| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
| |
When using nominal types, func.ref of two functions with identical signatures
but different HeapTypes will yield different types. To preserve these semantics,
Functions need to track their HeapTypes, not just their Signatures.
This PR replaces the Signature field in Function with a HeapType field and adds
new utility methods to make it almost as simple to update and query the function
HeapType as it was to update and query the Function Signature.
|
|
|
|
|
|
|
|
|
| |
This removes `attribute` field from `Tag` class, making the reserved and
unused field known only to binary encoder and decoder. This also removes
the `attribute` parameter from `makeTag` and `addTag` methods in
wasm-builder.h, C API, and Binaryen JS API.
Suggested in
https://github.com/WebAssembly/binaryen/pull/3946#pullrequestreview-687756523.
|
|
|
|
|
|
|
|
|
|
|
| |
We recently decided to change 'event' to 'tag', and to 'event section'
to 'tag section', out of the rationale that the section contains a
generalized tag that references a type, which may be used for something
other than exceptions, and the name 'event' can be confusing in the web
context.
See
- https://github.com/WebAssembly/exception-handling/issues/159#issuecomment-857910130
- https://github.com/WebAssembly/exception-handling/pull/161
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new feature flag, GCNNLocals that enables support for
non-nullable locals. No validation is applied to check that they are
actually assigned before their use yet - this just allows experimentation
to begin.
This feature is not enabled by default even with -all. If we enabled it,
then it would take effect in most of our tests and likely confuse current
users as well. Instead, the flag must be opted in explicitly using
--enable-gc-nn-locals. That is, this is an experimental feature flag,
and as such must be explicitly enabled. (Once the spec stabilizes,
we will remove the feature anyhow when we implement the
final status of non-nullability. )
|
|
|
|
| |
This removes the restriction that `try` should have at least one
`catch`/`catch_all`/`delegate`. See WebAssembly/exception-handling#157.
|
|
|
|
|
|
| |
The noteBreak call was in the wrong place, causing us to not note breaks
from BrOnNull for example, which could make validation miss errors.
Noticed in #3926
|
|
|
|
|
|
| |
They are basically the flip versions. The only interesting part in the impl is that their
returned typed and sent types are different.
Spec: https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit
|
|
|
|
|
|
|
|
| |
Spec for it is here:
https://docs.google.com/document/d/1DklC3qVuOdLHSXB5UXghM_syCh-4cMinQ50ICiXnK3Q/edit#
Also reorder some things in wasm.h that were not in the canonical order (that has
no effect, but it is confusing to read).
|
|
|
|
|
|
|
|
|
| |
As found in #3682, the current implementation of type ordering is not correct,
and although the immediate issue would be easy to fix, I don't think the current
intended comparison algorithm is correct in the first place. Rather than try to
switch to using a correct algorithm (which I am not sure I know how to
implement, although I have an idea) this PR removes Type ordering entirely. In
places that used Type ordering with std::set or std::map because they require
deterministic iteration order, this PR uses InsertOrdered{Set,Map} instead.
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadExtSVec8x8ToVecI16x8 -> Load8x8SVec128
* LoadExtUVec8x8ToVecI16x8 -> Load8x8UVec128
* LoadExtSVec16x4ToVecI32x4 -> Load16x4SVec128
* LoadExtUVec16x4ToVecI32x4 -> Load16x4UVec128
* LoadExtSVec32x2ToVecI64x2 -> Load32x2SVec128
* LoadExtUVec32x2ToVecI64x2 -> Load32x2UVec128
|
|
|
|
|
|
|
|
|
| |
Renames the SIMD instructions
* LoadSplatVec8x16 -> Load8SplatVec128
* LoadSplatVec16x8 -> Load16SplatVec128
* LoadSplatVec32x4 -> Load32SplatVec128
* LoadSplatVec64x2 -> Load64SplatVec128
* Load32Zero -> Load32ZeroVec128
* Load64Zero -> Load64ZeroVec128
|
|
|
|
|
|
|
|
| |
the builder (#3790)
The builder can receive a HeapType so that callers don't need to set non-nullability
themselves.
Not NFC as some of the callers were in fact still making it nullable.
|
|
|
|
|
|
|
|
|
|
|
| |
Adds C/JS APIs for the SIMD instructions
* Load8LaneVec128 (was LoadLaneVec8x16)
* Load16LaneVec128 (was LoadLaneVec16x8)
* Load32LaneVec128 (was LoadLaneVec32x4)
* Load64LaneVec128 (was LoadLaneVec64x2)
* Store8LaneVec128 (was StoreLaneVec8x16)
* Store16LaneVec128 (was StoreLaneVec16x8)
* Store32LaneVec128 (was StoreLaneVec32x4)
* Store64LaneVec128 (was StoreLaneVec64x2)
|
| |
|
|
|
|
| |
Also removes experimental SIMD instructions that were not included in the final
spec proposal.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several old passes like DeadArgumentElimination and DuplicateFunctionElimination
need to look at all ref.funcs, and they scanned functions for that, but that is not
enough as such an instruction might appear in a global initializer. To fix this, add a
walkModuleCode method.
walkModuleCode is useful when doing the pattern of creating a function-parallel
pass to scan functions quickly, but we also want to do the same scanning of code
at the module level. This allows doing so in a single line.
