diff options
author | Anubhab Bandyopadhyay <4890833+AnubhabB@users.noreply.github.com> | 2024-10-14 02:39:12 +0530 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-10-13 23:09:12 +0200 |
commit | f553ab5eb401cc3e1588db7fe987aae37f65d113 (patch) | |
tree | 42bed8ea85dc253473c76e215212d591c1d6fca2 /candle-transformers | |
parent | 41ade774e8606325572215b93ef2152432997fda (diff) | |
download | candle-f553ab5eb401cc3e1588db7fe987aae37f65d113.tar.gz candle-f553ab5eb401cc3e1588db7fe987aae37f65d113.tar.bz2 candle-f553ab5eb401cc3e1588db7fe987aae37f65d113.zip |
Adds support for Stella_en_v5 embedding model - 1.5B variant (#2551)
* Stella_en_1.5B_v5
* Separated creation. This is a critical step for numerical accuracy and would be documented in the readme
* EmbedDim would require clone and copy
* WIP: example
* Examples added
* a litte more in README
Diffstat (limited to 'candle-transformers')
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 | ||||
-rw-r--r-- | candle-transformers/src/models/stella_en_v5.rs | 399 |
2 files changed, 400 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index 6ed7a8b5..23edf349 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -84,6 +84,7 @@ pub mod siglip; pub mod stable_diffusion; pub mod stable_lm; pub mod starcoder2; +pub mod stella_en_v5; pub mod t5; pub mod trocr; pub mod vgg; diff --git a/candle-transformers/src/models/stella_en_v5.rs b/candle-transformers/src/models/stella_en_v5.rs new file mode 100644 index 00000000..9d933fad --- /dev/null +++ b/candle-transformers/src/models/stella_en_v5.rs @@ -0,0 +1,399 @@ +use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm}; +use candle::{DType, Device, IndexOp, Module, Result, Tensor}; +use candle_nn::{Activation, VarBuilder}; +use std::sync::Arc; + +// Same as `qwen2` family of models with the exception being the `embed_head` +// The final `output` causal modelling head is swapped with a learned `dense` layer, `embed_head` +#[derive(Debug, Clone, PartialEq, serde::Deserialize)] +pub struct Config { + pub vocab_size: usize, + pub hidden_size: usize, + pub intermediate_size: usize, + pub num_hidden_layers: usize, + pub num_attention_heads: usize, + pub num_key_value_heads: usize, + pub max_position_embeddings: usize, + pub max_window_layers: usize, + pub tie_word_embeddings: bool, + pub rope_theta: f64, + pub rms_norm_eps: f64, + pub hidden_act: Activation, + pub embed_head: EmbedHead, +} + +// Excerpt from `stella` model card: +// `Stella_en_1.5B_v5` models have been trained on [MRL](https://arxiv.org/abs/2205.13147) enabling multiple output dimensions +// Embed head represents the config for various embedding dims supported +#[derive(Debug, Clone, PartialEq, serde::Deserialize)] +pub struct EmbedHead { + pub in_features: usize, + pub out_features: usize, +} + +/// An enum variant representing the Embedding head dimensions `stella` is trained on +/// As the [model-card](https://huggingface.co/dunzhang/stella_en_1.5B_v5#introduction) suggests, D1024 is good enough for most cases +#[derive(Debug, Clone, Copy)] +pub enum EmbedDim { + Dim256, + Dim768, + Dim1024, + Dim2048, + Dim4096, + Dim6144, + Dim8192, +} + +impl Default for EmbedDim { + fn default() -> Self { + Self::Dim1024 + } +} + +impl EmbedDim { + pub fn config(&self) -> EmbedHead { + EmbedHead { + in_features: 1536, + out_features: match &self { + Self::Dim256 => 256, + Self::Dim768 => 768, + Self::Dim1024 => 1024, + Self::Dim2048 => 2048, + Self::Dim4096 => 4096, + Self::Dim6144 => 6144, + Self::Dim8192 => 8192, + }, + } + } +} + +// Initialize a new `stella_en` model - with 400M variant or 1.5B variant +impl Config { + /// Initialize a new `stella_en_1.5B_v5`` model with given embedding dim + pub fn new_1_5_b_v5(embed_dim: EmbedDim) -> Self { + // Representing config.json at https://huggingface.co/dunzhang/stella_en_1.5B_v5/blob/main/config.json + // Removed `sliding_window` related config which is basically being carried forward from `qwen2` but not used here + Self { + hidden_act: candle_nn::Activation::Silu, + vocab_size: 151646, + hidden_size: 1536, + intermediate_size: 8960, + num_hidden_layers: 28, + num_attention_heads: 12, + num_key_value_heads: 2, + max_position_embeddings: 131072, + max_window_layers: 21, + tie_word_embeddings: false, + rope_theta: 1000000., + rms_norm_eps: 1e-06, + embed_head: embed_dim.config(), + } + } +} + +#[derive(Debug, Clone)] +struct RotaryEmbedding { + sin: Tensor, + cos: Tensor, +} + +impl RotaryEmbedding { + fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> { + let dim = cfg.hidden_size / cfg.num_attention_heads; + let max_seq_len = cfg.max_position_embeddings; + let inv_freq: Vec<_> = (0..dim) + .step_by(2) + .