summaryrefslogtreecommitdiff
path: root/candle-examples/examples
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples')
-rw-r--r--candle-examples/examples/bert/main.rs3
-rw-r--r--candle-examples/examples/bert/model.rs568
-rw-r--r--candle-examples/examples/bigcode/main.rs3
-rw-r--r--candle-examples/examples/bigcode/model.rs359
-rw-r--r--candle-examples/examples/falcon/main.rs3
-rw-r--r--candle-examples/examples/falcon/model.rs485
-rw-r--r--candle-examples/examples/llama/main.rs3
-rw-r--r--candle-examples/examples/llama/model.rs446
-rw-r--r--candle-examples/examples/whisper/audio.rs214
-rw-r--r--candle-examples/examples/whisper/main.rs71
-rw-r--r--candle-examples/examples/whisper/model.rs416
-rw-r--r--candle-examples/examples/whisper/multilingual.rs2
12 files changed, 28 insertions, 2545 deletions
diff --git a/candle-examples/examples/bert/main.rs b/candle-examples/examples/bert/main.rs
index 6cee66ee..9d0eccdf 100644
--- a/candle-examples/examples/bert/main.rs
+++ b/candle-examples/examples/bert/main.rs
@@ -3,14 +3,13 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
-mod model;
+use candle_transformers::models::bert::{BertModel, Config, DTYPE};
use anyhow::{anyhow, Error as E, Result};
use candle::Tensor;
use candle_nn::VarBuilder;
use clap::Parser;
use hf_hub::{api::sync::Api, Cache, Repo, RepoType};
-use model::{BertModel, Config, DTYPE};
use tokenizers::{PaddingParams, Tokenizer};
#[derive(Parser, Debug)]
diff --git a/candle-examples/examples/bert/model.rs b/candle-examples/examples/bert/model.rs
deleted file mode 100644
index 3f164a3a..00000000
--- a/candle-examples/examples/bert/model.rs
+++ /dev/null
@@ -1,568 +0,0 @@
-use candle::{DType, Device, Result, Tensor};
-use candle_nn::{Embedding, Module, VarBuilder};
-use serde::Deserialize;
-
-pub const DTYPE: DType = DType::F32;
-
-#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)]
-#[serde(rename_all = "lowercase")]
-enum HiddenAct {
- Gelu,
- Relu,
-}
-
-struct HiddenActLayer {
- act: HiddenAct,
- span: tracing::Span,
-}
-
-impl HiddenActLayer {
- fn new(act: HiddenAct) -> Self {
- let span = tracing::span!(tracing::Level::TRACE, "hidden-act");
- Self { act, span }
- }
-
- fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
- let _enter = self.span.enter();
- match self.act {
- // TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some
- // small numerical difference.
- // https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213
- HiddenAct::Gelu => xs.gelu(),
- HiddenAct::Relu => xs.relu(),
- }
- }
-}
-
-#[derive(Debug)]
-pub struct Linear {
- weight: Tensor,
- bias: Option<Tensor>,
- span: tracing::Span,
-}
-
-impl Linear {
- pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- Self { weight, bias, span }
- }
-
- pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
- let _enter = self.span.enter();
- let w = match x.dims() {
- &[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?,
- _ => self.weight.t()?,
- };
- let x = x.matmul(&w)?;
- match &self.bias {
- None => Ok(x),
- Some(bias) => x.broadcast_add(bias),
- }
- }
-}
-
-#[derive(Debug)]
-pub struct LayerNorm {
- weight: Tensor,
- bias: Tensor,
- eps: f64,
- span: tracing::Span,
-}
-
-impl LayerNorm {
- pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self {
- let span = tracing::span!(tracing::Level::TRACE, "layer-norm");
- Self {
- weight,
- bias,
- eps,
- span,
- }
- }
-
- pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let x_dtype = x.dtype();
- let internal_dtype = match x_dtype {
- DType::F16 | DType::BF16 => DType::F32,
- d => d,
- };
- let (_bsize, _seq_len, hidden_size) = x.dims3()?;
- let x = x.to_dtype(internal_dtype)?;
- let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?;
- let x = x.broadcast_sub(&mean_x)?;
- let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?;
- let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
- let x = x_normed
- .to_dtype(x_dtype)?
- .broadcast_mul(&self.weight)?
- .broadcast_add(&self.bias)?;
- Ok(x)
- }
-}
-#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Default)]
-#[serde(rename_all = "lowercase")]
-enum PositionEmbeddingType {
- #[default]
- Absolute,
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1
-#[derive(Debug, Clone, PartialEq, Deserialize)]
-pub struct Config {
- vocab_size: usize,
- hidden_size: usize,
- num_hidden_layers: usize,
- num_attention_heads: usize,
- intermediate_size: usize,
- hidden_act: HiddenAct,
- hidden_dropout_prob: f64,
- max_position_embeddings: usize,
- type_vocab_size: usize,
- initializer_range: f64,
- layer_norm_eps: f64,
- pad_token_id: usize,
- #[serde(default)]
- position_embedding_type: PositionEmbeddingType,
- #[serde(default)]
- use_cache: bool,
- classifier_dropout: Option<f64>,
- model_type: Option<String>,
-}
-
-impl Default for Config {
- fn default() -> Self {
- Self {
- vocab_size: 30522,
- hidden_size: 768,
- num_hidden_layers: 12,
- num_attention_heads: 12,
- intermediate_size: 3072,
- hidden_act: HiddenAct::Gelu,
- hidden_dropout_prob: 0.1,
- max_position_embeddings: 512,
- type_vocab_size: 2,
- initializer_range: 0.02,
- layer_norm_eps: 1e-12,
- pad_token_id: 0,
- position_embedding_type: PositionEmbeddingType::Absolute,
- use_cache: true,
- classifier_dropout: None,
- model_type: Some("bert".to_string()),
- }
- }
-}
-
-impl Config {
- fn _all_mini_lm_l6_v2() -> Self {
- // https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json
- Self {
- vocab_size: 30522,
- hidden_size: 384,
- num_hidden_layers: 6,
- num_attention_heads: 12,
- intermediate_size: 1536,
- hidden_act: HiddenAct::Gelu,
- hidden_dropout_prob: 0.1,
- max_position_embeddings: 512,
- type_vocab_size: 2,
- initializer_range: 0.02,
- layer_norm_eps: 1e-12,
- pad_token_id: 0,
- position_embedding_type: PositionEmbeddingType::Absolute,
- use_cache: true,
- classifier_dropout: None,
- model_type: Some("bert".to_string()),
- }
- }
-}
-
-fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, hidden_size))
-}
-
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let weight = vb.get((size2, size1), "weight")?;
- let bias = vb.get(size2, "bias")?;
- Ok(Linear::new(weight, Some(bias)))
-}
-
-struct Dropout {
- #[allow(dead_code)]
- pr: f64,
-}
-
-impl Dropout {
- fn new(pr: f64) -> Self {
- Self { pr }
- }
-
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- // TODO
- Ok(x.clone())
- }
-}
-
-fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
- let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
- (Ok(weight), Ok(bias)) => (weight, bias),
- (Err(err), _) | (_, Err(err)) => {
- if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
- (weight, bias)
- } else {
- return Err(err);
- }
- }
- };
- Ok(LayerNorm::new(weight, bias, eps))
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180
-struct BertEmbeddings {
- word_embeddings: Embedding,
- position_embeddings: Option<Embedding>,
- token_type_embeddings: Embedding,
- layer_norm: LayerNorm,
- dropout: Dropout,
- span: tracing::Span,
-}
-
-impl BertEmbeddings {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let word_embeddings = embedding(
- config.vocab_size,
- config.hidden_size,
- vb.pp("word_embeddings"),
- )?;
- let position_embeddings = embedding(
- config.max_position_embeddings,
- config.hidden_size,
- vb.pp("position_embeddings"),
- )?;
- let token_type_embeddings = embedding(
- config.type_vocab_size,
- config.hidden_size,
- vb.pp("token_type_embeddings"),
- )?;
- let layer_norm = layer_norm(
- config.hidden_size,
- config.layer_norm_eps,
- vb.pp("LayerNorm"),
- )?;
- Ok(Self {
- word_embeddings,
- position_embeddings: Some(position_embeddings),
- token_type_embeddings,
- layer_norm,
- dropout: Dropout::new(config.hidden_dropout_prob),
- span: tracing::span!(tracing::Level::TRACE, "embeddings"),
- })
- }
-
- fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let (_bsize, seq_len) = input_ids.dims2()?;
- let input_embeddings = self.word_embeddings.forward(input_ids)?;
- let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?;
- let mut embeddings = (&input_embeddings + token_type_embeddings)?;
- if let Some(position_embeddings) = &self.position_embeddings {
- // TODO: Proper absolute positions?
