summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-09-10 09:40:27 +0100
committerGitHub <noreply@github.com>2023-09-10 09:40:27 +0100
commitd3f05eae8c4f2df186b46e433be101ac39fceca5 (patch)
tree6ffc43595caec3007fe28efd3bafc7acbdde6e94 /candle-transformers
parent258ac32c3868d4103e90df19af99a3e13c805c4e (diff)
downloadcandle-d3f05eae8c4f2df186b46e433be101ac39fceca5.tar.gz
candle-d3f05eae8c4f2df186b46e433be101ac39fceca5.tar.bz2
candle-d3f05eae8c4f2df186b46e433be101ac39fceca5.zip
Move some models to candle-transformers so that it's easier to re-use. (#794)
* Move some models to candle-transformers so that they can be shared. * Also move falcon. * Move Llama. * Move whisper (partial).
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/Cargo.toml4
-rw-r--r--candle-transformers/src/models/bert.rs568
-rw-r--r--candle-transformers/src/models/bigcode.rs359
-rw-r--r--candle-transformers/src/models/falcon.rs484
-rw-r--r--candle-transformers/src/models/llama.rs446
-rw-r--r--candle-transformers/src/models/mod.rs6
-rw-r--r--candle-transformers/src/models/whisper/audio.rs210
-rw-r--r--candle-transformers/src/models/whisper/mod.rs26
-rw-r--r--candle-transformers/src/models/whisper/model.rs416
9 files changed, 2518 insertions, 1 deletions
diff --git a/candle-transformers/Cargo.toml b/candle-transformers/Cargo.toml
index a05b9bb7..6b2087cb 100644
--- a/candle-transformers/Cargo.toml
+++ b/candle-transformers/Cargo.toml
@@ -14,7 +14,11 @@ accelerate-src = { workspace = true, optional = true }
candle = { path = "../candle-core", version = "0.2.1", package = "candle-core" }
candle-nn = { path = "../candle-nn", version = "0.2.1" }
intel-mkl-src = { workspace = true, optional = true }
+num-traits = { workspace = true }
rand = { workspace = true }
+serde = { workspace = true }
+serde_json = { workspace = true }
+tracing = { workspace = true }
wav = { workspace = true }
[features]
diff --git a/candle-transformers/src/models/bert.rs b/candle-transformers/src/models/bert.rs
new file mode 100644
index 00000000..3f164a3a
--- /dev/null
+++ b/candle-transformers/src/models/bert.rs
@@ -0,0 +1,568 @@
+use candle::{DType, Device, Result, Tensor};
+use candle_nn::{Embedding, Module, VarBuilder};
+use serde::Deserialize;
+
+pub const DTYPE: DType = DType::F32;
+
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
+#[serde(rename_all = "lowercase")]
+enum HiddenAct {
+ Gelu,
+ Relu,
+}
+
+struct HiddenActLayer {
+ act: HiddenAct,
+ span: tracing::Span,
+}
+
+impl HiddenActLayer {
+ fn new(act: HiddenAct) -> Self {
+ let span = tracing::span!(tracing::Level::TRACE, "hidden-act");
+ Self { act, span }
+ }
+
+ fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
+ let _enter = self.span.enter();
+ match self.act {
+ // TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some
+ // small numerical difference.
+ // https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213
+ HiddenAct::Gelu => xs.gelu(),
+ HiddenAct::Relu => xs.relu(),
+ }
+ }
+}
+
+#[derive(Debug)]
+pub struct Linear {
+ weight: Tensor,
+ bias: Option<Tensor>,
+ span: tracing::Span,
+}
+
+impl Linear {
+ pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ Self { weight, bias, span }
+ }
+
+ pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
+ let _enter = self.span.enter();
+ let w = match x.dims() {
+ &[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
+ _ => self.weight.t()?,
+ };
+ let x = x.matmul(&w)?;
+ match &self.bias {
+ None => Ok(x),
+ Some(bias) => x.broadcast_add(bias),
+ }
+ }
+}
+
+#[derive(Debug)]
+pub struct LayerNorm {
+ weight: Tensor,
+ bias: Tensor,
+ eps: f64,
+ span: tracing::Span,
+}
+
+impl LayerNorm {
+ pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
+ let span = tracing::span!(tracing::Level::TRACE, "layer-norm");
+ Self {
+ weight,
+ bias,
+ eps,
+ span,
+ }
+ }
+
+ pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let (_bsize, _seq_len, hidden_size) = x.dims3()?;
+ let x = x.to_dtype(internal_dtype)?;
+ let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?;
+ let x = x.broadcast_sub(&mean_x)?;
+ let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ let x = x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(&self.weight)?
+ .broadcast_add(&self.bias)?;
+ Ok(x)
+ }
+}
+#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Default)]
+#[serde(rename_all = "lowercase")]
+enum PositionEmbeddingType {
+ #[default]
+ Absolute,
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1
+#[derive(Debug, Clone, PartialEq, Deserialize)]
+pub struct Config {
+ vocab_size: usize,
+ hidden_size: usize,
+ num_hidden_layers: usize,
+ num_attention_heads: usize,
+ intermediate_size: usize,
+ hidden_act: HiddenAct,
+ hidden_dropout_prob: f64,
+ max_position_embeddings: usize,
+ type_vocab_size: usize,
+ initializer_range: f64,
+ layer_norm_eps: f64,
+ pad_token_id: usize,
+ #[serde(default)]
+ position_embedding_type: PositionEmbeddingType,
+ #[serde(default)]
+ use_cache: bool,
+ classifier_dropout: Option<f64>,
+ model_type: Option<String>,
+}
+
+impl Default for Config {
+ fn default() -> Self {
+ Self {
+ vocab_size: 30522,
+ hidden_size: 768,
+ num_hidden_layers: 12,
+ num_attention_heads: 12,
+ intermediate_size: 3072,
+ hidden_act: HiddenAct::Gelu,
+ hidden_dropout_prob: 0.1,
+ max_position_embeddings: 512,
+ type_vocab_size: 2,
+ initializer_range: 0.02,
+ layer_norm_eps: 1e-12,
+ pad_token_id: 0,
+ position_embedding_type: PositionEmbeddingType::Absolute,
+ use_cache: true,
+ classifier_dropout: None,
+ model_type: Some("bert".to_string()),
+ }
+ }
+}
+
+impl Config {
+ fn _all_mini_lm_l6_v2() -> Self {
+ // https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
+ Self {
+ vocab_size: 30522,
+ hidden_size: 384,
+ num_hidden_layers: 6,
+ num_attention_heads: 12,
+ intermediate_size: 1536,
+ hidden_act: HiddenAct::Gelu,
+ hidden_dropout_prob: 0.1,
+ max_position_embeddings: 512,
+ type_vocab_size: 2,
+ initializer_range: 0.02,
+ layer_norm_eps: 1e-12,
+ pad_token_id: 0,
+ position_embedding_type: PositionEmbeddingType::Absolute,
+ use_cache: true,
+ classifier_dropout: None,
+ model_type: Some("bert".to_string()),
+ }
+ }
+}
+
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, hidden_size))
+}
+
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let weight = vb.get((size2, size1), "weight")?;
+ let bias = vb.get(size2, "bias")?;
+ Ok(Linear::new(weight, Some(bias)))
+}
+
+struct Dropout {
+ #[allow(dead_code)]
+ pr: f64,
+}
+
+impl Dropout {
+ fn new(pr: f64) -> Self {
+ Self { pr }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ // TODO
+ Ok(x.clone())
+ }
+}
+
+fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
+ let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
+ (Ok(weight), Ok(bias)) => (weight, bias),
+ (Err(err), _) | (_, Err(err)) => {
+ if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
+ (weight, bias)
+ } else {
+ return Err(err);
+ }
+ }
+ };
+ Ok(LayerNorm::new(weight, bias, eps))
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
+struct BertEmbeddings {
+ word_embeddings: Embedding,
+ position_embeddings: Option<Embedding>,
+ token_type_embeddings: Embedding,
+ layer_norm: LayerNorm,
+ dropout: Dropout,
+ span: tracing::Span,
+}
+
+impl BertEmbeddings {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let word_embeddings = embedding(
+ config.vocab_size,
+ config.hidden_size,
+ vb.pp("word_embeddings"),
+ )?;
+ let position_embeddings = embedding(
+ config.max_position_embeddings,
+ config.hidden_size,
+ vb.pp("position_embeddings"),
+ )?;
+ let token_type_embeddings = embedding(
+ config.type_vocab_size,
+ config.hidden_size,
+ vb.pp("token_type_embeddings"),
+ )?;
+ let layer_norm = layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ vb.pp("LayerNorm"),
+ )?;
+ Ok(Self {
+ word_embeddings,
+ position_embeddings: Some(position_embeddings),
+ token_type_embeddings,
+ layer_norm,
+ dropout: Dropout::new(config.hidden_dropout_prob),
+ span: tracing::span!(tracing::Level::TRACE, "embeddings"),
+ })
+ }
+
+ fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (_bsize, seq_len) = input_ids.dims2()?;
+ let input_embeddings = self.word_embeddings.forward(input_ids)?;
+ let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
+ let mut embeddings = (&input_embeddings + token_type_embeddings)?;
+ if let Some(position_embeddings) = &self.position_embeddings {
+ // TODO: Proper absolute positions?
