowCase() == BitWidth - 1;
+ }
+
+ /// Determine if this is the largest unsigned value.
+ ///
+ /// This checks to see if the value of this APInt is the maximum unsigned
+ /// value for the APInt's bit width.
+ bool isMaxValue() const { return isAllOnesValue(); }
+
+ /// Determine if this is the largest signed value.
+ ///
+ /// This checks to see if the value of this APInt is the maximum signed
+ /// value for the APInt's bit width.
+ bool isMaxSignedValue() const {
+ if (isSingleWord())
+ return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
+ return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
+ }
+
+ /// Determine if this is the smallest unsigned value.
+ ///
+ /// This checks to see if the value of this APInt is the minimum unsigned
+ /// value for the APInt's bit width.
+ bool isMinValue() const { return isNullValue(); }
+
+ /// Determine if this is the smallest signed value.
+ ///
+ /// This checks to see if the value of this APInt is the minimum signed
+ /// value for the APInt's bit width.
+ bool isMinSignedValue() const {
+ if (isSingleWord())
+ return U.VAL == (WordType(1) << (BitWidth - 1));
+ return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
+ }
+
+ /// Check if this APInt has an N-bits unsigned integer value.
+ bool isIntN(unsigned N) const {
+ assert(N && "N == 0 ???");
+ return getActiveBits() <= N;
+ }
+
+ /// Check if this APInt has an N-bits signed integer value.
+ bool isSignedIntN(unsigned N) const {
+ assert(N && "N == 0 ???");
+ return getMinSignedBits() <= N;
+ }
+
+ /// Check if this APInt's value is a power of two greater than zero.
+ ///
+ /// \returns true if the argument APInt value is a power of two > 0.
+ bool isPowerOf2() const {
+ if (isSingleWord())
+ return isPowerOf2_64(U.VAL);
+ return countPopulationSlowCase() == 1;
+ }
+
+ /// Check if the APInt's value is returned by getSignMask.
+ ///
+ /// \returns true if this is the value returned by getSignMask.
+ bool isSignMask() const { return isMinSignedValue(); }
+
+ /// Convert APInt to a boolean value.
+ ///
+ /// This converts the APInt to a boolean value as a test against zero.
+ bool getBoolValue() const { return !!*this; }
+
+ /// If this value is smaller than the specified limit, return it, otherwise
+ /// return the limit value. This causes the value to saturate to the limit.
+ uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
+ return ugt(Limit) ? Limit : getZExtValue();
+ }
+
+ /// Check if the APInt consists of a repeated bit pattern.
+ ///
+ /// e.g. 0x01010101 satisfies isSplat(8).
+ /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
+ /// width without remainder.
+ bool isSplat(unsigned SplatSizeInBits) const;
+
+ /// \returns true if this APInt value is a sequence of \param numBits ones
+ /// starting at the least significant bit with the remainder zero.
+ bool isMask(unsigned numBits) const {
+ assert(numBits != 0 && "numBits must be non-zero");
+ assert(numBits <= BitWidth && "numBits out of range");
+ if (isSingleWord())
+ return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
+ unsigned Ones = countTrailingOnesSlowCase();
+ return (numBits == Ones) &&
+ ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+ }
+
+ /// \returns true if this APInt is a non-empty sequence of ones starting at
+ /// the least significant bit with the remainder zero.
+ /// Ex. isMask(0x0000FFFFU) == true.
+ bool isMask() const {
+ if (isSingleWord())
+ return isMask_64(U.VAL);
+ unsigned Ones = countTrailingOnesSlowCase();
+ return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
+ }
+
+ /// Return true if this APInt value contains a sequence of ones with
+ /// the remainder zero.
+ bool isShiftedMask() const {
+ if (isSingleWord())
+ return isShiftedMask_64(U.VAL);
+ unsigned Ones = countPopulationSlowCase();
+ unsigned LeadZ = countLeadingZerosSlowCase();
+ return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
+ }
+
+ /// @}
+ /// \name Value Generators
+ /// @{
+
+ /// Gets maximum unsigned value of APInt for specific bit width.
+ static APInt getMaxValue(unsigned numBits) {
+ return getAllOnesValue(numBits);
+ }
+
+ /// Gets maximum signed value of APInt for a specific bit width.
+ static APInt getSignedMaxValue(unsigned numBits) {
+ APInt API = getAllOnesValue(numBits);
+ API.clearBit(numBits - 1);
+ return API;
+ }
+
+ /// Gets minimum unsigned value of APInt for a specific bit width.
+ static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
+
+ /// Gets minimum signed value of APInt for a specific bit width.
+ static APInt getSignedMinValue(unsigned numBits) {
+ APInt API(numBits, 0);
+ API.setBit(numBits - 1);
+ return API;
+ }
+
+ /// Get the SignMask for a specific bit width.
+ ///
+ /// This is just a wrapper function of getSignedMinValue(), and it helps code
+ /// readability when we want to get a SignMask.
+ static APInt getSignMask(unsigned BitWidth) {
+ return getSignedMinValue(BitWidth);
+ }
+
+ /// Get the all-ones value.
+ ///
+ /// \returns the all-ones value for an APInt of the specified bit-width.
+ static APInt getAllOnesValue(unsigned numBits) {
+ return APInt(numBits, WORDTYPE_MAX, true);
+ }
+
+ /// Get the '0' value.
+ ///
+ /// \returns the '0' value for an APInt of the specified bit-width.
+ static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
+
+ /// Compute an APInt containing numBits highbits from this APInt.
+ ///
+ /// Get an APInt with the same BitWidth as this APInt, just zero mask
+ /// the low bits and right shift to the least significant bit.
+ ///
+ /// \returns the high "numBits" bits of this APInt.
+ APInt getHiBits(unsigned numBits) const;
+
+ /// Compute an APInt containing numBits lowbits from this APInt.
+ ///
+ /// Get an APInt with the same BitWidth as this APInt, just zero mask
+ /// the high bits.
+ ///
+ /// \returns the low "numBits" bits of this APInt.
+ APInt getLoBits(unsigned numBits) const;
+
+ /// Return an APInt with exactly one bit set in the result.
+ static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
+ APInt Res(numBits, 0);
+ Res.setBit(BitNo);
+ return Res;
+ }
+
+ /// Get a value with a block of bits set.
+ ///
+ /// Constructs an APInt value that has a contiguous range of bits set. The
+ /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
+ /// bits will be zero. For example, with parameters(32, 0, 16) you would get
+ /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
+ /// example, with parameters (32, 28, 4), you would get 0xF000000F.
+ ///
+ /// \param numBits the intended bit width of the result
+ /// \param loBit the index of the lowest bit set.
+ /// \param hiBit the index of the highest bit set.
+ ///
+ /// \returns An APInt value with the requested bits set.
+ static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
+ APInt Res(numBits, 0);
+ Res.setBits(loBit, hiBit);
+ return Res;
+ }
+
+ /// Get a value with upper bits starting at loBit set.