(It is also possible to just do walk() on the entire module, which will find all code,
but that is not function-parallel. Perhaps we should have a walkParallel() option
to simplify this further in a followup, and that would call walkModuleCode afterwards
etc.)
Also add some missing validation and comments in the validator about issues that
I noticed in relation to the new testcases here.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
used (#3727)
For example, on this invalid wat:
(module
(type $vec (struct (field i64)))
(func $test
(drop
(struct.new_with_rtt $vec (i32.const 1) (rtt.canon $vec))
)
)
)
We used to print:
[wasm-validator error in function test] struct.new operand must have proper type, on
(struct.new_with_rtt ${i64}
(i32.const 1)
(rtt.canon ${i64})
)
We will now print:
[wasm-validator error in function test] struct.new operand must have proper type, on
(struct.new_with_rtt $vec
(i32.const 1)
(rtt.canon $vec)
)
Note that $vec is used. In real-world examples the autogenerated structural name
can be huge, which this avoids.
|
| |
|
|
|
|
|
|
| |
This PR adds support for `ref.null t` as a valid element segment
item. The abbreviated format of `(elem ... func $f $g...)` is kept in
both printing and binary emitting if all items are `ref.func`s. Public
APIs aren't updated in this PR.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After this PR we still do not support non-nullable locals. But we no longer
turn all types into nullable upon load. In particular, we support non-nullable
types on function parameters and struct fields, etc. This should be enough to
experiment with optimizations in both binaryen and in VMs regarding non-
nullability (since we expect that optimizing VMs can do well inside functions
anyhow; it's non-nullability across calls and from data that the VM can't be
expected to think about).
Let is handled as before, by lowering it into gets and sets. In addition, we
turn non-nullable locals into nullable ones, and add a ref.as_non_null on
all their gets (to keep the type identical there). This is used not just for
loading code with a let but also is needed after inlining.
Most of the code changes here are removing FIXMEs for allowing
non-nullable types. But there is also code to handle the issues mentioned
above.
Most of the test updates are removing extra nulls that we added before
when we turned all types nullable. A few tests had actual issues, though,
and also some new tests are added to cover the code changes here.
|
|
|
|
| |
Also add more spec tests, including one that verifies we validate
rtt.sub and on a global location as fixed by #3694
|
|
|
|
|
|
| |
This validation is almost never needed, but it starts to get interesting with
GC, where a global initializer can be an rtt.sub which must be valid.
No tests here as testing requires a further GC fix in a later PR.
|
|
|
|
|
|
|
|
| |
Since correct LUB calculation for recursive types is complicated, stop depending
on LUBs throughout the code base. This also fixes a validation bug in which the
validator required blocks to be typed with the LUB of all the branch types, when
in fact any upper bound should have been valid. In addition to fixing that bug,
this PR simplifies the code for break handling by not storing redundant
information about the arity of types.
|
|
|
|
|
|
|
| |
Since in principle an unreachable expression can be used in any position. An
exception to this rule is in OptimizeInstructions, which avoids replacing
concrete expressions with unreachable expressions so that it doesn't need to
refinalize any expressions. Notably, Type::getLeastUpperBound was already
treating unreachable as the bottom type.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Passive element segments do not belong to any table, so the link between
Table and elem needs to be weaker; i.e. an elem may have a table in case
of active segments, or simply be a collection of function references in
case of passive/declarative segments.
This PR takes Table::Segment out and turns it into a first class module
element just like tables and functions. It also implements early support
for parsing, printing, encoding and decoding passive/declarative elem
segments.
|
|
|
|
|
|
|
|
|
| |
The old code here just referred to Block and Loop. Refactor it to use the
generic helper code that also handles Try.
Also add validation of Try names in the validator.
