summaryrefslogtreecommitdiff
path: root/candle-examples
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-12-22 00:28:50 +0100
committerGitHub <noreply@github.com>2023-12-22 00:28:50 +0100
commitceb78d3e28977389d88f676ff24dd07fd602ae96 (patch)
treead56fe3bcc2a56fc4db64f477e6915f25b6a5455 /candle-examples
parentf6408a37794c35f57225ccae16d67fcebea6b1cb (diff)
downloadcandle-ceb78d3e28977389d88f676ff24dd07fd602ae96.tar.gz
candle-ceb78d3e28977389d88f676ff24dd07fd602ae96.tar.bz2
candle-ceb78d3e28977389d88f676ff24dd07fd602ae96.zip
Sketch the minimal mamba example. (#1465)
* Sketch the minimal mamba example. * Fix rustfmt. * Forward pass for mamba. * Finish the forward pass. * Inference fixes. * Bugfixes. * More fixes. * Add a readme.
Diffstat (limited to 'candle-examples')
-rw-r--r--candle-examples/examples/mamba-minimal/README.md12
-rw-r--r--candle-examples/examples/mamba-minimal/main.rs242
-rw-r--r--candle-examples/examples/mamba-minimal/model.rs204
3 files changed, 458 insertions, 0 deletions
diff --git a/candle-examples/examples/mamba-minimal/README.md b/candle-examples/examples/mamba-minimal/README.md
new file mode 100644
index 00000000..0ce42123
--- /dev/null
+++ b/candle-examples/examples/mamba-minimal/README.md
@@ -0,0 +1,12 @@
+# candle-mamba-minimal: minimal implementation of Mamba
+
+This is based on [mamba-minimal](https://github.com/johnma2006/mamba-minimal).
+
+## Running the example
+
+```bash
+$ cargo run --example mamba-minimal --release -- --prompt "Mamba is the"
+Mamba is the most popular and best-selling game in the world. It has been downloaded more than 1,000 times by over 1 million people worldwide since its release on March 18th 2016.
+
+The Mamba series of games are a collection that combines elements from all genres including action, adventure, strategy & puzzle games with some unique gameplay features such as stealth and survival. The game is also known for its innovative graphics and the ability to play in a variety of different modes like single player or multiplayer.
+```
diff --git a/candle-examples/examples/mamba-minimal/main.rs b/candle-examples/examples/mamba-minimal/main.rs
new file mode 100644
index 00000000..488027f7
--- /dev/null
+++ b/candle-examples/examples/mamba-minimal/main.rs
@@ -0,0 +1,242 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+mod model;
+use model::{Config, Model};
+
+use candle::{DType, Device, Module, Tensor};
+use candle_examples::token_output_stream::TokenOutputStream;
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ device: Device,
+ tokenizer: TokenOutputStream,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer: TokenOutputStream::new(tokenizer),
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ self.tokenizer.clear();
+ let mut tokens = self
+ .tokenizer
+ .tokenizer()
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+ for &t in tokens.iter() {
+ if let Some(t) = self.tokenizer.next_token(t)? {
+ print!("{t}")
+ }
+ }
+ std::io::stdout().flush()?;
+
+ let mut generated_tokens = 0usize;
+ let eos_token = match self.tokenizer.get_token("<|endoftext|>") {
+ Some(token) => token,
+ None => anyhow::bail!("cannot find the </s> token"),
+ };
+ let start_gen = std::time::Instant::now();
+ for _ in 0..sample_len {
+ let input = Tensor::new(tokens.as_slice(), &self.device)?.unsqueeze(0)?;
+ let logits = self.model.forward(&input)?;
+ let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ if let Some(t) = self.tokenizer.next_token(next_token)? {
+ print!("{t}");
+ std::io::stdout().flush()?;
+ }
+ }
+ let dt = start_gen.elapsed();
+ if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
+ print!("{rest}");
+ }
+ std::io::stdout().flush()?;
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, short = 'n', default_value_t = 5000)]
+ sample_len: usize,
+
+ #[arg(long, default_value = "state-spaces/mamba-130m")]
+ model_id: String,
+
+ #[arg(long, default_value = "refs/pr/1")]
+ revision: String,
+
+ #[arg(long)]
+ tokenizer_file: Option<String>,
+
+ #[arg(long)]
+ weight_files: Option<String>,
+
+ #[arg(long)]
+ config_file: Option<String>,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.1)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+}
+
+fn main() -> Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let repo = api.repo(Repo::with_revision(
+ args.model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = match args.tokenizer_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => api
+ .model("EleutherAI/gpt-neox-20b".to_string())
+ .get("tokenizer.json")?,
+ };
+ let config_filename = match args.config_file {
+ Some(file) => std::path::PathBuf::from(file),
+ None => repo.get("config.json")?,
+ };
+ let filenames = match args.weight_files {
+ Some(files) => files
+ .split(',')
+ .map(std::path::PathBuf::from)
+ .collect::<Vec<_>>(),
+ None => {
+ vec![repo.get("model.safetensors")?]
