summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorCzxck001 <10724409+Czxck001@users.noreply.github.com>2024-10-13 13:08:40 -0700
committerGitHub <noreply@github.com>2024-10-13 22:08:40 +0200
commitca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e (patch)
tree8f61fd8b9a4c86b08e50328d051e0acec3945fb3 /candle-transformers
parent0d96ec31e8be03f844ed0aed636d6217dee9c7bc (diff)
downloadcandle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.tar.gz
candle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.tar.bz2
candle-ca7cf5cb3bb38d1b735e1db0efdac7eea1a9d43e.zip
Add Stable Diffusion 3 Example (#2558)
* Add stable diffusion 3 example Add get_qkv_linear to handle different dimensionality in linears Add stable diffusion 3 example Add use_quant_conv and use_post_quant_conv for vae in stable diffusion adapt existing AutoEncoderKLConfig to the change add forward_until_encoder_layer to ClipTextTransformer rename sd3 config to sd3_medium in mmdit; minor clean-up Enable flash-attn for mmdit impl when the feature is enabled. Add sd3 example codebase add document crediting references pass the cargo fmt test pass the clippy test * fix typos * expose cfg_scale and time_shift as options * Replace the sample image with JPG version. Change image output format accordingly. * make meaningful error messages * remove the tail-end assignment in sd3_vae_vb_rename * remove the CUDA requirement * use default_value in clap args * add use_flash_attn to turn on/off flash-attn for MMDiT at runtime * resolve clippy errors and warnings * use default_value_t * Pin the web-sys dependency. * Clippy fix. --------- Co-authored-by: Laurent <laurent.mazare@gmail.com>
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/mmdit/blocks.rs54
-rw-r--r--candle-transformers/src/models/mmdit/model.rs8
-rw-r--r--candle-transformers/src/models/mmdit/projections.rs1
-rw-r--r--candle-transformers/src/models/stable_diffusion/attention.rs26
-rw-r--r--candle-transformers/src/models/stable_diffusion/clip.rs31
-rw-r--r--candle-transformers/src/models/stable_diffusion/mod.rs10
-rw-r--r--candle-transformers/src/models/stable_diffusion/vae.rs61
7 files changed, 158 insertions, 33 deletions
diff --git a/candle-transformers/src/models/mmdit/blocks.rs b/candle-transformers/src/models/mmdit/blocks.rs
index e2b924a0..a1777f91 100644
--- a/candle-transformers/src/models/mmdit/blocks.rs
+++ b/candle-transformers/src/models/mmdit/blocks.rs
@@ -194,10 +194,16 @@ pub struct JointBlock {
x_block: DiTBlock,
context_block: DiTBlock,
num_heads: usize,
+ use_flash_attn: bool,
}
impl JointBlock {
- pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(
+ hidden_size: usize,
+ num_heads: usize,
+ use_flash_attn: bool,
+ vb: nn::VarBuilder,
+ ) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = DiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
@@ -205,13 +211,15 @@ impl JointBlock {
x_block,
context_block,
num_heads,
+ use_flash_attn,
})
}
pub fn forward(&self, context: &Tensor, x: &Tensor, c: &Tensor) -> Result<(Tensor, Tensor)> {
let (context_qkv, context_interm) = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
- let (context_attn, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads)?;
+ let (context_attn, x_attn) =
+ joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let context_out =
self.context_block
.post_attention(&context_attn, context, &context_interm)?;
@@ -224,16 +232,23 @@ pub struct ContextQkvOnlyJointBlock {
x_block: DiTBlock,
context_block: QkvOnlyDiTBlock,
num_heads: usize,
+ use_flash_attn: bool,
}
impl ContextQkvOnlyJointBlock {
- pub fn new(hidden_size: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(
+ hidden_size: usize,
+ num_heads: usize,
+ use_flash_attn: bool,
+ vb: nn::VarBuilder,
+ ) -> Result<Self> {
let x_block = DiTBlock::new(hidden_size, num_heads, vb.pp("x_block"))?;
let context_block = QkvOnlyDiTBlock::new(hidden_size, num_heads, vb.pp("context_block"))?;
Ok(Self {
x_block,
context_block,
num_heads,
+ use_flash_attn,
})
}
@@ -241,7 +256,7 @@ impl ContextQkvOnlyJointBlock {
let context_qkv = self.context_block.pre_attention(context, c)?;
let (x_qkv, x_interm) = self.x_block.pre_attention(x, c)?;
