summaryrefslogtreecommitdiff
path: root/candle-examples
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-10-27 15:34:06 +0100
committerGitHub <noreply@github.com>2023-10-27 15:34:06 +0100
commite2826e70b3725c53656f1ff76753472b29e1c5f7 (patch)
tree3e4482888e35b753666936e8ed189a5bffaa2e63 /candle-examples
parent916619f70bfae089597ce421e19a3b2e85c2d27b (diff)
downloadcandle-e2826e70b3725c53656f1ff76753472b29e1c5f7.tar.gz
candle-e2826e70b3725c53656f1ff76753472b29e1c5f7.tar.bz2
candle-e2826e70b3725c53656f1ff76753472b29e1c5f7.zip
Add a quantized variant of llama2.c (#1197)
* Add a quantized variant of llama2.c * Clippy fixes.
Diffstat (limited to 'candle-examples')
-rw-r--r--candle-examples/examples/llama2-c/main.rs60
-rw-r--r--candle-examples/examples/llama2-c/model.rs8
-rw-r--r--candle-examples/examples/llama2-c/qmodel.rs227
3 files changed, 285 insertions, 10 deletions
diff --git a/candle-examples/examples/llama2-c/main.rs b/candle-examples/examples/llama2-c/main.rs
index e752a494..77dbc677 100644
--- a/candle-examples/examples/llama2-c/main.rs
+++ b/candle-examples/examples/llama2-c/main.rs
@@ -7,6 +7,7 @@ extern crate accelerate_src;
extern crate intel_mkl_src;
mod model;
+mod qmodel;
mod training;
mod weights;
use clap::{Parser, Subcommand};
@@ -19,6 +20,7 @@ use std::io::Write;
use tokenizers::Tokenizer;
use model::{Config, Llama};
+use qmodel::QLlama;
use weights::TransformerWeights;
#[derive(Parser, Debug, Clone)]
@@ -152,6 +154,20 @@ fn main() -> anyhow::Result<()> {
Ok(())
}
+enum Model {
+ Llama(Llama),
+ QLlama(QLlama),
+}
+
+impl Model {
+ fn forward(&self, xs: &Tensor, pos: usize) -> anyhow::Result<Tensor> {
+ match self {
+ Self::Llama(l) => Ok(l.forward(xs, pos)?),
+ Self::QLlama(l) => Ok(l.forward(xs, pos)?),
+ }
+ }
+}
+
fn run_eval(args: &EvaluationCmd, common_args: &Args) -> Result<()> {
use std::io::BufRead;
@@ -241,24 +257,56 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let device = candle_examples::device(common_args.cpu)?;
+ let is_gguf = config_path.extension().map_or(false, |v| v == "gguf");
let is_safetensors = config_path
.extension()
.map_or(false, |v| v == "safetensors");
- let (vb, config) = if is_safetensors {
+ let (model, config) = if is_gguf {
+ let config = Config::tiny();
+ let vb = qmodel::VarBuilder::from_gguf(config_path)?;
+ let freq_cis_real = vb
+ .get(
+ (config.seq_len, config.head_size() / 2),
+ "rot.freq_cis_real",
+ )?
+ .dequantize(&candle::Device::Cpu)?;
+ let freq_cis_imag = vb
+ .get(
+ (config.seq_len, config.head_size() / 2),
+ "rot.freq_cis_imag",
+ )?
