diff options
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/APInt.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/ADT/APInt.h | 2258 |
1 files changed, 2258 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/APInt.h b/third_party/llvm-project/include/llvm/ADT/APInt.h new file mode 100644 index 000000000..60a0db7e9 --- /dev/null +++ b/third_party/llvm-project/include/llvm/ADT/APInt.h @@ -0,0 +1,2258 @@ +//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements a class to represent arbitrary precision +/// integral constant values and operations on them. +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_APINT_H +#define LLVM_ADT_APINT_H + +#include "llvm/Support/Compiler.h" +#include "llvm/Support/MathExtras.h" +#include <cassert> +#include <climits> +#include <cstring> +#include <string> + +namespace llvm { +class FoldingSetNodeID; +class StringRef; +class hash_code; +class raw_ostream; + +template <typename T> class SmallVectorImpl; +template <typename T> class ArrayRef; +template <typename T> class Optional; + +class APInt; + +inline APInt operator-(APInt); + +//===----------------------------------------------------------------------===// +// APInt Class +//===----------------------------------------------------------------------===// + +/// Class for arbitrary precision integers. +/// +/// APInt is a functional replacement for common case unsigned integer type like +/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width +/// integer sizes and large integer value types such as 3-bits, 15-bits, or more +/// than 64-bits of precision. APInt provides a variety of arithmetic operators +/// and methods to manipulate integer values of any bit-width. It supports both +/// the typical integer arithmetic and comparison operations as well as bitwise +/// manipulation. +/// +/// The class has several invariants worth noting: +/// * All bit, byte, and word positions are zero-based. +/// * Once the bit width is set, it doesn't change except by the Truncate, +/// SignExtend, or ZeroExtend operations. +/// * All binary operators must be on APInt instances of the same bit width. +/// Attempting to use these operators on instances with different bit +/// widths will yield an assertion. +/// * The value is stored canonically as an unsigned value. For operations +/// where it makes a difference, there are both signed and unsigned variants +/// of the operation. For example, sdiv and udiv. However, because the bit +/// widths must be the same, operations such as Mul and Add produce the same +/// results regardless of whether the values are interpreted as signed or +/// not. +/// * In general, the class tries to follow the style of computation that LLVM +/// uses in its IR. This simplifies its use for LLVM. +/// +class LLVM_NODISCARD APInt { +public: + typedef uint64_t WordType; + + /// This enum is used to hold the constants we needed for APInt. + enum : unsigned { + /// Byte size of a word. + APINT_WORD_SIZE = sizeof(WordType), + /// Bits in a word. + APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT + }; + + enum class Rounding { + DOWN, + TOWARD_ZERO, + UP, + }; + + static const WordType WORDTYPE_MAX = ~WordType(0); + +private: + /// This union is used to store the integer value. When the + /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. + union { + uint64_t VAL; ///< Used to store the <= 64 bits integer value. + uint64_t *pVal; ///< Used to store the >64 bits integer value. + } U; + + unsigned BitWidth; ///< The number of bits in this APInt. + + friend struct DenseMapAPIntKeyInfo; + + friend class APSInt; + + /// Fast internal constructor + /// + /// This constructor is used only internally for speed of construction of + /// temporaries. It is unsafe for general use so it is not public. + APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { + U.pVal = val; + } + + /// Determine if this APInt just has one word to store value. + /// + /// \returns true if the number of bits <= 64, false otherwise. + bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } + + /// Determine which word a bit is in. + /// + /// \returns the word position for the specified bit position. + static unsigned whichWord(unsigned bitPosition) { + return bitPosition / APINT_BITS_PER_WORD; + } + + /// Determine which bit in a word a bit is in. + /// + /// \returns the bit position in a word for the specified bit position + /// in the APInt. + static unsigned whichBit(unsigned bitPosition) { + return bitPosition % APINT_BITS_PER_WORD; + } + + /// Get a single bit mask. + /// + /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set + /// This method generates and returns a uint64_t (word) mask for a single + /// bit at a specific bit position. This is used to mask the bit in the + /// corresponding word. + static uint64_t maskBit(unsigned bitPosition) { + return 1ULL << whichBit(bitPosition); + } + + /// Clear unused high order bits + /// + /// This method is used internally to clear the top "N" bits in the high order + /// word that are not used by the APInt. This is needed after the most + /// significant word is assigned a value to ensure that those bits are + /// zero'd out. + APInt &clearUnusedBits() { + // Compute how many bits are used in the final word + unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; + + // Mask out the high bits. + uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); + if (isSingleWord()) + U.VAL &= mask; + else + U.pVal[getNumWords() - 1] &= mask; + return *this; + } + + /// Get the word corresponding to a bit position + /// \returns the corresponding word for the specified bit position. + uint64_t getWord(unsigned bitPosition) const { + return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; + } + + /// Utility method to change the bit width of this APInt to new bit width, + /// allocating and/or deallocating as necessary. There is no guarantee on the + /// value of any bits upon return. Caller should populate the bits after. + void reallocate(unsigned NewBitWidth); + + /// Convert a char array into an APInt + /// + /// \param radix 2, 8, 10, 16, or 36 + /// Converts a string into a number. The string must be non-empty + /// and well-formed as a number of the given base. The bit-width + /// must be sufficient to hold the result. + /// + /// This is used by the constructors that take string arguments. + /// + /// StringRef::getAsInteger is superficially similar but (1) does + /// not assume that the string is well-formed and (2) grows the + /// result to hold the input. + void fromString(unsigned numBits, StringRef str, uint8_t radix); + + /// An internal division function for dividing APInts. + /// + /// This is used by the toString method to divide by the radix. It simply + /// provides a more convenient form of divide for internal use since KnuthDiv + /// has specific constraints on its inputs. If those constraints are not met + /// then it provides a simpler form of divide. + static void divide(const WordType *LHS, unsigned lhsWords, + const WordType *RHS, unsigned rhsWords, WordType *Quotient, + WordType *Remainder); + + /// out-of-line slow case for inline constructor + void initSlowCase(uint64_t val, bool isSigned); + + /// shared code between two array constructors + void initFromArray(ArrayRef<uint64_t> array); + + /// out-of-line slow case for inline copy constructor + void initSlowCase(const APInt &that); + + /// out-of-line slow case for shl + void shlSlowCase(unsigned ShiftAmt); + + /// out-of-line slow case for lshr. + void lshrSlowCase(unsigned ShiftAmt); + + /// out-of-line slow case for ashr. + void ashrSlowCase(unsigned ShiftAmt); + + /// out-of-line slow case for operator= + void AssignSlowCase(const APInt &RHS); + + /// out-of-line slow case for operator== + bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; + + /// out-of-line slow case for countLeadingZeros + unsigned countLeadingZerosSlowCase() const LLVM_READONLY; + + /// out-of-line slow case for countLeadingOnes. + unsigned countLeadingOnesSlowCase() const LLVM_READONLY; + + /// out-of-line slow case for countTrailingZeros. + unsigned countTrailingZerosSlowCase() const LLVM_READONLY; + + /// out-of-line slow case for countTrailingOnes + unsigned countTrailingOnesSlowCase() const LLVM_READONLY; + + /// out-of-line slow case for countPopulation + unsigned countPopulationSlowCase() const LLVM_READONLY; + + /// out-of-line slow case for intersects. + bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; + + /// out-of-line slow case for isSubsetOf. + bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; + + /// out-of-line slow case for setBits. + void setBitsSlowCase(unsigned loBit, unsigned hiBit); + + /// out-of-line slow case for flipAllBits. + void flipAllBitsSlowCase(); + + /// out-of-line slow case for operator&=. + void AndAssignSlowCase(const APInt& RHS); + + /// out-of-line slow case for operator|=. + void OrAssignSlowCase(const APInt& RHS); + + /// out-of-line slow case for operator^=. + void XorAssignSlowCase(const APInt& RHS); + + /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal + /// to, or greater than RHS. + int compare(const APInt &RHS) const LLVM_READONLY; + + /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal + /// to, or greater than RHS. + int compareSigned(const APInt &RHS) const LLVM_READONLY; + +public: + /// \name Constructors + /// @{ + + /// Create a new APInt of numBits width, initialized as val. + /// + /// If isSigned is true then val is treated as if it were a signed value + /// (i.e. as an int64_t) and the appropriate sign extension to the bit width + /// will be done. Otherwise, no sign extension occurs (high order bits beyond + /// the range of val are zero filled). + /// + /// \param numBits the bit width of the constructed APInt + /// \param val the initial value of the APInt + /// \param isSigned how to treat signedness of val + APInt(unsigned numBits, uint64_t val, bool isSigned = false) + : BitWidth(numBits) { + assert(BitWidth && "bitwidth too small"); + if (isSingleWord()) { + U.VAL = val; + clearUnusedBits(); + } else { + initSlowCase(val, isSigned); + } + } + + /// Construct an APInt of numBits width, initialized as bigVal[]. + /// + /// Note that bigVal.size() can be smaller or larger than the corresponding + /// bit width but any extraneous bits will be dropped. + /// + /// \param numBits the bit width of the constructed APInt + /// \param bigVal a sequence of words to form the initial value of the APInt + APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); + + /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but + /// deprecated because this constructor is prone to ambiguity with the + /// APInt(unsigned, uint64_t, bool) constructor. + /// + /// If this overload is ever deleted, care should be taken to prevent calls + /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) + /// constructor. + APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); + + /// Construct an APInt from a string representation. + /// + /// This constructor interprets the string \p str in the given radix. The + /// interpretation stops when the first character that is not suitable for the + /// radix is encountered, or the end of the string. Acceptable radix values + /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the + /// string to require more bits than numBits. + /// + /// \param numBits the bit width of the constructed APInt + /// \param str the string to be interpreted + /// \param radix the radix to use for the conversion + APInt(unsigned numBits, StringRef str, uint8_t radix); + + /// Simply makes *this a copy of that. + /// Copy Constructor. + APInt(const APInt &that) : BitWidth(that.BitWidth) { + if (isSingleWord()) + U.VAL = that.U.VAL; + else + initSlowCase(that); + } + + /// Move Constructor. + APInt(APInt &&that) : BitWidth(that.BitWidth) { + memcpy(&U, &that.U, sizeof(U)); + that.BitWidth = 0; + } + + /// Destructor. + ~APInt() { + if (needsCleanup()) + delete[] U.pVal; + } + + /// Default constructor that creates an uninteresting APInt + /// representing a 1-bit zero value. + /// + /// This is useful for object deserialization (pair this with the static + /// method Read). + explicit APInt() : BitWidth(1) { U.VAL = 0; } + + /// Returns whether this instance allocated memory. + bool needsCleanup() const { return !isSingleWord(); } + + /// Used to insert APInt objects, or objects that contain APInt objects, into + /// FoldingSets. + void Profile(FoldingSetNodeID &id) const; + + /// @} + /// \name Value Tests + /// @{ + + /// Determine sign of this APInt. + /// + /// This tests the high bit of this APInt to determine if it is set. + /// + /// \returns true if this APInt is negative, false otherwise + bool isNegative() const { return (*this)[BitWidth - 1]; } + + /// Determine if this APInt Value is non-negative (>= 0) + /// + /// This tests the high bit of the APInt to determine if it is unset. + bool isNonNegative() const { return !isNegative(); } + + /// Determine if sign bit of this APInt is set. + /// + /// This tests the high bit of this APInt to determine if it is set. + /// + /// \returns true if this APInt has its sign bit set, false otherwise. + bool isSignBitSet() const { return (*this)[BitWidth-1]; } + + /// Determine if sign bit of this APInt is clear. + /// + /// This tests the high bit of this APInt to determine if it is clear. + /// + /// \returns true if this APInt has its sign bit clear, false otherwise. + bool isSignBitClear() const { return !isSignBitSet(); } + + /// Determine if this APInt Value is positive. + /// + /// This tests if the value of this APInt is positive (> 0). Note + /// that 0 is not a positive value. + /// + /// \returns true if this APInt is positive. + bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } + + /// Determine if all bits are set + /// + /// This checks to see if the value has all bits of the APInt are set or not. + bool isAllOnesValue() const { + if (isSingleWord()) + return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); + return countTrailingOnesSlowCase() == BitWidth; + } + + /// Determine if all bits are clear + /// + /// This checks to see if the value has all bits of the APInt are clear or + /// not. + bool isNullValue() const { return !*this; } + + /// Determine if this is a value of 1. + /// + /// This checks to see if the value of this APInt is one. + bool isOneValue() const { + if (isSingleWord()) + return U.VAL == 1; + return countLeadingZerosSlowCase() == BitWidth - 1; + } + + /// Determine if this is the largest unsigned value. + /// + /// This checks to see if the value of this APInt is the maximum unsigned + /// value for the APInt's bit width. + bool isMaxValue() const { return isAllOnesValue(); } + + /// Determine if this is the largest signed value. + /// + /// This checks to see if the value of this APInt is the maximum signed + /// value for the APInt's bit width. + bool isMaxSignedValue() const { + if (isSingleWord()) + return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); + return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; + } + + /// Determine if this is the smallest unsigned value. + /// + /// This checks to see if the value of this APInt is the minimum unsigned + /// value for the APInt's bit width. + bool isMinValue() const { return isNullValue(); } + + /// Determine if this is the smallest signed value. + /// + /// This checks to see if the value of this APInt is the minimum signed + /// value for the APInt's bit width. + bool isMinSignedValue() const { + if (isSingleWord()) + return U.VAL == (WordType(1) << (BitWidth - 1)); + return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; + } + + /// Check if this APInt has an N-bits unsigned integer value. + bool isIntN(unsigned N) const { + assert(N && "N == 0 ???"); + return getActiveBits() <= N; + } + + /// Check if this APInt has an N-bits signed integer value. + bool isSignedIntN(unsigned N) const { + assert(N && "N == 0 ???"); + return getMinSignedBits() <= N; + } + + /// Check if this APInt's value is a power of two greater than zero. + /// + /// \returns true if the argument APInt value is a power of two > 0. + bool isPowerOf2() const { + if (isSingleWord()) + return isPowerOf2_64(U.VAL); + return countPopulationSlowCase() == 1; + } + + /// Check if the APInt's value is returned by getSignMask. + /// + /// \returns true if this is the value returned by getSignMask. + bool isSignMask() const { return isMinSignedValue(); } + + /// Convert APInt to a boolean value. + /// + /// This converts the APInt to a boolean value as a test against zero. + bool getBoolValue() const { return !!*this; } + + /// If this value is smaller than the specified limit, return it, otherwise + /// return the limit value. This causes the value to saturate to the limit. + uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { + return ugt(Limit) ? Limit : getZExtValue(); + } + + /// Check if the APInt consists of a repeated bit pattern. + /// + /// e.g. 0x01010101 satisfies isSplat(8). + /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit + /// width without remainder. + bool isSplat(unsigned SplatSizeInBits) const; + + /// \returns true if this APInt value is a sequence of \param numBits ones + /// starting at the least significant bit with the remainder zero. + bool isMask(unsigned numBits) const { + assert(numBits != 0 && "numBits must be non-zero"); + assert(numBits <= BitWidth && "numBits out of range"); + if (isSingleWord()) + return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); + unsigned Ones = countTrailingOnesSlowCase(); + return (numBits == Ones) && + ((Ones + countLeadingZerosSlowCase()) == BitWidth); + } + + /// \returns true if this APInt is a non-empty sequence of ones starting at + /// the least significant bit with the remainder zero. + /// Ex. isMask(0x0000FFFFU) == true. + bool isMask() const { + if (isSingleWord()) + return isMask_64(U.VAL); + unsigned Ones = countTrailingOnesSlowCase(); + return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); + } + + /// Return true if this APInt value contains a sequence of ones with + /// the remainder zero. + bool isShiftedMask() const { + if (isSingleWord()) + return isShiftedMask_64(U.VAL); + unsigned Ones = countPopulationSlowCase(); + unsigned LeadZ = countLeadingZerosSlowCase(); + return (Ones + LeadZ + countTrailingZeros()) == BitWidth; + } + + /// @} + /// \name Value Generators + /// @{ + + /// Gets maximum unsigned value of APInt for specific bit width. + static APInt getMaxValue(unsigned numBits) { + return getAllOnesValue(numBits); + } + + /// Gets maximum signed value of APInt for a specific bit width. + static APInt getSignedMaxValue(unsigned numBits) { + APInt API = getAllOnesValue(numBits); + API.clearBit(numBits - 1); + return API; + } + + /// Gets minimum unsigned value of APInt for a specific bit width. + static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } + + /// Gets minimum signed value of APInt for a specific bit width. + static APInt getSignedMinValue(unsigned numBits) { + APInt API(numBits, 0); + API.setBit(numBits - 1); + return API; + } + + /// Get the SignMask for a specific bit width. + /// + /// This is just a wrapper function of getSignedMinValue(), and it helps code + /// readability when we want to get a SignMask. + static APInt getSignMask(unsigned BitWidth) { + return getSignedMinValue(BitWidth); + } + + /// Get the all-ones value. + /// + /// \returns the all-ones value for an APInt of the specified bit-width. + static APInt getAllOnesValue(unsigned numBits) { + return APInt(numBits, WORDTYPE_MAX, true); + } + + /// Get the '0' value. + /// + /// \returns the '0' value for an APInt of the specified bit-width. + static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } + + /// Compute an APInt containing numBits highbits from this APInt. + /// + /// Get an APInt with the same BitWidth as this APInt, just zero mask + /// the low bits and right shift to the least significant bit. + /// + /// \returns the high "numBits" bits of this APInt. + APInt getHiBits(unsigned numBits) const; + + /// Compute an APInt containing numBits lowbits from this APInt. + /// + /// Get an APInt with the same BitWidth as this APInt, just zero mask + /// the high bits. + /// + /// \returns the low "numBits" bits of this APInt. + APInt getLoBits(unsigned numBits) const; + + /// Return an APInt with exactly one bit set in the result. + static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { + APInt Res(numBits, 0); + Res.setBit(BitNo); + return Res; + } + + /// Get a value with a block of bits set. + /// + /// Constructs an APInt value that has a contiguous range of bits set. The + /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other + /// bits will be zero. For example, with parameters(32, 0, 16) you would get + /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For + /// example, with parameters (32, 28, 4), you would get 0xF000000F. + /// + /// \param numBits the intended bit width of the result + /// \param loBit the index of the lowest bit set. + /// \param hiBit the index of the highest bit set. + /// + /// \returns An APInt value with the requested bits set. + static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { + APInt Res(numBits, 0); + Res.setBits(loBit, hiBit); + return Res; + } + + /// Get a value with upper bits starting at loBit set. + /// + /// Constructs an APInt value that has a contiguous range of bits set. The + /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other + /// bits will be zero. For example, with parameters(32, 12) you would get + /// 0xFFFFF000. + /// + /// \param numBits the intended bit width of the result + /// \param loBit the index of the lowest bit to set. + /// + /// \returns An APInt value with the requested bits set. + static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { + APInt Res(numBits, 0); + Res.setBitsFrom(loBit); + return Res; + } + + /// Get a value with high bits set + /// + /// Constructs an APInt value that has the top hiBitsSet bits set. + /// + /// \param numBits the bitwidth of the result + /// \param hiBitsSet the number of high-order bits set in the result. + static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { + APInt Res(numBits, 0); + Res.setHighBits(hiBitsSet); + return Res; + } + + /// Get a value with low bits set + /// + /// Constructs an APInt value that has the bottom loBitsSet bits set. + /// + /// \param numBits the bitwidth of the result + /// \param loBitsSet the number of low-order bits set in the result. + static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { + APInt Res(numBits, 0); + Res.setLowBits(loBitsSet); + return Res; + } + + /// Return a value containing V broadcasted over NewLen bits. + static APInt getSplat(unsigned NewLen, const APInt &V); + + /// Determine if two APInts have the same value, after zero-extending + /// one of them (if needed!) to ensure that the bit-widths match. + static bool isSameValue(const APInt &I1, const APInt &I2) { + if (I1.getBitWidth() == I2.getBitWidth()) + return I1 == I2; + + if (I1.getBitWidth() > I2.getBitWidth()) + return I1 == I2.zext(I1.getBitWidth()); + + return I1.zext(I2.getBitWidth()) == I2; + } + + /// Overload to compute a hash_code for an APInt value. + friend hash_code hash_value(const APInt &Arg); + + /// This function returns a pointer to the internal storage of the APInt. + /// This is useful for writing out the APInt in binary form without any + /// conversions. + const uint64_t *getRawData() const { + if (isSingleWord()) + return &U.VAL; + return &U.pVal[0]; + } + + /// @} + /// \name Unary Operators + /// @{ + + /// Postfix increment operator. + /// + /// Increments *this by 1. + /// + /// \returns a new APInt value representing the original value of *this. + const APInt operator++(int) { + APInt API(*this); + ++(*this); + return API; + } + + /// Prefix increment operator. + /// + /// \returns *this incremented by one + APInt &operator++(); + + /// Postfix decrement operator. + /// + /// Decrements *this by 1. + /// + /// \returns a new APInt value representing the original value of *this. + const APInt operator--(int) { + APInt API(*this); + --(*this); + return API; + } + + /// Prefix decrement operator. + /// + /// \returns *this decremented by one. + APInt &operator--(); + + /// Logical negation operator. + /// + /// Performs logical negation operation on this APInt. + /// + /// \returns true if *this is zero, false otherwise. + bool operator!() const { + if (isSingleWord()) + return U.VAL == 0; + return countLeadingZerosSlowCase() == BitWidth; + } + + /// @} + /// \name Assignment Operators + /// @{ + + /// Copy assignment operator. + /// + /// \returns *this after assignment of RHS. + APInt &operator=(const APInt &RHS) { + // If the bitwidths are the same, we can avoid mucking with memory + if (isSingleWord() && RHS.isSingleWord()) { + U.VAL = RHS.U.VAL; + BitWidth = RHS.BitWidth; + return clearUnusedBits(); + } + + AssignSlowCase(RHS); + return *this; + } + + /// Move assignment operator. + APInt &operator=(APInt &&that) { +#ifdef _MSC_VER + // The MSVC std::shuffle implementation still does self-assignment. + if (this == &that) + return *this; +#endif + assert(this != &that && "Self-move not supported"); + if (!isSingleWord()) + delete[] U.pVal; + + // Use memcpy so that type based alias analysis sees both VAL and pVal + // as modified. + memcpy(&U, &that.U, sizeof(U)); + + BitWidth = that.BitWidth; + that.BitWidth = 0; + + return *this; + } + + /// Assignment operator. + /// + /// The RHS value is assigned to *this. If the significant bits in RHS exceed + /// the bit width, the excess bits are truncated. If the bit width is larger + /// than 64, the value is zero filled in the unspecified high order bits. + /// + /// \returns *this after assignment of RHS value. + APInt &operator=(uint64_t RHS) { + if (isSingleWord()) { + U.VAL = RHS; + clearUnusedBits(); + } else { + U.pVal[0] = RHS; + memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); + } + return *this; + } + + /// Bitwise AND assignment operator. + /// + /// Performs a bitwise AND operation on this APInt and RHS. The result is + /// assigned to *this. + /// + /// \returns *this after ANDing with RHS. + APInt &operator&=(const APInt &RHS) { + assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); + if (isSingleWord()) + U.VAL &= RHS.U.VAL; + else + AndAssignSlowCase(RHS); + return *this; + } + + /// Bitwise AND assignment operator. + /// + /// Performs a bitwise AND operation on this APInt and RHS. RHS is + /// logically zero-extended or truncated to match the bit-width of + /// the LHS. + APInt &operator&=(uint64_t RHS) { + if (isSingleWord()) { + U.VAL &= RHS; + return *this; + } + U.pVal[0] &= RHS; + memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); + return *this; + } + + /// Bitwise OR assignment operator. + /// + /// Performs a bitwise OR operation on this APInt and RHS. The result is + /// assigned *this; + /// + /// \returns *this after ORing with RHS. + APInt &operator|=(const APInt &RHS) { + assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); + if (isSingleWord()) + U.VAL |= RHS.U.VAL; + else + OrAssignSlowCase(RHS); + return *this; + } + + /// Bitwise OR assignment operator. + /// + /// Performs a bitwise OR operation on this APInt and RHS. RHS is + /// logically zero-extended or truncated to match the bit-width of + /// the LHS. + APInt &operator|=(uint64_t RHS) { + if (isSingleWord()) { + U.VAL |= RHS; + clearUnusedBits(); + } else { + U.pVal[0] |= RHS; + } + return *this; + } + + /// Bitwise XOR assignment operator. + /// + /// Performs a bitwise XOR operation on this APInt and RHS. The result is + /// assigned to *this. + /// + /// \returns *this after XORing with RHS. + APInt &operator^=(const APInt &RHS) { + assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); + if (isSingleWord()) + U.VAL ^= RHS.U.VAL; + else + XorAssignSlowCase(RHS); + return *this; + } + + /// Bitwise XOR assignment operator. + /// + /// Performs a bitwise XOR operation on this APInt and RHS. RHS is + /// logically zero-extended or truncated to match the bit-width of + /// the LHS. + APInt &operator^=(uint64_t RHS) { + if (isSingleWord()) { + U.VAL ^= RHS; + clearUnusedBits(); + } else { + U.pVal[0] ^= RHS; + } + return *this; + } + + /// Multiplication assignment operator. + /// + /// Multiplies this APInt by RHS and assigns the result to *this. + /// + /// \returns *this + APInt &operator*=(const APInt &RHS); + APInt &operator*=(uint64_t RHS); + + /// Addition assignment operator. + /// + /// Adds RHS to *this and assigns the result to *this. + /// + /// \returns *this + APInt &operator+=(const APInt &RHS); + APInt &operator+=(uint64_t RHS); + + /// Subtraction assignment operator. + /// + /// Subtracts RHS from *this and assigns the result to *this. + /// + /// \returns *this + APInt &operator-=(const APInt &RHS); + APInt &operator-=(uint64_t RHS); + + /// Left-shift assignment function. + /// + /// Shifts *this left by shiftAmt and assigns the result to *this. + /// + /// \returns *this after shifting left by ShiftAmt + APInt &operator<<=(unsigned ShiftAmt) { + assert(ShiftAmt <= BitWidth && "Invalid shift amount"); + if (isSingleWord()) { + if (ShiftAmt == BitWidth) + U.VAL = 0; + else + U.VAL <<= ShiftAmt; + return clearUnusedBits(); + } + shlSlowCase(ShiftAmt); + return *this; + } + + /// Left-shift assignment function. + /// + /// Shifts *this left by shiftAmt and assigns the result to *this. + /// + /// \returns *this after shifting left by ShiftAmt + APInt &operator<<=(const APInt &ShiftAmt); + + /// @} + /// \name Binary Operators + /// @{ + + /// Multiplication operator. + /// + /// Multiplies this APInt by RHS and returns the result. + APInt operator*(const APInt &RHS) const; + + /// Left logical shift operator. + /// + /// Shifts this APInt left by \p Bits and returns the result. + APInt operator<<(unsigned Bits) const { return shl(Bits); } + + /// Left logical shift operator. + /// + /// Shifts this APInt left by \p Bits and returns the result. + APInt operator<<(const APInt &Bits) const { return shl(Bits); } + + /// Arithmetic right-shift function. + /// + /// Arithmetic right-shift this APInt by shiftAmt. + APInt ashr(unsigned ShiftAmt) const { + APInt R(*this); + R.ashrInPlace(ShiftAmt); + return R; + } + + /// Arithmetic right-shift this APInt by ShiftAmt in place. + void ashrInPlace(unsigned ShiftAmt) { + assert(ShiftAmt <= BitWidth && "Invalid shift amount"); + if (isSingleWord()) { + int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); + if (ShiftAmt == BitWidth) + U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. + else + U.VAL = SExtVAL >> ShiftAmt; + clearUnusedBits(); + return; + } + ashrSlowCase(ShiftAmt); + } + + /// Logical right-shift function. + /// + /// Logical right-shift this APInt by shiftAmt. + APInt lshr(unsigned shiftAmt) const { + APInt R(*this); + R.lshrInPlace(shiftAmt); + return R; + } + + /// Logical right-shift this APInt by ShiftAmt in place. + void lshrInPlace(unsigned ShiftAmt) { + assert(ShiftAmt <= BitWidth && "Invalid shift amount"); + if (isSingleWord()) { + if (ShiftAmt == BitWidth) + U.VAL = 0; + else + U.VAL >>= ShiftAmt; + return; + } + lshrSlowCase(ShiftAmt); + } + + /// Left-shift function. + /// + /// Left-shift this APInt by shiftAmt. + APInt shl(unsigned shiftAmt) const { + APInt R(*this); + R <<= shiftAmt; + return R; + } + + /// Rotate left by rotateAmt. + APInt rotl(unsigned rotateAmt) const; + + /// Rotate right by rotateAmt. + APInt rotr(unsigned rotateAmt) const; + + /// Arithmetic right-shift function. + /// + /// Arithmetic right-shift this APInt by shiftAmt. + APInt ashr(const APInt &ShiftAmt) const { + APInt R(*this); + R.ashrInPlace(ShiftAmt); + return R; + } + + /// Arithmetic right-shift this APInt by shiftAmt in place. + void ashrInPlace(const APInt &shiftAmt); + + /// Logical right-shift function. + /// + /// Logical right-shift this APInt by shiftAmt. + APInt lshr(const APInt &ShiftAmt) const { + APInt R(*this); + R.lshrInPlace(ShiftAmt); + return R; + } + + /// Logical right-shift this APInt by ShiftAmt in place. + void lshrInPlace(const APInt &ShiftAmt); + + /// Left-shift function. + /// + /// Left-shift this APInt by shiftAmt. + APInt shl(const APInt &ShiftAmt) const { + APInt R(*this); + R <<= ShiftAmt; + return R; + } + + /// Rotate left by rotateAmt. + APInt rotl(const APInt &rotateAmt) const; + + /// Rotate right by rotateAmt. + APInt rotr(const APInt &rotateAmt) const; + + /// Unsigned division operation. + /// + /// Perform an unsigned divide operation on this APInt by RHS. Both this and + /// RHS are treated as unsigned quantities for purposes of this division. + /// + /// \returns a new APInt value containing the division result, rounded towards + /// zero. + APInt udiv(const APInt &RHS) const; + APInt udiv(uint64_t RHS) const; + + /// Signed division function for APInt. + /// + /// Signed divide this APInt by APInt RHS. + /// + /// The result is rounded towards zero. + APInt sdiv(const APInt &RHS) const; + APInt sdiv(int64_t RHS) const; + + /// Unsigned remainder operation. + /// + /// Perform an unsigned remainder operation on this APInt with RHS being the + /// divisor. Both this and RHS are treated as unsigned quantities for purposes + /// of this operation. Note that this is a true remainder operation and not a + /// modulo operation because the sign follows the sign of the dividend which + /// is *this. + /// + /// \returns a new APInt value containing the remainder result + APInt urem(const APInt &RHS) const; + uint64_t urem(uint64_t RHS) const; + + /// Function for signed remainder operation. + /// + /// Signed remainder operation on APInt. + APInt srem(const APInt &RHS) const; + int64_t srem(int64_t RHS) const; + + /// Dual division/remainder interface. + /// + /// Sometimes it is convenient to divide two APInt values and obtain both the + /// quotient and remainder. This function does both operations in the same + /// computation making it a little more efficient. The pair of input arguments + /// may overlap with the pair of output arguments. It is safe to call + /// udivrem(X, Y, X, Y), for example. + static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, + APInt &Remainder); + static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, + uint64_t &Remainder); + + static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, + APInt &Remainder); + static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, + int64_t &Remainder); + + // Operations that return overflow indicators. + APInt sadd_ov(const APInt &RHS, bool &Overflow) const; + APInt uadd_ov(const APInt &RHS, bool &Overflow) const; + APInt ssub_ov(const APInt &RHS, bool &Overflow) const; + APInt usub_ov(const APInt &RHS, bool &Overflow) const; + APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; + APInt smul_ov(const APInt &RHS, bool &Overflow) const; + APInt umul_ov(const APInt &RHS, bool &Overflow) const; + APInt sshl_ov(const APInt &Amt, bool &Overflow) const; + APInt ushl_ov(const APInt &Amt, bool &Overflow) const; + + // Operations that saturate + APInt sadd_sat(const APInt &RHS) const; + APInt uadd_sat(const APInt &RHS) const; + APInt ssub_sat(const APInt &RHS) const; + APInt usub_sat(const APInt &RHS) const; + APInt smul_sat(const APInt &RHS) const; + APInt umul_sat(const APInt &RHS) const; + APInt sshl_sat(const APInt &RHS) const; + APInt ushl_sat(const APInt &RHS) const; + + /// Array-indexing support. + /// + /// \returns the bit value at bitPosition + bool operator[](unsigned bitPosition) const { + assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); + return (maskBit(bitPosition) & getWord(bitPosition)) != 0; + } + + /// @} + /// \name Comparison Operators + /// @{ + + /// Equality operator. + /// + /// Compares this APInt with RHS for the validity of the equality + /// relationship. + bool operator==(const APInt &RHS) const { + assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); + if (isSingleWord()) + return U.VAL == RHS.U.VAL; + return EqualSlowCase(RHS); + } + + /// Equality operator. + /// + /// Compares this APInt with a uint64_t for the validity of the equality + /// relationship. + /// + /// \returns true if *this == Val + bool operator==(uint64_t Val) const { + return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; + } + + /// Equality comparison. + /// + /// Compares this APInt with RHS for the validity of the equality + /// relationship. + /// + /// \returns true if *this == Val + bool eq(const APInt &RHS) const { return (*this) == RHS; } + + /// Inequality operator. + /// + /// Compares this APInt with RHS for the validity of the inequality + /// relationship. + /// + /// \returns true if *this != Val + bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } + + /// Inequality operator. + /// + /// Compares this APInt with a uint64_t for the validity of the inequality + /// relationship. + /// + /// \returns true if *this != Val + bool operator!