- let position_ids = (0..seq_len as u32).collect::<Vec<_>>();
- let position_ids = Tensor::new(&position_ids[..], input_ids.device())?;
- embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)?
- }
- let embeddings = self.layer_norm.forward(&embeddings)?;
- let embeddings = self.dropout.forward(&embeddings)?;
- Ok(embeddings)
- }
-}
-
-struct BertSelfAttention {
- query: Linear,
- key: Linear,
- value: Linear,
- dropout: Dropout,
- num_attention_heads: usize,
- attention_head_size: usize,
- span: tracing::Span,
- span_softmax: tracing::Span,
-}
-
-impl BertSelfAttention {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let attention_head_size = config.hidden_size / config.num_attention_heads;
- let all_head_size = config.num_attention_heads * attention_head_size;
- let dropout = Dropout::new(config.hidden_dropout_prob);
- let hidden_size = config.hidden_size;
- let query = linear(hidden_size, all_head_size, vb.pp("query"))?;
- let value = linear(hidden_size, all_head_size, vb.pp("value"))?;
- let key = linear(hidden_size, all_head_size, vb.pp("key"))?;
- Ok(Self {
- query,
- key,
- value,
- dropout,
- num_attention_heads: config.num_attention_heads,
- attention_head_size,
- span: tracing::span!(tracing::Level::TRACE, "self-attn"),
- span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"),
- })
- }
-
- fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> {
- let mut new_x_shape = xs.dims().to_vec();
- new_x_shape.pop();
- new_x_shape.push(self.num_attention_heads);
- new_x_shape.push(self.attention_head_size);
- let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?;
- xs.contiguous()
- }
-
- fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let query_layer = self.query.forward(hidden_states)?;
- let key_layer = self.key.forward(hidden_states)?;
- let value_layer = self.value.forward(hidden_states)?;
-
- let query_layer = self.transpose_for_scores(&query_layer)?;
- let key_layer = self.transpose_for_scores(&key_layer)?;
- let value_layer = self.transpose_for_scores(&value_layer)?;
-
- let attention_scores = query_layer.matmul(&key_layer.t()?)?;
- let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?;
- let attention_probs = {
- let _enter_sm = self.span_softmax.enter();
- candle_nn::ops::softmax(&attention_scores, candle::D::Minus1)?
- };
- let attention_probs = self.dropout.forward(&attention_probs)?;
-
- let context_layer = attention_probs.matmul(&value_layer)?;
- let context_layer = context_layer.transpose(1, 2)?.contiguous()?;
- let context_layer = context_layer.flatten_from(candle::D::Minus2)?;
- Ok(context_layer)
- }
-}
-
-struct BertSelfOutput {
- dense: Linear,
- layer_norm: LayerNorm,
- dropout: Dropout,
- span: tracing::Span,
-}
-
-impl BertSelfOutput {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let dense = linear(config.hidden_size, config.hidden_size, vb.pp("dense"))?;
- let layer_norm = layer_norm(
- config.hidden_size,
- config.layer_norm_eps,
- vb.pp("LayerNorm"),
- )?;
- let dropout = Dropout::new(config.hidden_dropout_prob);
- Ok(Self {
- dense,
- layer_norm,
- dropout,
- span: tracing::span!(tracing::Level::TRACE, "self-out"),
- })
- }
-
- fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let hidden_states = self.dense.forward(hidden_states)?;
- let hidden_states = self.dropout.forward(&hidden_states)?;
- self.layer_norm.forward(&(hidden_states + input_tensor)?)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392
-struct BertAttention {
- self_attention: BertSelfAttention,
- self_output: BertSelfOutput,
- span: tracing::Span,
-}
-
-impl BertAttention {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let self_attention = BertSelfAttention::load(vb.pp("self"), config)?;
- let self_output = BertSelfOutput::load(vb.pp("output"), config)?;
- Ok(Self {
- self_attention,
- self_output,
- span: tracing::span!(tracing::Level::TRACE, "attn"),
- })
- }
-
- fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let self_outputs = self.self_attention.forward(hidden_states)?;
- let attention_output = self.self_output.forward(&self_outputs, hidden_states)?;
- Ok(attention_output)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441
-struct BertIntermediate {
- dense: Linear,
- intermediate_act: HiddenActLayer,
- span: tracing::Span,
-}
-
-impl BertIntermediate {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let dense = linear(config.hidden_size, config.intermediate_size, vb.pp("dense"))?;
- Ok(Self {
- dense,
- intermediate_act: HiddenActLayer::new(config.hidden_act),
- span: tracing::span!(tracing::Level::TRACE, "inter"),
- })
- }
-
- fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let hidden_states = self.dense.forward(hidden_states)?;
- let ys = self.intermediate_act.forward(&hidden_states)?;
- Ok(ys)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456
-struct BertOutput {
- dense: Linear,
- layer_norm: LayerNorm,
- dropout: Dropout,
- span: tracing::Span,
-}
-
-impl BertOutput {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let dense = linear(config.intermediate_size, config.hidden_size, vb.pp("dense"))?;
- let layer_norm = layer_norm(
- config.hidden_size,
- config.layer_norm_eps,
- vb.pp("LayerNorm"),
- )?;
- let dropout = Dropout::new(config.hidden_dropout_prob);
- Ok(Self {
- dense,
- layer_norm,
- dropout,
- span: tracing::span!(tracing::Level::TRACE, "out"),
- })
- }
-
- fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let hidden_states = self.dense.forward(hidden_states)?;
- let hidden_states = self.dropout.forward(&hidden_states)?;
- self.layer_norm.forward(&(hidden_states + input_tensor)?)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470
-struct BertLayer {
- attention: BertAttention,
- intermediate: BertIntermediate,
- output: BertOutput,
- span: tracing::Span,
-}
-
-impl BertLayer {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let attention = BertAttention::load(vb.pp("attention"), config)?;
- let intermediate = BertIntermediate::load(vb.pp("intermediate"), config)?;
- let output = BertOutput::load(vb.pp("output"), config)?;
- Ok(Self {
- attention,
- intermediate,
- output,
- span: tracing::span!(tracing::Level::TRACE, "layer"),
- })
- }
-
- fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let attention_output = self.attention.forward(hidden_states)?;
- // TODO: Support cross-attention?
- // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523
- // TODO: Support something similar to `apply_chunking_to_forward`?
- let intermediate_output = self.intermediate.forward(&attention_output)?;
- let layer_output = self
- .output
- .forward(&intermediate_output, &attention_output)?;
- Ok(layer_output)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556
-struct BertEncoder {
- layers: Vec<BertLayer>,
- span: tracing::Span,
-}
-
-impl BertEncoder {
- fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let layers = (0..config.num_hidden_layers)
- .map(|index| BertLayer::load(vb.pp(&format!("layer.{index}")), config))
- .collect::<Result<Vec<_>>>()?;
- let span = tracing::span!(tracing::Level::TRACE, "encoder");
- Ok(BertEncoder { layers, span })
- }
-
- fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let mut hidden_states = hidden_states.clone();
- // Use a loop rather than a fold as it's easier to modify when adding debug/...
- for layer in self.layers.iter() {
- hidden_states = layer.forward(&hidden_states)?