+ .dequantize(&candle::Device::Cpu)?;
+
+ let fake_vb = candle_nn::VarBuilder::from_tensors(
+ [
+ ("freq_cis_real".to_string(), freq_cis_real),
+ ("freq_cis_imag".to_string(), freq_cis_imag),
+ ]
+ .into_iter()
+ .collect(),
+ candle::DType::F32,
+ &candle::Device::Cpu,
+ );
+ let cache = model::Cache::new(true, &config, fake_vb)?;
+ let model = Model::QLlama(QLlama::load(vb, &cache, config.clone())?);
+ (model, config)
+ } else if is_safetensors {
let config = Config::tiny();
let tensors = candle::safetensors::load(config_path, &device)?;
let vb = candle_nn::VarBuilder::from_tensors(tensors, candle::DType::F32, &device);
- (vb, config)
+ let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
+ let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
+ (model, config)
} else {
let mut file = std::fs::File::open(config_path)?;
let config = Config::from_reader(&mut file)?;
println!("{config:?}");
let weights = TransformerWeights::from_reader(&mut file, &config, &device)?;
let vb = weights.var_builder(&config, &device)?;
- (vb, config)
+ let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
+ let model = Model::Llama(Llama::load(vb, &cache, config.clone())?);
+ (model, config)
};
- let cache = model::Cache::new(true, &config, vb.pp("rot"))?;
- let model = Llama::load(vb, &cache, config)?;
println!("starting the inference loop");
let mut logits_processor = LogitsProcessor::new(299792458, args.temperature, args.top_p);
@@ -273,7 +321,7 @@ fn run_inference(args: &InferenceCmd, common_args: &Args) -> Result<()> {
let start_gen = std::time::Instant::now();
for index in 0.. {
- if tokens.len() >= model.config.seq_len {
+ if tokens.len() >= config.seq_len {
break;
}
let context_size = if index > 0 { 1 } else { tokens.len() };
diff --git a/candle-examples/examples/llama2-c/model.rs b/candle-examples/examples/llama2-c/model.rs
index 9b982ddd..07a6e2f2 100644
--- a/candle-examples/examples/llama2-c/model.rs
+++ b/candle-examples/examples/llama2-c/model.rs
@@ -36,9 +36,9 @@ pub struct Cache {
masks: Arc<Mutex<HashMap<usize, Tensor>>>,
pub use_kv_cache: bool,
#[allow(clippy::type_complexity)]
- kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
- cos: Tensor,
- sin: Tensor,
+ pub kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
+ pub cos: Tensor,
+ pub sin: Tensor,
device: Device,
}
@@ -75,7 +75,7 @@ impl Cache {
})
}
- fn mask(&self, t: usize) -> Result<Tensor> {
+ pub fn mask(&self, t: usize) -> Result<Tensor> {
let mut masks = self.masks.lock().unwrap();
if let Some(mask) = masks.get(&t) {
Ok(mask.clone())
diff --git a/candle-examples/examples/llama2-c/qmodel.rs b/candle-examples/examples/llama2-c/qmodel.rs
new file mode 100644
index 00000000..07db146e
--- /dev/null
+++ b/candle-examples/examples/llama2-c/qmodel.rs
@@ -0,0 +1,227 @@
+use super::model::{Cache, Config};
+use candle::{DType, IndexOp, Module, Result, Tensor, D};
+use candle_transformers::quantized_nn::{linear_no_bias as linear, Embedding, Linear, RmsNorm};
+pub use candle_transformers::quantized_var_builder::VarBuilder;
+
+fn silu(xs: &Tensor) -> Result<Tensor> {
+ xs / (xs.neg()?.exp()? + 1.0)?
+}
+
+struct CausalSelfAttention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ n_head: usize,
+ n_key_value_head: usize,
+ head_dim: usize,
+ cache: Cache,
+}
+
+impl CausalSelfAttention {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (b_sz, seq_len, h, n_embd) = x.dims4()?;
+ let cos = self.cache.cos.i(index_pos..index_pos + seq_len)?;
+ let sin = self.cache.sin.i(index_pos..index_pos + seq_len)?;
+ let cos = cos.unsqueeze(1)?;
+ let sin = sin.unsqueeze(1)?;
+ let cos = cos.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
+ let sin = sin.broadcast_as((b_sz, seq_len, 1, n_embd / 2, 1))?;
+ let x = x.reshape((b_sz, seq_len, h, n_embd / 2, 2))?;
+ let x0 = x.narrow(D::Minus1, 0, 1)?;
+ let x1 = x.narrow(D::Minus1, 1, 1)?;
+ let dst0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
+ let dst1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
+ let rope = Tensor::cat(&[&dst0, &dst1], D::Minus1)?.reshape((b_sz, seq_len, h, n_embd))?;
+ Ok(rope)
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let q = self.q_proj.forward(x)?;
+ let k = self.k_proj.forward(x)?;
+ let v = self.v_proj.forward(x)?;
+
+ let q = q.reshape((b_sz, seq_len, self.n_head, self.head_dim))?;
+ let k = k.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+ let mut v = v.reshape((b_sz, seq_len, self.n_key_value_head, self.head_dim))?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let mut k = self.apply_rotary_emb(&k, index_pos)?;
+
+ if self.cache.use_kv_cache {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 1)?.contiguous()?;
+ v = Tensor::cat(&[cache_v, &v], 1)?.contiguous()?;
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let q = q.transpose(1, 2)?.contiguous()?;
+ let k = k.transpose(1, 2)?.contiguous()?;
+ let v = v.transpose(1, 2)?.contiguous()?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.o_proj.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.n_head / self.n_key_value_head;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, seq_len, n_kv_head, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(3)?