=(uint64_t Val) const { return !((*this) == Val); } + + /// Inequality comparison + /// + /// Compares this APInt with RHS for the validity of the inequality + /// relationship. + /// + /// \returns true if *this != Val + bool ne(const APInt &RHS) const { return !((*this) == RHS); } + + /// Unsigned less than comparison + /// + /// Regards both *this and RHS as unsigned quantities and compares them for + /// the validity of the less-than relationship. + /// + /// \returns true if *this < RHS when both are considered unsigned. + bool ult(const APInt &RHS) const { return compare(RHS) < 0; } + + /// Unsigned less than comparison + /// + /// Regards both *this as an unsigned quantity and compares it with RHS for + /// the validity of the less-than relationship. + /// + /// \returns true if *this < RHS when considered unsigned. + bool ult(uint64_t RHS) const { + // Only need to check active bits if not a single word. + return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; + } + + /// Signed less than comparison + /// + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the less-than relationship. + /// + /// \returns true if *this < RHS when both are considered signed. + bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } + + /// Signed less than comparison + /// + /// Regards both *this as a signed quantity and compares it with RHS for + /// the validity of the less-than relationship. + /// + /// \returns true if *this < RHS when considered signed. + bool slt(int64_t RHS) const { + return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() + : getSExtValue() < RHS; + } + + /// Unsigned less or equal comparison + /// + /// Regards both *this and RHS as unsigned quantities and compares them for + /// validity of the less-or-equal relationship. + /// + /// \returns true if *this <= RHS when both are considered unsigned. + bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } + + /// Unsigned less or equal comparison + /// + /// Regards both *this as an unsigned quantity and compares it with RHS for + /// the validity of the less-or-equal relationship. + /// + /// \returns true if *this <= RHS when considered unsigned. + bool ule(uint64_t RHS) const { return !ugt(RHS); } + + /// Signed less or equal comparison + /// + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the less-or-equal relationship. + /// + /// \returns true if *this <= RHS when both are considered signed. + bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } + + /// Signed less or equal comparison + /// + /// Regards both *this as a signed quantity and compares it with RHS for the + /// validity of the less-or-equal relationship. + /// + /// \returns true if *this <= RHS when considered signed. + bool sle(uint64_t RHS) const { return !sgt(RHS); } + + /// Unsigned greater than comparison + /// + /// Regards both *this and RHS as unsigned quantities and compares them for + /// the validity of the greater-than relationship. + /// + /// \returns true if *this > RHS when both are considered unsigned. + bool ugt(const APInt &RHS) const { return !ule(RHS); } + + /// Unsigned greater than comparison + /// + /// Regards both *this as an unsigned quantity and compares it with RHS for + /// the validity of the greater-than relationship. + /// + /// \returns true if *this > RHS when considered unsigned. + bool ugt(uint64_t RHS) const { + // Only need to check active bits if not a single word. + return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; + } + + /// Signed greater than comparison + /// + /// Regards both *this and RHS as signed quantities and compares them for the + /// validity of the greater-than relationship. + /// + /// \returns true if *this > RHS when both are considered signed. + bool sgt(const APInt &RHS) const { return !sle(RHS); } + + /// Signed greater than comparison + /// + /// Regards both *this as a signed quantity and compares it with RHS for + /// the validity of the greater-than relationship. + /// + /// \returns true if *this > RHS when considered signed. + bool sgt(int64_t RHS) const { + return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() + : getSExtValue() > RHS; + } + + /// Unsigned greater or equal comparison + /// + /// Regards both *this and RHS as unsigned quantities and compares them for + /// validity of the greater-or-equal relationship. + /// + /// \returns true if *this >= RHS when both are considered unsigned. + bool uge(const APInt &RHS) const { return !ult(RHS); } + + /// Unsigned greater or equal comparison + /// + /// Regards both *this as an unsigned quantity and compares it with RHS for + /// the validity of the greater-or-equal relationship. + /// + /// \returns true if *this >= RHS when considered unsigned. + bool uge(uint64_t RHS) const { return !ult(RHS); } + + /// Signed greater or equal comparison + /// + /// Regards both *this and RHS as signed quantities and compares them for + /// validity of the greater-or-equal relationship. + /// + /// \returns true if *this >= RHS when both are considered signed. + bool sge(const APInt &RHS) const { return !slt(RHS); } + + /// Signed greater or equal comparison + /// + /// Regards both *this as a signed quantity and compares it with RHS for + /// the validity of the greater-or-equal relationship. + /// + /// \returns true if *this >= RHS when considered signed. + bool sge(int64_t RHS) const { return !slt(RHS); } + + /// This operation tests if there are any pairs of corresponding bits + /// between this APInt and RHS that are both set. + bool intersects(const APInt &RHS) const { + assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); + if (isSingleWord()) + return (U.VAL & RHS.U.VAL) != 0; + return intersectsSlowCase(RHS); + } + + /// This operation checks that all bits set in this APInt are also set in RHS. + bool isSubsetOf(const APInt &RHS) const { + assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); + if (isSingleWord()) + return (U.VAL & ~RHS.U.VAL) == 0; + return isSubsetOfSlowCase(RHS); + } + + /// @} + /// \name Resizing Operators + /// @{ + + /// Truncate to new width. + /// + /// Truncate the APInt to a specified width. It is an error to specify a width + /// that is greater than or equal to the current width. + APInt trunc(unsigned width) const; + + /// Truncate to new width with unsigned saturation. + /// + /// If the APInt, treated as unsigned integer, can be losslessly truncated to + /// the new bitwidth, then return truncated APInt. Else, return max value. + APInt truncUSat(unsigned width) const; + + /// Truncate to new width with signed saturation. + /// + /// If this APInt, treated as signed integer, can be losslessly truncated to + /// the new bitwidth, then return truncated APInt. Else, return either + /// signed min value if the APInt was negative, or signed max value. + APInt truncSSat(unsigned width) const; + + /// Sign extend to a new width. + /// + /// This operation sign extends the APInt to a new width. If the high order + /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. + /// It is an error to specify a width that is less than or equal to the + /// current width. + APInt sext(unsigned width) const; + + /// Zero extend to a new width. + /// + /// This operation zero extends the APInt to a new width. The high order bits + /// are filled with 0 bits. It is an error to specify a width that is less + /// than or equal to the current width. + APInt zext(unsigned width) const; + + /// Sign extend or truncate to width + /// + /// Make this APInt have the bit width given by \p width. The value is sign + /// extended, truncated, or left alone to make it that width. + APInt sextOrTrunc(unsigned width) const; + + /// Zero extend or truncate to width + /// + /// Make this APInt have the bit width given by \p width. The value is zero + /// extended, truncated, or left alone to make it that width. + APInt zextOrTrunc(unsigned width) const; + + /// Sign extend or truncate to width + /// + /// Make this APInt have the bit width given by \p width. The value is sign + /// extended, or left alone to make it that width. + APInt sextOrSelf(unsigned width) const; + + /// Zero extend or truncate to width + /// + /// Make this APInt have the bit width given by \p width. The value is zero + /// extended, or left