+ let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
+ let position_ids = Tensor::new(&position_ids[..], input_ids.device())?;
+ embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?
+ }
+ let embeddings = self.layer_norm.forward(&embeddings)?;
+ let embeddings = self.dropout.forward(&embeddings)?;
+ Ok(embeddings)
+ }
+}
+
+struct BertSelfAttention {
+ query: Linear,
+ key: Linear,
+ value: Linear,
+ dropout: Dropout,
+ num_attention_heads: usize,
+ attention_head_size: usize,
+ span: tracing::Span,
+ span_softmax: tracing::Span,
+}
+
+impl BertSelfAttention {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let attention_head_size = config.hidden_size / config.num_attention_heads;
+ let all_head_size = config.num_attention_heads * attention_head_size;
+ let dropout = Dropout::new(config.hidden_dropout_prob);
+ let hidden_size = config.hidden_size;
+ let query = linear(hidden_size, all_head_size, vb.pp("query"))?;
+ let value = linear(hidden_size, all_head_size, vb.pp("value"))?;
+ let key = linear(hidden_size, all_head_size, vb.pp("key"))?;
+ Ok(Self {
+ query,
+ key,
+ value,
+ dropout,
+ num_attention_heads: config.num_attention_heads,
+ attention_head_size,
+ span: tracing::span!(tracing::Level::TRACE, "self-attn"),
+ span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"),
+ })
+ }
+
+ fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut new_x_shape = xs.dims().to_vec();
+ new_x_shape.pop();
+ new_x_shape.push(self.num_attention_heads);
+ new_x_shape.push(self.attention_head_size);
+ let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
+ xs.contiguous()
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let query_layer = self.query.forward(hidden_states)?;
+ let key_layer = self.key.forward(hidden_states)?;
+ let value_layer = self.value.forward(hidden_states)?;
+
+ let query_layer = self.transpose_for_scores(&query_layer)?;
+ let key_layer = self.transpose_for_scores(&key_layer)?;
+ let value_layer = self.transpose_for_scores(&value_layer)?;
+
+ let attention_scores = query_layer.matmul(&key_layer.t()?)?;
+ let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
+ let attention_probs = {
+ let _enter_sm = self.span_softmax.enter();
+ candle_nn::ops::softmax(&attention_scores, candle::D::Minus1)?
+ };
+ let attention_probs = self.dropout.forward(&attention_probs)?;
+
+ let context_layer = attention_probs.matmul(&value_layer)?;
+ let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
+ let context_layer = context_layer.flatten_from(candle::D::Minus2)?;
+ Ok(context_layer)
+ }
+}
+
+struct BertSelfOutput {
+ dense: Linear,
+ layer_norm: LayerNorm,
+ dropout: Dropout,
+ span: tracing::Span,
+}
+
+impl BertSelfOutput {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let dense = linear(config.hidden_size, config.hidden_size, vb.pp("dense"))?;
+ let layer_norm = layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ vb.pp("LayerNorm"),
+ )?;
+ let dropout = Dropout::new(config.hidden_dropout_prob);
+ Ok(Self {
+ dense,
+ layer_norm,
+ dropout,
+ span: tracing::span!(tracing::Level::TRACE, "self-out"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.dropout.forward(&hidden_states)?;
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392
+struct BertAttention {
+ self_attention: BertSelfAttention,
+ self_output: BertSelfOutput,
+ span: tracing::Span,
+}
+
+impl BertAttention {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let self_attention = BertSelfAttention::load(vb.pp("self"), config)?;
+ let self_output = BertSelfOutput::load(vb.pp("output"), config)?;
+ Ok(Self {
+ self_attention,
+ self_output,
+ span: tracing::span!(tracing::Level::TRACE, "attn"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let self_outputs = self.self_attention.forward(hidden_states)?;
+ let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
+ Ok(attention_output)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441
+struct BertIntermediate {
+ dense: Linear,
+ intermediate_act: HiddenActLayer,
+ span: tracing::Span,
+}
+
+impl BertIntermediate {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let dense = linear(config.hidden_size, config.intermediate_size, vb.pp("dense"))?;
+ Ok(Self {
+ dense,
+ intermediate_act: HiddenActLayer::new(config.hidden_act),
+ span: tracing::span!(tracing::Level::TRACE, "inter"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let ys = self.intermediate_act.forward(&hidden_states)?;
+ Ok(ys)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456
+struct BertOutput {
+ dense: Linear,
+ layer_norm: LayerNorm,
+ dropout: Dropout,
+ span: tracing::Span,
+}
+
+impl BertOutput {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let dense = linear(config.intermediate_size, config.hidden_size, vb.pp("dense"))?;
+ let layer_norm = layer_norm(
+ config.hidden_size,
+ config.layer_norm_eps,
+ vb.pp("LayerNorm"),
+ )?;
+ let dropout = Dropout::new(config.hidden_dropout_prob);
+ Ok(Self {
+ dense,
+ layer_norm,
+ dropout,
+ span: tracing::span!(tracing::Level::TRACE, "out"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let hidden_states = self.dense.forward(hidden_states)?;
+ let hidden_states = self.dropout.forward(&hidden_states)?;
+ self.layer_norm.forward(&(hidden_states + input_tensor)?)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470
+struct BertLayer {
+ attention: BertAttention,
+ intermediate: BertIntermediate,
+ output: BertOutput,
+ span: tracing::Span,
+}
+
+impl BertLayer {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let attention = BertAttention::load(vb.pp("attention"), config)?;
+ let intermediate = BertIntermediate::load(vb.pp("intermediate"), config)?;
+ let output = BertOutput::load(vb.pp("output"), config)?;
+ Ok(Self {
+ attention,
+ intermediate,
+ output,
+ span: tracing::span!(tracing::Level::TRACE, "layer"),
+ })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let attention_output = self.attention.forward(hidden_states)?;
+ // TODO: Support cross-attention?
+ // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
+ // TODO: Support something similar to `apply_chunking_to_forward`?
+ let intermediate_output = self.intermediate.forward(&attention_output)?;
+ let layer_output = self
+ .output
+ .forward(&intermediate_output, &attention_output)?;
+ Ok(layer_output)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556
+struct BertEncoder {
+ layers: Vec<BertLayer>,
+ span: tracing::Span,
+}
+
+impl BertEncoder {
+ fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let layers = (0..config.num_hidden_layers)
+ .map(|index| BertLayer::load(vb.pp(&format!("layer.{index}")), config))
+ .collect::<Result<Vec<_>>>()?;
+ let span = tracing::span!(tracing::Level::TRACE, "encoder");
+ Ok(BertEncoder { layers, span })
+ }
+
+ fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let mut hidden_states = hidden_states.clone();
+ // Use a loop rather than a fold as it's easier to modify when adding debug/...
+ for layer in self.layers.iter() {
+ hidden_states = layer.forward(&hidden_states)?
