summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorlaurent <laurent.mazare@gmail.com>2023-06-29 15:29:40 +0100
committerlaurent <laurent.mazare@gmail.com>2023-06-29 15:29:40 +0100
commit3232df9458e41c7414d51459b23e493b75a3949c (patch)
tree3af34690850b83c594f40b98a560b34e3d0aca33
parent889f7e09716f1b16f7b2f39e73047cd40437c82f (diff)
downloadcandle-3232df9458e41c7414d51459b23e493b75a3949c.tar.gz
candle-3232df9458e41c7414d51459b23e493b75a3949c.tar.bz2
candle-3232df9458e41c7414d51459b23e493b75a3949c.zip
Add some KV cache to llama.
-rw-r--r--Cargo.toml6
-rw-r--r--candle-core/examples/llama/main.rs108
2 files changed, 77 insertions, 37 deletions
diff --git a/Cargo.toml b/Cargo.toml
index ce8cbb12..711113d4 100644
--- a/Cargo.toml
+++ b/Cargo.toml
@@ -1,8 +1,12 @@
[workspace]
-
members = [
"candle-core",
"candle-hub",
"candle-kernels",
]
+[profile.release]
+debug = 1
+opt-level = "z"
+lto = true
+codegen-units = 1
diff --git a/candle-core/examples/llama/main.rs b/candle-core/examples/llama/main.rs
index e936d6b3..9d70921c 100644
--- a/candle-core/examples/llama/main.rs
+++ b/candle-core/examples/llama/main.rs
@@ -24,6 +24,7 @@ mod var_store;
mod weights;
const CONTEXT_SIZE: usize = 512;
+const USE_KV_CACHE: bool = true;
const START_PROMPT: &str = r"
EDWARD:
I wonder how our princely father 'scaped,
@@ -218,13 +219,16 @@ fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor>
#[derive(Clone)]
struct Cache {
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
+ #[allow(clippy::type_complexity)]
+ kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
device: Device,
}
impl Cache {
- fn new(device: &Device) -> Self {
+ fn new(config: &Config, device: &Device) -> Self {
Self {
masks: Arc::new(Mutex::new(HashMap::new())),
+ kvs: Arc::new(Mutex::new(vec![None; config.n_layer])),
device: device.clone(),
}
}
@@ -249,7 +253,6 @@ struct CausalSelfAttention {
c_attn: Linear,
c_proj: Linear,
n_head: usize,
- // n_embd: usize,
cache: Cache,
}
@@ -265,6 +268,7 @@ impl CausalSelfAttention {
fn apply_rotary_emb(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
let mut dims = x.dims().to_vec();
+ let freqs_cis = freqs_cis.narrow(1, freqs_cis.dims()[1] - dims[1], dims[1])?;
let v = dims.pop().unwrap();
dims.push(v / 2);
dims.push(2);
@@ -285,7 +289,7 @@ impl CausalSelfAttention {
Ok(rope)
}
- fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
+ fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
let (t, c) = x.shape().r2()?;
let qkv = self.c_attn.forward(x)?;
let qkv = qkv.to_dtype(DType::F32)?;
@@ -296,9 +300,31 @@ impl CausalSelfAttention {
let target_dim = [t, self.n_head, c / self.n_head];
let k = k.reshape(target_dim.as_slice())?.transpose(0, 1)?;
let q = q.reshape(target_dim.as_slice())?.transpose(0, 1)?;
- let v = v.reshape(target_dim.as_slice())?.transpose(0, 1)?;
+ let mut v = v.reshape(target_dim.as_slice())?.transpose(0, 1)?;
let q = self.apply_rotary_emb(&q, freqs_cis)?;
- let k = self.apply_rotary_emb(&k, freqs_cis)?;
+ let mut k = self.apply_rotary_emb(&k, freqs_cis)?;
+
+ if USE_KV_CACHE {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 1)?;
+ v = Tensor::cat(&[cache_v, &v], 1)?;
+ let k_seq_len = k.dims()[1];
+ if k_seq_len > CONTEXT_SIZE {
+ k = k
+ .narrow(1, k_seq_len - CONTEXT_SIZE, CONTEXT_SIZE)?
+ .contiguous()?
+ }
+ let v_seq_len = v.dims()[1];
+ if v_seq_len > CONTEXT_SIZE {
+ v = v
+ .narrow(1, v_seq_len - CONTEXT_SIZE, CONTEXT_SIZE)?