- }
- Ok(hidden_states)
- }
-}
-
-// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874
-pub struct BertModel {
- embeddings: BertEmbeddings,
- encoder: BertEncoder,
- pub device: Device,
- span: tracing::Span,
-}
-
-impl BertModel {
- pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> {
- let (embeddings, encoder) = match (
- BertEmbeddings::load(vb.pp("embeddings"), config),
- BertEncoder::load(vb.pp("encoder"), config),
- ) {
- (Ok(embeddings), Ok(encoder)) => (embeddings, encoder),
- (Err(err), _) | (_, Err(err)) => {
- if let Some(model_type) = &config.model_type {
- if let (Ok(embeddings), Ok(encoder)) = (
- BertEmbeddings::load(vb.pp(&format!("{model_type}.embeddings")), config),
- BertEncoder::load(vb.pp(&format!("{model_type}.encoder")), config),
- ) {
- (embeddings, encoder)
- } else {
- return Err(err);
- }
- } else {
- return Err(err);
- }
- }
- };
- Ok(Self {
- embeddings,
- encoder,
- device: vb.device().clone(),
- span: tracing::span!(tracing::Level::TRACE, "model"),
- })
- }
-
- pub fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?;
- let sequence_output = self.encoder.forward(&embedding_output)?;
- Ok(sequence_output)
- }
-}
diff --git a/candle-examples/examples/bigcode/main.rs b/candle-examples/examples/bigcode/main.rs
index 652cd47f..3540f75d 100644
--- a/candle-examples/examples/bigcode/main.rs
+++ b/candle-examples/examples/bigcode/main.rs
@@ -7,8 +7,7 @@ extern crate accelerate_src;
use anyhow::{Error as E, Result};
use clap::Parser;
-mod model;
-use model::{Config, GPTBigCode};
+use candle_transformers::models::bigcode::{Config, GPTBigCode};
use candle::{DType, Device, Tensor};
use candle_nn::VarBuilder;
diff --git a/candle-examples/examples/bigcode/model.rs b/candle-examples/examples/bigcode/model.rs
deleted file mode 100644
index 1e63956b..00000000
--- a/candle-examples/examples/bigcode/model.rs
+++ /dev/null
@@ -1,359 +0,0 @@
-use candle::{DType, Device, IndexOp, Result, Tensor, D};
-use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
-
-fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
- let weight = vb.get((size2, size1), "weight")?;
- let bias = if bias {
- Some(vb.get(size2, "bias")?)
- } else {
- None
- };
- Ok(Linear::new(weight, bias))
-}
-
-fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, hidden_size))
-}
-
-fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
- let weight = vb.get(size, "weight")?;
- let bias = vb.get(size, "bias")?;
- Ok(LayerNorm::new(weight, bias, eps))
-}
-
-fn make_causal_mask(t: usize, device: &Device) -> Result<Tensor> {
- let mask: Vec<_> = (0..t)
- .flat_map(|i| (0..t).map(move |j| u8::from(j <= i)))
- .collect();
- let mask = Tensor::from_slice(&mask, (t, t), device)?;
- Ok(mask)
-}
-
-#[derive(Debug)]
-pub struct Config {
- pub vocab_size: usize,
- // max_position_embeddings aka n_positions
- pub max_position_embeddings: usize,
- // num_hidden_layers aka n_layer
- pub num_hidden_layers: usize,
- // hidden_size aka n_embd
- pub hidden_size: usize,
- pub layer_norm_epsilon: f64,
- pub n_inner: Option<usize>,
- // num_attention_heads aka n_head
- pub num_attention_heads: usize,
- pub multi_query: bool,
- pub use_cache: bool,
-}
-
-impl Config {
- #[allow(dead_code)]
- pub fn starcoder_1b() -> Self {
- Self {
- vocab_size: 49152,
- max_position_embeddings: 8192,
- num_hidden_layers: 24,
- hidden_size: 2048,
- layer_norm_epsilon: 1e-5,
- n_inner: Some(8192),
- num_attention_heads: 16,
- multi_query: true,
- use_cache: true,
- }
- }
-
- #[allow(dead_code)]
- pub fn starcoder_3b() -> Self {
- Self {
- vocab_size: 49152,
- max_position_embeddings: 8192,
- num_hidden_layers: 36,
- hidden_size: 2816,
- layer_norm_epsilon: 1e-5,
- n_inner: Some(11264),
- num_attention_heads: 22,
- multi_query: true,
- use_cache: true,
- }
- }
-
- #[allow(dead_code)]
- pub fn starcoder_7b() -> Self {
- Self {
- vocab_size: 49152,
- max_position_embeddings: 8192,
- num_hidden_layers: 42,
- hidden_size: 4096,
- layer_norm_epsilon: 1e-5,
- n_inner: Some(16384),
- num_attention_heads: 32,
- multi_query: true,
- use_cache: true,
- }
- }
-
- #[allow(dead_code)]
- pub fn starcoder() -> Self {
- Self {
- vocab_size: 49152,
- max_position_embeddings: 8192,
- num_hidden_layers: 40,
- hidden_size: 6144,
- layer_norm_epsilon: 1e-5,
- n_inner: Some(24576),
- num_attention_heads: 48,
- multi_query: true,
- use_cache: true,
- }
- }
-}
-
-struct Attention {
- c_attn: Linear,
- c_proj: Linear,
- kv_cache: Option<Tensor>,
- use_cache: bool,
- embed_dim: usize,
- kv_dim: usize,
- num_heads: usize,
- head_dim: usize,
- multi_query: bool,
-}
-
-impl Attention {
- pub fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let hidden_size = cfg.hidden_size;
- let head_dim = hidden_size / cfg.num_attention_heads;
- let kv_heads = if cfg.multi_query {
- 1
- } else {
- cfg.num_attention_heads
- };
- let kv_dim = kv_heads * head_dim;
- let c_attn = linear(hidden_size, hidden_size + 2 * kv_dim, true, vb.pp("c_attn"))?;
- let c_proj = linear(hidden_size, hidden_size, true, vb.pp("c_proj"))?;
- Ok(Self {
- c_proj,
- c_attn,
- embed_dim: hidden_size,
- kv_cache: None,
- use_cache: cfg.use_cache,
- kv_dim,
- head_dim,
- num_heads: cfg.num_attention_heads,
- multi_query: cfg.multi_query,
- })
- }
-
- fn attn(
- &self,
- query: &Tensor,
- key: &Tensor,
- value: &Tensor,
- attention_mask: &Tensor,
- ) -> Result<Tensor> {
- if query.dtype() != DType::F32 {
- // If we start supporting f16 models, we may need the upcasting scaling bits.
- // https://github.com/huggingface/transformers/blob/a0042379269bea9182c1f87e6b2eee4ba4c8cce8/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L133
- candle::bail!("upcasting is not supported {:?}", query.dtype())
- }
- let scale_factor = 1f64 / (self.head_dim as f64).sqrt();
- let initial_query_shape = query.shape();
- let key_len = key.dim(D::Minus1)?;
- let (query, key, attn_shape, attn_view) = if self.multi_query {
- let (b_sz, query_len, _) = query.dims3()?;
- let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
- let attn_shape = (b_sz, query_len, self.num_heads, key_len);
- let attn_view = (b_sz, query_len * self.num_heads, key_len);
- (query, key.clone(), attn_shape, attn_view)
- } else {
- let (b_sz, _num_heads, query_len, _head_dim) = query.dims4()?;
- let query = query.reshape((b_sz, query_len * self.num_heads, self.head_dim))?;
- let key = key.reshape((b_sz * self.num_heads, self.head_dim, key_len))?;
- let attn_shape = (b_sz, self.num_heads, query_len, key_len);
- let attn_view = (b_sz * self.num_heads, query_len, key_len);
- (query, key, attn_shape, attn_view)
- };
-
- let attn_weights =
- (query.matmul(&key.contiguous()?)? * scale_factor)?.reshape(attn_shape)?;
- let attention_mask = attention_mask.broadcast_as(attn_shape)?;
- let mask_value =
- Tensor::new(f32::NEG_INFINITY, query.device())?.broadcast_as(attn_shape)?;
- let attn_weights = attention_mask.where_cond(&attn_weights, &mask_value)?;
- let attn_weights = candle_nn::ops::softmax(&attn_weights, D::Minus1)?;
- let value = value.contiguous()?;
- let attn_output = if self.multi_query {
- attn_weights
- .reshape(attn_view)?
- .matmul(&value)?
- .reshape(initial_query_shape)?
- } else {
- attn_weights.matmul(&value)?