+ }
+ Ok(hidden_states)
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874
+pub struct BertModel {
+ embeddings: BertEmbeddings,
+ encoder: BertEncoder,
+ pub device: Device,
+ span: tracing::Span,
+}
+
+impl BertModel {
+ pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
+ let (embeddings, encoder) = match (
+ BertEmbeddings::load(vb.pp("embeddings"), config),
+ BertEncoder::load(vb.pp("encoder"), config),
+ ) {
+ (Ok(embeddings), Ok(encoder)) => (embeddings, encoder),
+ (Err(err), _) | (_, Err(err)) => {
+ if let Some(model_type) = &config.model_type {
+ if let (Ok(embeddings), Ok(encoder)) = (
+ BertEmbeddings::load(vb.pp(&format!("{model_type}.embeddings")), config),
+ BertEncoder::load(vb.pp(&format!("{model_type}.encoder")), config),
+ ) {
+ (embeddings, encoder)
+ } else {
+ return Err(err);
+ }
+ } else {
+ return Err(err);
+ }
+ }
+ };
+ Ok(Self {
+ embeddings,
+ encoder,
+ device: vb.device().clone(),
+ span: tracing::span!(tracing::Level::TRACE, "model"),
+ })
+ }
+
+ pub fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
+ let sequence_output = self.encoder.forward(&embedding_output)?;
+ Ok(sequence_output)
+ }
+}
diff --git a/candle-transformers/src/models/bigcode.rs b/candle-transformers/src/models/bigcode.rs
new file mode 100644
index 00000000..1e63956b
--- /dev/null
+++ b/candle-transformers/src/models/bigcode.rs
@@ -0,0 +1,359 @@
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
+
+fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
+ let weight = vb.get((size2, size1), "weight")?;
+ let bias = if bias {
+ Some(vb.get(size2, "bias")?)
+ } else {
+ None
+ };
+ Ok(Linear::new(weight, bias))
+}
+
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, hidden_size))
+}
+
+fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
+ let weight = vb.get(size, "weight")?;
+ let bias = vb.get(size, "bias")?;
+ Ok(LayerNorm::new(weight, bias, eps))
+}
+
+fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), device)?;
+ Ok(mask)
+}
+
+#[derive(Debug)]
+pub struct Config {
+ pub vocab_size: usize,
+ // max_position_embeddings aka n_positions
+ pub max_position_embeddings: usize,
+ // num_hidden_layers aka n_layer
+ pub num_hidden_layers: usize,
+ // hidden_size aka n_embd
+ pub hidden_size: usize,
+ pub layer_norm_epsilon: f64,
+ pub n_inner: Option<usize>,
+ // num_attention_heads aka n_head
+ pub num_attention_heads: usize,
+ pub multi_query: bool,
+ pub use_cache: bool,
+}
+
+impl Config {
+ #[allow(dead_code)]
+ pub fn starcoder_1b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 24,
+ hidden_size: 2048,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(8192),
+ num_attention_heads: 16,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder_3b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 36,
+ hidden_size: 2816,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(11264),
+ num_attention_heads: 22,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder_7b() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 42,
+ hidden_size: 4096,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(16384),
+ num_attention_heads: 32,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+
+ #[allow(dead_code)]
+ pub fn starcoder() -> Self {
+ Self {
+ vocab_size: 49152,
+ max_position_embeddings: 8192,
+ num_hidden_layers: 40,
+ hidden_size: 6144,
+ layer_norm_epsilon: 1e-5,
+ n_inner: Some(24576),
+ num_attention_heads: 48,
+ multi_query: true,
+ use_cache: true,
+ }
+ }
+}
+
+struct Attention {
+ c_attn: Linear,
+ c_proj: Linear,
+ kv_cache: Option<Tensor>,
+ use_cache: bool,
+ embed_dim: usize,
+ kv_dim: usize,
+ num_heads: usize,
+ head_dim: usize,
+ multi_query: bool,
+}
+
+impl Attention {
+ pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let head_dim = hidden_size / cfg.num_attention_heads;
+ let kv_heads = if cfg.multi_query {
+ 1
+ } else {
+ cfg.num_attention_heads
+ };
+ let kv_dim = kv_heads * head_dim;
+ let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
+ let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
+ Ok(Self {
+ c_proj,
+ c_attn,
+ embed_dim: hidden_size,
+ kv_cache: None,
+ use_cache: cfg.use_cache,
+ kv_dim,
+ head_dim,
+ num_heads: cfg.num_attention_heads,
+ multi_query: cfg.multi_query,
+ })
+ }
+
+ fn attn(
+ &self,
+ query: &Tensor,
+ key: &Tensor,
+ value: &Tensor,
+ attention_mask: &Tensor,
+ ) -> Result<Tensor> {
+ if query.dtype() != DType::F32 {
+ // If we start supporting f16 models, we may need the upcasting scaling bits.
+ // https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
+ candle::bail!("upcasting is not supported {:?}", query.dtype())
+ }
+ let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
+ let initial_query_shape = query.shape();
+ let key_len = key.dim(D::Minus1)?;
+ let (query, key, attn_shape, attn_view) = if self.multi_query {
+ let (b_sz, query_len, _) = query.dims3()?;
+ let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
+ let attn_shape = (b_sz, query_len, self.num_heads, key_len);
+ let attn_view = (b_sz, query_len * self.num_heads, key_len);
+ (query, key.clone(), attn_shape, attn_view)
+ } else {
+ let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
+ let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
+ let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
+ let attn_shape = (b_sz, self.num_heads, query_len, key_len);
+ let attn_view = (b_sz * self.num_heads, query_len, key_len);
+ (query, key, attn_shape, attn_view)
+ };
+
+ let attn_weights =
+ (query.matmul(&key.contiguous()?)? * scale_factor)?.reshape(attn_shape)?;
+ let attention_mask = attention_mask.broadcast_as(attn_shape)?;
+ let mask_value =
+ Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
+ let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
+ let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
+ let value = value.contiguous()?;
+ let attn_output = if self.multi_query {
+ attn_weights
+ .reshape(attn_view)?
+ .matmul(&value)?
+ .reshape(initial_query_shape)?
+ } else {
+ attn_weights.matmul(&value)?
+ };
+ Ok(attn_output)
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let qkv = self.c_attn.forward(hidden_states)?;
+ let (query, key_value) = if self.multi_query {
+ let query = qkv.i((.., .., ..self.embed_dim))?;
+ let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
+ (query, key_value)
+ } else {
+ let mut dims = qkv.dims().to_vec();
+ dims.pop();
+ dims.push(self.embed_dim);
+ dims.push(self.head_dim * 3);
+ let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
+ let query = qkv.i((.., .., .., ..self.head_dim))?;
+ let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
+ (query, key_value)
+ };
+ let mut key_value = key_value;
+ if self.use_cache {
+ if let Some(kv_cache) = &self.kv_cache {
+ // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
+ // arbitrarily large sizes.
+ key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
+ }
+ self.kv_cache = Some(key_value.clone())
+ }
+
+ let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
+ let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
+ let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
+ let attn_output = if self.multi_query {
+ attn_output
+ } else {
+ attn_output
+ .transpose(1, 2)?
+ .reshape(hidden_states.shape())?
+ };
+ let attn_output = self.c_proj.forward(&attn_output)?;
+ Ok(attn_output)
+ }
+}
+
+struct Mlp {
+ c_fc: Linear,
+ c_proj: Linear,
+}
+
+impl Mlp {
+ fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
+ let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
+ Ok(Self { c_fc, c_proj })
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
+ let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
+ let hidden_states = self.c_proj.forward(&hidden_states)?;
+ Ok(hidden_states)
+ }
+}
+
+// TODO: Add cross-attention?
+struct Block {
+ ln_1: LayerNorm,
+ attn: Attention,
+ ln_2: LayerNorm,
+ mlp: Mlp,
+}
+
+impl Block {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
+ let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
+ let attn = Attention::load(vb.pp("attn"), cfg)?;
+ let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
+ let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
+ Ok(Self {
+ ln_1,
+ attn,
+ ln_2,
+ mlp,
+ })
+ }
+
+ fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
+ let residual = hidden_states;
+ let hidden_states = self.ln_1.forward(hidden_states)?;
+ let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
+ let hidden_states = (&attn_outputs + residual)?;
+ let residual = &hidden_states;
+ let hidden_states = self.ln_2.forward(&hidden_states)?;
+ let hidden_states = self.mlp.forward(&hidden_states)?;
+ let hidden_states = (&hidden_states + residual)?;
+ Ok(hidden_states)
+ }
+}
+
+pub struct GPTBigCode {
+ wte: Embedding,
+ wpe: Embedding,
+ blocks: Vec<Block>,
+ ln_f: LayerNorm,
+ lm_head: Linear,
+ bias: Tensor,
+ config: Config,
+}
+
+impl GPTBigCode {
+ pub fn config(&self) -> &Config {
+ &self.config
+ }
+
+ pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
+ let hidden_size = cfg.hidden_size;
+ let vb_t = vb.pp("transformer");
+ let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
+ let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
+ let blocks = (0..cfg.num_hidden_layers)
+ .map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
+ .collect::<Result<Vec<_>>>()?;
+ let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
+ let lm_head = linear(hidden_size, cfg.vocab_size, false, vb_t.pp("wte"))?;
+ let bias = make_causal_mask(cfg.max_position_embeddings, vb.device())?;
+ Ok(Self {
+ wte,
+ wpe,
+ blocks,
+ lm_head,
+ ln_f,
+ bias,
+ config: cfg,
+ })
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
+ let dev = input_ids.device();
+ let (b_sz, seq_len) = input_ids.dims2()?;
+
+ let key_len = past_len + seq_len;
+ let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
+ // MQA models: (batch_size, query_length, n_heads, key_length)
+ // MHA models: (batch_size, n_heads, query_length, key_length)
+ let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
+ let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;
+
+ let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
+ let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
+ let input_embeds = self.wte.forward(input_ids)?;
+ let position_embeds = self.wpe.forward(&position_ids)?;
+
+ let mut hidden_states = (&input_embeds + &position_embeds)?;
+ for block in self.blocks.iter_mut() {
+ hidden_states = block.forward(&hidden_states, &attention_mask)?;
+ }
+ let hidden_states = self.ln_f.forward(&hidden_states)?;
+ let hidden_states = hidden_states
+ .reshape((b_sz, seq_len, self.config.hidden_size))?