+ .contiguous()?
+ }
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
let k_shape = k.shape();
let att = (q.matmul(&k.t()?)? / (*k_shape.dims().last().unwrap() as f64).sqrt())?;
let mask = self.cache.mask(t)?.broadcast_as(att.shape())?;
@@ -330,8 +356,11 @@ impl Block {
}
}
- fn forward(&self, x: &Tensor, freqs_cis: &Tensor) -> Result<Tensor> {
- let x = (self.attn.forward(&self.rms_1.forward(x)?, freqs_cis)? + x)?;
+ fn forward(&self, x: &Tensor, freqs_cis: &Tensor, block_idx: usize) -> Result<Tensor> {
+ let x = (self
+ .attn
+ .forward(&self.rms_1.forward(x)?, freqs_cis, block_idx)?
+ + x)?;
let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + x)?;
Ok(x)
}
@@ -358,8 +387,8 @@ impl Llama {
// TODO: Support for mini-batches? (i.e. r2)
let t = x.shape().r1()?;
let mut x = self.wte.forward(x)?;
- for block in self.blocks.iter() {
- x = block.forward(&x, freqs_cis)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, freqs_cis, block_idx)?;
}
let x = self.ln_f.forward(&x)?;
let x = x.narrow(0, t - 1, 1)?;
@@ -400,7 +429,7 @@ struct Args {
/// Use npy instead of safetensors
#[arg(long)]
- npy: bool,
+ npy: Option<String>,
/// The temperature used to generate samples.
#[arg(long)]
@@ -426,33 +455,35 @@ async fn main() -> Result<()> {
Device::new_cuda(0)?
};
let config = Config::config_7b();
- let cache = Cache::new(&device);
+ let cache = Cache::new(&config, &device);
let start = std::time::Instant::now();
- let (llama, tokenizer_filename) = if args.npy {
- println!("building the model (NPY)");
- (
- Llama::load_npy(&device, "/data/llama.npz", &cache, &config)?,
- std::path::Path::new("llama-tokenizer.json").to_path_buf(),
- )
- } else {
- let api = Api::new()?;
- let repo = Repo::new("Narsil/amall-7b".to_string(), RepoType::Model);
- println!("building the model");
- let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
- let mut filenames = vec![];
- for rfilename in [
- "model-00001-of-00002.safetensors",
- "model-00002-of-00002.safetensors",
- ] {
- let filename = api.get(&repo, rfilename).await?;
- filenames.push(filename);
+ let (llama, tokenizer_filename) = match args.npy {
+ Some(npy) => {
+ println!("building the model (NPY)");
+ let weights = Llama::load_npy(&device, &npy, &cache, &config)?;
+ let token_path = std::path::Path::new("llama-tokenizer.json").to_path_buf();
+ (weights, token_path)
+ }
+ None => {
+ let api = Api::new()?;
+ let repo = Repo::new("Narsil/amall-7b".to_string(), RepoType::Model);
+ println!("building the model");
+ let tokenizer_filename = api.get(&repo, "tokenizer.json").await?;
+ let mut filenames = vec![];
+ for rfilename in [
+ "model-00001-of-00002.safetensors",
+ "model-00002-of-00002.safetensors",
+ ] {
+ let filename = api.get(&repo, rfilename).await?;
+ filenames.push(filename);
+ }
+
+ println!("building the model (SF)");
+ (
+ Llama::load(&device, &filenames, &cache, &config)?,
+ tokenizer_filename,
+ )
}
-
- println!("building the model (SF)");
- (
- Llama::load(&device, &filenames, &cache, &config)?,
- tokenizer_filename,
- )
};
println!("Loaded in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
@@ -470,7 +501,12 @@ async fn main() -> Result<()> {
let start_gen = std::time::Instant::now();
for index in 0..args.sample_len {
let start_gen = std::time::Instant::now();
- let ctxt = &tokens[tokens.len().saturating_sub(CONTEXT_SIZE)..];
+ let context_size = if USE_KV_CACHE && index > 0 {
+ 1
+ } else {
+ CONTEXT_SIZE
+ };
+ let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
let input = Tensor::new(ctxt, &device)?;
let logits = llama.forward(&input, &freqs_cis)?;