diff options
Diffstat (limited to 'third_party/llvm-project/include/llvm/ADT/ArrayRef.h')
-rw-r--r-- | third_party/llvm-project/include/llvm/ADT/ArrayRef.h | 540 |
1 files changed, 540 insertions, 0 deletions
diff --git a/third_party/llvm-project/include/llvm/ADT/ArrayRef.h b/third_party/llvm-project/include/llvm/ADT/ArrayRef.h new file mode 100644 index 000000000..f6455d3fa --- /dev/null +++ b/third_party/llvm-project/include/llvm/ADT/ArrayRef.h @@ -0,0 +1,540 @@ +//===- ArrayRef.h - Array Reference Wrapper ---------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ADT_ARRAYREF_H +#define LLVM_ADT_ARRAYREF_H + +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Support/Compiler.h" +#include <algorithm> +#include <array> +#include <cassert> +#include <cstddef> +#include <initializer_list> +#include <iterator> +#include <memory> +#include <type_traits> +#include <vector> + +namespace llvm { + + /// ArrayRef - Represent a constant reference to an array (0 or more elements + /// consecutively in memory), i.e. a start pointer and a length. It allows + /// various APIs to take consecutive elements easily and conveniently. + /// + /// This class does not own the underlying data, it is expected to be used in + /// situations where the data resides in some other buffer, whose lifetime + /// extends past that of the ArrayRef. For this reason, it is not in general + /// safe to store an ArrayRef. + /// + /// This is intended to be trivially copyable, so it should be passed by + /// value. + template<typename T> + class LLVM_NODISCARD ArrayRef { + public: + using iterator = const T *; + using const_iterator = const T *; + using size_type = size_t; + using reverse_iterator = std::reverse_iterator<iterator>; + + private: + /// The start of the array, in an external buffer. + const T *Data = nullptr; + + /// The number of elements. + size_type Length = 0; + + public: + /// @name Constructors + /// @{ + + /// Construct an empty ArrayRef. + /*implicit*/ ArrayRef() = default; + + /// Construct an empty ArrayRef from None. + /*implicit*/ ArrayRef(NoneType) {} + + /// Construct an ArrayRef from a single element. + /*implicit*/ ArrayRef(const T &OneElt) + : Data(&OneElt), Length(1) {} + + /// Construct an ArrayRef from a pointer and length. + /*implicit*/ ArrayRef(const T *data, size_t length) + : Data(data), Length(length) {} + + /// Construct an ArrayRef from a range. + ArrayRef(const T *begin, const T *end) + : Data(begin), Length(end - begin) {} + + /// Construct an ArrayRef from a SmallVector. This is templated in order to + /// avoid instantiating SmallVectorTemplateCommon<T> whenever we + /// copy-construct an ArrayRef. + template<typename U> + /*implicit*/ ArrayRef(const SmallVectorTemplateCommon<T, U> &Vec) + : Data(Vec.data()), Length(Vec.size()) { + } + + /// Construct an ArrayRef from a std::vector. + template<typename A> + /*implicit*/ ArrayRef(const std::vector<T, A> &Vec) + : Data(Vec.data()), Length(Vec.size()) {} + + /// Construct an ArrayRef from a std::array + template <size_t N> + /*implicit*/ constexpr ArrayRef(const std::array<T, N> &Arr) + : Data(Arr.data()), Length(N) {} + + /// Construct an ArrayRef from a C array. + template <size_t N> + /*implicit*/ constexpr ArrayRef(const T (&Arr)[N]) : Data(Arr), Length(N) {} + + /// Construct an ArrayRef from a std::initializer_list. + /*implicit*/ ArrayRef(const std::initializer_list<T> &Vec) + : Data(Vec.begin() == Vec.end() ? (T*)nullptr : Vec.begin()), + Length(Vec.size()) {} + + /// Construct an ArrayRef<const T*> from ArrayRef<T*>. This uses SFINAE to + /// ensure that only ArrayRefs of pointers can be converted. + template <typename U> + ArrayRef( + const ArrayRef<U *> &A, + typename std::enable_if< + std::is_convertible<U *const *, T const *>::value>::type * = nullptr) + : Data(A.data()), Length(A.size()) {} + + /// Construct an ArrayRef<const T*> from a SmallVector<T*>. This is + /// templated in order to avoid instantiating SmallVectorTemplateCommon<T> + /// whenever we copy-construct an ArrayRef. + template<typename U, typename DummyT> + /*implicit*/ ArrayRef( + const SmallVectorTemplateCommon<U *, DummyT> &Vec, + typename std::enable_if< + std::is_convertible<U *const *, T const *>::value>::type * = nullptr) + : Data(Vec.data()), Length(Vec.size()) { + } + + /// Construct