- let (_, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads)?;
+ let (_, x_attn) = joint_attn(&context_qkv, &x_qkv, self.num_heads, self.use_flash_attn)?;
let x_out = self.x_block.post_attention(&x_attn, x, &x_interm)?;
Ok(x_out)
@@ -266,7 +281,28 @@ fn flash_compatible_attention(
attn_scores.reshape(q_dims_for_matmul)?.transpose(1, 2)
}
-fn joint_attn(context_qkv: &Qkv, x_qkv: &Qkv, num_heads: usize) -> Result<(Tensor, Tensor)> {
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
+fn joint_attn(
+ context_qkv: &Qkv,
+ x_qkv: &Qkv,
+ num_heads: usize,
+ use_flash_attn: bool,
+) -> Result<(Tensor, Tensor)> {
let qkv = Qkv {
q: Tensor::cat(&[&context_qkv.q, &x_qkv.q], 1)?,
k: Tensor::cat(&[&context_qkv.k, &x_qkv.k], 1)?,
@@ -282,8 +318,12 @@ fn joint_attn(context_qkv: &Qkv, x_qkv: &Qkv, num_heads: usize) -> Result<(Tenso
let headdim = qkv.q.dim(D::Minus1)?;
let softmax_scale = 1.0 / (headdim as f64).sqrt();
- // let attn: Tensor = candle_flash_attn::flash_attn(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32, false)?;
- let attn = flash_compatible_attention(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32)?;
+
+ let attn = if use_flash_attn {
+ flash_attn(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32, false)?
+ } else {
+ flash_compatible_attention(&qkv.q, &qkv.k, &qkv.v, softmax_scale as f32)?
+ };
let attn = attn.reshape((batch_size, seqlen, ()))?;
let context_qkv_seqlen = context_qkv.q.dim(1)?;
diff --git a/candle-transformers/src/models/mmdit/model.rs b/candle-transformers/src/models/mmdit/model.rs
index 1523836c..864b6623 100644
--- a/candle-transformers/src/models/mmdit/model.rs
+++ b/candle-transformers/src/models/mmdit/model.rs
@@ -23,7 +23,7 @@ pub struct Config {
}
impl Config {
- pub fn sd3() -> Self {
+ pub fn sd3_medium() -> Self {
Self {
patch_size: 2,
in_channels: 16,
@@ -49,7 +49,7 @@ pub struct MMDiT {
}
impl MMDiT {
- pub fn new(cfg: &Config, vb: nn::VarBuilder) -> Result<Self> {
+ pub fn new(cfg: &Config, use_flash_attn: bool, vb: nn::VarBuilder) -> Result<Self> {
let hidden_size = cfg.head_size * cfg.depth;
let core = MMDiTCore::new(
cfg.depth,
@@ -57,6 +57,7 @@ impl MMDiT {
cfg.depth,
cfg.patch_size,
cfg.out_channels,
+ use_flash_attn,
vb.clone(),
)?;
let patch_embedder = PatchEmbedder::new(
@@ -135,6 +136,7 @@ impl MMDiTCore {
num_heads: usize,
patch_size: usize,
out_channels: usize,
+ use_flash_attn: bool,
vb: nn::VarBuilder,
) -> Result<Self> {
let mut joint_blocks = Vec::with_capacity(depth - 1);
@@ -142,6 +144,7 @@ impl MMDiTCore {
joint_blocks.push(JointBlock::new(
hidden_size,
num_heads,
+ use_flash_attn,
vb.pp(format!("joint_blocks.{}", i)),
)?);
}
@@ -151,6 +154,7 @@ impl MMDiTCore {
context_qkv_only_joint_block: ContextQkvOnlyJointBlock::new(
hidden_size,
num_heads,
+ use_flash_attn,
vb.pp(format!("joint_blocks.{}", depth - 1)),
)?,
final_layer: FinalLayer::new(
diff --git a/candle-transformers/src/models/mmdit/projections.rs b/candle-transformers/src/models/mmdit/projections.rs
index 1077398f..dc1e8ec9 100644
--- a/candle-transformers/src/models/mmdit/projections.rs
+++ b/candle-transformers/src/models/mmdit/projections.rs
@@ -42,7 +42,6 @@ pub struct QkvOnlyAttnProjections {
impl QkvOnlyAttnProjections {
pub fn new(dim: usize, num_heads: usize, vb: nn::VarBuilder) -> Result<Self> {
- // {'dim': 1536, 'num_heads': 24}
let head_dim = dim / num_heads;
let qkv = nn::linear(dim, dim * 3, vb.pp("qkv"))?;
Ok(Self { qkv, head_dim })
diff --git a/candle-transformers/src/models/stable_diffusion/attention.rs b/candle-transformers/src/models/stable_diffusion/attention.rs
index 5cc59e82..c04e6aa1 100644
--- a/candle-transformers/src/models/stable_diffusion/attention.rs
+++ b/candle-transformers/src/models/stable_diffusion/attention.rs
@@ -467,6 +467,24 @@ pub struct AttentionBlock {
config: AttentionBlockConfig,
}
+// In the .safetensor weights of official Stable Diffusion 3 Medium Huggingface repo
+// https://huggingface.co/stabilityai/stable-diffusion-3-medium
+// Linear layer may use a different dimension for the weight in the linear, which is
+// incompatible with the current implementation of the nn::linear constructor.