+ .expand((b_sz, seq_len, n_kv_head, n_rep, head_dim))?
+ .reshape((b_sz, seq_len, n_kv_head * n_rep, head_dim))?;
+ Ok(x)
+ }
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let size_in = cfg.dim;
+ let size_q = (cfg.dim / cfg.n_heads) * cfg.n_heads;
+ let size_kv = (cfg.dim / cfg.n_heads) * cfg.n_kv_heads;
+ let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
+ let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
+ let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
+ let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ n_head: cfg.n_heads,
+ n_key_value_head: cfg.n_kv_heads,
+ head_dim: cfg.dim / cfg.n_heads,
+ cache: cache.clone(),
+ })
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+struct Mlp {
+ c_fc1: Linear,
+ c_fc2: Linear,
+ c_proj: Linear,
+}
+
+impl Mlp {
+ fn new(c_fc1: Linear, c_fc2: Linear, c_proj: Linear) -> Self {
+ Self {
+ c_fc1,
+ c_fc2,
+ c_proj,
+ }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = (silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
+ self.c_proj.forward(&x)
+ }
+
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let h_size = cfg.dim;
+ let i_size = cfg.hidden_dim;
+ let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
+ let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
+ let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
+ Ok(Self::new(c_fc1, c_fc2, c_proj))
+ }
+}
+
+struct Block {
+ rms_1: RmsNorm,
+ attn: CausalSelfAttention,
+ rms_2: RmsNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn new(rms_1: RmsNorm, attn: CausalSelfAttention, rms_2: RmsNorm, mlp: Mlp) -> Self {
+ Self {
+ rms_1,
+ attn,
+ rms_2,
+ mlp,
+ }
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let residual = x;
+ let x = self.rms_1.forward(x)?;
+ let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
+ let residual = &x;
+ let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
+ Ok(x)
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
+ let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
+ let input_layernorm = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm =
+ RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("post_attention_layernorm"))?;
+ Ok(Self::new(
+ input_layernorm,
+ attn,
+ post_attention_layernorm,
+ mlp,
+ ))
+ }
+}
+
+pub struct QLlama {
+ wte: Embedding,
+ blocks: Vec<Block>,
+ ln_f: RmsNorm,
+ lm_head: Linear,
+ pub config: Config,
+}
+
+impl QLlama {
+ pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, _seq_len) = x.dims2()?;
+ let mut x = self.wte.forward(x)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, index_pos, block_idx)?;
+ }
+ let x = self.ln_f.forward(&x)?;
+ let logits = self.lm_head.forward(&x)?;
+ logits.to_dtype(DType::F32)
+ }
+
+ pub fn load(vb: VarBuilder, cache: &Cache, cfg: Config) -> Result<Self> {
+ let wte = Embedding::new(cfg.vocab_size, cfg.dim, vb.pp("model.embed_tokens"))?;
+ let lm_head = linear(cfg.dim, cfg.vocab_size, vb.pp("lm_head"))?;
+ let ln_f = RmsNorm::new(cfg.dim, cfg.norm_eps, vb.pp("model.norm"))?;
+ let blocks: Vec<_> = (0..cfg.n_layers)
+ .map(|i| Block::load(vb.pp(format!("model.layers.{i}")), cache, &cfg).unwrap())
+ .collect();
+ Ok(Self {
+ wte,
+ blocks,
+ ln_f,
+ lm_head,
+ config: cfg,
+ })
+ }
+}