+ .narrow(1, seq_len - 1, 1)?;
+ let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
+ Ok(logits)
+ }
+}
diff --git a/candle-transformers/src/models/falcon.rs b/candle-transformers/src/models/falcon.rs
new file mode 100644
index 00000000..6ede136a
--- /dev/null
+++ b/candle-transformers/src/models/falcon.rs
@@ -0,0 +1,484 @@
+use candle::{DType, Device, Result, Tensor, D};
+use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
+
+const MAX_SEQ_LEN: usize = 5000;
+
+fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
+ let weight = vb.get((size2, size1), "weight")?;
+ let bias = if bias {
+ Some(vb.get(size2, "bias")?)
+ } else {
+ None
+ };
+ Ok(Linear::new(weight, bias))
+}
+
+fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
+ let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
+ (Ok(weight), Ok(bias)) => (weight, bias),
+ (Err(err), _) | (_, Err(err)) => {
+ if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
+ (weight, bias)
+ } else {
+ return Err(err);
+ }
+ }
+ };
+ Ok(LayerNorm::new(weight, bias, eps))
+}
+
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, hidden_size))
+}
+
+// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py
+#[derive(Debug)]
+pub struct Config {
+ pub vocab_size: usize,
+ pub hidden_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub layer_norm_epsilon: f64,
+ pub initializer_range: f64,
+ pub use_cache: bool,
+ pub bos_token_id: u32,
+ pub eos_token_id: u32,
+ pub hidden_dropout: f64,
+ pub attention_dropout: f64,
+ pub n_head_kv: Option<usize>,
+ pub alibi: bool,
+ pub new_decoder_architecture: bool,
+ pub multi_query: bool,
+ pub parallel_attn: bool,
+ pub bias: bool,
+}
+
+impl Default for Config {
+ fn default() -> Self {
+ Self {
+ vocab_size: 65024,
+ hidden_size: 4544,
+ num_hidden_layers: 32,
+ num_attention_heads: 71,
+ layer_norm_epsilon: 1e-5,
+ initializer_range: 0.02,
+ use_cache: true,
+ bos_token_id: 11,
+ eos_token_id: 11,
+ hidden_dropout: 0.0,
+ attention_dropout: 0.0,
+ n_head_kv: None,
+ alibi: false,
+ new_decoder_architecture: false,
+ multi_query: true,
+ parallel_attn: true,
+ bias: false,
+ }
+ }
+}
+
+impl Config {
+ pub fn validate(&self) -> Result<()> {
+ if self.alibi {
+ candle::bail!("alibi is not supported");
+ }
+ if self.new_decoder_architecture {
+ candle::bail!("new_decoder_architecture is not supported");
+ }
+ if self.n_head_kv.is_some() {
+ candle::bail!("n_head_kv is not supported");
+ }
+ Ok(())
+ }
+
+ // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
+ pub fn falcon7b() -> Self {
+ // This is currently on par with the defaults, the defaults come from the Python default
+ // arguments for the config initialization whereas the following come from the json config.
+ Self {
+ vocab_size: 65024,
+ hidden_size: 4544,
+ num_hidden_layers: 32,
+ num_attention_heads: 71,
+ layer_norm_epsilon: 1e-5,
+ initializer_range: 0.02,
+ use_cache: true,
+ bos_token_id: 11,
+ eos_token_id: 11,
+ hidden_dropout: 0.,
+ attention_dropout: 0.,
+ n_head_kv: None,
+ alibi: false,
+ new_decoder_architecture: false,
+ multi_query: true,
+ parallel_attn: true,
+ bias: false,
+ }
+ }
+
+ fn head_dim(&self) -> usize {
+ self.hidden_size / self.num_attention_heads
+ }
+
+ fn rotary(&self) -> bool {
+ !self.alibi
+ }
+}
+
+fn rotate_half(x: &Tensor) -> Result<Tensor> {
+ let l = x.dim(D::Minus1)?;
+ let x1 = x.narrow(D::Minus1, 0, l / 2)?;
+ let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?;
+ let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
+ Ok(x21)
+}
+
+#[derive(Debug)]
+struct FalconRotaryEmbedding {
+ inv_freq: Tensor,
+ cache: Option<(usize, Tensor, Tensor)>,
+}
+
+impl FalconRotaryEmbedding {
+ fn load(device: &Device, cfg: &Config) -> Result<Self> {
+ let head_dim = cfg.head_dim();
+ let inv_freq: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32))
+ .collect();
+ Ok(Self {
+ inv_freq: Tensor::new(inv_freq.as_slice(), device)?,
+ cache: None,
+ })
+ }
+
+ fn cos_sin(
+ &mut self,
+ seq_len: usize,
+ device: &Device,
+ dtype: DType,
+ ) -> Result<(Tensor, Tensor)> {
+ match &self.cache {
+ Some((s, cos, sin)) if *s == seq_len => {
+ return Ok((cos.clone(), sin.clone()));
+ }
+ _ => {}
+ }
+ let t = Tensor::arange(0, seq_len as u32, device)?.to_dtype(dtype)?;
+ let inv_freq = self.inv_freq.to_dtype(dtype)?;
+ let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?;
+ let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ let cos = emb.cos()?;
+ let sin = emb.sin()?;
+ self.cache = Some((seq_len, cos.clone(), sin.clone()));
+ Ok((cos, sin))
+ }
+
+ fn forward(
+ &mut self,
+ query: &Tensor,
+ key: &Tensor,
+ past_kv_len: usize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_batch, seq_len, _head_dim) = query.dims3()?;
+ let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?;
+ let cos = cos.narrow(0, past_kv_len, seq_len)?;
+ let sin = sin.narrow(0, past_kv_len, seq_len)?;
+ let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?;
+ let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?;
+ Ok((qs, ks))
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+#[derive(Debug)]
+struct FalconAttention {
+ query_key_value: Linear,
+ dense: Linear,
+ maybe_rotary: Option<FalconRotaryEmbedding>,
+ kv_cache: Option<(Tensor, Tensor)>,
+ inv_norm_factor: f64,
+ multi_query: bool,
+ use_cache: bool,
+ num_heads: usize,
+ head_dim: usize,
+ n_head_kv: usize,
+}
+
+impl FalconAttention {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let maybe_rotary = if cfg.rotary() {
+ let rotary = FalconRotaryEmbedding::load(vb.device(), cfg)?;
+ Some(rotary)
+ } else {
+ None
+ };
+ let head_dim = cfg.head_dim();
+ let hidden_size = cfg.hidden_size;
+ let qkv_out_dim = if cfg.multi_query {
+ hidden_size + 2 * head_dim
+ } else {
+ 3 * hidden_size
+ };
+ let query_key_value = linear(hidden_size, qkv_out_dim, cfg.bias, vb.pp("query_key_value"))?;
+ let dense = linear(hidden_size, hidden_size, cfg.bias, vb.pp("dense"))?;
+ Ok(Self {
+ query_key_value,
+ dense,
+ maybe_rotary,
+ kv_cache: None,
+ inv_norm_factor: 1. / (head_dim as f64).sqrt(),
+ multi_query: cfg.multi_query,
+ use_cache: cfg.use_cache,
+ num_heads: cfg.num_attention_heads,
+ n_head_kv: cfg.n_head_kv.unwrap_or(1),
+ head_dim,
+ })
+ }
+
+ fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
+ let (b_sz, seq_len, _) = fused_qkv.dims3()?;
+ if !self.multi_query {
+ let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?;
+ let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?;
+ let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?;
+ let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?;
+ Ok((q, k, v))
+ } else {
+ let fused_qkv =
+ fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?;
+ let d = fused_qkv.dim(D::Minus2)?;
+ let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?;
+ let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?;
+ let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?;
+ Ok((q, k, v))
+ }
+ }
+
+ fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> {
+ let fused_qkv = self.query_key_value.forward(x)?;
+ let head_dim = self.head_dim;
+ let (query, key, value) = self.split_heads(&fused_qkv)?;
+ let (b_sz, seq_len, _, _) = query.dims4()?;
+ let query = query
+ .transpose(1, 2)?