+// This is a workaround to handle the different dimensions.
+fn get_qkv_linear(channels: usize, vs: nn::VarBuilder) -> Result<nn::Linear> {
+ match vs.get((channels, channels), "weight") {
+ Ok(_) => nn::linear(channels, channels, vs),
+ Err(_) => {
+ let weight = vs
+ .get((channels, channels, 1, 1), "weight")?
+ .reshape((channels, channels))?;
+ let bias = vs.get((channels,), "bias")?;
+ Ok(nn::Linear::new(weight, Some(bias)))
+ }
+ }
+}
+
impl AttentionBlock {
pub fn new(vs: nn::VarBuilder, channels: usize, config: AttentionBlockConfig) -> Result<Self> {
let num_head_channels = config.num_head_channels.unwrap_or(channels);
@@ -478,10 +496,10 @@ impl AttentionBlock {
} else {
("query", "key", "value", "proj_attn")
};
- let query = nn::linear(channels, channels, vs.pp(q_path))?;
- let key = nn::linear(channels, channels, vs.pp(k_path))?;
- let value = nn::linear(channels, channels, vs.pp(v_path))?;
- let proj_attn = nn::linear(channels, channels, vs.pp(out_path))?;
+ let query = get_qkv_linear(channels, vs.pp(q_path))?;
+ let key = get_qkv_linear(channels, vs.pp(k_path))?;
+ let value = get_qkv_linear(channels, vs.pp(v_path))?;
+ let proj_attn = get_qkv_linear(channels, vs.pp(out_path))?;
let span = tracing::span!(tracing::Level::TRACE, "attn-block");
Ok(Self {
group_norm,
diff --git a/candle-transformers/src/models/stable_diffusion/clip.rs b/candle-transformers/src/models/stable_diffusion/clip.rs
index 5254818e..2f631248 100644
--- a/candle-transformers/src/models/stable_diffusion/clip.rs
+++ b/candle-transformers/src/models/stable_diffusion/clip.rs
@@ -388,6 +388,37 @@ impl ClipTextTransformer {
let xs = self.encoder.forward(&xs, &causal_attention_mask)?;
self.final_layer_norm.forward(&xs)
}
+
+ pub fn forward_until_encoder_layer(
+ &self,
+ xs: &Tensor,
+ mask_after: usize,
+ until_layer: isize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (bsz, seq_len) = xs.dims2()?;
+ let xs = self.embeddings.forward(xs)?;
+ let causal_attention_mask =
+ Self::build_causal_attention_mask(bsz, seq_len, mask_after, xs.device())?;
+
+ let mut xs = xs.clone();
+ let mut intermediate = xs.clone();
+
+ // Modified encoder.forward that returns the intermediate tensor along with final output.