+ ///
+ /// Constructs an APInt value that has a contiguous range of bits set. The
+ /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
+ /// bits will be zero. For example, with parameters(32, 12) you would get
+ /// 0xFFFFF000.
+ ///
+ /// \param numBits the intended bit width of the result
+ /// \param loBit the index of the lowest bit to set.
+ ///
+ /// \returns An APInt value with the requested bits set.
+ static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
+ APInt Res(numBits, 0);
+ Res.setBitsFrom(loBit);
+ return Res;
+ }
+
+ /// Get a value with high bits set
+ ///
+ /// Constructs an APInt value that has the top hiBitsSet bits set.
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param hiBitsSet the number of high-order bits set in the result.
+ static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
+ APInt Res(numBits, 0);
+ Res.setHighBits(hiBitsSet);
+ return Res;
+ }
+
+ /// Get a value with low bits set
+ ///
+ /// Constructs an APInt value that has the bottom loBitsSet bits set.
+ ///
+ /// \param numBits the bitwidth of the result
+ /// \param loBitsSet the number of low-order bits set in the result.
+ static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
+ APInt Res(numBits, 0);
+ Res.setLowBits(loBitsSet);
+ return Res;
+ }
+
+ /// Return a value containing V broadcasted over NewLen bits.
+ static APInt getSplat(unsigned NewLen, const APInt &V);
+
+ /// Determine if two APInts have the same value, after zero-extending
+ /// one of them (if needed!) to ensure that the bit-widths match.
+ static bool isSameValue(const APInt &I1, const APInt &I2) {
+ if (I1.getBitWidth() == I2.getBitWidth())
+ return I1 == I2;
+
+ if (I1.getBitWidth() > I2.getBitWidth())
+ return I1 == I2.zext(I1.getBitWidth());
+
+ return I1.zext(I2.getBitWidth()) == I2;
+ }
+
+ /// Overload to compute a hash_code for an APInt value.
+ friend hash_code hash_value(const APInt &Arg);
+
+ /// This function returns a pointer to the internal storage of the APInt.
+ /// This is useful for writing out the APInt in binary form without any
+ /// conversions.
+ const uint64_t *getRawData() const {
+ if (isSingleWord())
+ return &U.VAL;
+ return &U.pVal[0];
+ }
+
+ /// @}
+ /// \name Unary Operators
+ /// @{
+
+ /// Postfix increment operator.
+ ///
+ /// Increments *this by 1.
+ ///
+ /// \returns a new APInt value representing the original value of *this.
+ const APInt operator++(int) {
+ APInt API(*this);
+ ++(*this);
+ return API;
+ }
+
+ /// Prefix increment operator.
+ ///
+ /// \returns *this incremented by one
+ APInt &operator++();
+
+ /// Postfix decrement operator.
+ ///
+ /// Decrements *this by 1.
+ ///
+ /// \returns a new APInt value representing the original value of *this.
+ const APInt operator--(int) {
+ APInt API(*this);
+ --(*this);
+ return API;
+ }
+
+ /// Prefix decrement operator.
+ ///
+ /// \returns *this decremented by one.
+ APInt &operator--();
+
+ /// Logical negation operator.
+ ///
+ /// Performs logical negation operation on this APInt.
+ ///
+ /// \returns true if *this is zero, false otherwise.
+ bool operator!() const {
+ if (isSingleWord())
+ return U.VAL == 0;
+ return countLeadingZerosSlowCase() == BitWidth;
+ }
+
+ /// @}
+ /// \name Assignment Operators
+ /// @{
+
+ /// Copy assignment operator.
+ ///
+ /// \returns *this after assignment of RHS.
+ APInt &operator=(const APInt &RHS) {
+ // If the bitwidths are the same, we can avoid mucking with memory
+ if (isSingleWord() && RHS.isSingleWord()) {
+ U.VAL = RHS.U.VAL;
+ BitWidth = RHS.BitWidth;
+ return clearUnusedBits();
+ }
+
+ AssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Move assignment operator.
+ APInt &operator=(APInt &&that) {
+#ifdef _MSC_VER
+ // The MSVC std::shuffle implementation still does self-assignment.
+ if (this == &that)
+ return *this;
+#endif
+ assert(this != &that && "Self-move not supported");
+ if (!isSingleWord())
+ delete[] U.pVal;
+
+ // Use memcpy so that type based alias analysis sees both VAL and pVal
+ // as modified.
+ memcpy(&U, &that.U, sizeof(U));
+
+ BitWidth = that.BitWidth;
+ that.BitWidth = 0;
+
+ return *this;
+ }
+
+ /// Assignment operator.
+ ///
+ /// The RHS value is assigned to *this. If the significant bits in RHS exceed
+ /// the bit width, the excess bits are truncated. If the bit width is larger
+ /// than 64, the value is zero filled in the unspecified high order bits.
+ ///
+ /// \returns *this after assignment of RHS value.
+ APInt &operator=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL = RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] = RHS;
+ memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ }
+ return *this;
+ }
+
+ /// Bitwise AND assignment operator.
+ ///
+ /// Performs a bitwise AND operation on this APInt and RHS. The result is
+ /// assigned to *this.
+ ///
+ /// \returns *this after ANDing with RHS.
+ APInt &operator&=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL &= RHS.U.VAL;
+ else
+ AndAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise AND assignment operator.
+ ///
+ /// Performs a bitwise AND operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator&=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL &= RHS;
+ return *this;
+ }
+ U.pVal[0] &= RHS;
+ memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
+ return *this;
+ }
+
+ /// Bitwise OR assignment operator.
+ ///
+ /// Performs a bitwise OR operation on this APInt and RHS. The result is
+ /// assigned *this;
+ ///
+ /// \returns *this after ORing with RHS.
+ APInt &operator|=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL |= RHS.U.VAL;
+ else
+ OrAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise OR assignment operator.
+ ///
+ /// Performs a bitwise OR operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator|=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL |= RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] |= RHS;
+ }
+ return *this;
+ }
+
+ /// Bitwise XOR assignment operator.
+ ///
+ /// Performs a bitwise XOR operation on this APInt and RHS. The result is
+ /// assigned to *this.
+ ///
+ /// \returns *this after XORing with RHS.
+ APInt &operator^=(const APInt &RHS) {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ U.VAL ^= RHS.U.VAL;
+ else
+ XorAssignSlowCase(RHS);
+ return *this;
+ }
+
+ /// Bitwise XOR assignment operator.
+ ///
+ /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
+ /// logically zero-extended or truncated to match the bit-width of
+ /// the LHS.
+ APInt &operator^=(uint64_t RHS) {
+ if (isSingleWord()) {
+ U.VAL ^= RHS;
+ clearUnusedBits();
+ } else {
+ U.pVal[0] ^= RHS;
+ }
+ return *this;
+ }
+
+ /// Multiplication assignment operator.