an ArrayRef<const T*> from std::vector<T*>. This uses SFINAE + /// to ensure that only vectors of pointers can be converted. + template<typename U, typename A> + ArrayRef(const std::vector<U *, A> &Vec, + typename std::enable_if< + std::is_convertible<U *const *, T const *>::value>::type* = 0) + : Data(Vec.data()), Length(Vec.size()) {} + + /// @} + /// @name Simple Operations + /// @{ + + iterator begin() const { return Data; } + iterator end() const { return Data + Length; } + + reverse_iterator rbegin() const { return reverse_iterator(end()); } + reverse_iterator rend() const { return reverse_iterator(begin()); } + + /// empty - Check if the array is empty. + bool empty() const { return Length == 0; } + + const T *data() const { return Data; } + + /// size - Get the array size. + size_t size() const { return Length; } + + /// front - Get the first element. + const T &front() const { + assert(!empty()); + return Data[0]; + } + + /// back - Get the last element. + const T &back() const { + assert(!empty()); + return Data[Length-1]; + } + + // copy - Allocate copy in Allocator and return ArrayRef<T> to it. + template <typename Allocator> ArrayRef<T> copy(Allocator &A) { + T *Buff = A.template Allocate<T>(Length); + std::uninitialized_copy(begin(), end(), Buff); + return ArrayRef<T>(Buff, Length); + } + + /// equals - Check for element-wise equality. + bool equals(ArrayRef RHS) const { + if (Length != RHS.Length) + return false; + return std::equal(begin(), end(), RHS.begin()); + } + + /// slice(n, m) - Chop off the first N elements of the array, and keep M + /// elements in the array. + ArrayRef<T> slice(size_t N, size_t M) const { + assert(N+M <= size() && "Invalid specifier"); + return ArrayRef<T>(data()+N, M); + } + + /// slice(n) - Chop off the first N elements of the array. + ArrayRef<T> slice(size_t N) const { return slice(N, size() - N); } + + /// Drop the first \p N elements of the array. + ArrayRef<T> drop_front(size_t N = 1) const { + assert(size() >= N && "Dropping more elements than exist"); + return slice(N, size() - N); + } + + /// Drop the last \p N elements of the array. + ArrayRef<T> drop_back(size_t N = 1) const { + assert(size() >= N && "Dropping more elements than exist"); + return slice(0, size() - N); + } + + /// Return a copy of *this with the first N elements satisfying the + /// given predicate removed. + template <class PredicateT> ArrayRef<T> drop_while(PredicateT Pred) const { + return ArrayRef<T>(find_if_not(*this, Pred), end()); + } + + /// Return a copy of *this with the first N elements not satisfying + /// the given predicate removed. + template <class PredicateT> ArrayRef<T> drop_until(PredicateT Pred) const { + return ArrayRef<T>(find_if(*this, Pred), end()); + } + + /// Return a copy of *this with only the first \p N elements. + ArrayRef<T> take_front(size_t N = 1) const { + if (N >= size()) + return *this; + return drop_back(size() - N); + } + + /// Return a copy of *this with only the last \p N elements. + ArrayRef<T> take_back(size_t N = 1) const { + if (N >= size()) + return *this; + return drop_front(size() - N); + } + + /// Return the first N elements of this Array that satisfy the given + /// predicate. + template <class PredicateT> ArrayRef<T> take_while(PredicateT Pred) const { + return ArrayRef<T>(begin(), find_if_not(*this, Pred)); + } + + /// Return the first N elements of this Array that don't satisfy the + /// given predicate. + template <class PredicateT> ArrayRef<T> take_until(PredicateT Pred) const { + return ArrayRef<T>(begin(), find_if(*this, Pred)); + } + + /// @} + /// @name Operator Overloads + /// @{ + const T &operator[](size_t Index) const { + assert(Index < Length && "Invalid index!"); + return Data[Index]; + } + + /// Disallow accidental assignment from a temporary. + /// + /// The declaration here is extra complicated so that "arrayRef = {}" + /// continues to select the move assignment operator. + template <typename U> + typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & + operator=(U &&Temporary) = delete; + + /// Disallow accidental assignment from a temporary. + /// + /// The declaration here is extra complicated so that "arrayRef = {}" + /// continues to select the move assignment