+ let until_layer = if until_layer < 0 {
+ self.encoder.layers.len() as isize + until_layer
+ } else {
+ until_layer
+ } as usize;
+
+ for (layer_id, layer) in self.encoder.layers.iter().enumerate() {
+ xs = layer.forward(&xs, &causal_attention_mask)?;
+ if layer_id == until_layer {
+ intermediate = xs.clone();
+ }
+ }
+
+ Ok((self.final_layer_norm.forward(&xs)?, intermediate))
+ }
}
impl Module for ClipTextTransformer {
diff --git a/candle-transformers/src/models/stable_diffusion/mod.rs b/candle-transformers/src/models/stable_diffusion/mod.rs
index 30f23975..37f4cdbf 100644
--- a/candle-transformers/src/models/stable_diffusion/mod.rs
+++ b/candle-transformers/src/models/stable_diffusion/mod.rs
@@ -65,6 +65,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let height = if let Some(height) = height {
assert_eq!(height % 8, 0, "height has to be divisible by 8");
@@ -133,6 +135,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
@@ -214,6 +218,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
prediction_type,
@@ -281,6 +287,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(
euler_ancestral_discrete::EulerAncestralDiscreteSchedulerConfig {
@@ -378,6 +386,8 @@ impl StableDiffusionConfig {
layers_per_block: 2,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
};
let scheduler = Arc::new(ddim::DDIMSchedulerConfig {
..Default::default()
diff --git a/candle-transformers/src/models/stable_diffusion/vae.rs b/candle-transformers/src/models/stable_diffusion/vae.rs
index 670b3f56..b3aba802 100644
--- a/candle-transformers/src/models/stable_diffusion/vae.rs
+++ b/candle-transformers/src/models/stable_diffusion/vae.rs
@@ -275,6 +275,8 @@ pub struct AutoEncoderKLConfig {
pub layers_per_block: usize,
pub latent_channels: usize,
pub norm_num_groups: usize,
+ pub use_quant_conv: bool,
+ pub use_post_quant_conv: bool,
}
impl Default for AutoEncoderKLConfig {
@@ -284,6 +286,8 @@ impl Default for AutoEncoderKLConfig {
layers_per_block: 1,
latent_channels: 4,
norm_num_groups: 32,
+ use_quant_conv: true,
+ use_post_quant_conv: true,
}
}
}
@@ -315,8 +319,8 @@ impl DiagonalGaussianDistribution {
pub struct AutoEncoderKL {
encoder: Encoder,
decoder: Decoder,
- quant_conv: nn::Conv2d,
- post_quant_conv: nn::Conv2d,
+ quant_conv: Option<nn::Conv2d>,
+ post_quant_conv: Option<nn::Conv2d>,
pub config: AutoEncoderKLConfig,
}
@@ -342,20 +346,33 @@ impl AutoEncoderKL {
};
let decoder = Decoder::new(vs.pp("decoder"), latent_channels, out_channels, decoder_cfg)?;
let conv_cfg = Default::default();
- let quant_conv = nn::conv2d(
- 2 * latent_channels,
- 2 * latent_channels,
- 1,
- conv_cfg,
- vs.pp("quant_conv"),
- )?;
- let post_quant_conv = nn::conv2d(
- latent_channels,
- latent_channels,
- 1,
- conv_cfg,
- vs.pp("post_quant_conv"),
- )?;
+
+ let quant_conv = {
+ if config.use_quant_conv {
+ Some(nn::conv2d(
+ 2 * latent_channels,
+ 2 * latent_channels,
+ 1,
+ conv_cfg,
+ vs.pp("quant_conv"),
+ )?)
+ } else {
+ None
+ }
+ };
+ let post_quant_conv = {
+ if config.use_post_quant_conv {
+ Some(nn::conv2d(
+ latent_channels,
+ latent_channels,
+ 1,
+ conv_cfg,
+ vs.pp("post_quant_conv"),
+ )?)
+ } else {
+ None
+ }
+ };
Ok(Self {
encoder,
decoder,
@@ -368,13 +385,19 @@ impl AutoEncoderKL {
/// Returns the distribution in the latent space.
pub fn encode(&self, xs: &Tensor) -> Result<DiagonalGaussianDistribution> {
let xs = self.encoder.forward(xs)?;
- let parameters = self.quant_conv.forward(&xs)?;
+ let parameters = match &self.quant_conv {
+ None => xs,
+ Some(quant_conv) => quant_conv.forward(&xs)?,
+ };
DiagonalGaussianDistribution::new(&parameters)
}
/// Takes as input some sampled values.
pub fn decode(&self, xs: &Tensor) -> Result<Tensor> {
- let xs = self.post_quant_conv.forward(xs)?;
- self.decoder.forward(&xs)
+ let xs = match &self.post_quant_conv {
+ None => xs,
+ Some(post_quant_conv) => &post_quant_conv.forward(xs)?,
+ };
+ self.decoder.forward(xs)
}
}