summaryrefslogtreecommitdiff
path: root/candle-transformers
diff options
context:
space:
mode:
authorAnubhab Bandyopadhyay <4890833+AnubhabB@users.noreply.github.com>2024-10-14 02:39:12 +0530
committerGitHub <noreply@github.com>2024-10-13 23:09:12 +0200
commitf553ab5eb401cc3e1588db7fe987aae37f65d113 (patch)
tree42bed8ea85dc253473c76e215212d591c1d6fca2 /candle-transformers
parent41ade774e8606325572215b93ef2152432997fda (diff)
downloadcandle-f553ab5eb401cc3e1588db7fe987aae37f65d113.tar.gz
candle-f553ab5eb401cc3e1588db7fe987aae37f65d113.tar.bz2
candle-f553ab5eb401cc3e1588db7fe987aae37f65d113.zip
Adds support for Stella_en_v5 embedding model - 1.5B variant (#2551)
* Stella_en_1.5B_v5 * Separated creation. This is a critical step for numerical accuracy and would be documented in the readme * EmbedDim would require clone and copy * WIP: example * Examples added * a litte more in README
Diffstat (limited to 'candle-transformers')
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/stella_en_v5.rs399
2 files changed, 400 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 6ed7a8b5..23edf349 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -84,6 +84,7 @@ pub mod siglip;
pub mod stable_diffusion;
pub mod stable_lm;
pub mod starcoder2;
+pub mod stella_en_v5;
pub mod t5;
pub mod trocr;
pub mod vgg;
diff --git a/candle-transformers/src/models/stella_en_v5.rs b/candle-transformers/src/models/stella_en_v5.rs
new file mode 100644
index 00000000..9d933fad
--- /dev/null
+++ b/candle-transformers/src/models/stella_en_v5.rs
@@ -0,0 +1,399 @@
+use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm};
+use candle::{DType, Device, IndexOp, Module, Result, Tensor};
+use candle_nn::{Activation, VarBuilder};
+use std::sync::Arc;
+
+// Same as `qwen2` family of models with the exception being the `embed_head`
+// The final `output` causal modelling head is swapped with a learned `dense` layer, `embed_head`
+#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
+pub struct Config {
+ pub vocab_size: usize,
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: usize,
+ pub max_position_embeddings: usize,
+ pub max_window_layers: usize,
+ pub tie_word_embeddings: bool,
+ pub rope_theta: f64,
+ pub rms_norm_eps: f64,
+ pub hidden_act: Activation,
+ pub embed_head: EmbedHead,
+}
+
+// Excerpt from `stella` model card:
+// `Stella_en_1.5B_v5` models have been trained on [MRL](https://arxiv.org/abs/2205.13147) enabling multiple output dimensions
+// Embed head represents the config for various embedding dims supported
+#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
+pub struct EmbedHead {
+ pub in_features: usize,
+ pub out_features: usize,
+}
+
+/// An enum variant representing the Embedding head dimensions `stella` is trained on
+/// As the [model-card](https://huggingface.co/dunzhang/stella_en_1.5B_v5#introduction) suggests, D1024 is good enough for most cases
+#[derive(Debug, Clone, Copy)]
+pub enum EmbedDim {
+ Dim256,
+ Dim768,
+ Dim1024,
+ Dim2048,
+ Dim4096,
+ Dim6144,
+ Dim8192,
+}
+
+impl Default for EmbedDim {
+ fn default() -> Self {
+ Self::Dim1024
+ }
+}
+
+impl EmbedDim {
+ pub fn config(&self) -> EmbedHead {
+ EmbedHead {
+ in_features: 1536,
+ out_features: match &self {
+ Self::Dim256 => 256,
+ Self::Dim768 => 768,
+ Self::Dim1024 => 1024,
+ Self::Dim2048 => 2048,
+ Self::Dim4096 => 4096,
+ Self::Dim6144 => 6144,
+ Self::Dim8192 => 8192,
+ },
+ }
+ }
+}
+
+// Initialize a new `stella_en` model - with 400M variant or 1.5B variant
+impl Config {
+ /// Initialize a new `stella_en_1.5B_v5`` model with given embedding dim
+ pub fn new_1_5_b_v5(embed_dim: EmbedDim) -> Self {
+ // Representing config.json at https://huggingface.co/dunzhang/stella_en_1.5B_v5/blob/main/config.json
+ // Removed `sliding_window` related config which is basically being carried forward from `qwen2` but not used here
+ Self {
+ hidden_act: candle_nn::Activation::Silu,
+ vocab_size: 151646,
+ hidden_size: 1536,
+ intermediate_size: 8960,
+ num_hidden_layers: 28,
+ num_attention_heads: 12,
+ num_key_value_heads: 2,
+ max_position_embeddings: 131072,
+ max_window_layers: 21,
+ tie_word_embeddings: false,
+ rope_theta: 1000000.,
+ rms_norm_eps: 1e-06,
+ embed_head: embed_dim.config(),
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = cfg.hidden_size / cfg.num_attention_heads;
+ let max_seq_len = cfg.max_position_embeddings;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(dtype)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> {
+ let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
+ let cos = self.cos.narrow(0, 0, seq_len)?;
+ let sin = self.sin.narrow(0, 0, seq_len)?;
+ let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?;
+ let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?;
+ Ok((q_embed, k_embed))
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ gate_proj: Linear,
+ up_proj: Linear,
+ down_proj: Linear,
+ act_fn: Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let intermediate_sz = cfg.intermediate_size;
+ let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
+ let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
+ let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
+ Ok(Self {
+ gate_proj,
+ up_proj,
+ down_proj,
+ act_fn: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
+ let rhs = xs.apply(&self.up_proj)?;
+ (lhs * rhs)?.apply(&self.down_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_heads: usize,
+ num_kv_heads: usize,
+ num_kv_groups: usize,
+ head_dim: usize,
+ hidden_size: usize,
+ rotary_emb: Arc<RotaryEmbedding>,
+}
+
+impl Attention {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads;
+ let num_kv_groups = num_heads / num_kv_heads;
+ let head_dim = hidden_sz / num_heads;
+ let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_heads,
+ num_kv_heads,
+ num_kv_groups,
+ head_dim,
+ hidden_size: hidden_sz,
+ rotary_emb,
+ })
+ }
+
+ fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
+ let (b_sz, q_len, _) = xs.dims3()?;
+
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = query_states
+ .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let (query_states, key_states) = self
+ .rotary_emb
+ .apply_rotary_emb_qkv(&query_states, &key_states)?;
+
+ let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?;
+ let value_states =
+ crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?;
+
+ let attn_output = {
+ let scale = 1f64 / f64::sqrt(self.head_dim as f64);
+ let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
+
+ let attn_weights = match attention_mask {
+ None => attn_weights,
+ Some(mask) => attn_weights.broadcast_add(mask)?,
+ };
+ let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
+ attn_weights.matmul(&value_states)?