+ ///
+ /// Multiplies this APInt by RHS and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator*=(const APInt &RHS);
+ APInt &operator*=(uint64_t RHS);
+
+ /// Addition assignment operator.
+ ///
+ /// Adds RHS to *this and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator+=(const APInt &RHS);
+ APInt &operator+=(uint64_t RHS);
+
+ /// Subtraction assignment operator.
+ ///
+ /// Subtracts RHS from *this and assigns the result to *this.
+ ///
+ /// \returns *this
+ APInt &operator-=(const APInt &RHS);
+ APInt &operator-=(uint64_t RHS);
+
+ /// Left-shift assignment function.
+ ///
+ /// Shifts *this left by shiftAmt and assigns the result to *this.
+ ///
+ /// \returns *this after shifting left by ShiftAmt
+ APInt &operator<<=(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ if (ShiftAmt == BitWidth)
+ U.VAL = 0;
+ else
+ U.VAL <<= ShiftAmt;
+ return clearUnusedBits();
+ }
+ shlSlowCase(ShiftAmt);
+ return *this;
+ }
+
+ /// Left-shift assignment function.
+ ///
+ /// Shifts *this left by shiftAmt and assigns the result to *this.
+ ///
+ /// \returns *this after shifting left by ShiftAmt
+ APInt &operator<<=(const APInt &ShiftAmt);
+
+ /// @}
+ /// \name Binary Operators
+ /// @{
+
+ /// Multiplication operator.
+ ///
+ /// Multiplies this APInt by RHS and returns the result.
+ APInt operator*(const APInt &RHS) const;
+
+ /// Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
+ APInt operator<<(unsigned Bits) const { return shl(Bits); }
+
+ /// Left logical shift operator.
+ ///
+ /// Shifts this APInt left by \p Bits and returns the result.
+ APInt operator<<(const APInt &Bits) const { return shl(Bits); }
+
+ /// Arithmetic right-shift function.
+ ///
+ /// Arithmetic right-shift this APInt by shiftAmt.
+ APInt ashr(unsigned ShiftAmt) const {
+ APInt R(*this);
+ R.ashrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Arithmetic right-shift this APInt by ShiftAmt in place.
+ void ashrInPlace(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
+ if (ShiftAmt == BitWidth)
+ U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
+ else
+ U.VAL = SExtVAL >> ShiftAmt;
+ clearUnusedBits();
+ return;
+ }
+ ashrSlowCase(ShiftAmt);
+ }
+
+ /// Logical right-shift function.
+ ///
+ /// Logical right-shift this APInt by shiftAmt.
+ APInt lshr(unsigned shiftAmt) const {
+ APInt R(*this);
+ R.lshrInPlace(shiftAmt);
+ return R;
+ }
+
+ /// Logical right-shift this APInt by ShiftAmt in place.
+ void lshrInPlace(unsigned ShiftAmt) {
+ assert(ShiftAmt <= BitWidth && "Invalid shift amount");
+ if (isSingleWord()) {
+ if (ShiftAmt == BitWidth)
+ U.VAL = 0;
+ else
+ U.VAL >>= ShiftAmt;
+ return;
+ }
+ lshrSlowCase(ShiftAmt);
+ }
+
+ /// Left-shift function.
+ ///
+ /// Left-shift this APInt by shiftAmt.
+ APInt shl(unsigned shiftAmt) const {
+ APInt R(*this);
+ R <<= shiftAmt;
+ return R;
+ }
+
+ /// Rotate left by rotateAmt.
+ APInt rotl(unsigned rotateAmt) const;
+
+ /// Rotate right by rotateAmt.
+ APInt rotr(unsigned rotateAmt) const;
+
+ /// Arithmetic right-shift function.
+ ///
+ /// Arithmetic right-shift this APInt by shiftAmt.
+ APInt ashr(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R.ashrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Arithmetic right-shift this APInt by shiftAmt in place.
+ void ashrInPlace(const APInt &shiftAmt);
+
+ /// Logical right-shift function.
+ ///
+ /// Logical right-shift this APInt by shiftAmt.
+ APInt lshr(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R.lshrInPlace(ShiftAmt);
+ return R;
+ }
+
+ /// Logical right-shift this APInt by ShiftAmt in place.
+ void lshrInPlace(const APInt &ShiftAmt);
+
+ /// Left-shift function.
+ ///
+ /// Left-shift this APInt by shiftAmt.
+ APInt shl(const APInt &ShiftAmt) const {
+ APInt R(*this);
+ R <<= ShiftAmt;
+ return R;
+ }
+
+ /// Rotate left by rotateAmt.
+ APInt rotl(const APInt &rotateAmt) const;
+
+ /// Rotate right by rotateAmt.
+ APInt rotr(const APInt &rotateAmt) const;
+
+ /// Unsigned division operation.
+ ///
+ /// Perform an unsigned divide operation on this APInt by RHS. Both this and
+ /// RHS are treated as unsigned quantities for purposes of this division.
+ ///
+ /// \returns a new APInt value containing the division result, rounded towards
+ /// zero.
+ APInt udiv(const APInt &RHS) const;
+ APInt udiv(uint64_t RHS) const;
+
+ /// Signed division function for APInt.
+ ///
+ /// Signed divide this APInt by APInt RHS.
+ ///
+ /// The result is rounded towards zero.
+ APInt sdiv(const APInt &RHS) const;
+ APInt sdiv(int64_t RHS) const;
+
+ /// Unsigned remainder operation.
+ ///
+ /// Perform an unsigned remainder operation on this APInt with RHS being the
+ /// divisor. Both this and RHS are treated as unsigned quantities for purposes
+ /// of this operation. Note that this is a true remainder operation and not a
+ /// modulo operation because the sign follows the sign of the dividend which
+ /// is *this.
+ ///
+ /// \returns a new APInt value containing the remainder result
+ APInt urem(const APInt &RHS) const;
+ uint64_t urem(uint64_t RHS) const;
+
+ /// Function for signed remainder operation.
+ ///
+ /// Signed remainder operation on APInt.
+ APInt srem(const APInt &RHS) const;
+ int64_t srem(int64_t RHS) const;
+
+ /// Dual division/remainder interface.
+ ///
+ /// Sometimes it is convenient to divide two APInt values and obtain both the
+ /// quotient and remainder. This function does both operations in the same
+ /// computation making it a little more efficient. The pair of input arguments
+ /// may overlap with the pair of output arguments. It is safe to call
+ /// udivrem(X, Y, X, Y), for example.
+ static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+ APInt &Remainder);
+ static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
+ uint64_t &Remainder);
+
+ static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
+ APInt &Remainder);
+ static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
+ int64_t &Remainder);
+
+ // Operations that return overflow indicators.
+ APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
+ APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
+ APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
+ APInt usub_ov(const APInt &RHS, bool &Overflow) const;
+ APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
+ APInt smul_ov(const APInt &RHS, bool &Overflow) const;
+ APInt umul_ov(const APInt &RHS, bool &Overflow) const;
+ APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
+ APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
+
+ // Operations that saturate
+ APInt sadd_sat(const APInt &RHS) const;
+ APInt uadd_sat(const APInt &RHS) const;
+ APInt ssub_sat(const APInt &RHS) const;
+ APInt usub_sat(const APInt &RHS) const;
+ APInt smul_sat(const APInt &RHS) const;
+ APInt umul_sat(const APInt &RHS) const;
+ APInt sshl_sat(const APInt &RHS) const;
+ APInt ushl_sat(const APInt &RHS) const;
+
+ /// Array-indexing support.
+ ///
+ /// \returns the bit value at bitPosition
+ bool operator[](unsigned bitPosition) const {
+ assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
+ return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
+ }
+
+ /// @}
+ /// \name Comparison Operators
+ /// @{
+
+ /// Equality operator.
+ ///
+ /// Compares this APInt with RHS for the validity of the equality
+ /// relationship.
+ bool operator==(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
+ if (isSingleWord())
+ return U.VAL == RHS.U.VAL;
+ return EqualSlowCase(RHS);
+ }
+
+ /// Equality operator.
+ ///
+ /// Compares this APInt with a uint64_t for the validity of the equality
+ /// relationship.
+ ///
+ /// \returns true if *this == Val
+ bool operator==(uint64_t Val) const {
+ return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
+ }
+
+ /// Equality comparison.
+ ///
+ /// Compares this APInt with RHS for the validity of the equality
+ /// relationship.
+ ///
+ /// \returns true if *this == Val
+ bool eq(const APInt &RHS) const { return (*this) == RHS; }
+
+ /// Inequality operator.
+ ///
+ /// Compares this APInt with RHS for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
+
+ /// Inequality operator.
+ ///
+ /// Compares this APInt with a uint64_t for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool operator!=(uint64_t Val) const { return !((*this) == Val); }
+
+ /// Inequality comparison
+ ///
+ /// Compares this APInt with RHS for the validity of the inequality
+ /// relationship.
+ ///
+ /// \returns true if *this != Val
+ bool ne(const APInt &RHS) const { return !((*this) == RHS); }
+
+ /// Unsigned less than comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when both are considered unsigned.
+ bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
+
+ /// Unsigned less than comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when considered unsigned.
+ bool ult(uint64_t RHS) const {
+ // Only need to check active bits if not a single word.
+ return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
+ }
+
+ /// Signed less than comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when both are considered signed.
+ bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
+
+ /// Signed less than comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the less-than relationship.
+ ///
+ /// \returns true if *this < RHS when considered signed.
+ bool slt(int64_t RHS) const {
+ return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
+ : getSExtValue() < RHS;
+ }
+
+ /// Unsigned less or equal comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when both are considered unsigned.
+ bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
+
+ /// Unsigned less or equal comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when considered unsigned.
+ bool ule(uint64_t RHS) const { return !ugt(RHS); }
+
+ /// Signed less or equal comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when both are considered signed.
+ bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
+
+ /// Signed less or equal comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for the
+ /// validity of the less-or-equal relationship.
+ ///
+ /// \returns true if *this <= RHS when considered signed.
+ bool sle(uint64_t RHS) const { return !sgt(RHS); }
+
+ /// Unsigned greater than comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when both are considered unsigned.
+ bool ugt(const APInt &RHS) const { return !ule(RHS); }
+
+ /// Unsigned greater than comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when considered unsigned.
+ bool ugt(uint64_t RHS) const {
+ // Only need to check active bits if not a single word.
+ return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
+ }
+
+ /// Signed greater than comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for the
+ /// validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when both are considered signed.
+ bool sgt(const APInt &RHS) const { return !sle(RHS); }
+
+ /// Signed greater than comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the greater-than relationship.
+ ///
+ /// \returns true if *this > RHS when considered signed.
+ bool sgt(int64_t RHS) const {
+ return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
+ : getSExtValue() > RHS;
+ }
+
+ /// Unsigned greater or equal comparison
+ ///
+ /// Regards both *this and RHS as unsigned quantities and compares them for
+ /// validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when both are considered unsigned.
+ bool uge(const APInt &RHS) const { return !ult(RHS); }
+
+ /// Unsigned greater or equal comparison
+ ///
+ /// Regards both *this as an unsigned quantity and compares it with RHS for
+ /// the validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when considered unsigned.
+ bool uge(uint64_t RHS) const { return !ult(RHS); }
+
+ /// Signed greater or equal comparison
+ ///
+ /// Regards both *this and RHS as signed quantities and compares them for
+ /// validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when both are considered signed.
+ bool sge(const APInt &RHS) const { return !slt(RHS); }
+
+ /// Signed greater or equal comparison
+ ///
+ /// Regards both *this as a signed quantity and compares it with RHS for
+ /// the validity of the greater-or-equal relationship.
+ ///
+ /// \returns true if *this >= RHS when considered signed.
+ bool sge(int64_t RHS) const { return !slt(RHS); }
+
+ /// This operation tests if there are any pairs of corresponding bits
+ /// between this APInt and RHS that are both set.
+ bool intersects(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return (U.VAL & RHS.U.VAL) != 0;
+ return intersectsSlowCase(RHS);
+ }
+
+ /// This operation checks that all bits set in this APInt are also set in RHS.
+ bool isSubsetOf(const APInt &RHS) const {
+ assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
+ if (isSingleWord())
+ return (U.VAL & ~RHS.U.VAL) == 0;
+ return isSubsetOfSlowCase(RHS);
+ }
+
+ /// @}
+ /// \name Resizing Operators
+ /// @{
+
+ /// Truncate to new width.
+ ///
+ /// Truncate the APInt to a specified width. It is an error to specify a width
+ /// that is greater than or equal to the current width.
+ APInt trunc(unsigned width) const;
+
+ /// Truncate to new width with unsigned saturation.
+ ///
+ /// If the APInt, treated as unsigned integer, can be losslessly truncated to
+ /// the new bitwidth, then return truncated APInt. Else, return max value.
+ APInt truncUSat(unsigned width) const;
+
+ /// Truncate to new width with signed saturation.
+ ///
+ /// If this APInt, treated as signed integer, can be losslessly truncated to
+ /// the new bitwidth, then return truncated APInt. Else, return either
+ /// signed min value if the APInt was negative, or signed max value.
+ APInt truncSSat(unsigned width) const;
+
+ /// Sign extend to a new width.
+ ///
+ /// This operation sign extends the APInt to a new width. If the high order
+ /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
+ /// It is an error to specify a width that is less than or equal to the
+ /// current width.
+ APInt sext(unsigned width) const;
+
+ /// Zero extend to a new width.
+ ///
+ /// This operation zero extends the APInt to a new width. The high order bits
+ /// are filled with 0 bits. It is an error to specify a width that is less
+ /// than or equal to the current width.
