summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/llama/model.rs')
-rw-r--r--candle-examples/examples/llama/model.rs446
1 files changed, 0 insertions, 446 deletions
diff --git a/candle-examples/examples/llama/model.rs b/candle-examples/examples/llama/model.rs
deleted file mode 100644
index 275856e0..00000000
--- a/candle-examples/examples/llama/model.rs
+++ /dev/null
@@ -1,446 +0,0 @@
-use candle::{DType, Device, IndexOp, Result, Tensor, D};
-use candle_nn::{Embedding, Module, VarBuilder};
-use serde::Deserialize;
-use std::collections::HashMap;
-use std::sync::{Arc, Mutex};
-
-use super::MAX_SEQ_LEN;
-
-#[derive(Deserialize)]
-pub struct LlamaConfig {
- pub hidden_size: usize,
- pub intermediate_size: usize,
- pub vocab_size: usize,
- pub num_hidden_layers: usize,
- pub num_attention_heads: usize,
- pub num_key_value_heads: Option<usize>,
- pub rms_norm_eps: f64,
- #[serde(default = "default_rope")]
- pub rope_theta: f32,
-}
-
-fn default_rope() -> f32 {
- 10_000.0
-}
-
-impl LlamaConfig {
- pub fn into_config(self, use_flash_attn: bool) -> Config {
- Config {
- hidden_size: self.hidden_size,
- intermediate_size: self.intermediate_size,
- vocab_size: self.vocab_size,
- num_hidden_layers: self.num_hidden_layers,
- num_attention_heads: self.num_attention_heads,
- num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
- rms_norm_eps: self.rms_norm_eps,
- rope_theta: self.rope_theta,
- use_flash_attn,
- }
- }
-}
-
-pub struct Config {
- pub hidden_size: usize,
- pub intermediate_size: usize,
- pub vocab_size: usize,
- pub num_hidden_layers: usize,
- pub num_attention_heads: usize,
- pub num_key_value_heads: usize,
- pub use_flash_attn: bool,
- pub rms_norm_eps: f64,
- pub rope_theta: f32,
-}
-
-impl Config {
- pub fn config_7b_v1(use_flash_attn: bool) -> Self {
- Self {
- hidden_size: 4096,
- intermediate_size: 11008,
- vocab_size: 32000,
- num_hidden_layers: 32,
- num_attention_heads: 32,
- num_key_value_heads: 32,
- use_flash_attn,
- rms_norm_eps: 1e-6,
- rope_theta: 10_000.0,
- }
- }
-
- pub fn config_7b_v2(use_flash_attn: bool) -> Self {
- Self {
- hidden_size: 4096,
- intermediate_size: 11008,
- vocab_size: 32000,
- num_hidden_layers: 32,
- num_attention_heads: 32,
- num_key_value_heads: 32,
- use_flash_attn,
- rms_norm_eps: 1e-5,
- rope_theta: 10_000.0,
- }
- }
-}
-
-// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
-// model.
-#[derive(Debug)]
-pub struct Linear {
- inner: candle_nn::Linear,
- span: tracing::Span,
-}
-
-impl Linear {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-#[derive(Clone)]
-pub struct Cache {
- masks: Arc<Mutex<HashMap<usize, Tensor>>>,
- pub use_kv_cache: bool,
- #[allow(clippy::type_complexity)]
- kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
- cos: Tensor,
- sin: Tensor,
- device: Device,
-}
-
-impl Cache {
- pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result<Self> {
- // precompute freqs_cis
- let n_elem = config.hidden_size / config.num_attention_heads;
- let theta: Vec<_> = (0..n_elem)
- .step_by(2)
- .map(|i| 1f32 / config.rope_theta.powf(i as f32 / n_elem as f32))
- .collect();
- let theta = Tensor::new(theta.as_slice(), device)?;
- let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
- .to_dtype(DType::F32)?
- .reshape((MAX_SEQ_LEN, 1))?
- .matmul(&theta.reshape((1, theta.elem_count()))?)?;
- // This is different from the paper, see:
- // https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
- let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
- let cos = idx_theta.cos()?.to_dtype(dtype)?;
- let sin = idx_theta.sin()?.to_dtype(dtype)?;
- Ok(Self {
- masks: Arc::new(Mutex::new(HashMap::new())),
- use_kv_cache,
- kvs: Arc::new(Mutex::new(vec![None; config.num_hidden_layers])),
- device: device.clone(),
- cos,
- sin,
- })
- }
-
- fn mask(&self, t: usize) -> Result<Tensor> {
- let mut masks = self.masks.lock().unwrap();
- if let Some(mask) = masks.get(&t) {
- Ok(mask.clone())
- } else {
- let mask: Vec<_> = (0..t)
- .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
- .collect();
- let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
- masks.insert(t, mask.clone());
- Ok(mask)
- }
- }
-}
-
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, cfg.hidden_size))
-}
-
-struct RmsNorm {
- inner: candle_nn::RmsNorm,
- span: tracing::Span,
-}
-
-impl RmsNorm {
- fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
- let inner = candle_nn::rms_norm(size, eps, vb)?;
- Ok(Self { inner, span })
- }
-
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-struct CausalSelfAttention {
- q_proj: Linear,
- k_proj: Linear,
- v_proj: Linear,
- o_proj: Linear,
- num_attention_heads: usize,
- num_key_value_heads: usize,
- head_dim: usize,
- cache: Cache,
- use_flash_attn: bool,
- span: tracing::Span,
- span_rot: tracing::Span,
-}
-
-#[cfg(feature = "flash-attn")]
-fn flash_attn(
- q: &Tensor,
- k: &Tensor,
- v: &Tensor,
- softmax_scale: f32,
- causal: bool,
-) -> Result<Tensor> {
- candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
-}
-
-#[cfg(not(feature = "flash-attn"))]
-fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
- unimplemented!("compile with '--features flash-attn'")
-}
-
-impl CausalSelfAttention {
- fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let _enter = self.span_rot.enter();
- let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
- let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
- let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
- let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
- let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
- let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
- let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
- let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
- let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
- Ok(rope)
- }
-
- fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
- let _enter = self.span.enter();
- let (b_sz, seq_len, hidden_size) = x.dims3()?;
- let q = self.q_proj.forward(x)?;
- let k = self.k_proj.forward(x)?;
- let v = self.v_proj.forward(x)?;
-
- let q = q
- .reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
- .transpose(1, 2)?;
- let k = k
- .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
- .transpose(1, 2)?;
- let mut v = v
- .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
- .transpose(1, 2)?;
-
- let q = self.apply_rotary_emb(&q, index_pos)?;
- let mut k = self.apply_rotary_emb(&k, index_pos)?;
-
- if self.cache.use_kv_cache {
- let mut cache = self.cache.kvs.lock().unwrap();
- if let Some((cache_k, cache_v)) = &cache[block_idx] {
- k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
- v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
- let k_seq_len = k.dims()[1];
- if k_seq_len > MAX_SEQ_LEN {
- k = k
- .narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
- .contiguous()?
