diff options
author | Laurent Mazare <laurent.mazare@gmail.com> | 2023-08-01 19:53:41 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-01 19:53:41 +0100 |
commit | ff876c2103bc530f9ba3bc278c5e09148c124885 (patch) | |
tree | eb4ec2b9a112549fd21c0a42e2a3f597dada910c /candle-examples/examples/llama2-c | |
parent | a27239f3d9b77ad4c300de38d43c6ad64d6b5ea6 (diff) | |
download | candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.gz candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.bz2 candle-ff876c2103bc530f9ba3bc278c5e09148c124885.zip |
Llama more training (#297)
* Rework the var-builder to handle initializations.
* Add some helper functions for layer creation.
* Improve the layer initializations.
* Get initialized variables.
* Precompute the rot embeddings when training lamas.
Diffstat (limited to 'candle-examples/examples/llama2-c')
-rw-r--r-- | candle-examples/examples/llama2-c/model.rs | 38 | ||||
-rw-r--r-- | candle-examples/examples/llama2-c/training.rs | 6 |
2 files changed, 26 insertions, 18 deletions
diff --git a/candle-examples/examples/llama2-c/model.rs b/candle-examples/examples/llama2-c/model.rs index 4e7015dd..77900d27 100644 --- a/candle-examples/examples/llama2-c/model.rs +++ b/candle-examples/examples/llama2-c/model.rs @@ -1,5 +1,6 @@ use candle::{DType, Device, IndexOp, Result, Tensor, D}; -use candle_nn::{Embedding, Linear, VarBuilder}; +use candle_nn::linear_no_bias as linear; +use candle_nn::{embedding, Embedding, Linear, VarBuilder}; use std::collections::HashMap; use std::sync::{Arc, Mutex}; @@ -43,8 +44,25 @@ pub struct Cache { impl Cache { pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> { - let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?; - let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?; + let n_elem = cfg.dim / cfg.n_heads; + let theta: Vec<_> = (0..n_elem) + .step_by(2) + .map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32)) + .collect(); + let theta = Tensor::new(theta.as_slice(), vb.device())?; + let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())? + .to_dtype(DType::F32)? + .reshape((cfg.seq_len, 1))? + .matmul(&theta.reshape((1, theta.elem_count()))?)?; + let precomputed_cos = idx_theta.cos()?; + let precomputed_sin = idx_theta.sin()?; + + let freq_cis_real = vb + .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real") + .unwrap_or(precomputed_cos); + let freq_cis_imag = vb + .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag") + .unwrap_or(precomputed_sin); let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?; Ok(Self { @@ -76,16 +94,6 @@ fn silu(xs: &Tensor) -> Result<Tensor> { xs / (xs.neg()?.exp()? + 1.0)? } -fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> { - let weight = vb.get((size2, size1), "weight")?; - Ok(Linear::new(weight, None)) -} - -fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> { - let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?; - Ok(Embedding::new(embeddings, cfg.dim)) -} - struct RmsNorm { scale: Tensor, eps: f64, @@ -93,7 +101,7 @@ struct RmsNorm { impl RmsNorm { fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> { - let scale = vb.get(size, "weight")?; + let scale = vb.get_or_init(size, "weight", candle_nn::Init::Const(1.))?; Ok(Self { scale, eps }) } @@ -315,7 +323,7 @@ impl Llama { } pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> { - let wte = embedding(&cfg, vb.pp("model.embed_tokens"))?; + let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?; let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?; let ln_f = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?; let blocks: Vec<_> = (0..cfg.n_layers) diff --git a/candle-examples/examples/llama2-c/training.rs b/candle-examples/examples/llama2-c/training.rs index 196ba9a8..92aa90e6 100644 --- a/candle-examples/examples/llama2-c/training.rs +++ b/candle-examples/examples/llama2-c/training.rs @@ -142,15 +142,15 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> { dataset.train_tokens.len(), dataset.valid_tokens.len() ); - let vb = candle_nn::VarBuilder::zeros(DType::F32, &device); + let varmap = candle_nn::VarMap::new(); + let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device); let config = Config::tiny(); let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone()); let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size); let cache = Cache::new(false, &config, vb.pp("rot"))?; let model = Llama::load(vb, &cache, config)?; - let all_vars = vec![]; // TODO: Propagate the variables from the VarBuilder to here. - let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate); + let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate); for (batch_index, batch) in batch_iter.enumerate() { let (inp, tgt) = batch?; let logits = model.forward(&inp, 0)?; |