alone to make it that width. + APInt zextOrSelf(unsigned width) const; + + /// @} + /// \name Bit Manipulation Operators + /// @{ + + /// Set every bit to 1. + void setAllBits() { + if (isSingleWord()) + U.VAL = WORDTYPE_MAX; + else + // Set all the bits in all the words. + memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); + // Clear the unused ones + clearUnusedBits(); + } + + /// Set a given bit to 1. + /// + /// Set the given bit to 1 whose position is given as "bitPosition". + void setBit(unsigned BitPosition) { + assert(BitPosition < BitWidth && "BitPosition out of range"); + WordType Mask = maskBit(BitPosition); + if (isSingleWord()) + U.VAL |= Mask; + else + U.pVal[whichWord(BitPosition)] |= Mask; + } + + /// Set the sign bit to 1. + void setSignBit() { + setBit(BitWidth - 1); + } + + /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. + void setBits(unsigned loBit, unsigned hiBit) { + assert(hiBit <= BitWidth && "hiBit out of range"); + assert(loBit <= BitWidth && "loBit out of range"); + assert(loBit <= hiBit && "loBit greater than hiBit"); + if (loBit == hiBit) + return; + if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { + uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); + mask <<= loBit; + if (isSingleWord()) + U.VAL |= mask; + else + U.pVal[0] |= mask; + } else { + setBitsSlowCase(loBit, hiBit); + } + } + + /// Set the top bits starting from loBit. + void setBitsFrom(unsigned loBit) { + return setBits(loBit, BitWidth); + } + + /// Set the bottom loBits bits. + void setLowBits(unsigned loBits) { + return setBits(0, loBits); + } + + /// Set the top hiBits bits. + void setHighBits(unsigned hiBits) { + return setBits(BitWidth - hiBits, BitWidth); + } + + /// Set every bit to 0. + void clearAllBits() { + if (isSingleWord()) + U.VAL = 0; + else + memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); + } + + /// Set a given bit to 0. + /// + /// Set the given bit to 0 whose position is given as "bitPosition". + void clearBit(unsigned BitPosition) { + assert(BitPosition < BitWidth && "BitPosition out of range"); + WordType Mask = ~maskBit(BitPosition); + if (isSingleWord()) + U.VAL &= Mask; + else + U.pVal[whichWord(BitPosition)] &= Mask; + } + + /// Set bottom loBits bits to 0. + void clearLowBits(unsigned loBits) { + assert(loBits <= BitWidth && "More bits than bitwidth"); + APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); + *this &= Keep; + } + + /// Set the sign bit to 0. + void clearSignBit() { + clearBit(BitWidth - 1); + } + + /// Toggle every bit to its opposite value. + void flipAllBits() { + if (isSingleWord()) { + U.VAL ^= WORDTYPE_MAX; + clearUnusedBits(); + } else { + flipAllBitsSlowCase(); + } + } + + /// Toggles a given bit to its opposite value. + /// + /// Toggle a given bit to its opposite value whose position is given + /// as "bitPosition". + void flipBit(unsigned bitPosition); + + /// Negate this APInt in place. + void negate() { + flipAllBits(); + ++(*this); + } + + /// Insert the bits from a smaller APInt starting at bitPosition. + void insertBits(const APInt &SubBits, unsigned bitPosition); + void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); + + /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). + APInt extractBits(unsigned numBits, unsigned bitPosition) const; + uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; + + /// @} + /// \name Value Characterization Functions + /// @{ + + /// Return the number of bits in the APInt. + unsigned getBitWidth() const { return BitWidth; } + + /// Get the number of words. + /// + /// Here one word's bitwidth equals to that of uint64_t. + /// + /// \returns the number of words to hold the integer value of this APInt. + unsigned getNumWords() const { return getNumWords(BitWidth); } + + /// Get the number of words. + /// + /// *NOTE* Here one word's bitwidth equals to that of uint64_t. + /// + /// \returns the number of words to hold the integer value with a given bit + /// width. + static unsigned getNumWords(unsigned BitWidth) { + return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; + } + + /// Compute the number of active bits in the value + /// + /// This function returns the number of active bits which is defined as the + /// bit width minus the number of leading zeros. This is used in several + /// computations to see how "wide" the value is. + unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } + + /// Compute the number of active words in the value of this APInt. + /// + /// This is used in conjunction with getActiveData to extract the raw value of + /// the APInt. + unsigned getActiveWords() const { + unsigned numActiveBits = getActiveBits(); + return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; + } + + /// Get the minimum bit size for this signed APInt + /// + /// Computes the minimum bit width for this APInt while considering it to be a + /// signed (and probably negative) value. If the value is not negative, this + /// function returns the same value as getActiveBits()+1. Otherwise, it + /// returns the smallest bit width that will retain the negative value. For + /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so + /// for -1, this function will always return 1. + unsigned getMinSignedBits() const { + if (isNegative()) + return BitWidth - countLeadingOnes() + 1; + return getActiveBits() + 1; + } + + /// Get zero extended value + /// + /// This method attempts to return the value of this APInt as a zero extended + /// uint64_t. The bitwidth must be <= 64 or the value must fit within a + /// uint64_t. Otherwise an assertion will result. + uint64_t getZExtValue() const { + if (isSingleWord()) + return U.VAL; + assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); + return U.pVal[0]; + } + + /// Get sign extended value + /// + /// This method attempts to return the value of this APInt as a sign extended + /// int64_t. The bit width must be <= 64 or the value must fit within an + /// int64_t. Otherwise an assertion will result. + int64_t getSExtValue() const { + if (isSingleWord()) + return SignExtend64(U.VAL, BitWidth); + assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); + return int64_t(U.pVal[0]); + } + + /// Get bits required for string value. + /// + /// This method determines how many bits are required to hold the APInt + /// equivalent of the string given by \p str. + static unsigned getBitsNeeded(StringRef str, uint8_t radix); + + /// The APInt version of the countLeadingZeros functions in + /// MathExtras.h. + /// + /// It counts the number of zeros from the most significant bit to the first + /// one bit. + /// + /// \returns BitWidth if the value is zero, otherwise returns the number of + /// zeros from the most significant bit to the first one bits. + unsigned countLeadingZeros() const { + if (isSingleWord()) { + unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; + return llvm::countLeadingZeros(U.VAL) - unusedBits; + } + return countLeadingZerosSlowCase(); + } + + /// Count the number of leading one bits. + /// + /// This function is an APInt version of the countLeadingOnes + /// functions in MathExtras.h. It counts the number of ones from the most + /// significant bit to the first zero bit. + /// + /// \returns 0 if the high order bit is not set, otherwise returns the number + /// of 1 bits from the most significant to the least + unsigned countLeadingOnes() const { + if (isSingleWord()) + return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); + return countLeadingOnesSlowCase(); + } + + /// Computes the number of leading bits of this APInt that are equal to its + /// sign bit. + unsigned getNumSignBits() const { + return isNegative() ? countLeadingOnes() : countLeadingZeros(); + } + + /// Count the number of trailing zero bits. + /// + /// This function is an APInt version of the countTrailingZeros + /// functions in MathExtras.h. It counts the number of zeros from the least + /// significant bit to the first set bit. + /// + /// \returns BitWidth if the value is zero, otherwise returns the number of + /// zeros from the least significant bit to the first one bit. + unsigned countTrailingZeros() const { + if (isSingleWord()) + return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); + return countTrailingZerosSlowCase(); + } + + /// Count the number of trailing one bits. + /// + /// This function is an APInt version of the countTrailingOnes + /// functions in MathExtras.h. It counts the number of ones from the least + /// significant bit to the first zero bit. + /// + /// \returns BitWidth if the value is all ones, otherwise returns the number + /// of ones from the least significant bit to the first zero bit. + unsigned countTrailingOnes() const { + if (isSingleWord()) + return llvm::countTrailingOnes(U.VAL); + return countTrailingOnesSlowCase(); + } + + /// Count the number of bits set. + /// + /// This function is an APInt version of the countPopulation functions + /// in MathExtras.h. It counts the number of 1 bits in the APInt value. + /// + /// \returns 0 if the value is zero, otherwise