+ };
+ attn_output
+ .transpose(1, 2)?
+ .reshape((b_sz, q_len, self.hidden_size))?
+ .apply(&self.o_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: RmsNorm,
+ post_attention_layernorm: RmsNorm,
+}
+
+impl DecoderLayer {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm =
+ RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ post_attention_layernorm,
+ })
+ }
+
+ fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.input_layernorm.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, attention_mask)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
+ residual + xs
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embed_tokens: candle_nn::Embedding,
+ layers: Vec<DecoderLayer>,
+ norm: RmsNorm,
+ device: Device,
+ dtype: DType,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_l = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
+ Ok(Self {
+ embed_tokens,
+ layers,
+ norm,
+ // sliding_window: 0,
+ device: vb.device().clone(),
+ dtype: vb.dtype(),
+ })
+ }
+
+ fn prepare_attention_mask(&self, attn_mask: &Tensor) -> Result<Tensor> {
+ let (b_sz, sql_len) = attn_mask.dims2()?;
+ let mut mask: Vec<Tensor> = vec![];
+ for b in 0..b_sz {
+ mask.push(attn_mask.i((b, ..))?.expand((1, 1, sql_len, sql_len))?);
+ }
+ let mask = Tensor::cat(&mask, 0)?;
+ let on_true = mask.zeros_like()?.to_dtype(self.dtype)?;
+ let on_false = Tensor::new(f32::NEG_INFINITY, &self.device)?
+ .broadcast_as(mask.shape())?
+ .to_dtype(self.dtype)?;
+ mask.where_cond(&on_true, &on_false)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
+ let (_, seq_len) = input_ids.dims2()?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ // This is not a `causal language modelling` task, we'll need to prepare a `non-causal` attention
+ Some(self.prepare_attention_mask(mask)?)
+ };
+
+ let mut xs = self.embed_tokens.forward(input_ids)?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attention_mask.as_ref())?
+ }
+ xs.apply(&self.norm)
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct EmbeddingModel {
+ base_model: Model,
+ lm_head: Linear,
+}
+
+impl EmbeddingModel {
+ pub fn new(cfg: &Config, base_vb: VarBuilder, embed_vb: VarBuilder) -> Result<Self> {
+ let base_model = Model::new(cfg, base_vb.clone())?;
+ let lm_head = linear(
+ cfg.embed_head.in_features,
+ cfg.embed_head.out_features,
+ embed_vb.pp("linear"),
+ )?;
+
+ Ok(Self {
+ base_model,
+ lm_head,
+ })
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
+ let x = self.base_model.forward(input_ids, mask)?;
+ let x = self.pool(&x, mask)?;
+
+ // No matter what keeping the final activations as F32 helps with the accuracy
+ self.lm_head.forward(&x.to_dtype(DType::F32)?) // [B_sz, dim_size]
+ }
+
+ /// Same as forward pass but normalizes the output
+ pub fn forward_norm(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> {
+ let x = self.forward(input_ids, mask)?;
+ // Normalize
+ x.broadcast_div(&x.sqr()?.sum_keepdim(1)?.sqrt()?)
+ }
+
+ fn pool(&self, x: &Tensor, mask: &Tensor) -> Result<Tensor> {
+ let mask = mask.to_dtype(x.dtype())?; // [B_Sz, Seq_len]
+ let (batch_size, seq_len, hidden_dim) = x.dims3()?;
+ // expanding the shape of the mask from [B_Sz, Seq_len] -> [B_Sz, Seq_len, Hidden_size]
+ let mask_expanded = mask
+ .unsqueeze(2)?
+ .broadcast_as((batch_size, seq_len, hidden_dim))?; // [B_Sz, Seq_len, Hidden_dim]
+
+ let x = (x * &mask_expanded)?;
+
+ // Sum
+ let sum_mask = mask
+ .sum(1)?
+ .unsqueeze(1)?
+ .expand((batch_size, hidden_dim))?;
+ x.sum(1)? / sum_mask
+ }
+}