- }
- let v_seq_len = v.dims()[1];
- if v_seq_len > 2 * MAX_SEQ_LEN {
- v = v
- .narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
- .contiguous()?
- }
- }
- cache[block_idx] = Some((k.clone(), v.clone()))
- }
-
- let k = self.repeat_kv(k)?;
- let v = self.repeat_kv(v)?;
-
- let y = if self.use_flash_attn {
- // flash-attn expects (b_sz, seq_len, nheads, head_dim)
- let q = q.transpose(1, 2)?;
- let k = k.transpose(1, 2)?;
- let v = v.transpose(1, 2)?;
- let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
- flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)?
- } else {
- let in_dtype = q.dtype();
- let q = q.to_dtype(DType::F32)?;
- let k = k.to_dtype(DType::F32)?;
- let v = v.to_dtype(DType::F32)?;
- let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
- let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
- let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
- let att = candle_nn::ops::softmax(&att, D::Minus1)?;
- // Convert to contiguous as matmul doesn't support strided vs for now.
- att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?
- };
- let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
- let y = self.o_proj.forward(&y)?;
- Ok(y)
- }
-
- fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
- let n_rep = self.num_attention_heads / self.num_key_value_heads;
- if n_rep == 1 {
- Ok(x)
- } else {
- let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
- let x = x
- .unsqueeze(2)?
- .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
- .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
- Ok(x)
- }
- }
-
- fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "attn");
- let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
- let size_in = cfg.hidden_size;
- let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads;
- let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads;
- let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
- let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
- let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
- let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
- Ok(Self {
- q_proj,
- k_proj,
- v_proj,
- o_proj,
- num_attention_heads: cfg.num_attention_heads,
- num_key_value_heads: cfg.num_key_value_heads,
- head_dim: cfg.hidden_size / cfg.num_attention_heads,
- cache: cache.clone(),
- use_flash_attn: cfg.use_flash_attn,
- span,
- span_rot,
- })
- }
-}
-
-fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
- let shape = mask.shape();
- let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
- let m = mask.where_cond(&on_true, on_false)?;
- Ok(m)
-}
-
-struct Mlp {
- c_fc1: Linear,
- c_fc2: Linear,
- c_proj: Linear,
- span: tracing::Span,
-}
-
-impl Mlp {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
- self.c_proj.forward(&x)
- }
-
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "mlp");
- let h_size = cfg.hidden_size;
- let i_size = cfg.intermediate_size;
- let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
- let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
- let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
- Ok(Self {
- c_fc1,
- c_fc2,
- c_proj,
- span,
- })
- }
-}
-
-struct Block {
- rms_1: RmsNorm,
- attn: CausalSelfAttention,
- rms_2: RmsNorm,
- mlp: Mlp,
- span: tracing::Span,
-}
-
-impl Block {
- fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
- let _enter = self.span.enter();
- let residual = x;
- let x = self.rms_1.forward(x)?;
- let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
- let residual = &x;
- let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
- Ok(x)
- }
-
- fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "block");
- let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
- let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
- let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
- let rms_2 = RmsNorm::load(
- cfg.hidden_size,
- cfg.rms_norm_eps,
- vb.pp("post_attention_layernorm"),
- )?;
- Ok(Self {
- rms_1,
- attn,
- rms_2,
- mlp,
- span,
- })
- }
-}
-
-pub struct Llama {
- wte: Embedding,
- blocks: Vec<Block>,
- ln_f: RmsNorm,
- lm_head: Linear,
-}
-
-impl Llama {
- pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let (_b_sz, seq_len) = x.dims2()?;
- let mut x = self.wte.forward(x)?;
- for (block_idx, block) in self.blocks.iter().enumerate() {
- x = block.forward(&x, index_pos, block_idx)?;
- }
- let x = self.ln_f.forward(&x)?;
- let x = x.i((.., seq_len - 1, ..))?;
- let logits = self.lm_head.forward(&x)?;
- logits.to_dtype(DType::F32)
- }
-
- pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
- let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
- let ln_f = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?;
- let blocks: Vec<_> = (0..cfg.num_hidden_layers)
- .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
- .collect();
-
- Ok(Self {
- wte,
- blocks,
- ln_f,
- lm_head,
- })
- }
-}