- };
- Ok(attn_output)
- }
-
- fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
- let qkv = self.c_attn.forward(hidden_states)?;
- let (query, key_value) = if self.multi_query {
- let query = qkv.i((.., .., ..self.embed_dim))?;
- let key_value = qkv.i((.., .., self.embed_dim..self.embed_dim + 2 * self.kv_dim))?;
- (query, key_value)
- } else {
- let mut dims = qkv.dims().to_vec();
- dims.pop();
- dims.push(self.embed_dim);
- dims.push(self.head_dim * 3);
- let qkv = qkv.reshape(dims)?.transpose(1, 2)?;
- let query = qkv.i((.., .., .., ..self.head_dim))?;
- let key_value = qkv.i((.., .., .., self.head_dim..3 * self.head_dim))?;
- (query, key_value)
- };
- let mut key_value = key_value;
- if self.use_cache {
- if let Some(kv_cache) = &self.kv_cache {
- // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
- // arbitrarily large sizes.
- key_value = Tensor::cat(&[kv_cache, &key_value], D::Minus2)?.contiguous()?;
- }
- self.kv_cache = Some(key_value.clone())
- }
-
- let key = key_value.narrow(D::Minus1, 0, self.head_dim)?;
- let value = key_value.narrow(D::Minus1, self.head_dim, self.head_dim)?;
- let attn_output = self.attn(&query, &key.t()?, &value, attention_mask)?;
- let attn_output = if self.multi_query {
- attn_output
- } else {
- attn_output
- .transpose(1, 2)?
- .reshape(hidden_states.shape())?
- };
- let attn_output = self.c_proj.forward(&attn_output)?;
- Ok(attn_output)
- }
-}
-
-struct Mlp {
- c_fc: Linear,
- c_proj: Linear,
-}
-
-impl Mlp {
- fn load(inner_dim: usize, vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let c_fc = linear(cfg.hidden_size, inner_dim, true, vb.pp("c_fc"))?;
- let c_proj = linear(inner_dim, cfg.hidden_size, true, vb.pp("c_proj"))?;
- Ok(Self { c_fc, c_proj })
- }
-
- fn forward(&mut self, hidden_states: &Tensor) -> Result<Tensor> {
- let hidden_states = self.c_fc.forward(hidden_states)?.gelu()?;
- let hidden_states = self.c_proj.forward(&hidden_states)?;
- Ok(hidden_states)
- }
-}
-
-// TODO: Add cross-attention?
-struct Block {
- ln_1: LayerNorm,
- attn: Attention,
- ln_2: LayerNorm,
- mlp: Mlp,
-}
-
-impl Block {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let hidden_size = cfg.hidden_size;
- let inner_dim = cfg.n_inner.unwrap_or(4 * hidden_size);
- let ln_1 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_1"))?;
- let attn = Attention::load(vb.pp("attn"), cfg)?;
- let ln_2 = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb.pp("ln_2"))?;
- let mlp = Mlp::load(inner_dim, vb.pp("mlp"), cfg)?;
- Ok(Self {
- ln_1,
- attn,
- ln_2,
- mlp,
- })
- }
-
- fn forward(&mut self, hidden_states: &Tensor, attention_mask: &Tensor) -> Result<Tensor> {
- let residual = hidden_states;
- let hidden_states = self.ln_1.forward(hidden_states)?;
- let attn_outputs = self.attn.forward(&hidden_states, attention_mask)?;
- let hidden_states = (&attn_outputs + residual)?;
- let residual = &hidden_states;
- let hidden_states = self.ln_2.forward(&hidden_states)?;
- let hidden_states = self.mlp.forward(&hidden_states)?;
- let hidden_states = (&hidden_states + residual)?;
- Ok(hidden_states)
- }
-}
-
-pub struct GPTBigCode {
- wte: Embedding,
- wpe: Embedding,
- blocks: Vec<Block>,
- ln_f: LayerNorm,
- lm_head: Linear,
- bias: Tensor,
- config: Config,
-}
-
-impl GPTBigCode {
- pub fn config(&self) -> &Config {
- &self.config
- }
-
- pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
- let hidden_size = cfg.hidden_size;
- let vb_t = vb.pp("transformer");
- let wte = embedding(cfg.vocab_size, hidden_size, vb_t.pp("wte"))?;
- let wpe = embedding(cfg.max_position_embeddings, hidden_size, vb_t.pp("wpe"))?;
- let blocks = (0..cfg.num_hidden_layers)
- .map(|i| Block::load(vb_t.pp(&format!("h.{i}")), &cfg))
- .collect::<Result<Vec<_>>>()?;
- let ln_f = layer_norm(hidden_size, cfg.layer_norm_epsilon, vb_t.pp("ln_f"))?;
- let lm_head = linear(hidden_size, cfg.vocab_size, false, vb_t.pp("wte"))?;
- let bias = make_causal_mask(cfg.max_position_embeddings, vb.device())?;
- Ok(Self {
- wte,
- wpe,
- blocks,
- lm_head,
- ln_f,
- bias,
- config: cfg,
- })
- }
-
- pub fn forward(&mut self, input_ids: &Tensor, past_len: usize) -> Result<Tensor> {
- let dev = input_ids.device();
- let (b_sz, seq_len) = input_ids.dims2()?;
-
- let key_len = past_len + seq_len;
- let attention_mask = self.bias.i((past_len..key_len, ..key_len))?.unsqueeze(0)?;
- // MQA models: (batch_size, query_length, n_heads, key_length)
- // MHA models: (batch_size, n_heads, query_length, key_length)
- let seq_len_dim = if self.config.multi_query { 2 } else { 1 };
- let attention_mask = attention_mask.unsqueeze(seq_len_dim)?;
-
- let position_ids = Tensor::arange(past_len as u32, (past_len + seq_len) as u32, dev)?;
- let position_ids = position_ids.unsqueeze(0)?.broadcast_as((b_sz, seq_len))?;
- let input_embeds = self.wte.forward(input_ids)?;
- let position_embeds = self.wpe.forward(&position_ids)?;
-
- let mut hidden_states = (&input_embeds + &position_embeds)?;
- for block in self.blocks.iter_mut() {
- hidden_states = block.forward(&hidden_states, &attention_mask)?;
- }
- let hidden_states = self.ln_f.forward(&hidden_states)?;
- let hidden_states = hidden_states
- .reshape((b_sz, seq_len, self.config.hidden_size))?
- .narrow(1, seq_len - 1, 1)?;
- let logits = self.lm_head.forward(&hidden_states)?.squeeze(1)?;
- Ok(logits)
- }
-}
diff --git a/candle-examples/examples/falcon/main.rs b/candle-examples/examples/falcon/main.rs
index 05507f08..c45fe545 100644
--- a/candle-examples/examples/falcon/main.rs
+++ b/candle-examples/examples/falcon/main.rs
@@ -14,8 +14,7 @@ use clap::Parser;
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;
-mod model;
-use model::{Config, Falcon};
+use candle_transformers::models::falcon::{Config, Falcon};
struct TextGeneration {
model: Falcon,
diff --git a/candle-examples/examples/falcon/model.rs b/candle-examples/examples/falcon/model.rs
deleted file mode 100644
index b638dd51..00000000
--- a/candle-examples/examples/falcon/model.rs
+++ /dev/null
@@ -1,485 +0,0 @@
-use anyhow::Result;
-use candle::{DType, Device, Tensor, D};
-use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder};
-
-const MAX_SEQ_LEN: usize = 5000;
-
-fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> {
- let weight = vb.get((size2, size1), "weight")?;
- let bias = if bias {
- Some(vb.get(size2, "bias")?)