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32) + .collect(); + let inv_freq_len = inv_freq.len(); + let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?; + let t = Tensor::arange(0u32, max_seq_len as u32, dev)? + .to_dtype(dtype)? + .reshape((max_seq_len, 1))?; + let freqs = t.matmul(&inv_freq)?; + Ok(Self { + sin: freqs.sin()?, + cos: freqs.cos()?, + }) + } + + fn apply_rotary_emb_qkv(&self, q: &Tensor, k: &Tensor) -> Result<(Tensor, Tensor)> { + let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?; + let cos = self.cos.narrow(0, 0, seq_len)?; + let sin = self.sin.narrow(0, 0, seq_len)?; + let q_embed = candle_nn::rotary_emb::rope(&q.contiguous()?, &cos, &sin)?; + let k_embed = candle_nn::rotary_emb::rope(&k.contiguous()?, &cos, &sin)?; + Ok((q_embed, k_embed)) + } +} + +#[derive(Debug, Clone)] +#[allow(clippy::upper_case_acronyms)] +struct MLP { + gate_proj: Linear, + up_proj: Linear, + down_proj: Linear, + act_fn: Activation, +} + +impl MLP { + fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let hidden_sz = cfg.hidden_size; + let intermediate_sz = cfg.intermediate_size; + let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?; + let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?; + let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?; + Ok(Self { + gate_proj, + up_proj, + down_proj, + act_fn: cfg.hidden_act, + }) + } +} + +impl Module for MLP { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?; + let rhs = xs.apply(&self.up_proj)?; + (lhs * rhs)?.apply(&self.down_proj) + } +} + +#[derive(Debug, Clone)] +struct Attention { + q_proj: Linear, + k_proj: Linear, + v_proj: Linear, + o_proj: Linear, + num_heads: usize, + num_kv_heads: usize, + num_kv_groups: usize, + head_dim: usize, + hidden_size: usize, + rotary_emb: Arc<RotaryEmbedding>, +} + +impl Attention { + fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let hidden_sz = cfg.hidden_size; + let num_heads = cfg.num_attention_heads; + let num_kv_heads = cfg.num_key_value_heads; + let num_kv_groups = num_heads / num_kv_heads; + let head_dim = hidden_sz / num_heads; + let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?; + let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?; + let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?; + let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?; + Ok(Self { + q_proj, + k_proj, + v_proj, + o_proj, + num_heads, + num_kv_heads, + num_kv_groups, + head_dim, + hidden_size: hidden_sz, + rotary_emb, + }) + } + + fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> { + let (b_sz, q_len, _) = xs.dims3()?; + + let query_states = self.q_proj.forward(xs)?; + let key_states = self.k_proj.forward(xs)?; + let value_states = self.v_proj.forward(xs)?; + + let query_states = query_states + .reshape((b_sz, q_len, self.num_heads, self.head_dim))? + .transpose(1, 2)?; + let key_states = key_states + .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? + .transpose(1, 2)?; + let value_states = value_states + .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))? + .transpose(1, 2)?; + + let (query_states, key_states) = self + .rotary_emb + .apply_rotary_emb_qkv(&query_states, &key_states)?; + + let key_states = crate::utils::repeat_kv(key_states, self.num_kv_groups)?.contiguous()?; + let value_states = + crate::utils::repeat_kv(value_states, self.num_kv_groups)?.contiguous()?; + + let attn_output = { + let scale = 1f64 / f64::sqrt(self.head_dim as f64); + let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?; + + let attn_weights = match attention_mask { + None => attn_weights, + Some(mask) => attn_weights.broadcast_add(mask)?, + }; + let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?; + attn_weights.matmul(&value_states)? + }; + attn_output + .transpose(1, 2)? + .reshape((b_sz, q_len, self.hidden_size))? + .apply(&self.o_proj) + } +} + +#[derive(Debug, Clone)] +struct DecoderLayer { + self_attn: Attention, + mlp: MLP, + input_layernorm: RmsNorm, + post_attention_layernorm: RmsNorm, +} + +impl DecoderLayer { + fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> { + let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?; + let mlp = MLP::new(cfg, vb.pp("mlp"))?; + let input_layernorm = + RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?; + let post_attention_layernorm = RmsNorm::new( + cfg.hidden_size, + cfg.rms_norm_eps, + vb.pp("post_attention_layernorm"), + )?; + Ok(Self { + self_attn, + mlp, + input_layernorm, + post_attention_layernorm, + }) + } + + fn forward(&mut self, xs: &Tensor, attention_mask: Option<&Tensor>) -> Result<Tensor> { + let residual = xs; + let xs = self.input_layernorm.forward(xs)?; + let xs = self.self_attn.forward(&xs, attention_mask)?; + let xs = (xs + residual)?; + let residual = &xs; + let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?; + residual + xs + } +} + +#[derive(Debug, Clone)] +pub struct Model { + embed_tokens: candle_nn::Embedding, + layers: Vec<DecoderLayer>, + norm: RmsNorm, + device: Device, + dtype: DType, +} + +impl Model { + pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> { + let vb_m = vb.pp("model"); + let embed_tokens = + candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?; + let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?); + let mut layers = Vec::with_capacity(cfg.num_hidden_layers); + let vb_l = vb_m.pp("layers"); + for layer_idx in 0..cfg.num_hidden_layers { + let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?; + layers.push(layer) + } + let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?; + Ok(Self { + embed_tokens, + layers, + norm, + // sliding_window: 0, + device: vb.device().clone(), + dtype: vb.dtype(), + }) + } + + fn prepare_attention_mask(&self, attn_mask: &Tensor) -> Result<Tensor> { + let (b_sz, sql_len) = attn_mask.dims2()?; + let mut mask: Vec<Tensor> = vec![]; + for b in 0..b_sz { + mask.push(attn_mask.i((b, ..))?.expand((1, 1, sql_len, sql_len))?); + } + let mask = Tensor::cat(&mask, 0)?; + let on_true = mask.zeros_like()?.to_dtype(self.dtype)?; + let on_false = Tensor::new(f32::NEG_INFINITY, &self.device)? + .broadcast_as(mask.shape())? + .to_dtype(self.dtype)?; + mask.where_cond(&on_true, &on_false) + } + + pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> { + let (_, seq_len) = input_ids.dims2()?; + let attention_mask = if seq_len <= 1 { + None + } else { + // This is not a `causal language modelling` task, we'll need to prepare a `non-causal` attention + Some(self.prepare_attention_mask(mask)?) + }; + + let mut xs = self.embed_tokens.forward(input_ids)?; + for layer in self.layers.iter_mut() { + xs = layer.forward(&xs, attention_mask.as_ref())? + } + xs.apply(&self.norm) + } +} + +#[derive(Debug, Clone)] +pub struct EmbeddingModel { + base_model: Model, + lm_head: Linear, +} + +impl EmbeddingModel { + pub fn new(cfg: &Config, base_vb: VarBuilder, embed_vb: VarBuilder) -> Result<Self> { + let base_model = Model::new(cfg, base_vb.clone())?; + let lm_head = linear( + cfg.embed_head.in_features, + cfg.embed_head.out_features, + embed_vb.pp("linear"), + )?; + + Ok(Self { + base_model, + lm_head, + }) + } + + pub fn forward(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> { + let x = self.base_model.forward(input_ids, mask)?; + let x = self.pool(&x, mask)?; + + // No matter what keeping the final activations as F32 helps with the accuracy + self.lm_head.forward(&x.to_dtype(DType::F32)?) // [B_sz, dim_size] + } + + /// Same as forward pass but normalizes the output + pub fn forward_norm(&mut self, input_ids: &Tensor, mask: &Tensor) -> Result<Tensor> { + let x = self.forward(input_ids, mask)?; + // Normalize + x.broadcast_div(&x.sqr()?.sum_keepdim(1)?.sqrt()?) + } + + fn pool(&self, x: &Tensor, mask: &Tensor) -> Result<Tensor> { + let mask = mask.to_dtype(x.dtype())?; // [B_Sz, Seq_len] + let (batch_size, seq_len, hidden_dim) = x.dims3()?; + // expanding the shape of the mask from [B_Sz, Seq_len] -> [B_Sz, Seq_len, Hidden_size] + let mask_expanded = mask + .unsqueeze(2)? + .broadcast_as((batch_size, seq_len, hidden_dim))?; // [B_Sz, Seq_len, Hidden_dim] + + let x = (x * &mask_expanded)?; + + // Sum + let sum_mask = mask + .sum(1)? + .unsqueeze(1)? + .expand((batch_size, hidden_dim))?; + x.sum(1)? / sum_mask + } +} |