+ .reshape((b_sz * self.num_heads, seq_len, head_dim))?;
+ let key = key
+ .transpose(1, 2)?
+ .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
+ let value = value
+ .transpose(1, 2)?
+ .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
+ let (query, key) = if let Some(r) = &mut self.maybe_rotary {
+ r.forward(&query, &key, past_kv_len)?
+ } else {
+ (query, key)
+ };
+ let (mut key, mut value) = (key, value);
+ let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?;
+ if self.use_cache {
+ if let Some((cache_k, cache_v)) = &self.kv_cache {
+ // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
+ // arbitrarily large sizes.
+ key = Tensor::cat(&[cache_k, &key], 1)?.contiguous()?;
+ value = Tensor::cat(&[cache_v, &value], 1)?.contiguous()?;
+ }
+ self.kv_cache = Some((key.clone(), value.clone()))
+ }
+ let query = query.reshape((b_sz * self.num_heads, seq_len, head_dim))?;
+ let all_len = past_kv_len + seq_len;
+ let key = key.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;
+ let value = value.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;
+
+ let (key, value) = if self.n_head_kv == 1 {
+ (
+ key.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
+ value.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
+ )
+ } else {
+ (key, value)
+ };
+
+ // Only handle the case where alibi is None here, and non-flash attention.
+ let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?;
+ let attention_scores = candle_nn::ops::softmax(
+ &attention_scores
+ .broadcast_add(&mask.squeeze(1)?)?
+ .to_dtype(DType::F32)?,
+ D::Minus1,
+ )?
+ .to_dtype(x.dtype())?;
+ let attn_output = attention_scores
+ .matmul(&value)?
+ .reshape((b_sz, self.num_heads, seq_len, head_dim))?
+ .transpose(1, 2)?
+ .reshape((b_sz, seq_len, self.num_heads * head_dim))?;
+ let attn_output = self.dense.forward(&attn_output)?;
+ Ok(attn_output)
+ }
+}
+
+#[derive(Debug)]
+struct FalconMlp {
+ dense_h_to_4h: Linear,
+ dense_4h_to_h: Linear,
+}
+
+impl FalconMlp {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let h = cfg.hidden_size;
+ let b = cfg.bias;
+ let dense_h_to_4h = linear(h, 4 * h, b, vb.pp("dense_h_to_4h"))?;
+ let dense_4h_to_h = linear(4 * h, h, b, vb.pp("dense_4h_to_h"))?;
+ Ok(Self {
+ dense_h_to_4h,
+ dense_4h_to_h,
+ })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = self.dense_h_to_4h.forward(x)?.gelu()?;
+ let x = self.dense_4h_to_h.forward(&x)?;
+ Ok(x)
+ }
+}
+
+#[derive(Debug)]
+struct FalconDecoderLayer {
+ inp_layernorm: LayerNorm,
+ self_attention: FalconAttention,
+ post_attention_layernorm: Option<LayerNorm>,
+ mlp: FalconMlp,
+ parallel_attn: bool,
+}
+
+impl FalconDecoderLayer {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let mlp = FalconMlp::load(vb.pp("mlp"), cfg)?;
+ let inp_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_epsilon,
+ vb.pp("input_layernorm"),
+ )?;
+ let self_attention = FalconAttention::load(vb.pp("self_attention"), cfg)?;
+ let post_attention_layernorm = if cfg.parallel_attn {
+ None
+ } else {
+ let ln = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_epsilon,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Some(ln)
+ };
+ Ok(Self {
+ inp_layernorm,
+ self_attention,
+ post_attention_layernorm,
+ mlp,
+ parallel_attn: cfg.parallel_attn,
+ })
+ }
+
+ fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> {
+ let residual = x.clone();
+ let ln_attn = self.inp_layernorm.forward(x)?;
+ let attn_output = self.self_attention.forward(&ln_attn, mask, past_kv_len)?;
+ let (residual, ln_mlp) = match &self.post_attention_layernorm {
+ None => (residual, ln_attn),
+ Some(pal) => {
+ // This should include some dropout.
+ let residual = (&attn_output + &residual)?;
+ let ln_mlp = pal.forward(&residual)?;
+ (residual, ln_mlp)
+ }
+ };
+ let mlp_output = self.mlp.forward(&ln_mlp)?;
+
+ let mlp_output = if self.parallel_attn {
+ (mlp_output + attn_output)?
+ } else {
+ mlp_output
+ };
+ let output = (mlp_output + residual)?;
+ Ok(output)
+ }
+}
+
+#[derive(Debug)]
+pub struct Falcon {
+ word_embeddings: Embedding,
+ blocks: Vec<FalconDecoderLayer>,
+ ln_f: LayerNorm,
+ lm_head: Linear,
+ config: Config,
+}
+
+fn make_causal_mask(t: usize) -> Result<Tensor> {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
+ Ok(mask)
+}
+
+fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> {
+ // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?;
+ let mask = make_causal_mask(seq_len)?;
+ let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?;
+ Ok(mask)
+}
+
+impl Falcon {
+ pub fn config(&self) -> &Config {
+ &self.config
+ }
+
+ pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
+ let word_embeddings = embedding(
+ cfg.vocab_size,
+ cfg.hidden_size,
+ vb.pp("transformer.word_embeddings"),
+ )?;
+ let blocks = (0..cfg.num_hidden_layers)
+ .map(|i| FalconDecoderLayer::load(vb.pp(&format!("transformer.h.{i}")), &cfg))
+ .collect::<Result<Vec<_>>>()?;
+ let ln_f = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_epsilon,
+ vb.pp("transformer.ln_f"),
+ )?;
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?;
+ Ok(Self {
+ word_embeddings,
+ blocks,
+ ln_f,
+ lm_head,
+ config: cfg,
+ })
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
+ let (b_sz, seq_len) = input_ids.dims2()?;
+ let mut hidden_state = self.word_embeddings.forward(input_ids)?;
+ let past_kv_len = match &self.blocks[0].self_attention.kv_cache {
+ Some((k, _)) => k.dim(1)?,
+ None => 0,
+ };
+ let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?;
+ for block in self.blocks.iter_mut() {
+ hidden_state = block.forward(&hidden_state, &causal_mask, past_kv_len)?;
+ }
+ let hidden_state = self.ln_f.forward(&hidden_state)?;
+ let hidden_state = hidden_state.narrow(1, seq_len - 1, 1)?;
+ let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?;
+ Ok(logits)
+ }
+}
diff --git a/candle-transformers/src/models/llama.rs b/candle-transformers/src/models/llama.rs
new file mode 100644
index 00000000..eed4df5e
--- /dev/null
+++ b/candle-transformers/src/models/llama.rs
@@ -0,0 +1,446 @@
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, Module, VarBuilder};
+use serde::Deserialize;
+use std::collections::HashMap;
+use std::sync::{Arc, Mutex};
+
+pub const MAX_SEQ_LEN: usize = 4096;
+
+#[derive(Deserialize)]
+pub struct LlamaConfig {
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub vocab_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: Option<usize>,
+ pub rms_norm_eps: f64,
+ #[serde(default = "default_rope")]
+ pub rope_theta: f32,
+}
+
+fn default_rope() -> f32 {
+ 10_000.0
+}
+
+impl LlamaConfig {
+ pub fn into_config(self, use_flash_attn: bool) -> Config {
+ Config {
+ hidden_size: self.hidden_size,
+ intermediate_size: self.intermediate_size,
+ vocab_size: self.vocab_size,
+ num_hidden_layers: self.num_hidden_layers,
+ num_attention_heads: self.num_attention_heads,
+ num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
+ rms_norm_eps: self.rms_norm_eps,
+ rope_theta: self.rope_theta,
+ use_flash_attn,
+ }
+ }
+}
+
+pub struct Config {
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub vocab_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: usize,
+ pub use_flash_attn: bool,
+ pub rms_norm_eps: f64,
+ pub rope_theta: f32,
+}
+
+impl Config {
+ pub fn config_7b_v1(use_flash_attn: bool) -> Self {
+ Self {
+ hidden_size: 4096,
+ intermediate_size: 11008,
+ vocab_size: 32000,
+ num_hidden_layers: 32,
+ num_attention_heads: 32,
+ num_key_value_heads: 32,
+ use_flash_attn,
+ rms_norm_eps: 1e-6,
+ rope_theta: 10_000.0,
+ }
+ }
+
+ pub fn config_7b_v2(use_flash_attn: bool) -> Self {
+ Self {
+ hidden_size: 4096,
+ intermediate_size: 11008,
+ vocab_size: 32000,
+ num_hidden_layers: 32,
+ num_attention_heads: 32,
+ num_key_value_heads: 32,
+ use_flash_attn,
+ rms_norm_eps: 1e-5,
+ rope_theta: 10_000.0,
+ }
+ }
+}
+
+// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
+// model.