operator. + template <typename U> + typename std::enable_if<std::is_same<U, T>::value, ArrayRef<T>>::type & + operator=(std::initializer_list<U>) = delete; + + /// @} + /// @name Expensive Operations + /// @{ + std::vector<T> vec() const { + return std::vector<T>(Data, Data+Length); + } + + /// @} + /// @name Conversion operators + /// @{ + operator std::vector<T>() const { + return std::vector<T>(Data, Data+Length); + } + + /// @} + }; + + /// MutableArrayRef - Represent a mutable reference to an array (0 or more + /// elements consecutively in memory), i.e. a start pointer and a length. It + /// allows various APIs to take and modify consecutive elements easily and + /// conveniently. + /// + /// This class does not own the underlying data, it is expected to be used in + /// situations where the data resides in some other buffer, whose lifetime + /// extends past that of the MutableArrayRef. For this reason, it is not in + /// general safe to store a MutableArrayRef. + /// + /// This is intended to be trivially copyable, so it should be passed by + /// value. + template<typename T> + class LLVM_NODISCARD MutableArrayRef : public ArrayRef<T> { + public: + using iterator = T *; + using reverse_iterator = std::reverse_iterator<iterator>; + + /// Construct an empty MutableArrayRef. + /*implicit*/ MutableArrayRef() = default; + + /// Construct an empty MutableArrayRef from None. + /*implicit*/ MutableArrayRef(NoneType) : ArrayRef<T>() {} + + /// Construct an MutableArrayRef from a single element. + /*implicit*/ MutableArrayRef(T &OneElt) : ArrayRef<T>(OneElt) {} + + /// Construct an MutableArrayRef from a pointer and length. + /*implicit*/ MutableArrayRef(T *data, size_t length) + : ArrayRef<T>(data, length) {} + + /// Construct an MutableArrayRef from a range. + MutableArrayRef(T *begin, T *end) : ArrayRef<T>(begin, end) {} + + /// Construct an MutableArrayRef from a SmallVector. + /*implicit*/ MutableArrayRef(SmallVectorImpl<T> &Vec) + : ArrayRef<T>(Vec) {} + + /// Construct a MutableArrayRef from a std::vector. + /*implicit*/ MutableArrayRef(std::vector<T> &Vec) + : ArrayRef<T>(Vec) {} + + /// Construct an ArrayRef from a std::array + template <size_t N> + /*implicit*/ constexpr MutableArrayRef(std::array<T, N> &Arr) + : ArrayRef<T>(Arr) {} + + /// Construct an MutableArrayRef from a C array. + template <size_t N> + /*implicit*/ constexpr MutableArrayRef(T (&Arr)[N]) : ArrayRef<T>(Arr) {} + + T *data() const { return const_cast<T*>(ArrayRef<T>::data()); } + + iterator begin() const { return data(); } + iterator end() const { return data() + this->size(); } + + reverse_iterator rbegin() const { return reverse_iterator(end()); } + reverse_iterator rend() const { return reverse_iterator(begin()); } + + /// front - Get the first element. + T &front() const { + assert(!this->empty()); + return data()[0]; + } + + /// back - Get the last element. + T &back() const { + assert(!this->empty()); + return data()[this->size()-1]; + } + + /// slice(n, m) - Chop off the first N elements of the array, and keep M + /// elements in the array. + MutableArrayRef<T> slice(size_t N, size_t M) const { + assert(N + M <= this->size() && "Invalid specifier"); + return MutableArrayRef<T>(this->data() + N, M); + } + + /// slice(n) - Chop off the first N elements of the array. + MutableArrayRef<T> slice(size_t N) const { + return slice(N, this->size() - N); + } + + /// Drop the first \p N elements of the array. + MutableArrayRef<T> drop_front(size_t N = 1) const { + assert(this->size() >= N && "Dropping more elements than exist"); + return slice(N, this->size() - N); + } + + MutableArrayRef<T> drop_back(size_t N = 1) const { + assert(this->size() >= N && "Dropping more elements than exist"); + return slice(0, this->size() - N); + } + + /// Return a copy of *this with the first N elements satisfying the + /// given predicate removed. + template <class PredicateT> + MutableArrayRef<T> drop_while(PredicateT Pred) const { + return MutableArrayRef<T>(find_if_not(*this, Pred), end()); + } + + /// Return a copy of *this with the first N elements not satisfying + /// the given predicate removed. + template <class PredicateT> + MutableArrayRef<T> drop_until(PredicateT Pred) const { + return MutableArrayRef<T>(find_if(*this, Pred), end()); + } + + /// Return