- } else {
- None
- };
- Ok(Linear::new(weight, bias))
-}
-
-fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> {
- let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) {
- (Ok(weight), Ok(bias)) => (weight, bias),
- (Err(err), _) | (_, Err(err)) => {
- if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) {
- (weight, bias)
- } else {
- return Err(err.into());
- }
- }
- };
- Ok(LayerNorm::new(weight, bias, eps))
-}
-
-fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, hidden_size))
-}
-
-// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py
-#[derive(Debug)]
-pub struct Config {
- pub vocab_size: usize,
- pub hidden_size: usize,
- pub num_hidden_layers: usize,
- pub num_attention_heads: usize,
- pub layer_norm_epsilon: f64,
- pub initializer_range: f64,
- pub use_cache: bool,
- pub bos_token_id: u32,
- pub eos_token_id: u32,
- pub hidden_dropout: f64,
- pub attention_dropout: f64,
- pub n_head_kv: Option<usize>,
- pub alibi: bool,
- pub new_decoder_architecture: bool,
- pub multi_query: bool,
- pub parallel_attn: bool,
- pub bias: bool,
-}
-
-impl Default for Config {
- fn default() -> Self {
- Self {
- vocab_size: 65024,
- hidden_size: 4544,
- num_hidden_layers: 32,
- num_attention_heads: 71,
- layer_norm_epsilon: 1e-5,
- initializer_range: 0.02,
- use_cache: true,
- bos_token_id: 11,
- eos_token_id: 11,
- hidden_dropout: 0.0,
- attention_dropout: 0.0,
- n_head_kv: None,
- alibi: false,
- new_decoder_architecture: false,
- multi_query: true,
- parallel_attn: true,
- bias: false,
- }
- }
-}
-
-impl Config {
- pub fn validate(&self) -> Result<()> {
- if self.alibi {
- anyhow::bail!("alibi is not supported");
- }
- if self.new_decoder_architecture {
- anyhow::bail!("new_decoder_architecture is not supported");
- }
- if self.n_head_kv.is_some() {
- anyhow::bail!("n_head_kv is not supported");
- }
- Ok(())
- }
-
- // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json
- pub fn falcon7b() -> Self {
- // This is currently on par with the defaults, the defaults come from the Python default
- // arguments for the config initialization whereas the following come from the json config.
- Self {
- vocab_size: 65024,
- hidden_size: 4544,
- num_hidden_layers: 32,
- num_attention_heads: 71,
- layer_norm_epsilon: 1e-5,
- initializer_range: 0.02,
- use_cache: true,
- bos_token_id: 11,
- eos_token_id: 11,
- hidden_dropout: 0.,
- attention_dropout: 0.,
- n_head_kv: None,
- alibi: false,
- new_decoder_architecture: false,
- multi_query: true,
- parallel_attn: true,
- bias: false,
- }
- }
-
- fn head_dim(&self) -> usize {
- self.hidden_size / self.num_attention_heads
- }
-
- fn rotary(&self) -> bool {
- !self.alibi
- }
-}
-
-fn rotate_half(x: &Tensor) -> Result<Tensor> {
- let l = x.dim(D::Minus1)?;
- let x1 = x.narrow(D::Minus1, 0, l / 2)?;
- let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?;
- let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
- Ok(x21)
-}
-
-#[derive(Debug)]
-struct FalconRotaryEmbedding {
- inv_freq: Tensor,
- cache: Option<(usize, Tensor, Tensor)>,
-}
-
-impl FalconRotaryEmbedding {
- fn load(device: &Device, cfg: &Config) -> Result<Self> {
- let head_dim = cfg.head_dim();
- let inv_freq: Vec<_> = (0..head_dim)
- .step_by(2)
- .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32))
- .collect();
- Ok(Self {
- inv_freq: Tensor::new(inv_freq.as_slice(), device)?,
- cache: None,
- })
- }
-
- fn cos_sin(
- &mut self,
- seq_len: usize,
- device: &Device,
- dtype: DType,
- ) -> Result<(Tensor, Tensor)> {
- match &self.cache {
- Some((s, cos, sin)) if *s == seq_len => {
- return Ok((cos.clone(), sin.clone()));
- }
- _ => {}
- }
- let t = Tensor::arange(0, seq_len as u32, device)?.to_dtype(dtype)?;
- let inv_freq = self.inv_freq.to_dtype(dtype)?;
- let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?;
- let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
- let cos = emb.cos()?;
- let sin = emb.sin()?;
- self.cache = Some((seq_len, cos.clone(), sin.clone()));
- Ok((cos, sin))
- }
-
- fn forward(
- &mut self,
- query: &Tensor,
- key: &Tensor,
- past_kv_len: usize,
- ) -> Result<(Tensor, Tensor)> {
- let (_batch, seq_len, _head_dim) = query.dims3()?;
- let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?;
- let cos = cos.narrow(0, past_kv_len, seq_len)?;
- let sin = sin.narrow(0, past_kv_len, seq_len)?;
- let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?;
- let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?;
- Ok((qs, ks))
- }
-}
-
-fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
- let shape = mask.shape();
- let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
- let m = mask.where_cond(&on_true, on_false)?;
- Ok(m)
-}
-
-#[derive(Debug)]
-struct FalconAttention {
- query_key_value: Linear,
- dense: Linear,
- maybe_rotary: Option<FalconRotaryEmbedding>,
- kv_cache: Option<(Tensor, Tensor)>,
- inv_norm_factor: f64,
- multi_query: bool,
- use_cache: bool,
- num_heads: usize,
- head_dim: usize,
- n_head_kv: usize,
-}
-
-impl FalconAttention {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let maybe_rotary = if cfg.rotary() {
- let rotary = FalconRotaryEmbedding::load(vb.device(), cfg)?;
- Some(rotary)
- } else {
- None
- };
- let head_dim = cfg.head_dim();
- let hidden_size = cfg.hidden_size;
- let qkv_out_dim = if cfg.multi_query {
- hidden_size + 2 * head_dim
- } else {
- 3 * hidden_size
- };
- let query_key_value = linear(hidden_size, qkv_out_dim, cfg.bias, vb.pp("query_key_value"))?;
- let dense = linear(hidden_size, hidden_size, cfg.bias, vb.pp("dense"))?;
- Ok(Self {
- query_key_value,
- dense,
- maybe_rotary,
- kv_cache: None,
- inv_norm_factor: 1. / (head_dim as f64).sqrt(),
- multi_query: cfg.multi_query,
- use_cache: cfg.use_cache,
- num_heads: cfg.num_attention_heads,
- n_head_kv: cfg.n_head_kv.unwrap_or(1),
- head_dim,
- })
- }
-
- fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> {
- let (b_sz, seq_len, _) = fused_qkv.dims3()?;
- if !self.multi_query {
- let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?;
- let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?;
- let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?;
- let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?;
- Ok((q, k, v))
- } else {
- let fused_qkv =
- fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?;
- let d = fused_qkv.dim(D::Minus2)?;
- let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?;
- let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?;
- let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?;
- Ok((q, k, v))
- }
- }
-
- fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> {
- let fused_qkv = self.query_key_value.forward(x)?;
- let head_dim = self.head_dim;
- let (query, key, value) = self.split_heads(&fused_qkv)?;
- let (b_sz, seq_len, _, _) = query.dims4()?;
- let query = query
- .transpose(1, 2)?
- .reshape((b_sz * self.num_heads, seq_len, head_dim))?;
- let key = key
- .transpose(1, 2)?
- .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
- let value = value
- .transpose(1, 2)?
- .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?;
- let (query, key) = if let Some(r) = &mut self.maybe_rotary {
- r.forward(&query, &key, past_kv_len)?
- } else {
- (query, key)
- };
- let (mut key, mut value) = (key, value);
- let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?;
- if self.use_cache {
- if let Some((cache_k, cache_v)) = &self.kv_cache {
- // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for
- // arbitrarily large sizes.
- key = Tensor::cat(&[cache_k, &key], 1)?.contiguous()?;
- value = Tensor::cat(&[cache_v, &value], 1)?.contiguous()?;
- }
- self.kv_cache = Some((key.clone(), value.clone()))
- }
- let query = query.reshape((b_sz * self.num_heads, seq_len, head_dim))?;
- let all_len = past_kv_len + seq_len;
- let key = key.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;
- let value = value.reshape((b_sz * self.n_head_kv, all_len, head_dim))?;
-
- let (key, value) = if self.n_head_kv == 1 {
- (
- key.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
- value.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?,
- )
- } else {
- (key, value)
- };
-
- // Only handle the case where alibi is None here, and non-flash attention.
- let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?;
- let attention_scores = candle_nn::ops::softmax(
- &attention_scores
- .broadcast_add(&mask.squeeze(1)?)?
- .to_dtype(DType::F32)?,
- D::Minus1,
- )?