+#[derive(Debug)]
+pub struct Linear {
+ inner: candle_nn::Linear,
+ span: tracing::Span,
+}
+
+impl Linear {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+#[derive(Clone)]
+pub struct Cache {
+ masks: Arc<Mutex<HashMap<usize, Tensor>>>,
+ pub use_kv_cache: bool,
+ #[allow(clippy::type_complexity)]
+ kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
+ cos: Tensor,
+ sin: Tensor,
+ device: Device,
+}
+
+impl Cache {
+ pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result<Self> {
+ // precompute freqs_cis
+ let n_elem = config.hidden_size / config.num_attention_heads;
+ let theta: Vec<_> = (0..n_elem)
+ .step_by(2)
+ .map(|i| 1f32 / config.rope_theta.powf(i as f32 / n_elem as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), device)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ // This is different from the paper, see:
+ // https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
+ let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
+ let cos = idx_theta.cos()?.to_dtype(dtype)?;
+ let sin = idx_theta.sin()?.to_dtype(dtype)?;
+ Ok(Self {
+ masks: Arc::new(Mutex::new(HashMap::new())),
+ use_kv_cache,
+ kvs: Arc::new(Mutex::new(vec![None; config.num_hidden_layers])),
+ device: device.clone(),
+ cos,
+ sin,
+ })
+ }
+
+ fn mask(&self, t: usize) -> Result<Tensor> {
+ let mut masks = self.masks.lock().unwrap();
+ if let Some(mask) = masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
+ masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+}
+
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
+ Ok(Linear { inner, span })
+}
+
+fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, cfg.hidden_size))
+}
+
+struct RmsNorm {
+ inner: candle_nn::RmsNorm,
+ span: tracing::Span,
+}
+
+impl RmsNorm {
+ fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
+ let inner = candle_nn::rms_norm(size, eps, vb)?;
+ Ok(Self { inner, span })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+struct CausalSelfAttention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_attention_heads: usize,
+ num_key_value_heads: usize,
+ head_dim: usize,
+ cache: Cache,
+ use_flash_attn: bool,
+ span: tracing::Span,
+ span_rot: tracing::Span,
+}
+
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
+impl CausalSelfAttention {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
+ let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
+ let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
+ let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
+ let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
+ let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
+ let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
+ let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
+ Ok(rope)
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b_sz, seq_len, hidden_size) = x.dims3()?;
+ let q = self.q_proj.forward(x)?;
+ let k = self.k_proj.forward(x)?;
+ let v = self.v_proj.forward(x)?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let k = k
+ .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let mut v = v
+ .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let mut k = self.apply_rotary_emb(&k, index_pos)?;
+
+ if self.cache.use_kv_cache {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
+ v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
+ let k_seq_len = k.dims()[1];
+ if k_seq_len > MAX_SEQ_LEN {
+ k = k
+ .narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
+ .contiguous()?
+ }
+ let v_seq_len = v.dims()[1];
+ if v_seq_len > 2 * MAX_SEQ_LEN {
+ v = v
+ .narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
+ .contiguous()?
+ }
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let y = if self.use_flash_attn {
+ // flash-attn expects (b_sz, seq_len, nheads, head_dim)
+ let q = q.transpose(1, 2)?;
+ let k = k.transpose(1, 2)?;
+ let v = v.transpose(1, 2)?;
+ let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
+ flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)?
+ } else {
+ let in_dtype = q.dtype();
+ let q = q.to_dtype(DType::F32)?;
+ let k = k.to_dtype(DType::F32)?;
+ let v = v.to_dtype(DType::F32)?;
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?
+ };
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
+ let y = self.o_proj.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_attention_heads / self.num_key_value_heads;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(2)?
+ .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
+ Ok(x)
+ }
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let size_in = cfg.hidden_size;
+ let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads;
+ let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads;
+ let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
+ let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
+ let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
+ let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_attention_heads: cfg.num_attention_heads,
+ num_key_value_heads: cfg.num_key_value_heads,
+ head_dim: cfg.hidden_size / cfg.num_attention_heads,
+ cache: cache.clone(),
+ use_flash_attn: cfg.use_flash_attn,
+ span,
+ span_rot,
+ })
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+struct Mlp {
+ c_fc1: Linear,
+ c_fc2: Linear,
+ c_proj: Linear,
+ span: tracing::Span,
+}
+
+impl Mlp {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
+ self.c_proj.forward(&x)
+ }
+
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "mlp");
+ let h_size = cfg.hidden_size;
+ let i_size = cfg.intermediate_size;
+ let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
+ let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
+ let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
+ Ok(Self {
+ c_fc1,
+ c_fc2,
+ c_proj,
+ span,
+ })
+ }
+}
+
+struct Block {
+ rms_1: RmsNorm,
+ attn: CausalSelfAttention,
+ rms_2: RmsNorm,
+ mlp: Mlp,
+ span: tracing::Span,
+}
+
+impl Block {
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let residual = x;
+ let x = self.rms_1.forward(x)?;
+ let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
+ let residual = &x;
+ let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
+ Ok(x)
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "block");
+ let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
+ let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
+ let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let rms_2 = RmsNorm::load(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ rms_1,
+ attn,
+ rms_2,
+ mlp,
+ span,
+ })
+ }
+}
+
+pub struct Llama {
+ wte: Embedding,
+ blocks: Vec<Block>,
+ ln_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Llama {
+ pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mut x = self.wte.forward(x)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, index_pos, block_idx)?;
+ }
+ let x = self.ln_f.forward(&x)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let logits = self.lm_head.forward(&x)?;
+ logits.to_dtype(DType::F32)
+ }
+
+ pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ let ln_f = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?;
+ let blocks: Vec<_> = (0..cfg.num_hidden_layers)
+ .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
+ .collect();
+
+ Ok(Self {
+ wte,
+ blocks,
+ ln_f,
+ lm_head,
+ })
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 8b137891..1b3dcf25 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -1 +1,5 @@
-
+pub mod bert;
+pub mod bigcode;
+pub mod falcon;