+ APInt zext(unsigned width) const;
+
+ /// Sign extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is sign
+ /// extended, truncated, or left alone to make it that width.
+ APInt sextOrTrunc(unsigned width) const;
+
+ /// Zero extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is zero
+ /// extended, truncated, or left alone to make it that width.
+ APInt zextOrTrunc(unsigned width) const;
+
+ /// Sign extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is sign
+ /// extended, or left alone to make it that width.
+ APInt sextOrSelf(unsigned width) const;
+
+ /// Zero extend or truncate to width
+ ///
+ /// Make this APInt have the bit width given by \p width. The value is zero
+ /// extended, or left alone to make it that width.
+ APInt zextOrSelf(unsigned width) const;
+
+ /// @}
+ /// \name Bit Manipulation Operators
+ /// @{
+
+ /// Set every bit to 1.
+ void setAllBits() {
+ if (isSingleWord())
+ U.VAL = WORDTYPE_MAX;
+ else
+ // Set all the bits in all the words.
+ memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
+ // Clear the unused ones
+ clearUnusedBits();
+ }
+
+ /// Set a given bit to 1.
+ ///
+ /// Set the given bit to 1 whose position is given as "bitPosition".
+ void setBit(unsigned BitPosition) {
+ assert(BitPosition < BitWidth && "BitPosition out of range");
+ WordType Mask = maskBit(BitPosition);
+ if (isSingleWord())
+ U.VAL |= Mask;
+ else
+ U.pVal[whichWord(BitPosition)] |= Mask;
+ }
+
+ /// Set the sign bit to 1.
+ void setSignBit() {
+ setBit(BitWidth - 1);
+ }
+
+ /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
+ void setBits(unsigned loBit, unsigned hiBit) {
+ assert(hiBit <= BitWidth && "hiBit out of range");
+ assert(loBit <= BitWidth && "loBit out of range");
+ assert(loBit <= hiBit && "loBit greater than hiBit");
+ if (loBit == hiBit)
+ return;
+ if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
+ uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
+ mask <<= loBit;
+ if (isSingleWord())
+ U.VAL |= mask;
+ else
+ U.pVal[0] |= mask;
+ } else {
+ setBitsSlowCase(loBit, hiBit);
+ }
+ }
+
+ /// Set the top bits starting from loBit.
+ void setBitsFrom(unsigned loBit) {
+ return setBits(loBit, BitWidth);
+ }
+
+ /// Set the bottom loBits bits.
+ void setLowBits(unsigned loBits) {
+ return setBits(0, loBits);
+ }
+
+ /// Set the top hiBits bits.
+ void setHighBits(unsigned hiBits) {
+ return setBits(BitWidth - hiBits, BitWidth);
+ }
+
+ /// Set every bit to 0.
+ void clearAllBits() {
+ if (isSingleWord())
+ U.VAL = 0;
+ else
+ memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
+ }
+
+ /// Set a given bit to 0.
+ ///
+ /// Set the given bit to 0 whose position is given as "bitPosition".
+ void clearBit(unsigned BitPosition) {
+ assert(BitPosition < BitWidth && "BitPosition out of range");
+ WordType Mask = ~maskBit(BitPosition);
+ if (isSingleWord())
+ U.VAL &= Mask;
+ else
+ U.pVal[whichWord(BitPosition)] &= Mask;
+ }
+
+ /// Set bottom loBits bits to 0.
+ void clearLowBits(unsigned loBits) {
+ assert(loBits <= BitWidth && "More bits than bitwidth");
+ APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
+ *this &= Keep;
+ }
+
+ /// Set the sign bit to 0.
+ void clearSignBit() {
+ clearBit(BitWidth - 1);
+ }
+
+ /// Toggle every bit to its opposite value.
+ void flipAllBits() {
+ if (isSingleWord()) {
+ U.VAL ^= WORDTYPE_MAX;
+ clearUnusedBits();
+ } else {
+ flipAllBitsSlowCase();
+ }
+ }
+
+ /// Toggles a given bit to its opposite value.
+ ///
+ /// Toggle a given bit to its opposite value whose position is given
+ /// as "bitPosition".
+ void flipBit(unsigned bitPosition);
+
+ /// Negate this APInt in place.
+ void negate() {
+ flipAllBits();
+ ++(*this);
+ }
+
+ /// Insert the bits from a smaller APInt starting at bitPosition.
+ void insertBits(const APInt &SubBits, unsigned bitPosition);
+ void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
+
+ /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
+ APInt extractBits(unsigned numBits, unsigned bitPosition) const;
+ uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
+
+ /// @}
+ /// \name Value Characterization Functions
+ /// @{
+
+ /// Return the number of bits in the APInt.
+ unsigned getBitWidth() const { return BitWidth; }
+
+ /// Get the number of words.
+ ///
+ /// Here one word's bitwidth equals to that of uint64_t.
+ ///
+ /// \returns the number of words to hold the integer value of this APInt.
+ unsigned getNumWords() const { return getNumWords(BitWidth); }
+
+ /// Get the number of words.
+ ///
+ /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
+ ///
+ /// \returns the number of words to hold the integer value with a given bit
+ /// width.
+ static unsigned getNumWords(unsigned BitWidth) {
+ return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
+ }
+
+ /// Compute the number of active bits in the value
+ ///
+ /// This function returns the number of active bits which is defined as the
+ /// bit width minus the number of leading zeros. This is used in several
+ /// computations to see how "wide" the value is.
+ unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
+
+ /// Compute the number of active words in the value of this APInt.
+ ///
+ /// This is used in conjunction with getActiveData to extract the raw value of
+ /// the APInt.
+ unsigned getActiveWords() const {
+ unsigned numActiveBits = getActiveBits();
+ return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
+ }
+
+ /// Get the minimum bit size for this signed APInt
+ ///
+ /// Computes the minimum bit width for this APInt while considering it to be a
+ /// signed (and probably negative) value. If the value is not negative, this
+ /// function returns the same value as getActiveBits()+1. Otherwise, it
+ /// returns the smallest bit width that will retain the negative value. For
+ /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
+ /// for -1, this function will always return 1.
+ unsigned getMinSignedBits() const {
+ if (isNegative())
+ return BitWidth - countLeadingOnes() + 1;
+ return getActiveBits() + 1;
+ }
+
+ /// Get zero extended value
+ ///
+ /// This method attempts to return the value of this APInt as a zero extended
+ /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
+ /// uint64_t. Otherwise an assertion will result.
+ uint64_t getZExtValue() const {
+ if (isSingleWord())
+ return U.VAL;
+ assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
+ return U.pVal[0];
+ }
+
+ /// Get sign extended value
+ ///
+ /// This method attempts to return the value of this APInt as a sign extended
+ /// int64_t. The bit width must be <= 64 or the value must fit within an
+ /// int64_t. Otherwise an assertion will result.