- .to_dtype(x.dtype())?;
- let attn_output = attention_scores
- .matmul(&value)?
- .reshape((b_sz, self.num_heads, seq_len, head_dim))?
- .transpose(1, 2)?
- .reshape((b_sz, seq_len, self.num_heads * head_dim))?;
- let attn_output = self.dense.forward(&attn_output)?;
- Ok(attn_output)
- }
-}
-
-#[derive(Debug)]
-struct FalconMlp {
- dense_h_to_4h: Linear,
- dense_4h_to_h: Linear,
-}
-
-impl FalconMlp {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let h = cfg.hidden_size;
- let b = cfg.bias;
- let dense_h_to_4h = linear(h, 4 * h, b, vb.pp("dense_h_to_4h"))?;
- let dense_4h_to_h = linear(4 * h, h, b, vb.pp("dense_4h_to_h"))?;
- Ok(Self {
- dense_h_to_4h,
- dense_4h_to_h,
- })
- }
-
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let x = self.dense_h_to_4h.forward(x)?.gelu()?;
- let x = self.dense_4h_to_h.forward(&x)?;
- Ok(x)
- }
-}
-
-#[derive(Debug)]
-struct FalconDecoderLayer {
- inp_layernorm: LayerNorm,
- self_attention: FalconAttention,
- post_attention_layernorm: Option<LayerNorm>,
- mlp: FalconMlp,
- parallel_attn: bool,
-}
-
-impl FalconDecoderLayer {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let mlp = FalconMlp::load(vb.pp("mlp"), cfg)?;
- let inp_layernorm = layer_norm(
- cfg.hidden_size,
- cfg.layer_norm_epsilon,
- vb.pp("input_layernorm"),
- )?;
- let self_attention = FalconAttention::load(vb.pp("self_attention"), cfg)?;
- let post_attention_layernorm = if cfg.parallel_attn {
- None
- } else {
- let ln = layer_norm(
- cfg.hidden_size,
- cfg.layer_norm_epsilon,
- vb.pp("post_attention_layernorm"),
- )?;
- Some(ln)
- };
- Ok(Self {
- inp_layernorm,
- self_attention,
- post_attention_layernorm,
- mlp,
- parallel_attn: cfg.parallel_attn,
- })
- }
-
- fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> {
- let residual = x.clone();
- let ln_attn = self.inp_layernorm.forward(x)?;
- let attn_output = self.self_attention.forward(&ln_attn, mask, past_kv_len)?;
- let (residual, ln_mlp) = match &self.post_attention_layernorm {
- None => (residual, ln_attn),
- Some(pal) => {
- // This should include some dropout.
- let residual = (&attn_output + &residual)?;
- let ln_mlp = pal.forward(&residual)?;
- (residual, ln_mlp)
- }
- };
- let mlp_output = self.mlp.forward(&ln_mlp)?;
-
- let mlp_output = if self.parallel_attn {
- (mlp_output + attn_output)?
- } else {
- mlp_output
- };
- let output = (mlp_output + residual)?;
- Ok(output)
- }
-}
-
-#[derive(Debug)]
-pub struct Falcon {
- word_embeddings: Embedding,
- blocks: Vec<FalconDecoderLayer>,
- ln_f: LayerNorm,
- lm_head: Linear,
- config: Config,
-}
-
-fn make_causal_mask(t: usize) -> Result<Tensor> {
- let mask: Vec<_> = (0..t)
- .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
- .collect();
- let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
- Ok(mask)
-}
-
-fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> {
- // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?;
- let mask = make_causal_mask(seq_len)?;
- let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?;
- Ok(mask)
-}
-
-impl Falcon {
- pub fn config(&self) -> &Config {
- &self.config
- }
-
- pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> {
- let word_embeddings = embedding(
- cfg.vocab_size,
- cfg.hidden_size,
- vb.pp("transformer.word_embeddings"),
- )?;
- let blocks = (0..cfg.num_hidden_layers)
- .map(|i| FalconDecoderLayer::load(vb.pp(&format!("transformer.h.{i}")), &cfg))
- .collect::<Result<Vec<_>>>()?;
- let ln_f = layer_norm(
- cfg.hidden_size,
- cfg.layer_norm_epsilon,
- vb.pp("transformer.ln_f"),
- )?;
- let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?;
- Ok(Self {
- word_embeddings,
- blocks,
- ln_f,
- lm_head,
- config: cfg,
- })
- }
-
- pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> {
- let (b_sz, seq_len) = input_ids.dims2()?;
- let mut hidden_state = self.word_embeddings.forward(input_ids)?;
- let past_kv_len = match &self.blocks[0].self_attention.kv_cache {
- Some((k, _)) => k.dim(1)?,
- None => 0,
- };
- let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?;
- for block in self.blocks.iter_mut() {
- hidden_state = block.forward(&hidden_state, &causal_mask, past_kv_len)?;
- }
- let hidden_state = self.ln_f.forward(&hidden_state)?;
- let hidden_state = hidden_state.narrow(1, seq_len - 1, 1)?;
- let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?;
- Ok(logits)
- }
-}
diff --git a/candle-examples/examples/llama/main.rs b/candle-examples/examples/llama/main.rs
index 6f8766d4..db3d216c 100644
--- a/candle-examples/examples/llama/main.rs
+++ b/candle-examples/examples/llama/main.rs
@@ -21,11 +21,10 @@ use candle_transformers::generation::LogitsProcessor;
use hf_hub::{api::sync::Api, Repo, RepoType};
use std::io::Write;
-mod model;
+use candle_transformers::models::llama as model;
use model::{Config, Llama, LlamaConfig};
const EOS_TOKEN: &str = "</s>";
-const MAX_SEQ_LEN: usize = 4096;
const DEFAULT_PROMPT: &str = "My favorite theorem is ";
#[derive(Parser, Debug)]
diff --git a/candle-examples/examples/llama/model.rs b/candle-examples/examples/llama/model.rs
deleted file mode 100644
index 275856e0..00000000
--- a/candle-examples/examples/llama/model.rs
+++ /dev/null
@@ -1,446 +0,0 @@
-use candle::{DType, Device, IndexOp, Result, Tensor, D};
-use candle_nn::{Embedding, Module, VarBuilder};
-use serde::Deserialize;
-use std::collections::HashMap;
-use std::sync::{Arc, Mutex};
-
-use super::MAX_SEQ_LEN;
-
-#[derive(Deserialize)]
-pub struct LlamaConfig {
- pub hidden_size: usize,
- pub intermediate_size: usize,
- pub vocab_size: usize,
- pub num_hidden_layers: usize,
- pub num_attention_heads: usize,
- pub num_key_value_heads: Option<usize>,
- pub rms_norm_eps: f64,
- #[serde(default = "default_rope")]
- pub rope_theta: f32,
-}
-
-fn default_rope() -> f32 {
- 10_000.0
-}
-
-impl LlamaConfig {
- pub fn into_config(self, use_flash_attn: bool) -> Config {
- Config {
- hidden_size: self.hidden_size,
- intermediate_size: self.intermediate_size,
- vocab_size: self.vocab_size,
- num_hidden_layers: self.num_hidden_layers,
- num_attention_heads: self.num_attention_heads,
- num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
- rms_norm_eps: self.rms_norm_eps,
- rope_theta: self.rope_theta,
- use_flash_attn,
- }
- }
-}
-
-pub struct Config {
- pub hidden_size: usize,
- pub intermediate_size: usize,
- pub vocab_size: usize,
- pub num_hidden_layers: usize,
- pub num_attention_heads: usize,
- pub num_key_value_heads: usize,
- pub use_flash_attn: bool,
- pub rms_norm_eps: f64,
- pub rope_theta: f32,
-}
-
-impl Config {
- pub fn config_7b_v1(use_flash_attn: bool) -> Self {
- Self {
- hidden_size: 4096,
- intermediate_size: 11008,
- vocab_size: 32000,
- num_hidden_layers: 32,
- num_attention_heads: 32,
- num_key_value_heads: 32,
- use_flash_attn,
- rms_norm_eps: 1e-6,
- rope_theta: 10_000.0,
- }
- }
-
- pub fn config_7b_v2(use_flash_attn: bool) -> Self {
- Self {
- hidden_size: 4096,
- intermediate_size: 11008,
- vocab_size: 32000,
- num_hidden_layers: 32,
- num_attention_heads: 32,
- num_key_value_heads: 32,
- use_flash_attn,
- rms_norm_eps: 1e-5,
- rope_theta: 10_000.0,
- }
- }
-}
-
-// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
-// model.