+pub mod llama;
+pub mod whisper;
diff --git a/candle-transformers/src/models/whisper/audio.rs b/candle-transformers/src/models/whisper/audio.rs
new file mode 100644
index 00000000..4e01de32
--- /dev/null
+++ b/candle-transformers/src/models/whisper/audio.rs
@@ -0,0 +1,210 @@
+// Audio processing code, adapted from whisper.cpp
+// https://github.com/ggerganov/whisper.cpp
+
+pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
+
+impl Float for f32 {}
+impl Float for f64 {}
+
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
+fn fft<T: Float>(inp: &[T]) -> Vec<T> {
+ let n = inp.len();
+ let zero = T::zero();
+ if n == 1 {
+ return vec![inp[0], zero];
+ }
+ if n % 2 == 1 {
+ return dft(inp);
+ }
+ let mut out = vec![zero; n * 2];
+
+ let mut even = Vec::with_capacity(n / 2);
+ let mut odd = Vec::with_capacity(n / 2);
+
+ for (i, &inp) in inp.iter().enumerate() {
+ if i % 2 == 0 {
+ even.push(inp)
+ } else {
+ odd.push(inp);
+ }
+ }
+
+ let even_fft = fft(&even);
+ let odd_fft = fft(&odd);
+
+ let two_pi = T::PI() + T::PI();
+ let n_t = T::from(n).unwrap();
+ for k in 0..n / 2 {
+ let k_t = T::from(k).unwrap();
+ let theta = two_pi * k_t / n_t;
+ let re = theta.cos();
+ let im = -theta.sin();
+
+ let re_odd = odd_fft[2 * k];
+ let im_odd = odd_fft[2 * k + 1];
+
+ out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
+ out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
+
+ out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
+ out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
+ }
+ out
+}
+
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
+fn dft<T: Float>(inp: &[T]) -> Vec<T> {
+ let zero = T::zero();
+ let n = inp.len();
+ let two_pi = T::PI() + T::PI();
+
+ let mut out = Vec::new();
+ out.reserve(2 * n);
+ let n_t = T::from(n).unwrap();
+ for k in 0..n {
+ let k_t = T::from(k).unwrap();
+ let mut re = zero;
+ let mut im = zero;
+
+ for (j, &inp) in inp.iter().enumerate() {
+ let j_t = T::from(j).unwrap();
+ let angle = two_pi * k_t * j_t / n_t;
+ re += inp * angle.cos();
+ im -= inp * angle.sin();
+ }
+
+ out.push(re);
+ out.push(im);
+ }
+ out
+}
+
+#[allow(clippy::too_many_arguments)]
+// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
+fn log_mel_spectrogram_w<T: Float>(
+ ith: usize,
+ hann: &[T],
+ samples: &[T],
+ filters: &[T],
+ fft_size: usize,
+ fft_step: usize,
+ speed_up: bool,
+ n_len: usize,
+ n_mel: usize,
+ n_threads: usize,
+) -> Vec<T> {
+ let n_fft = if speed_up {
+ 1 + fft_size / 4
+ } else {
+ 1 + fft_size / 2
+ };
+
+ let zero = T::zero();
+ let half = T::from(0.5).unwrap();
+ let mut fft_in = vec![zero; fft_size];
+ let mut mel = vec![zero; n_len * n_mel];
+
+ for i in (ith..n_len).step_by(n_threads) {
+ let offset = i * fft_step;
+
+ // apply Hanning window
+ for j in 0..fft_size {
+ fft_in[j] = if offset + j < samples.len() {
+ hann[j] * samples[offset + j]
+ } else {
+ zero
+ }
+ }
+
+ // FFT -> mag^2
+ let mut fft_out: Vec<T> = fft(&fft_in);
+
+ for j in 0..fft_size {
+ fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
+ }
+ for j in 1..fft_size / 2 {
+ let v = fft_out[fft_size - j];
+ fft_out[j] += v;
+ }
+
+ if speed_up {
+ // scale down in the frequency domain results in a speed up in the time domain
+ for j in 0..n_fft {
+ fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
+ }
+ }
+
+ // mel spectrogram
+ for j in 0..n_mel {
+ let mut sum = zero;
+ for k in 0..n_fft {
+ sum += fft_out[k] * filters[j * n_fft + k];
+ }
+ mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
+ }
+ }
+ mel
+}
+
+fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
+ samples: &[T],
+ filters: &[T],
+ fft_size: usize,
+ fft_step: usize,
+ n_mel: usize,
+ speed_up: bool,
+) -> Vec<T> {
+ let zero = T::zero();
+ let two_pi = T::PI() + T::PI();
+ let half = T::from(0.5).unwrap();
+ let one = T::from(1.0).unwrap();
+ let four = T::from(4.0).unwrap();
+ let fft_size_t = T::from(fft_size).unwrap();
+
+ let hann: Vec<T> = (0..fft_size)
+ .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
+ .collect();
+ let n_len = samples.len() / fft_step;
+
+ // pad audio with at least one extra chunk of zeros
+ let pad = 100 * super::CHUNK_LENGTH / 2;
+ let n_len = if n_len % pad != 0 {
+ (n_len / pad + 1) * pad
+ } else {
+ n_len
+ };
+ let n_len = n_len + pad;
+ let samples = {
+ let mut samples_padded = samples.to_vec();
+ let to_add = n_len * fft_step - samples.len();
+ samples_padded.extend(std::iter::repeat(zero).take(to_add));
+ samples_padded
+ };
+
+ // Use a single thread for now.
+ let mut mel = log_mel_spectrogram_w(
+ 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
+ );
+ let mmax = mel
+ .iter()
+ .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
+ .copied()
+ .unwrap_or(zero)
+ - T::from(8).unwrap();
+ for m in mel.iter_mut() {
+ let v = T::max(*m, mmax);
+ *m = v / four + one
+ }
+ mel
+}
+
+pub fn pcm_to_mel<T: Float + std::fmt::Display>(samples: &[T], filters: &[T]) -> Vec<T> {
+ log_mel_spectrogram_(
+ samples,
+ filters,
+ super::N_FFT,
+ super::HOP_LENGTH,
+ super::N_MELS,
+ false,
+ )
+}
diff --git a/candle-transformers/src/models/whisper/mod.rs b/candle-transformers/src/models/whisper/mod.rs
new file mode 100644
index 00000000..7dc8107b
--- /dev/null
+++ b/candle-transformers/src/models/whisper/mod.rs
@@ -0,0 +1,26 @@
+pub mod audio;
+pub mod model;
+
+pub const DTYPE: candle::DType = candle::DType::F32;
+
+// Audio parameters.
+pub const SAMPLE_RATE: usize = 16000;
+pub const N_FFT: usize = 400;
+pub const N_MELS: usize = 80;
+pub const HOP_LENGTH: usize = 160;
+pub const CHUNK_LENGTH: usize = 30;
+pub const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
+pub const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
+
+pub const NO_SPEECH_THRESHOLD: f64 = 0.6;
+pub const LOGPROB_THRESHOLD: f64 = -1.0;
+pub const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
+pub const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
+
+// Tokenizer dependent bits.
+pub const SOT_TOKEN: &str = "<|startoftranscript|>";
+pub const TRANSCRIBE_TOKEN: &str = "<|transcribe|>";
+pub const TRANSLATE_TOKEN: &str = "<|translate|>";
+pub const NO_TIMESTAMPS_TOKEN: &str = "<|notimestamps|>";
+pub const EOT_TOKEN: &str = "<|endoftext|>";
+pub const NO_SPEECH_TOKEN: &str = "<|nocaptions|>";
diff --git a/candle-transformers/src/models/whisper/model.rs b/candle-transformers/src/models/whisper/model.rs
new file mode 100644
index 00000000..e58ab2ca
--- /dev/null
+++ b/candle-transformers/src/models/whisper/model.rs
@@ -0,0 +1,416 @@
+use candle::{Device, IndexOp, Result, Tensor, D};
+use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, Module, VarBuilder};
+use serde::Deserialize;
+
+// The names in comments correspond to the original implementation:
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
+#[derive(Debug, Clone, PartialEq, Deserialize)]
+pub struct Config {
+ pub num_mel_bins: usize, // n_mels
+ pub max_source_positions: usize, // n_audio_ctx
+ pub d_model: usize, // n_audio_state
+ pub encoder_attention_heads: usize, // n_audio_head
+ pub encoder_layers: usize, // n_audio_layer
+ pub vocab_size: usize, // n_vocab
+ pub max_target_positions: usize, // n_text_ctx
+ // pub n_text_state: usize,
+ pub decoder_attention_heads: usize, // n_text_head
+ pub decoder_layers: usize, // n_text_layer
+ pub suppress_tokens: Vec<u32>,
+}
+
+fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, hidden_size))
+}
+//
+// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
+// model.