+ int64_t getSExtValue() const {
+ if (isSingleWord())
+ return SignExtend64(U.VAL, BitWidth);
+ assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
+ return int64_t(U.pVal[0]);
+ }
+
+ /// Get bits required for string value.
+ ///
+ /// This method determines how many bits are required to hold the APInt
+ /// equivalent of the string given by \p str.
+ static unsigned getBitsNeeded(StringRef str, uint8_t radix);
+
+ /// The APInt version of the countLeadingZeros functions in
+ /// MathExtras.h.
+ ///
+ /// It counts the number of zeros from the most significant bit to the first
+ /// one bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the most significant bit to the first one bits.
+ unsigned countLeadingZeros() const {
+ if (isSingleWord()) {
+ unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
+ return llvm::countLeadingZeros(U.VAL) - unusedBits;
+ }
+ return countLeadingZerosSlowCase();
+ }
+
+ /// Count the number of leading one bits.
+ ///
+ /// This function is an APInt version of the countLeadingOnes
+ /// functions in MathExtras.h. It counts the number of ones from the most
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns 0 if the high order bit is not set, otherwise returns the number
+ /// of 1 bits from the most significant to the least
+ unsigned countLeadingOnes() const {
+ if (isSingleWord())
+ return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
+ return countLeadingOnesSlowCase();
+ }
+
+ /// Computes the number of leading bits of this APInt that are equal to its
+ /// sign bit.
+ unsigned getNumSignBits() const {
+ return isNegative() ? countLeadingOnes() : countLeadingZeros();
+ }
+
+ /// Count the number of trailing zero bits.
+ ///
+ /// This function is an APInt version of the countTrailingZeros
+ /// functions in MathExtras.h. It counts the number of zeros from the least
+ /// significant bit to the first set bit.
+ ///
+ /// \returns BitWidth if the value is zero, otherwise returns the number of
+ /// zeros from the least significant bit to the first one bit.
+ unsigned countTrailingZeros() const {
+ if (isSingleWord())
+ return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
+ return countTrailingZerosSlowCase();
+ }
+
+ /// Count the number of trailing one bits.
+ ///
+ /// This function is an APInt version of the countTrailingOnes
+ /// functions in MathExtras.h. It counts the number of ones from the least
+ /// significant bit to the first zero bit.
+ ///
+ /// \returns BitWidth if the value is all ones, otherwise returns the number
+ /// of ones from the least significant bit to the first zero bit.
+ unsigned countTrailingOnes() const {
+ if (isSingleWord())
+ return llvm::countTrailingOnes(U.VAL);
+ return countTrailingOnesSlowCase();
+ }
+
+ /// Count the number of bits set.
+ ///
+ /// This function is an APInt version of the countPopulation functions
+ /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
+ ///
+ /// \returns 0 if the value is zero, otherwise returns the number of set bits.
+ unsigned countPopulation() const {
+ if (isSingleWord())
+ return llvm::countPopulation(U.VAL);
+ return countPopulationSlowCase();
+ }
+
+ /// @}
+ /// \name Conversion Functions
+ /// @{
+ void print(raw_ostream &OS, bool isSigned) const;
+
+ /// Converts an APInt to a string and append it to Str. Str is commonly a
+ /// SmallString.
+ void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
+ bool formatAsCLiteral = false) const;
+
+ /// Considers the APInt to be unsigned and converts it into a string in the
+ /// radix given. The radix can be 2, 8, 10 16, or 36.
+ void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+ toString(Str, Radix, false, false);
+ }
+
+ /// Considers the APInt to be signed and converts it into a string in the
+ /// radix given. The radix can be 2, 8, 10, 16, or 36.
+ void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
+ toString(Str, Radix, true, false);
+ }
+
+ /// Return the APInt as a std::string.
+ ///
+ /// Note that this is an inefficient method. It is better to pass in a
+ /// SmallVector/SmallString to the methods above to avoid thrashing the heap
+ /// for the string.
+ std::string toString(unsigned Radix, bool Signed) const;
+
+ /// \returns a byte-swapped representation of this APInt Value.
+ APInt byteSwap() const;
+
+ /// \returns the value with the bit representation reversed of this APInt
+ /// Value.
+ APInt reverseBits() const;
+
+ /// Converts this APInt to a double value.
+ double roundToDouble(bool isSigned) const;
+
+ /// Converts this unsigned APInt to a double value.
+ double roundToDouble() const { return roundToDouble(false); }
+
+ /// Converts this signed APInt to a double value.
+ double signedRoundToDouble() const { return roundToDouble(true); }
+
+ /// Converts APInt bits to a double
+ ///
+ /// The conversion does not do a translation from integer to double, it just
+ /// re-interprets the bits as a double. Note that it is valid to do this on
+ /// any bit width. Exactly 64 bits will be translated.
+ double bitsToDouble() const {
+ return BitsToDouble(getWord(0));
+ }
+
+ /// Converts APInt bits to a float
+ ///
+ /// The conversion does not do a translation from integer to float, it just
+ /// re-interprets the bits as a float. Note that it is valid to do this on
+ /// any bit width. Exactly 32 bits will be translated.
+ float bitsToFloat() const {
+ return BitsToFloat(static_cast<uint32_t>(getWord(0)));
+ }
+
+ /// Converts a double to APInt bits.
+ ///
+ /// The conversion does not do a translation from double to integer, it just
+ /// re-interprets the bits of the double.
+ static APInt doubleToBits(double V) {
+ return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
+ }
+
+ /// Converts a float to APInt bits.
+ ///
+ /// The conversion does not do a translation from float to integer, it just
+ /// re-interprets the bits of the float.
+ static APInt floatToBits(float V) {
+ return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
+ }
+
+ /// @}
+ /// \name Mathematics Operations
+ /// @{
+
+ /// \returns the floor log base 2 of this APInt.
+ unsigned logBase2() const { return getActiveBits() - 1; }
+
+ /// \returns the ceil log base 2 of this APInt.
+ unsigned ceilLogBase2() const {
+ APInt temp(*this);
+ --temp;
+ return temp.getActiveBits();
+ }
+
+ /// \returns the nearest log base 2 of this APInt. Ties round up.
+ ///
+ /// NOTE: When we have a BitWidth of 1, we define:
+ ///
+ /// log2(0) = UINT32_MAX
+ /// log2(1) = 0
+ ///
+ /// to get around any mathematical concerns resulting from
+ /// referencing 2 in a space where 2 does no exist.
+ unsigned nearestLogBase2() const {
+ // Special case when we have a bitwidth of 1. If VAL is 1, then we
+ // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
+ // UINT32_MAX.
+ if (BitWidth == 1)
+ return U.VAL - 1;
+
+ // Handle the zero case.
+ if (isNullValue())
+ return UINT32_MAX;
+
+ // The non-zero case is handled by computing:
+ //
+ // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
+ //
+ // where x[i] is referring to the value of the ith bit of x.