-#[derive(Debug)]
-pub struct Linear {
- inner: candle_nn::Linear,
- span: tracing::Span,
-}
-
-impl Linear {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-#[derive(Clone)]
-pub struct Cache {
- masks: Arc<Mutex<HashMap<usize, Tensor>>>,
- pub use_kv_cache: bool,
- #[allow(clippy::type_complexity)]
- kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
- cos: Tensor,
- sin: Tensor,
- device: Device,
-}
-
-impl Cache {
- pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result<Self> {
- // precompute freqs_cis
- let n_elem = config.hidden_size / config.num_attention_heads;
- let theta: Vec<_> = (0..n_elem)
- .step_by(2)
- .map(|i| 1f32 / config.rope_theta.powf(i as f32 / n_elem as f32))
- .collect();
- let theta = Tensor::new(theta.as_slice(), device)?;
- let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
- .to_dtype(DType::F32)?
- .reshape((MAX_SEQ_LEN, 1))?
- .matmul(&theta.reshape((1, theta.elem_count()))?)?;
- // This is different from the paper, see:
- // https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
- let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
- let cos = idx_theta.cos()?.to_dtype(dtype)?;
- let sin = idx_theta.sin()?.to_dtype(dtype)?;
- Ok(Self {
- masks: Arc::new(Mutex::new(HashMap::new())),
- use_kv_cache,
- kvs: Arc::new(Mutex::new(vec![None; config.num_hidden_layers])),
- device: device.clone(),
- cos,
- sin,
- })
- }
-
- fn mask(&self, t: usize) -> Result<Tensor> {
- let mut masks = self.masks.lock().unwrap();
- if let Some(mask) = masks.get(&t) {
- Ok(mask.clone())
- } else {
- let mask: Vec<_> = (0..t)
- .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
- .collect();
- let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
- masks.insert(t, mask.clone());
- Ok(mask)
- }
- }
-}
-
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, cfg.hidden_size))
-}
-
-struct RmsNorm {
- inner: candle_nn::RmsNorm,
- span: tracing::Span,
-}
-
-impl RmsNorm {
- fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
- let inner = candle_nn::rms_norm(size, eps, vb)?;
- Ok(Self { inner, span })
- }
-
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-struct CausalSelfAttention {
- q_proj: Linear,
- k_proj: Linear,
- v_proj: Linear,
- o_proj: Linear,
- num_attention_heads: usize,
- num_key_value_heads: usize,
- head_dim: usize,
- cache: Cache,
- use_flash_attn: bool,
- span: tracing::Span,
- span_rot: tracing::Span,
-}
-
-#[cfg(feature = "flash-attn")]
-fn flash_attn(
- q: &Tensor,
- k: &Tensor,
- v: &Tensor,
- softmax_scale: f32,
- causal: bool,
-) -> Result<Tensor> {
- candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
-}
-
-#[cfg(not(feature = "flash-attn"))]
-fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
- unimplemented!("compile with '--features flash-attn'")
-}
-
-impl CausalSelfAttention {
- fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let _enter = self.span_rot.enter();
- let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
- let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
- let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
- let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
- let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
- let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
- let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
- let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
- let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
- Ok(rope)
- }
-
- fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
- let _enter = self.span.enter();
- let (b_sz, seq_len, hidden_size) = x.dims3()?;
- let q = self.q_proj.forward(x)?;
- let k = self.k_proj.forward(x)?;
- let v = self.v_proj.forward(x)?;
-
- let q = q
- .reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
- .transpose(1, 2)?;
- let k = k
- .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
- .transpose(1, 2)?;
- let mut v = v
- .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
- .transpose(1, 2)?;
-
- let q = self.apply_rotary_emb(&q, index_pos)?;
- let mut k = self.apply_rotary_emb(&k, index_pos)?;
-
- if self.cache.use_kv_cache {
- let mut cache = self.cache.kvs.lock().unwrap();
- if let Some((cache_k, cache_v)) = &cache[block_idx] {
- k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
- v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
- let k_seq_len = k.dims()[1];
- if k_seq_len > MAX_SEQ_LEN {
- k = k
- .narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
- .contiguous()?
- }
- let v_seq_len = v.dims()[1];
- if v_seq_len > 2 * MAX_SEQ_LEN {
- v = v
- .narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
- .contiguous()?
- }
- }
- cache[block_idx] = Some((k.clone(), v.clone()))
- }
-
- let k = self.repeat_kv(k)?;
- let v = self.repeat_kv(v)?;
-
- let y = if self.use_flash_attn {
- // flash-attn expects (b_sz, seq_len, nheads, head_dim)
- let q = q.transpose(1, 2)?;
- let k = k.transpose(1, 2)?;
- let v = v.transpose(1, 2)?;
- let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
- flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)?
- } else {
- let in_dtype = q.dtype();
- let q = q.to_dtype(DType::F32)?;
- let k = k.to_dtype(DType::F32)?;
- let v = v.to_dtype(DType::F32)?;
- let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
- let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
- let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
- let att = candle_nn::ops::softmax(&att, D::Minus1)?;
- // Convert to contiguous as matmul doesn't support strided vs for now.
- att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?
- };
- let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
- let y = self.o_proj.forward(&y)?;
- Ok(y)
- }
-
- fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
- let n_rep = self.num_attention_heads / self.num_key_value_heads;
- if n_rep == 1 {
- Ok(x)
- } else {
- let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
- let x = x
- .unsqueeze(2)?
