summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama2-c
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-01 19:53:41 +0100
committerGitHub <noreply@github.com>2023-08-01 19:53:41 +0100
commitff876c2103bc530f9ba3bc278c5e09148c124885 (patch)
treeeb4ec2b9a112549fd21c0a42e2a3f597dada910c /candle-examples/examples/llama2-c
parenta27239f3d9b77ad4c300de38d43c6ad64d6b5ea6 (diff)
downloadcandle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.gz
candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.bz2
candle-ff876c2103bc530f9ba3bc278c5e09148c124885.zip
Llama more training (#297)
* Rework the var-builder to handle initializations. * Add some helper functions for layer creation. * Improve the layer initializations. * Get initialized variables. * Precompute the rot embeddings when training lamas.
Diffstat (limited to 'candle-examples/examples/llama2-c')
-rw-r--r--candle-examples/examples/llama2-c/model.rs38
-rw-r--r--candle-examples/examples/llama2-c/training.rs6
2 files changed, 26 insertions, 18 deletions
diff --git a/candle-examples/examples/llama2-c/model.rs b/candle-examples/examples/llama2-c/model.rs
index 4e7015dd..77900d27 100644
--- a/candle-examples/examples/llama2-c/model.rs
+++ b/candle-examples/examples/llama2-c/model.rs
@@ -1,5 +1,6 @@
use candle::{DType, Device, IndexOp, Result, Tensor, D};
-use candle_nn::{Embedding, Linear, VarBuilder};
+use candle_nn::linear_no_bias as linear;
+use candle_nn::{embedding, Embedding, Linear, VarBuilder};
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
@@ -43,8 +44,25 @@ pub struct Cache {
impl Cache {
pub fn new(use_kv_cache: bool, cfg: &Config, vb: VarBuilder) -> Result<Self> {
- let freq_cis_real = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")?;
- let freq_cis_imag = vb.get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")?;
+ let n_elem = cfg.dim / cfg.n_heads;
+ let theta: Vec<_> = (0..n_elem)
+ .step_by(2)
+ .map(|i| 1f32 / 10000f32.powf(i as f32 / n_elem as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), vb.device())?;
+ let idx_theta = Tensor::arange(0, cfg.seq_len as u32, vb.device())?
+ .to_dtype(DType::F32)?
+ .reshape((cfg.seq_len, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let precomputed_cos = idx_theta.cos()?;
+ let precomputed_sin = idx_theta.sin()?;
+
+ let freq_cis_real = vb
+ .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_real")
+ .unwrap_or(precomputed_cos);
+ let freq_cis_imag = vb
+ .get((cfg.seq_len, cfg.head_size() / 2), "freq_cis_imag")
+ .unwrap_or(precomputed_sin);
let cos = freq_cis_real.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
let sin = freq_cis_imag.reshape((cfg.seq_len, cfg.head_size() / 2, 1))?;
Ok(Self {
@@ -76,16 +94,6 @@ fn silu(xs: &Tensor) -> Result<Tensor> {
xs / (xs.neg()?.exp()? + 1.0)?
}
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let weight = vb.get((size2, size1), "weight")?;
- Ok(Linear::new(weight, None))
-}
-
-fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((cfg.vocab_size, cfg.dim), "weight")?;
- Ok(Embedding::new(embeddings, cfg.dim))
-}
-
struct RmsNorm {
scale: Tensor,
eps: f64,
@@ -93,7 +101,7 @@ struct RmsNorm {
impl RmsNorm {
fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
- let scale = vb.get(size, "weight")?;
+ let scale = vb.get_or_init(size, "weight", candle_nn::Init::Const(1.))?;
Ok(Self { scale, eps })
}
@@ -315,7 +323,7 @@ impl Llama {
}
pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
- let wte = embedding(&cfg, vb.pp("model.embed_tokens"))?;
+ let wte = embedding(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
let ln_f = RmsNorm::load(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
let blocks: Vec<_> = (0..cfg.n_layers)
diff --git a/candle-examples/examples/llama2-c/training.rs b/candle-examples/examples/llama2-c/training.rs
index 196ba9a8..92aa90e6 100644
--- a/candle-examples/examples/llama2-c/training.rs
+++ b/candle-examples/examples/llama2-c/training.rs
@@ -142,15 +142,15 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
dataset.train_tokens.len(),
dataset.valid_tokens.len()
);
- let vb = candle_nn::VarBuilder::zeros(DType::F32, &device);
+ let varmap = candle_nn::VarMap::new();
+ let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device);
let config = Config::tiny();
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size);
let cache = Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
- let all_vars = vec![]; // TODO: Propagate the variables from the VarBuilder to here.
- let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate);
+ let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate);
for (batch_index, batch) in batch_iter.enumerate() {
let (inp, tgt) = batch?;
let logits = model.forward(&inp, 0)?;