The testcase here would have $label appear twice before this fix. After
the fix there is $label0 for one of them.
|
|
|
|
|
| |
As a readability improvement, use an enum with `Polymorphic` and `Fixed`
variants to represent the polymorphic behavior of StackSignatures rather than a
`bool uneachable`.
|
| |
|
|
|
| |
This as a consequence of https://reviews.llvm.org/D95651
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I was previously mistaken about `rethrow`'s argument rule and thought
it only counted `catch`'s depth. But it turns out it follows the same
rule `delegate`'s label: the immediate argument follows the same rule as
when computing branch labels, but it only can target `try` labels
(semantically it targets that `try`'s corresponding `catch`); otherwise
it will be a validation failure. Unlike `delegate`, `rethrow`'s label
denotes not where to rethrow, but which exception to rethrow. For
example,
```wasm
try $l0
catch ($l0)
try $l1
catch ($l1)
rethrow $l0 ;; rethrow the exception caught by 'catch ($l0)'
end
end
```
Refer to this comment for the more detailed informal semantics:
https://github.com/WebAssembly/exception-handling/issues/146#issuecomment-777714491
---
This also reverts some of `delegateTarget` -> `exceptionTarget` changes
done in #3562 in the validator. Label validation rules apply differently
for `delegate` and `rethrow` for try-catch. For example, this is valid:
```wasm
try $l0
try
delegate $l0
catch ($l0)
end
```
But this is NOT valid:
```wasm
try $l0
catch ($l0)
try
delegate $l0
end
```
So `try`'s label should be used within try-catch range (not catch-end
range) for `delegate`s.
But for the `rethrow` the rule is different. For example, this is valid:
```wasm
try $l0
catch ($l0)
rethrow $l0
end
```
But this is NOT valid:
```wasm
try $l0
rethrow $l0
catch ($l0)
end
```
So the `try`'s label should be used within catch-end range instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
So far `Try`'s label is only targetted by `delegate`s, but it turns out
`rethrow` also has to follow the same rule as `delegate` so it needs to
target a `Try` label. So this renames variables like
`delegateTargetNames` to `exceptionTargetNames` and methods like
`replaceDelegateTargets` to `replaceExceptionTargets`.
I considered `tryTarget`, but the branch/block counterpart name we use
is not `blockTarget` but `branchTarget`, so I chose `exceptionTarget`.
The patch that fixes `rethrow`'s target will follow; this is the
preparation for that.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for reading/writing of the new `delegate` instruction
in the folded wast format, the stack IR format, the poppy IR format, and
the binary format in Binaryen. We don't have a formal spec written down
yet, but please refer to WebAssembly/exception-handling#137 and
WebAssembly/exception-handling#146 for the informal semantics. In the
current version of spec `delegate` is basically a rethrow, but with
branch-like immediate argument so that it can bypass other
catches/delegates in between.
`delegate` is not represented as a new `Expression`, but it is rather
an option within a `Try` class, like `catch`/`catch_all`.
One special thing about `delegate` is, even though it is written
_within_ a `try` in the folded wat format, like
```wasm
(try
(do
...
)
(delegate $l)
)
```
In the unfolded wat format or in the binary format, `delegate` serves as
a scope end instruction so there is no separate `end`:
```wasm
try
...
delegate $l
```
`delegate` semantically targets an outer `catch` or `delegate`, but we
write `delegate` target as a `try` label because we only give labels to
block-like scoping expressions. So far we have not given `Try` a label
and used inner blocks or a wrapping block in case a branch targets the
`try`. But in case of `delegate`, it can syntactically only target `try`
and if it targets blocks or loops it is a validation failure.
So after discussions in #3497, we give `Try` a label but this label can
only be targeted by `delegate`s. Unfortunately this makes parsing and
writing of `Try` expression somewhat complicated. Also there is one
special case; if the immediate argument of `try` is the same as the
depth of control flow stack, this means the 'delegate' delegates to the
caller. To handle this case this adds a fake label
`DELEGATE_CALLER_TARGET`, and when writing it back to the wast format
writes it as an immediate value, unlike other cases in which we write
labels.
This uses `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` to represent `try`'s label
and `delegate`'s target. There are many cases that `try` and
`delegate`'s labels need to be treated in the same way as block and
branch labels, such as for hashing or comparing. But there are routines
in which we automatically assume all label uses are branches. I thought
about adding a new kind of defines such as
`DELEGATE_FIELD_TRY_NAME_DEF/USE`, but I think it will also involve some
duplication of existing routines or classes. So at the moment this PR
chooses to use the existing `DELEGATE_FIELD_SCOPE_NAME_DEF/USE` for
`try` and `delegate` labels and makes only necessary amount of changes
in branch-utils. We can revisit this decision later if necessary.
Many of changes to the existing test cases are because now all `try`s
are automatically assigned a label. They will be removed in
`RemoveUnusedNames` pass in the same way as block labels if not targeted
by any delegates.
This only supports reading and writing and has not been tested against
any optimization passes yet.