+#[derive(Debug)]
+pub struct Linear {
+ inner: candle_nn::Linear,
+ span: tracing::Span,
+}
+
+impl Linear {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ let inner = candle_nn::linear(size1, size2, vb)?;
+ Ok(Linear { inner, span })
+}
+
+fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
+ Ok(Linear { inner, span })
+}
+
+fn conv1d(
+ in_channels: usize,
+ out_channels: usize,
+ kernel_size: usize,
+ config: Conv1dConfig,
+ vb: VarBuilder,
+) -> Result<Conv1d> {
+ let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
+ let bias = vb.get(out_channels, "bias")?;
+ Ok(Conv1d::new(weight, Some(bias), config))
+}
+
+fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
+ let weight = vb.get(size, "weight")?;
+ let bias = vb.get(size, "bias")?;
+ Ok(LayerNorm::new(weight, bias, 1e-5))
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
+struct MultiHeadAttention {
+ query: Linear,
+ key: Linear,
+ value: Linear,
+ out: Linear,
+ n_head: usize,
+ span: tracing::Span,
+ softmax_span: tracing::Span,
+ matmul_span: tracing::Span,
+ kv_cache: Option<(Tensor, Tensor)>,
+}
+
+impl MultiHeadAttention {
+ fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "multi-head-attn");
+ let softmax_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-softmax");
+ let matmul_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-matmul");
+ let query = linear(n_state, n_state, vb.pp("q_proj"))?;
+ let value = linear(n_state, n_state, vb.pp("v_proj"))?;
+ let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
+ let out = linear(n_state, n_state, vb.pp("out_proj"))?;
+ Ok(Self {
+ query,
+ key,
+ value,
+ out,
+ n_head,
+ span,
+ softmax_span,
+ matmul_span,
+ kv_cache: None,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ x: &Tensor,
+ xa: Option<&Tensor>,
+ mask: Option<&Tensor>,
+ flush_cache: bool,
+ ) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let q = self.query.forward(x)?;
+ let (k, v) = match xa {
+ None => {
+ let k = self.key.forward(x)?;
+ let v = self.value.forward(x)?;
+ (k, v)
+ }
+ Some(x) => {
+ if flush_cache {
+ self.kv_cache = None;
+ }
+ if let Some((k, v)) = &self.kv_cache {
+ (k.clone(), v.clone())
+ } else {
+ let k = self.key.forward(x)?;
+ let v = self.value.forward(x)?;
+ self.kv_cache = Some((k.clone(), v.clone()));
+ (k, v)
+ }
+ }
+ };
+ let wv = self.qkv_attention(&q, &k, &v, mask)?;
+ let out = self.out.forward(&wv)?;
+ Ok(out)
+ }
+
+ fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
+ let (n_batch, n_ctx, n_state) = x.dims3()?;
+ let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
+ x.reshape(target_dims)?.transpose(1, 2)
+ }
+
+ fn qkv_attention(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let (_, n_ctx, n_state) = q.dims3()?;
+ let scale = ((n_state / self.n_head) as f64).powf(-0.25);
+ let q = (self.reshape_head(q)? * scale)?;
+ let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
+ let v = self.reshape_head(v)?.contiguous()?;
+ let mut qk = {
+ let _enter = self.matmul_span.enter();
+ q.matmul(&k)?
+ };
+ if let Some(mask) = mask {
+ let mask = mask.i((0..n_ctx, 0..n_ctx))?;
+ qk = qk.broadcast_add(&mask)?
+ }
+ let w = {
+ let _enter = self.softmax_span.enter();
+ softmax(&qk, D::Minus1)?
+ };
+ let wv = {
+ let _enter = self.matmul_span.enter();
+ w.matmul(&v)?
+ }
+ .transpose(1, 2)?
+ .flatten_from(2)?;
+ Ok(wv)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
+struct ResidualAttentionBlock {
+ attn: MultiHeadAttention,
+ attn_ln: LayerNorm,
+ cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
+ mlp_linear1: Linear,
+ mlp_linear2: Linear,
+ mlp_ln: LayerNorm,
+ span: tracing::Span,
+}
+
+impl ResidualAttentionBlock {
+ fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
+ let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
+ let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
+ let cross_attn = if ca {
+ let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
+ let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
+ Some((cross_attn, cross_attn_ln))
+ } else {
+ None
+ };
+ let n_mlp = n_state * 4;
+ let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
+ let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
+ let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
+ Ok(Self {
+ attn,
+ attn_ln,
+ cross_attn,
+ mlp_linear1,
+ mlp_linear2,
+ mlp_ln,
+ span,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ x: &Tensor,
+ xa: Option<&Tensor>,
+ mask: Option<&Tensor>,
+ flush_kv_cache: bool,
+ ) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let attn = self
+ .attn
+ .forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
+ let mut x = (x + attn)?;
+ if let Some((attn, ln)) = &mut self.cross_attn {
+ x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
+ }
+ let mlp = self.mlp_linear2.forward(
+ &self
+ .mlp_linear1
+ .forward(&self.mlp_ln.forward(&x)?)?
+ .gelu()?,
+ )?;
+ x + mlp
+ }
+}
+
+fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
+ let max_timescale = 10000f32;
+ let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
+ let inv_timescales: Vec<_> = (0..channels / 2)
+ .map(|i| (i as f32 * (-log_timescale_increment)).exp())
+ .collect();
+ let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
+ let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
+ .to_dtype(candle::DType::F32)?
+ .unsqueeze(1)?;
+ let sh = (length, channels / 2);
+ let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
+ let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
+ Ok(sincos)
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
+pub struct AudioEncoder {
+ conv1: Conv1d,
+ conv2: Conv1d,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln_post: LayerNorm,
+ span: tracing::Span,
+ conv1_span: tracing::Span,
+ conv2_span: tracing::Span,
+}
+
+impl AudioEncoder {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "audio-encoder");
+ let conv1_span = tracing::span!(tracing::Level::TRACE, "conv1");
+ let conv2_span = tracing::span!(tracing::Level::TRACE, "conv2");
+ let n_state = cfg.d_model;
+ let n_head = cfg.encoder_attention_heads;
+ let n_ctx = cfg.max_source_positions;
+ let cfg1 = Conv1dConfig {
+ padding: 1,
+ stride: 1,
+ groups: 1,
+ dilation: 1,
+ };
+ let cfg2 = Conv1dConfig {
+ padding: 1,
+ stride: 2,
+ groups: 1,
+ dilation: 1,
+ };
+ let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
+ let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
+ let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
+ let blocks = (0..cfg.encoder_layers)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
+ Ok(Self {
+ conv1,
+ conv2,
+ positional_embedding,
+ blocks,
+ ln_post,
+ conv1_span,
+ conv2_span,
+ span,
+ })
+ }
+
+ pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let x = {
+ let _enter = self.conv1_span.enter();
+ self.conv1.forward(x)?.gelu()?
+ };
+ let x = {
+ let _enter = self.conv2_span.enter();
+ self.conv2.forward(&x)?.gelu()?
+ };
+ let x = x.transpose(1, 2)?;
+ let (_bsize, seq_len, _hidden) = x.dims3()?;
+ let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
+ let mut x = x.broadcast_add(&positional_embedding)?;
+ for block in self.blocks.iter_mut() {
+ x = block.forward(&x, None, None, flush_kv_cache)?
+ }
+ let x = self.ln_post.forward(&x)?;
+ Ok(x)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
+pub struct TextDecoder {
+ token_embedding: Embedding,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln: LayerNorm,
+ mask: Tensor,
+ span: tracing::Span,
+ span_final: tracing::Span,
+}
+
+impl TextDecoder {
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "text-decoder");
+ let span_final = tracing::span!(tracing::Level::TRACE, "text-decoder-final");
+ let n_state = cfg.d_model;
+ let n_head = cfg.decoder_attention_heads;
+ let n_ctx = cfg.max_target_positions;
+ let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
+ let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
+ let blocks = (0..cfg.decoder_layers)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
+ let mask: Vec<_> = (0..n_ctx)
+ .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
+ .collect();
+ let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
+ Ok(Self {
+ token_embedding,
+ positional_embedding,
+ blocks,
+ ln,
+ mask,
+ span,
+ span_final,
+ })
+ }
+
+ pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let last = x.dim(D::Minus1)?;
+ let token_embedding = self.token_embedding.forward(x)?;
+ let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
+ let mut x = token_embedding.broadcast_add(&positional_embedding)?;
+ for block in self.blocks.iter_mut() {
+ x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
+ }
+ self.ln.forward(&x)
+ }
+
+ pub fn final_linear(&self, x: &Tensor) -> Result<Tensor> {
+ let b_size = x.dim(0)?;
+ let w = self.token_embedding.embeddings().broadcast_left(b_size)?;
+ let logits = {
+ let _enter = self.span_final.enter();
+ x.matmul(&w.t()?)?
+ };
+ Ok(logits)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
+pub struct Whisper {
+ pub encoder: AudioEncoder,
+ pub decoder: TextDecoder,
+ pub config: Config,
+}
+
+impl Whisper {
+ pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
+ let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
+ let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
+ Ok(Self {
+ encoder,
+ decoder,
+ config,
+ })
+ }
+}