returns the number of set bits. + unsigned countPopulation() const { + if (isSingleWord()) + return llvm::countPopulation(U.VAL); + return countPopulationSlowCase(); + } + + /// @} + /// \name Conversion Functions + /// @{ + void print(raw_ostream &OS, bool isSigned) const; + + /// Converts an APInt to a string and append it to Str. Str is commonly a + /// SmallString. + void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, + bool formatAsCLiteral = false) const; + + /// Considers the APInt to be unsigned and converts it into a string in the + /// radix given. The radix can be 2, 8, 10 16, or 36. + void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { + toString(Str, Radix, false, false); + } + + /// Considers the APInt to be signed and converts it into a string in the + /// radix given. The radix can be 2, 8, 10, 16, or 36. + void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { + toString(Str, Radix, true, false); + } + + /// Return the APInt as a std::string. + /// + /// Note that this is an inefficient method. It is better to pass in a + /// SmallVector/SmallString to the methods above to avoid thrashing the heap + /// for the string. + std::string toString(unsigned Radix, bool Signed) const; + + /// \returns a byte-swapped representation of this APInt Value. + APInt byteSwap() const; + + /// \returns the value with the bit representation reversed of this APInt + /// Value. + APInt reverseBits() const; + + /// Converts this APInt to a double value. + double roundToDouble(bool isSigned) const; + + /// Converts this unsigned APInt to a double value. + double roundToDouble() const { return roundToDouble(false); } + + /// Converts this signed APInt to a double value. + double signedRoundToDouble() const { return roundToDouble(true); } + + /// Converts APInt bits to a double + /// + /// The conversion does not do a translation from integer to double, it just + /// re-interprets the bits as a double. Note that it is valid to do this on + /// any bit width. Exactly 64 bits will be translated. + double bitsToDouble() const { + return BitsToDouble(getWord(0)); + } + + /// Converts APInt bits to a float + /// + /// The conversion does not do a translation from integer to float, it just + /// re-interprets the bits as a float. Note that it is valid to do this on + /// any bit width. Exactly 32 bits will be translated. + float bitsToFloat() const { + return BitsToFloat(static_cast<uint32_t>(getWord(0))); + } + + /// Converts a double to APInt bits. + /// + /// The conversion does not do a translation from double to integer, it just + /// re-interprets the bits of the double. + static APInt doubleToBits(double V) { + return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); + } + + /// Converts a float to APInt bits. + /// + /// The conversion does not do a translation from float to integer, it just + /// re-interprets the bits of the float. + static APInt floatToBits(float V) { + return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); + } + + /// @} + /// \name Mathematics Operations + /// @{ + + /// \returns the floor log base 2 of this APInt. + unsigned logBase2() const { return getActiveBits() - 1; } + + /// \returns the ceil log base 2 of this APInt. + unsigned ceilLogBase2() const { + APInt temp(*this); + --temp; + return temp.getActiveBits(); + } + + /// \returns the nearest log base 2 of this APInt. Ties round up. + /// + /// NOTE: When we have a BitWidth of 1, we define: + /// + /// log2(0) = UINT32_MAX + /// log2(1) = 0 + /// + /// to get around any mathematical concerns resulting from + /// referencing 2 in a space where 2 does no exist. + unsigned nearestLogBase2() const { + // Special case when we have a bitwidth of 1. If VAL is 1, then we + // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to + // UINT32_MAX. + if (BitWidth == 1) + return U.VAL - 1; + + // Handle the zero case. + if (isNullValue()) + return UINT32_MAX; + + // The non-zero case is handled by computing: + // + // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. + // + // where x[i] is referring to the value of the ith bit of x. + unsigned lg = logBase2(); + return lg + unsigned((*this)[lg - 1]); + } + + /// \returns the log base 2 of this APInt if its an exact power of two, -1 + /// otherwise + int32_t exactLogBase2() const { + if (!isPowerOf2()) + return -1; + return logBase2(); + } + + /// Compute the square root + APInt sqrt() const; + + /// Get the absolute value; + /// + /// If *this is < 0 then return -(*this), otherwise *this; + APInt abs() const { + if (isNegative()) + return -(*this); + return *this; + } + + /// \returns the multiplicative inverse for a given modulo. + APInt multiplicativeInverse(const APInt &modulo) const; + + /// @} + /// \name Support for division by constant + /// @{ + + /// Calculate the magic number for signed division by a constant. + struct ms; + ms magic() const; + + /// Calculate the magic number for unsigned division by a constant. + struct mu; + mu magicu(unsigned LeadingZeros = 0) const; + + /// @} + /// \name Building-block Operations for APInt and APFloat + /// @{ + + // These building block operations operate on a representation of arbitrary + // precision, two's-complement, bignum integer values. They should be + // sufficient to implement APInt and APFloat bignum requirements. Inputs are + // generally a pointer to the base of an array of integer parts, representing + // an unsigned bignum, and a count of how many parts there are. + + /// Sets the least significant part of a bignum to the input value, and zeroes + /// out higher parts. + static void tcSet(WordType *, WordType, unsigned); + + /// Assign one bignum to another. + static void tcAssign(WordType *, const WordType *, unsigned); + + /// Returns true if a bignum is zero, false otherwise. + static bool tcIsZero(const WordType *, unsigned); + + /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. + static int tcExtractBit(const WordType *, unsigned bit); + + /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to + /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least + /// significant bit of DST. All high bits above srcBITS in DST are + /// zero-filled. + static void tcExtract(WordType *, unsigned dstCount, + const WordType *, unsigned srcBits, + unsigned srcLSB); + + /// Set the given bit of a bignum. Zero-based. + static void tcSetBit(WordType *, unsigned bit); + + /// Clear the given bit of a bignum. Zero-based. + static void tcClearBit(WordType *, unsigned bit); + + /// Returns the bit number of the least or most significant set bit of a + /// number. If the input number has no bits set -1U is returned. + static unsigned tcLSB(const WordType *, unsigned n); + static unsigned tcMSB(const WordType *parts, unsigned n); + + /// Negate a bignum in-place. + static void tcNegate(WordType *, unsigned); + + /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. + static WordType tcAdd(WordType *, const WordType *, + WordType carry, unsigned); + /// DST += RHS. Returns the carry flag. + static WordType tcAddPart(WordType *, WordType, unsigned); + + /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. + static WordType tcSubtract(WordType *, const WordType *, + WordType carry, unsigned); + /// DST -= RHS. Returns the carry flag. + static WordType tcSubtractPart(WordType *, WordType, unsigned); + + /// DST += SRC * MULTIPLIER + PART if add is true + /// DST = SRC * MULTIPLIER + PART if add is false + /// + /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must + /// start at the same point, i.e. DST == SRC. + /// + /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. + /// Otherwise DST is filled with the least significant DSTPARTS parts of the + /// result, and if all of the omitted higher parts were zero return zero, + /// otherwise overflow occurred and return one. + static int tcMultiplyPart(WordType *dst, const WordType *src, + WordType multiplier, WordType carry, + unsigned srcParts, unsigned dstParts, + bool add); + + /// DST = LHS * RHS, where DST has the same width as the operands and is + /// filled with the least significant parts of the result. Returns one if + /// overflow occurred, otherwise zero. DST must be disjoint from both + /// operands. + static int tcMultiply(WordType *, const WordType *, const WordType *, + unsigned); + + /// DST = LHS * RHS, where DST has width the sum of the widths of the + /// operands. No overflow occurs. DST must be disjoint from both operands. + static void tcFullMultiply(WordType *, const WordType *, + const WordType *, unsigned, unsigned); + + /// If RHS is zero LHS and REMAINDER are left unchanged, return one. + /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set + /// REMAINDER to the remainder, return zero. i.e. + /// + /// OLD_LHS = RHS * LHS + REMAINDER + /// + /// SCRATCH is a bignum of the same size as the operands and result for use by + /// the routine; its contents need not be initialized and are destroyed. LHS, + /// REMAINDER and SCRATCH must be distinct. + static int tcDivide(WordType *lhs, const WordType *rhs, + WordType *remainder, WordType *scratch, + unsigned parts); + + /// Shift a bignum left Count bits. Shifted in bits are zero. There are no + /// restrictions on Count. + static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); + + /// Shift a bignum right Count bits. Shifted in bits are zero. There are no + /// restrictions on Count. + static void tcShiftRight(WordType *, unsigned Words, unsigned Count); + + /// The obvious AND, OR and XOR and complement operations. + static void tcAnd(WordType *, const WordType *, unsigned); + static void tcOr(WordType *, const WordType *, unsigned); + static void tcXor(WordType *, const WordType *, unsigned); + static void tcComplement(WordType *, unsigned); + + /// Comparison (unsigned) of two bignums. + static int tcCompare(const WordType *, const WordType *, unsigned); + + /// Increment a bignum in-place. Return the carry flag. + static WordType tcIncrement(WordType *dst, unsigned parts) { + return tcAddPart(dst, 1, parts); + } + + /// Decrement a bignum in-place. Return the borrow flag. + static WordType tcDecrement(WordType *dst, unsigned parts) { + return tcSubtractPart(dst, 1, parts); + } + + /// Set the least significant BITS and clear the rest. + static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); + + /// debug method + void dump() const; + + /// @} +}; + +/// Magic data for optimising signed division by a constant. +struct APInt::ms { + APInt m; ///< magic number + unsigned s; ///< shift amount +}; + +/// Magic data for optimising unsigned division by a constant. +struct APInt::mu { + APInt m; ///< magic number + bool a; ///< add indicator + unsigned s; ///< shift amount +}; + +inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } + +inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } + +/// Unary bitwise complement operator. +/// +/// \returns an APInt that is the bitwise complement of \p v. +inline APInt operator~(APInt v) { + v.flipAllBits(); + return v; +} + +inline APInt operator&(APInt a, const APInt &b) { + a &= b; + return a; +} + +inline APInt operator&(const APInt &a, APInt &&b) { + b &= a; + return std::move(b); +} + +inline APInt operator&(APInt a, uint64_t RHS) { + a &= RHS; + return a; +} + +inline APInt operator&(uint64_t LHS, APInt b) { + b &= LHS; + return b; +} + +inline APInt operator|(APInt a, const APInt &b) { + a |= b; + return a; +} + +inline APInt operator|(const APInt &a, APInt &&b) { + b |= a; + return std::move(b); +} + +inline APInt operator|(APInt a, uint64_t RHS) { + a |= RHS; + return a; +} + +inline APInt operator|(uint64_t LHS, APInt b) { + b |= LHS; + return b; +} + +inline APInt operator^(APInt a, const APInt &b) { + a ^= b; + return a; +} + +inline APInt operator^(const APInt &a, APInt &&b) { + b ^= a; + return std::move(b); +} + +inline APInt operator^(APInt a, uint64_t RHS) { + a ^= RHS; + return a; +} + +inline APInt operator^(uint64_t LHS, APInt b) { + b ^= LHS; + return b; +} + +inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { + I.print(OS, true); + return OS; +} + +inline APInt operator-(APInt v) { + v.negate(); + return v; +} + +inline APInt operator+(APInt a, const APInt &b) { + a += b; + return a; +} + +inline APInt operator+(const APInt &a, APInt &&b) { + b += a; + return std::move(b); +} + +inline APInt operator+(APInt a, uint64_t RHS) { + a += RHS; + return a; +} + +inline APInt operator+(uint64_t LHS, APInt b) { + b += LHS; + return b; +} + +inline APInt operator-(APInt a, const APInt &b) { + a -= b; + return a; +} + +inline APInt operator-(const APInt &a, APInt &&b) { + b.negate(); + b += a; + return std::move(b); +} + +inline APInt operator-(APInt a, uint64_t RHS) { + a -= RHS; + return a; +} + +inline APInt operator-(uint64_t LHS, APInt b) { + b.negate(); + b += LHS; + return b; +} + +inline APInt operator*(APInt a, uint64_t RHS) { + a *= RHS; + return a; +} + +inline APInt operator*(uint64_t LHS, APInt b) { + b *= LHS; + return b; +} + + +namespace APIntOps { + +/// Determine the smaller of two APInts considered to be signed. +inline const APInt &smin(const APInt &A, const APInt &B) { + return A.slt(B) ? A : B; +} + +/// Determine the larger of two APInts considered to be signed. +inline const APInt &smax(const APInt &A, const APInt &B) { + return A.sgt(B) ? A : B; +} + +/// Determine the smaller of two APInts considered to be signed. +inline const APInt &umin(const APInt &A, const APInt &B) { + return A.ult(B) ? A : B; +} + +/// Determine the larger of two APInts considered to be unsigned. +inline const APInt &umax(const APInt &A, const APInt &B) { + return A.ugt(B) ? A : B; +} + +/// Compute GCD of two unsigned APInt values. +/// +/// This function returns the greatest common divisor of the two APInt values +/// using Stein's algorithm. +/// +/// \returns the greatest common divisor of A and B. +APInt GreatestCommonDivisor(APInt A, APInt B); + +/// Converts the given APInt to a double value. +/// +/// Treats the APInt as an unsigned value for conversion purposes. +inline double RoundAPIntToDouble(const APInt &APIVal) { + return APIVal.roundToDouble(); +} + +/// Converts the given APInt to a double value. +/// +/// Treats the APInt as a signed value for conversion purposes. +inline double RoundSignedAPIntToDouble(const APInt &APIVal) { + return APIVal.signedRoundToDouble(); +} + +/// Converts the given APInt to a float vlalue. +inline float RoundAPIntToFloat(const APInt &APIVal) { + return float(RoundAPIntToDouble(APIVal)); +} + +/// Converts the given APInt to a float value. +/// +/// Treats the APInt as a signed value for conversion purposes. +inline float RoundSignedAPIntToFloat(const APInt &APIVal) { + return float(APIVal.signedRoundToDouble()); +} + +/// Converts the given double value into a APInt. +/// +/// This function convert a double value to an APInt value. +APInt RoundDoubleToAPInt(double Double, unsigned width); + +/// Converts a float value into a APInt. +/// +/// Converts a float value into an APInt value. +inline APInt RoundFloatToAPInt(float Float, unsigned width) { + return RoundDoubleToAPInt(double(Float), width); +} + +/// Return A unsign-divided by B, rounded by the given rounding mode. +APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); + +/// Return A sign-divided by B, rounded by the given rounding mode. +APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); + +/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range +/// (e.g. 32 for i32). +/// This function finds the smallest number n, such that +/// (a) n >= 0 and q(n) = 0, or +/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all +/// integers, belong to two different intervals [Rk, Rk+R), +/// where R = 2^BW, and k is an integer. +/// The idea here is to find when q(n) "overflows" 2^BW, while at the +/// same time "allowing" subtraction. In unsigned modulo arithmetic a +/// subtraction (treated as addition of negated numbers) would always +/// count as an overflow, but here we want to allow values to decrease +/// and increase as long as they are within the same interval. +/// Specifically, adding of two negative numbers should not cause an +/// overflow (as long as the magnitude does not exceed the bit width). +/// On the other hand, given a positive number, adding a negative +/// number to it can give a negative result, which would cause the +/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is +/// treated as a special case of an overflow. +/// +/// This function returns None if after finding k that minimizes the +/// positive solution to q(n) = kR, both solutions are contained between +/// two consecutive integers. +/// +/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation +/// in arithmetic modulo 2^BW, and treating the values as signed) by the +/// virtue of *signed* overflow. This function will *not* find such an n, +/// however it may find a value of n satisfying the inequalities due to +/// an *unsigned* overflow (if the values are treated as unsigned). +/// To find a solution for a signed overflow, treat it as a problem of +/// finding an unsigned overflow with a range with of BW-1. +/// +/// The returned value may have a different bit width from the input +/// coefficients. +Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, + unsigned RangeWidth); + +/// Compare two values, and if they are different, return the position of the +/// most significant bit that is different in the values. +Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, + const APInt &B); + +} // End of APIntOps namespace + +// See friend declaration above. This additional declaration is required in +// order to compile LLVM with IBM xlC compiler. +hash_code hash_value(const APInt &Arg); + +/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst +/// with the integer held in IntVal. +void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); + +/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting +/// from Src into IntVal, which is assumed to be wide enough and to hold zero. +void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes); + +} // namespace llvm + +#endif |