---
Original unfolded wat file to generate test/try-delegate.wasm:
```wasm
(module
(event $e)
(func
try
try
delegate 0
catch $e
end)
(func
try
try
catch $e
i32.const 0
drop
try
delegate 1
end
catch $e
end
)
)
```
|
|
|
|
|
|
|
|
| |
Add a utility for calculating the least upper bounds of two StackSignatures,
taking into account polymorphic unreachable behavior. This will important in the
finalization and validation of Poppy IR blocks, where a block is allowed to
directly produce fewer values than the branches that target it carry if the
difference can be made up for by polymorphism due to an unreachable instruction
in the block.
|
|
|
| |
Adds support for modules with multiple tables. Adds a field for the table name to `CallIndirect` and updates the C/JS APIs accordingly.
|
|
|
|
|
|
|
| |
Unordered maps will hash the pointer, while ordered ones will compare the
strings to find where to insert in the tree. I cannot confirm a speedup in time
from this, though others can, but I do see a consistent improvement of a
few % in perf stat results like number of instructions and cycles (and those
results have little noise). And it seems logical that this could be faster.
|
|
|
|
|
|
|
| |
If the reference is unreachable then we cannot find the heap type to print
in the text format. Instead of crashing or emitting something invalid, print
a block instead - the block contains the children so they are emitted, and
as the instruction was unreachable anyhow, this has no noticeable effect.
It also parallels what we do in the binary format - skip unreachable code.
|
|
|
|
|
|
|
|
| |
This expands the existing BrOnCast into BrOn that can also handle the
func/data/i31 variants. This is not as elegant as RefIs / RefAs in that BrOnCast
has an extra rtt field, but I think it is still the best option. We already have optional
fields on Break (the value and condition), so making rtt optional is not odd. And
it allows us to share all the behavior of br_on_* which aside from the cast or the
check itself, is identical - returning the value if the branch is not taken, etc.
|
|
|
|
|
|
|
| |
As a result, we cannot handle a br_on_cast with an unreachable RTT. The
binary format solves the problem by ignoring unreachable code, and this makes
the text format do the same.
A nice benefit of this is that we can remove the castType extra field.
|
|
|
|
|
|
|
|
| |
This internal refactoring prepares us for ref.is_func/data/i31, by renaming
the node and adding an "op" field. For now that field must always be "Null"
which means it is a ref.is_null.
This adjusts the C API to match the new IR shape. The high-level JS API
is unchanged.
|
|
|
|
|
|
|
|
|
|
| |
The binary spec
(https://docs.google.com/document/d/1yAWU3dbs8kUa_wcnnirDxUu9nEBsNfq0Xo90OWx6yuo/edit#)
lists `dataref` after `i31ref`, and `dataref` also comes after `i31ref`
in its binary code in the value-increasing order. This reorders these
two in wasm-type.h and other places, although in most of those places
the order is irrelevant.
This also adds C and JS API for `dataref`.
|
|
|
| |
This removes `exnref` type and `br_on_exn` instruction.
|
|
|
|
|
| |
This is not 100% of everything, but is enough to get tests passing, which
includes full binary and text format support, getting all switches to compile
without error, and some additions to InstrumentLocals.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates the interpreter for the EH instructions (modulo `delegate`)
to match the new spec. Before we had an `exnref` type so threw a
`Literal` of `exnref` type which contained `ExceptionPackage`. But now
that we don't have `exnref` anymore, so we add the contents of
`ExceptionPackage` to `WasmException`, which is used only for the
`ExpressionRunner` class hierarchy. `exnref` and `ExceptionPackage` will
be removed in a followup CL.
This allows nonzero depths for `rethrow` for now for testing; we
disallowed that for safety measure, but given that there are no passes
that modifies that field, I think the risk is low.
|
|
|
|
| |
As proposed in https://github.com/WebAssembly/simd/pull/383, with opcodes
coordinated with the WIP V8 prototype.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This updates `try`-`catch`-`catch_all` and `rethrow` instructions to
match the new spec. `delegate` is not included. Now `Try` contains not a
single `catchBody` expression but a vector of catch
bodies and events.
This updates most existing routines, optimizations, and tests modulo the
interpreter and the CFG traversal. Because the interpreter has not been
updated yet, the EH spec test is temporarily disabled in check.py. Also,
because the CFG traversal for EH is not yet updated, several EH tests in
`rse_all-features.wast`, which uses CFG traversal, are temporarily
commented out.
Also added a few more tests in existing EH test functions in
test/passes. In the previous spec, `catch` was catching all exceptions
so it was assumed that anything `try` body throws is caught by its
`catch`, but now we can assume the same only if there is a `catch_all`.
Newly added tests test cases when there is a `catch_all` and cases there
are only `catch`es separately.
|
| |
|
|
|
|
| |
This required a few test fixes, to ensure we don't have invalid wasts with
writes to immutable fields.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This lets us parse (ref null i31) and (ref i31) and not just i31ref.
It also fixes the parsing of i31ref, making it nullable for now, which we
need to do until we support non-nullability.
Fix some internal handling of i31 where we had just i31ref (which meant we
just handled the non-nullable type).
After fixing a bug in printing (where we didn't print out (ref null i31)
properly), I found some a simplification, to remove TypeName.
|