+ }
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+
+ let start = std::time::Instant::now();
+ let config: Config = serde_json::from_slice(&std::fs::read(config_filename)?)?;
+ let device = candle_examples::device(args.cpu)?;
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, DType::F32, &device)? };
+ let model = Model::new(&config, vb.pp("backbone"))?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ Ok(())
+}
diff --git a/candle-examples/examples/mamba-minimal/model.rs b/candle-examples/examples/mamba-minimal/model.rs
new file mode 100644
index 00000000..4a0a345d
--- /dev/null
+++ b/candle-examples/examples/mamba-minimal/model.rs
@@ -0,0 +1,204 @@
+/// This follows the lines of:
+/// https://github.com/johnma2006/mamba-minimal/blob/master/model.py
+/// Simple, minimal implementation of Mamba in one file of PyTorch.
+use candle::{IndexOp, Module, Result, Tensor, D};
+use candle_nn::{RmsNorm, VarBuilder};
+
+use candle_transformers::models::with_tracing::{linear, linear_no_bias, Linear};
+
+#[derive(Debug, Clone, serde::Deserialize)]
+pub struct Config {
+ d_model: usize,
+ n_layer: usize,
+ vocab_size: usize,
+ pad_vocab_size_multiple: usize,
+}
+
+impl Config {
+ fn vocab_size(&self) -> usize {
+ let pad = self.pad_vocab_size_multiple;
+ (self.vocab_size + pad - 1) / pad * pad
+ }
+
+ fn dt_rank(&self) -> usize {
+ (self.d_model + 15) / 16
+ }
+
+ fn d_conv(&self) -> usize {
+ 4
+ }
+
+ fn d_state(&self) -> usize {
+ 16
+ }
+
+ fn d_inner(&self) -> usize {
+ self.d_model * 2
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L177
+#[derive(Clone, Debug)]
+pub struct MambaBlock {
+ in_proj: Linear,
+ conv1d: candle_nn::Conv1d,
+ x_proj: Linear,
+ dt_proj: Linear,
+ a_log: Tensor,
+ d: Tensor,
+ out_proj: Linear,
+ dt_rank: usize,
+}
+
+impl MambaBlock {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let d_inner = cfg.d_inner();
+ let d_conv = cfg.d_conv();
+ let d_state = cfg.d_state();
+ let dt_rank = cfg.dt_rank();
+ let in_proj = linear_no_bias(cfg.d_model, d_inner * 2, vb.pp("in_proj"))?;
+ let conv_cfg = candle_nn::Conv1dConfig {
+ groups: d_inner,
+ padding: d_conv - 1,
+ ..Default::default()
+ };
+ let conv1d = candle_nn::conv1d(d_inner, d_inner, d_conv, conv_cfg, vb.pp("conv1d"))?;
+ let x_proj = linear_no_bias(d_inner, dt_rank + d_state * 2, vb.pp("x_proj"))?;
+ let dt_proj = linear(dt_rank, d_inner, vb.pp("dt_proj"))?;
+ let a_log = vb.get((d_inner, d_state), "A_log")?;
+ let d = vb.get(d_inner, "D")?;
+ let out_proj = linear_no_bias(d_inner, cfg.d_model, vb.pp("out_proj"))?;
+ Ok(Self {
+ in_proj,
+ conv1d,
+ x_proj,
+ dt_proj,
+ a_log,
+ d,
+ out_proj,
+ dt_rank,
+ })
+ }
+
+ fn ssm(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_d_in, n) = self.a_log.dims2()?;
+ let a = self.a_log.to_dtype(candle::DType::F32)?.exp()?.neg()?;
+ let d = self.d.to_dtype(candle::DType::F32)?;
+ let x_dbl = xs.apply(&self.x_proj)?;
+ let delta = x_dbl.narrow(D::Minus1, 0, self.dt_rank)?;
+ let b = x_dbl.narrow(D::Minus1, self.dt_rank, n)?;
+ let c = x_dbl.narrow(D::Minus1, self.dt_rank + n, n)?;
+ let delta = delta.contiguous()?.apply(&self.dt_proj)?;
+ // softplus without threshold
+ let delta = (delta.exp()? + 1.)?.log()?;
+ let ss = selective_scan(xs, &delta, &a, &b, &c, &d)?;
+ Ok(ss)
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L275
+fn selective_scan(
+ u: &Tensor,
+ delta: &Tensor,
+ a: &Tensor,
+ b: &Tensor,
+ c: &Tensor,
+ d: &Tensor,
+) -> Result<Tensor> {
+ let (b_sz, l, d_in) = u.dims3()?;
+ let n = a.dim(1)?;
+ let delta = delta.t()?.reshape((b_sz, d_in, l, 1))?; // b d_in l 1
+ let delta_a = delta.broadcast_mul(&a.reshape((1, d_in, 1, n))?)?.exp()?;
+ let delta_b_u = delta
+ .broadcast_mul(&b.reshape((b_sz, 1, l, n))?)?