a copy of *this with only the first \p N elements. + MutableArrayRef<T> take_front(size_t N = 1) const { + if (N >= this->size()) + return *this; + return drop_back(this->size() - N); + } + + /// Return a copy of *this with only the last \p N elements. + MutableArrayRef<T> take_back(size_t N = 1) const { + if (N >= this->size()) + return *this; + return drop_front(this->size() - N); + } + + /// Return the first N elements of this Array that satisfy the given + /// predicate. + template <class PredicateT> + MutableArrayRef<T> take_while(PredicateT Pred) const { + return MutableArrayRef<T>(begin(), find_if_not(*this, Pred)); + } + + /// Return the first N elements of this Array that don't satisfy the + /// given predicate. + template <class PredicateT> + MutableArrayRef<T> take_until(PredicateT Pred) const { + return MutableArrayRef<T>(begin(), find_if(*this, Pred)); + } + + /// @} + /// @name Operator Overloads + /// @{ + T &operator[](size_t Index) const { + assert(Index < this->size() && "Invalid index!"); + return data()[Index]; + } + }; + + /// This is a MutableArrayRef that owns its array. + template <typename T> class OwningArrayRef : public MutableArrayRef<T> { + public: + OwningArrayRef() = default; + OwningArrayRef(size_t Size) : MutableArrayRef<T>(new T[Size], Size) {} + + OwningArrayRef(ArrayRef<T> Data) + : MutableArrayRef<T>(new T[Data.size()], Data.size()) { + std::copy(Data.begin(), Data.end(), this->begin()); + } + + OwningArrayRef(OwningArrayRef &&Other) { *this = std::move(Other); } + + OwningArrayRef &operator=(OwningArrayRef &&Other) { + delete[] this->data(); + this->MutableArrayRef<T>::operator=(Other); + Other.MutableArrayRef<T>::operator=(MutableArrayRef<T>()); + return *this; + } + + ~OwningArrayRef() { delete[] this->data(); } + }; + + /// @name ArrayRef Convenience constructors + /// @{ + + /// Construct an ArrayRef from a single element. + template<typename T> + ArrayRef<T> makeArrayRef(const T &OneElt) { + return OneElt; + } + + /// Construct an ArrayRef from a pointer and length. + template<typename T> + ArrayRef<T> makeArrayRef(const T *data, size_t length) { + return ArrayRef<T>(data, length); + } + + /// Construct an ArrayRef from a range. + template<typename T> + ArrayRef<T> makeArrayRef(const T *begin, const T *end) { + return ArrayRef<T>(begin, end); + } + + /// Construct an ArrayRef from a SmallVector. + template <typename T> + ArrayRef<T> makeArrayRef(const SmallVectorImpl<T> &Vec) { + return Vec; + } + + /// Construct an ArrayRef from a SmallVector. + template <typename T, unsigned N> + ArrayRef<T> makeArrayRef(const SmallVector<T, N> &Vec) { + return Vec; + } + + /// Construct an ArrayRef from a std::vector. + template<typename T> + ArrayRef<T> makeArrayRef(const std::vector<T> &Vec) { + return Vec; + } + + /// Construct an ArrayRef from a std::array. + template <typename T, std::size_t N> + ArrayRef<T> makeArrayRef(const std::array<T, N> &Arr) { + return Arr; + } + + /// Construct an ArrayRef from an ArrayRef (no-op) (const) + template <typename T> ArrayRef<T> makeArrayRef(const ArrayRef<T> &Vec) { + return Vec; + } + + /// Construct an ArrayRef from an ArrayRef (no-op) + template <typename T> ArrayRef<T> &makeArrayRef(ArrayRef<T> &Vec) { + return Vec; + } + + /// Construct an ArrayRef from a C array. + template<typename T, size_t N> + ArrayRef<T> makeArrayRef(const T (&Arr)[N]) { + return ArrayRef<T>(Arr); + } + + /// Construct a MutableArrayRef from a single element. + template<typename T> + MutableArrayRef<T> makeMutableArrayRef(T &OneElt) { + return OneElt; + } + + /// Construct a MutableArrayRef from a pointer and length. + template<typename T> + MutableArrayRef<T> makeMutableArrayRef(T *data, size_t length) { + return MutableArrayRef<T>(data, length); + } + + /// @} + /// @name ArrayRef Comparison Operators + /// @{ + + template<typename T> + inline bool operator==(ArrayRef<T> LHS, ArrayRef<T> RHS) { + return LHS.equals(RHS); + } + + template<typename T> + inline bool operator!=(ArrayRef<T> LHS, ArrayRef<T> RHS) { + return !(LHS == RHS); + } + + /// @} + + template <typename T> hash_code hash_value(ArrayRef<T> S) { + return hash_combine_range(S.begin(), S.end()); + } + +} // end namespace llvm + +#endif // LLVM_ADT_ARRAYREF_H |