+ unsigned lg = logBase2();
+ return lg + unsigned((*this)[lg - 1]);
+ }
+
+ /// \returns the log base 2 of this APInt if its an exact power of two, -1
+ /// otherwise
+ int32_t exactLogBase2() const {
+ if (!isPowerOf2())
+ return -1;
+ return logBase2();
+ }
+
+ /// Compute the square root
+ APInt sqrt() const;
+
+ /// Get the absolute value;
+ ///
+ /// If *this is < 0 then return -(*this), otherwise *this;
+ APInt abs() const {
+ if (isNegative())
+ return -(*this);
+ return *this;
+ }
+
+ /// \returns the multiplicative inverse for a given modulo.
+ APInt multiplicativeInverse(const APInt &modulo) const;
+
+ /// @}
+ /// \name Support for division by constant
+ /// @{
+
+ /// Calculate the magic number for signed division by a constant.
+ struct ms;
+ ms magic() const;
+
+ /// Calculate the magic number for unsigned division by a constant.
+ struct mu;
+ mu magicu(unsigned LeadingZeros = 0) const;
+
+ /// @}
+ /// \name Building-block Operations for APInt and APFloat
+ /// @{
+
+ // These building block operations operate on a representation of arbitrary
+ // precision, two's-complement, bignum integer values. They should be
+ // sufficient to implement APInt and APFloat bignum requirements. Inputs are
+ // generally a pointer to the base of an array of integer parts, representing
+ // an unsigned bignum, and a count of how many parts there are.
+
+ /// Sets the least significant part of a bignum to the input value, and zeroes
+ /// out higher parts.
+ static void tcSet(WordType *, WordType, unsigned);
+
+ /// Assign one bignum to another.
+ static void tcAssign(WordType *, const WordType *, unsigned);
+
+ /// Returns true if a bignum is zero, false otherwise.
+ static bool tcIsZero(const WordType *, unsigned);
+
+ /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
+ static int tcExtractBit(const WordType *, unsigned bit);
+
+ /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
+ /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
+ /// significant bit of DST. All high bits above srcBITS in DST are
+ /// zero-filled.
+ static void tcExtract(WordType *, unsigned dstCount,
+ const WordType *, unsigned srcBits,
+ unsigned srcLSB);
+
+ /// Set the given bit of a bignum. Zero-based.
+ static void tcSetBit(WordType *, unsigned bit);
+
+ /// Clear the given bit of a bignum. Zero-based.
+ static void tcClearBit(WordType *, unsigned bit);
+
+ /// Returns the bit number of the least or most significant set bit of a
+ /// number. If the input number has no bits set -1U is returned.
+ static unsigned tcLSB(const WordType *, unsigned n);
+ static unsigned tcMSB(const WordType *parts, unsigned n);
+
+ /// Negate a bignum in-place.
+ static void tcNegate(WordType *, unsigned);
+
+ /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
+ static WordType tcAdd(WordType *, const WordType *,
+ WordType carry, unsigned);
+ /// DST += RHS. Returns the carry flag.
+ static WordType tcAddPart(WordType *, WordType, unsigned);
+
+ /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
+ static WordType tcSubtract(WordType *, const WordType *,
+ WordType carry, unsigned);
+ /// DST -= RHS. Returns the carry flag.
+ static WordType tcSubtractPart(WordType *, WordType, unsigned);
+
+ /// DST += SRC * MULTIPLIER + PART if add is true
+ /// DST = SRC * MULTIPLIER + PART if add is false
+ ///
+ /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
+ /// start at the same point, i.e. DST == SRC.
+ ///
+ /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
+ /// Otherwise DST is filled with the least significant DSTPARTS parts of the
+ /// result, and if all of the omitted higher parts were zero return zero,
+ /// otherwise overflow occurred and return one.
+ static int tcMultiplyPart(WordType *dst, const WordType *src,
+ WordType multiplier, WordType carry,
+ unsigned srcParts, unsigned dstParts,
+ bool add);
+
+ /// DST = LHS * RHS, where DST has the same width as the operands and is
+ /// filled with the least significant parts of the result. Returns one if
+ /// overflow occurred, otherwise zero. DST must be disjoint from both
+ /// operands.
+ static int tcMultiply(WordType *, const WordType *, const WordType *,
+ unsigned);
+
+ /// DST = LHS * RHS, where DST has width the sum of the widths of the
+ /// operands. No overflow occurs. DST must be disjoint from both operands.
+ static void tcFullMultiply(WordType *, const WordType *,
+ const WordType *, unsigned, unsigned);
+
+ /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
+ /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
+ /// REMAINDER to the remainder, return zero. i.e.
+ ///
+ /// OLD_LHS = RHS * LHS + REMAINDER
+ ///
+ /// SCRATCH is a bignum of the same size as the operands and result for use by
+ /// the routine; its contents need not be initialized and are destroyed. LHS,
+ /// REMAINDER and SCRATCH must be distinct.
+ static int tcDivide(WordType *lhs, const WordType *rhs,
+ WordType *remainder, WordType *scratch,
+ unsigned parts);
+
+ /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
+ /// restrictions on Count.
+ static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
+
+ /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
+ /// restrictions on Count.
+ static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
+
+ /// The obvious AND, OR and XOR and complement operations.
+ static void tcAnd(WordType *, const WordType *, unsigned);
+ static void tcOr(WordType *, const WordType *, unsigned);
+ static void tcXor(WordType *, const WordType *, unsigned);
+ static void tcComplement(WordType *, unsigned);
+
+ /// Comparison (unsigned) of two bignums.
+ static int tcCompare(const WordType *, const WordType *, unsigned);
+
+ /// Increment a bignum in-place. Return the carry flag.
+ static WordType tcIncrement(WordType *dst, unsigned parts) {
+ return tcAddPart(dst, 1, parts);
+ }
+
+ /// Decrement a bignum in-place. Return the borrow flag.
+ static WordType tcDecrement(WordType *dst, unsigned parts) {
+ return tcSubtractPart(dst, 1, parts);
+ }
+
+ /// Set the least significant BITS and clear the rest.
+ static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
+
+ /// debug method
+ void dump() const;
+
+ /// @}
+};
+
+/// Magic data for optimising signed division by a constant.
+struct APInt::ms {
+ APInt m; ///< magic number
+ unsigned s; ///< shift amount
+};
+
+/// Magic data for optimising unsigned division by a constant.
+struct APInt::mu {
+ APInt m; ///< magic number
+ bool a; ///< add indicator
+ unsigned s; ///< shift amount
+};
+
+inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
+
+inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
+
+/// Unary bitwise complement operator.
+///
+/// \returns an APInt that is the bitwise complement of \p v.