+ .broadcast_mul(&u.t()?.reshape((b_sz, d_in, l, 1))?)?;
+ let mut xs = Tensor::zeros((b_sz, d_in, n), delta_a.dtype(), delta_a.device())?;
+ let mut ys = Vec::with_capacity(l);
+ for i in 0..l {
+ xs = ((delta_a.i((.., .., i))? * xs)? + delta_b_u.i((.., .., i))?)?;
+ let y = xs.matmul(&c.i((.., i, ..))?.unsqueeze(2)?)?.squeeze(2)?;
+ ys.push(y)
+ }
+ let ys = Tensor::stack(ys.as_slice(), 1)?;
+ ys + u.broadcast_mul(d)
+}
+
+impl Module for MambaBlock {
+ // https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L206
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b_sz, seq_len, _dim) = xs.dims3()?;
+ let xs_and_res = xs.apply(&self.in_proj)?.chunk(2, D::Minus1)?;
+ let (xs, res) = (&xs_and_res[0], &xs_and_res[1]);
+ let xs = xs
+ .t()?
+ .apply(&self.conv1d)?
+ .narrow(D::Minus1, 0, seq_len)?
+ .t()?;
+ let xs = candle_nn::ops::silu(&xs)?;
+ let ys = (self.ssm(&xs)? * candle_nn::ops::silu(res))?;
+ ys.apply(&self.out_proj)
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L143
+#[derive(Clone, Debug)]
+pub struct ResidualBlock {
+ mixer: MambaBlock,
+ norm: RmsNorm,
+}
+
+impl ResidualBlock {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let norm = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm"))?;
+ let mixer = MambaBlock::new(cfg, vb.pp("mixer"))?;
+ Ok(Self { mixer, norm })
+ }
+}
+
+impl Module for ResidualBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.norm)?.apply(&self.mixer)? + xs
+ }
+}
+
+// https://github.com/johnma2006/mamba-minimal/blob/61f01953ca153f8c4a850d7111beecbf4be9cee1/model.py#L56
+#[derive(Clone, Debug)]
+pub struct Model {
+ embedding: candle_nn::Embedding,
+ layers: Vec<ResidualBlock>,
+ norm_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let embedding = candle_nn::embedding(cfg.vocab_size(), cfg.d_model, vb.pp("embedding"))?;
+ let mut layers = Vec::with_capacity(cfg.n_layer);
+ let vb_l = vb.pp("layers");
+ for layer_idx in 0..cfg.n_layer {
+ let layer = ResidualBlock::new(cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm_f = candle_nn::rms_norm(cfg.d_model, 1e-5, vb.pp("norm_f"))?;
+ let lm_head = Linear::from_weights(embedding.embeddings().clone(), None);
+ Ok(Self {
+ embedding,
+ layers,
+ norm_f,
+ lm_head,
+ })
+ }
+}
+
+impl Module for Model {
+ fn forward(&self, input_ids: &Tensor) -> Result<Tensor> {
+ let (_b_size, seq_len) = input_ids.dims2()?;
+ let mut xs = self.embedding.forward(input_ids)?;
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm_f)?
+ .apply(&self.lm_head)
+ }
+}