+inline APInt operator~(APInt v) {
+ v.flipAllBits();
+ return v;
+}
+
+inline APInt operator&(APInt a, const APInt &b) {
+ a &= b;
+ return a;
+}
+
+inline APInt operator&(const APInt &a, APInt &&b) {
+ b &= a;
+ return std::move(b);
+}
+
+inline APInt operator&(APInt a, uint64_t RHS) {
+ a &= RHS;
+ return a;
+}
+
+inline APInt operator&(uint64_t LHS, APInt b) {
+ b &= LHS;
+ return b;
+}
+
+inline APInt operator|(APInt a, const APInt &b) {
+ a |= b;
+ return a;
+}
+
+inline APInt operator|(const APInt &a, APInt &&b) {
+ b |= a;
+ return std::move(b);
+}
+
+inline APInt operator|(APInt a, uint64_t RHS) {
+ a |= RHS;
+ return a;
+}
+
+inline APInt operator|(uint64_t LHS, APInt b) {
+ b |= LHS;
+ return b;
+}
+
+inline APInt operator^(APInt a, const APInt &b) {
+ a ^= b;
+ return a;
+}
+
+inline APInt operator^(const APInt &a, APInt &&b) {
+ b ^= a;
+ return std::move(b);
+}
+
+inline APInt operator^(APInt a, uint64_t RHS) {
+ a ^= RHS;
+ return a;
+}
+
+inline APInt operator^(uint64_t LHS, APInt b) {
+ b ^= LHS;
+ return b;
+}
+
+inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
+ I.print(OS, true);
+ return OS;
+}
+
+inline APInt operator-(APInt v) {
+ v.negate();
+ return v;
+}
+
+inline APInt operator+(APInt a, const APInt &b) {
+ a += b;
+ return a;
+}
+
+inline APInt operator+(const APInt &a, APInt &&b) {
+ b += a;
+ return std::move(b);
+}
+
+inline APInt operator+(APInt a, uint64_t RHS) {
+ a += RHS;
+ return a;
+}
+
+inline APInt operator+(uint64_t LHS, APInt b) {
+ b += LHS;
+ return b;
+}
+
+inline APInt operator-(APInt a, const APInt &b) {
+ a -= b;
+ return a;
+}
+
+inline APInt operator-(const APInt &a, APInt &&b) {
+ b.negate();
+ b += a;
+ return std::move(b);
+}
+
+inline APInt operator-(APInt a, uint64_t RHS) {
+ a -= RHS;
+ return a;
+}
+
+inline APInt operator-(uint64_t LHS, APInt b) {
+ b.negate();
+ b += LHS;
+ return b;
+}
+
+inline APInt operator*(APInt a, uint64_t RHS) {
+ a *= RHS;
+ return a;
+}
+
+inline APInt operator*(uint64_t LHS, APInt b) {
+ b *= LHS;
+ return b;
+}
+
+
+namespace APIntOps {
+
+/// Determine the smaller of two APInts considered to be signed.
+inline const APInt &smin(const APInt &A, const APInt &B) {
+ return A.slt(B) ? A : B;
+}
+
+/// Determine the larger of two APInts considered to be signed.
+inline const APInt &smax(const APInt &A, const APInt &B) {
+ return A.sgt(B) ? A : B;
+}
+
+/// Determine the smaller of two APInts considered to be signed.
+inline const APInt &umin(const APInt &A, const APInt &B) {
+ return A.ult(B) ? A : B;
+}
+
+/// Determine the larger of two APInts considered to be unsigned.
+inline const APInt &umax(const APInt &A, const APInt &B) {
+ return A.ugt(B) ? A : B;
+}
+
+/// Compute GCD of two unsigned APInt values.
+///
+/// This function returns the greatest common divisor of the two APInt values
+/// using Stein's algorithm.
+///
+/// \returns the greatest common divisor of A and B.
+APInt GreatestCommonDivisor(APInt A, APInt B);
+
+/// Converts the given APInt to a double value.
+///
+/// Treats the APInt as an unsigned value for conversion purposes.
+inline double RoundAPIntToDouble(const APInt &APIVal) {
+ return APIVal.roundToDouble();
+}
+
+/// Converts the given APInt to a double value.
+///
+/// Treats the APInt as a signed value for conversion purposes.
+inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
+ return APIVal.signedRoundToDouble();
+}
+
+/// Converts the given APInt to a float vlalue.
+inline float RoundAPIntToFloat(const APInt &APIVal) {
+ return float(RoundAPIntToDouble(APIVal));
+}
+
+/// Converts the given APInt to a float value.
+///
+/// Treats the APInt as a signed value for conversion purposes.
+inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
+ return float(APIVal.signedRoundToDouble());
+}
+
+/// Converts the given double value into a APInt.
+///
+/// This function convert a double value to an APInt value.
+APInt RoundDoubleToAPInt(double Double, unsigned width);
+
+/// Converts a float value into a APInt.
+///
+/// Converts a float value into an APInt value.
+inline APInt RoundFloatToAPInt(float Float, unsigned width) {
+ return RoundDoubleToAPInt(double(Float), width);
+}
+
+/// Return A unsign-divided by B, rounded by the given rounding mode.
+APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
+
+/// Return A sign-divided by B, rounded by the given rounding mode.
+APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
+
+/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
+/// (e.g. 32 for i32).
+/// This function finds the smallest number n, such that
+/// (a) n >= 0 and q(n) = 0, or
+/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
+/// integers, belong to two different intervals [Rk, Rk+R),
+/// where R = 2^BW, and k is an integer.
+/// The idea here is to find when q(n) "overflows" 2^BW, while at the
+/// same time "allowing" subtraction. In unsigned modulo arithmetic a
+/// subtraction (treated as addition of negated numbers) would always
+/// count as an overflow, but here we want to allow values to decrease
+/// and increase as long as they are within the same interval.
+/// Specifically, adding of two negative numbers should not cause an
+/// overflow (as long as the magnitude does not exceed the bit width).
+/// On the other hand, given a positive number, adding a negative
+/// number to it can give a negative result, which would cause the
+/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
+/// treated as a special case of an overflow.
+///
+/// This function returns None if after finding k that minimizes the
+/// positive solution to q(n) = kR, both solutions are contained between
+/// two consecutive integers.
+///
+/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
+/// in arithmetic modulo 2^BW, and treating the values as signed) by the
+/// virtue of *signed* overflow. This function will *not* find such an n,
+/// however it may find a value of n satisfying the inequalities due to
+/// an *unsigned* overflow (if the values are treated as unsigned).
+/// To find a solution for a signed overflow, treat it as a problem of
+/// finding an unsigned overflow with a range with of BW-1.
+///
+/// The returned value may have a different bit width from the input
+/// coefficients.
+Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
+ unsigned RangeWidth);
+
+/// Compare two values, and if they are different, return the position of the
+/// most significant bit that is different in the values.
+Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
+ const APInt &B);
+
+} // End of APIntOps namespace
+
+// See friend declaration above. This additional declaration is required in
+// order to compile LLVM with IBM xlC compiler.
+hash_code hash_value(const APInt &Arg);
+
+/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
+/// with the integer held in IntVal.
+void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
+
+/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
+/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
+void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes);
+
+} // namespace llvm
+
+#endif