- .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
- .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
- Ok(x)
- }
- }
-
- fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "attn");
- let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
- let size_in = cfg.hidden_size;
- let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads;
- let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads;
- let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
- let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
- let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
- let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
- Ok(Self {
- q_proj,
- k_proj,
- v_proj,
- o_proj,
- num_attention_heads: cfg.num_attention_heads,
- num_key_value_heads: cfg.num_key_value_heads,
- head_dim: cfg.hidden_size / cfg.num_attention_heads,
- cache: cache.clone(),
- use_flash_attn: cfg.use_flash_attn,
- span,
- span_rot,
- })
- }
-}
-
-fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
- let shape = mask.shape();
- let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
- let m = mask.where_cond(&on_true, on_false)?;
- Ok(m)
-}
-
-struct Mlp {
- c_fc1: Linear,
- c_fc2: Linear,
- c_proj: Linear,
- span: tracing::Span,
-}
-
-impl Mlp {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
- self.c_proj.forward(&x)
- }
-
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "mlp");
- let h_size = cfg.hidden_size;
- let i_size = cfg.intermediate_size;
- let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
- let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
- let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
- Ok(Self {
- c_fc1,
- c_fc2,
- c_proj,
- span,
- })
- }
-}
-
-struct Block {
- rms_1: RmsNorm,
- attn: CausalSelfAttention,
- rms_2: RmsNorm,
- mlp: Mlp,
- span: tracing::Span,
-}
-
-impl Block {
- fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
- let _enter = self.span.enter();
- let residual = x;
- let x = self.rms_1.forward(x)?;
- let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
- let residual = &x;
- let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
- Ok(x)
- }
-
- fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "block");
- let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
- let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
- let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
- let rms_2 = RmsNorm::load(
- cfg.hidden_size,
- cfg.rms_norm_eps,
- vb.pp("post_attention_layernorm"),
- )?;
- Ok(Self {
- rms_1,
- attn,
- rms_2,
- mlp,
- span,
- })
- }
-}
-
-pub struct Llama {
- wte: Embedding,
- blocks: Vec<Block>,
- ln_f: RmsNorm,
- lm_head: Linear,
-}
-
-impl Llama {
- pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let (_b_sz, seq_len) = x.dims2()?;
- let mut x = self.wte.forward(x)?;
- for (block_idx, block) in self.blocks.iter().enumerate() {
- x = block.forward(&x, index_pos, block_idx)?;
- }
- let x = self.ln_f.forward(&x)?;
- let x = x.i((.., seq_len - 1, ..))?;
- let logits = self.lm_head.forward(&x)?;
- logits.to_dtype(DType::F32)
- }
-
- pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
- let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
- let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
- let ln_f = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?;
- let blocks: Vec<_> = (0..cfg.num_hidden_layers)
- .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
- .collect();
-
- Ok(Self {
- wte,
- blocks,
- ln_f,
- lm_head,
- })
- }
-}
diff --git a/candle-examples/examples/whisper/audio.rs b/candle-examples/examples/whisper/audio.rs
deleted file mode 100644
index 2ceed065..00000000
--- a/candle-examples/examples/whisper/audio.rs
+++ /dev/null
@@ -1,214 +0,0 @@
-// Audio processing code, adapted from whisper.cpp
-// https://github.com/ggerganov/whisper.cpp
-
-pub trait Float: num_traits::Float + num_traits::FloatConst + num_traits::NumAssign {}
-
-impl Float for f32 {}
-impl Float for f64 {}
-
-// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2357
-fn fft<T: Float>(inp: &[T]) -> Vec<T> {
- let n = inp.len();
- let zero = T::zero();
- if n == 1 {
- return vec![inp[0], zero];
- }
- if n % 2 == 1 {
- return dft(inp);
- }
- let mut out = vec![zero; n * 2];
-
- let mut even = Vec::with_capacity(n / 2);
- let mut odd = Vec::with_capacity(n / 2);
-
- for (i, &inp) in inp.iter().enumerate() {
- if i % 2 == 0 {
- even.push(inp)
- } else {
- odd.push(inp);
- }
- }
-
- let even_fft = fft(&even);
- let odd_fft = fft(&odd);
-
- let two_pi = T::PI() + T::PI();
- let n_t = T::from(n).unwrap();
- for k in 0..n / 2 {
- let k_t = T::from(k).unwrap();
- let theta = two_pi * k_t / n_t;
- let re = theta.cos();
- let im = -theta.sin();
-
- let re_odd = odd_fft[2 * k];
- let im_odd = odd_fft[2 * k + 1];
-
- out[2 * k] = even_fft[2 * k] + re * re_odd - im * im_odd;
- out[2 * k + 1] = even_fft[2 * k + 1] + re * im_odd + im * re_odd;
-
- out[2 * (k + n / 2)] = even_fft[2 * k] - re * re_odd + im * im_odd;
- out[2 * (k + n / 2) + 1] = even_fft[2 * k + 1] - re * im_odd - im * re_odd;
- }
- out
-}
-
-// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2337
-fn dft<T: Float>(inp: &[T]) -> Vec<T> {
- let zero = T::zero();
- let n = inp.len();
- let two_pi = T::PI() + T::PI();
-
- let mut out = Vec::new();
- out.reserve(2 * n);
- let n_t = T::from(n).unwrap();
- for k in 0..n {
- let k_t = T::from(k).unwrap();
- let mut re = zero;
- let mut im = zero;
-
- for (j, &inp) in inp.iter().enumerate() {
- let j_t = T::from(j).unwrap();
- let angle = two_pi * k_t * j_t / n_t;
- re += inp * angle.cos();
- im -= inp * angle.sin();
- }
-
- out.push(re);
- out.push(im);
- }
- out
-}
-
-#[allow(clippy::too_many_arguments)]
-// https://github.com/ggerganov/whisper.cpp/blob/4774d2feb01a772a15de81ffc34b34a1f294f020/whisper.cpp#L2414
-fn log_mel_spectrogram_w<T: Float>(
- ith: usize,
- hann: &[T],
- samples: &[T],
- filters: &[T],
- fft_size: usize,
- fft_step: usize,
- speed_up: bool,
- n_len: usize,
- n_mel: usize,
- n_threads: usize,
-) -> Vec<T> {
- let n_fft = if speed_up {
- 1 + fft_size / 4
- } else {
- 1 + fft_size / 2
- };
-
- let zero = T::zero();
- let half = T::from(0.5).unwrap();
- let mut fft_in = vec![zero; fft_size];
- let mut mel = vec![zero; n_len * n_mel];
-
- for i in (ith..n_len).step_by(n_threads) {
- let offset = i * fft_step;
-
- // apply Hanning window
- for j in 0..fft_size {
- fft_in[j] = if offset + j < samples.len() {
- hann[j] * samples[offset + j]
- } else {
- zero
- }
- }
-
- // FFT -> mag^2
- let mut fft_out: Vec<T> = fft(&fft_in);
-
- for j in 0..fft_size {
- fft_out[j] = fft_out[2 * j] * fft_out[2 * j] + fft_out[2 * j + 1] * fft_out[2 * j + 1];
- }
- for j in 1..fft_size / 2 {
- let v = fft_out[fft_size - j];
- fft_out[j] += v;
- }
-
- if speed_up {
- // scale down in the frequency domain results in a speed up in the time domain
- for j in 0..n_fft {
- fft_out[j] = half * (fft_out[2 * j] + fft_out[2 * j + 1]);
- }
- }
-
- // mel spectrogram
- for j in 0..n_mel {
- let mut sum = zero;
- for k in 0..n_fft {
- sum += fft_out[k] * filters[j * n_fft + k];
- }
- mel[j * n_len + i] = T::max(sum, T::from(1e-10).unwrap()).log10();
- }
- }
- mel
-}
-
-fn log_mel_spectrogram_<T: Float + std::fmt::Display>(
- samples: &[T],
- filters: &[T],
- fft_size: usize,
- fft_step: usize,
- n_mel: usize,
- speed_up: bool,
-) -> Vec<T> {
- let zero = T::zero();
- let two_pi = T::PI() + T::PI();
- let half = T::from(0.5).unwrap();
- let one = T::from(1.0).unwrap();
- let four = T::from(4.0).unwrap();
- let fft_size_t = T::from(fft_size).unwrap();
-
- let hann: Vec<T> = (0..fft_size)
- .map(|i| half * (one - ((two_pi * T::from(i).unwrap()) / fft_size_t).cos()))
- .collect();
- let n_len = samples.len() / fft_step;
-
- // pad audio with at least one extra chunk of zeros
- let pad = 100 * super::CHUNK_LENGTH / 2;
- let n_len = if n_len % pad != 0 {
- (n_len / pad + 1) * pad
- } else {
- n_len
- };
- let n_len = n_len + pad;
- let samples = {
- let mut samples_padded = samples.to_vec();
- let to_add = n_len * fft_step - samples.len();
- samples_padded.extend(std::iter::repeat(zero).take(to_add));
- samples_padded
- };
-
- // Use a single thread for now.
- let mut mel = log_mel_spectrogram_w(
- 0, &hann, &samples, filters, fft_size, fft_step, speed_up, n_len, n_mel, 1,
- );
- let mmax = mel
- .iter()
- .max_by(|&u, &v| u.partial_cmp(v).unwrap_or(std::cmp::Ordering::Greater))
- .copied()
- .unwrap_or(zero)
- - T::from(8).unwrap();
- for m in mel.iter_mut() {
- let v = T::max(*m, mmax);
- *m = v / four + one
- }
- mel
-}
-
-pub fn pcm_to_mel<T: Float + std::fmt::Display>(
- samples: &[T],
- filters: &[T],
-) -> anyhow::Result<Vec<T>> {
- let mel = log_mel_spectrogram_(
- samples,
- filters,
- super::N_FFT,
- super::HOP_LENGTH,
- super::N_MELS,
- false,
- );
- Ok(mel)
-}
diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs
index dbe9cc8d..c71d562a 100644
--- a/candle-examples/examples/whisper/main.rs
+++ b/candle-examples/examples/whisper/main.rs
@@ -10,41 +10,16 @@ extern crate accelerate_src;
extern crate intel_mkl_src;
use anyhow::{Error as E, Result};
-use candle::{DType, Device, IndexOp, Tensor};
+use candle::{Device, IndexOp, Tensor};
use candle_nn::{ops::softmax, VarBuilder};
use clap::{Parser, ValueEnum};
use hf_hub::{api::sync::Api, Repo, RepoType};
use rand::{distributions::Distribution, SeedableRng};
use tokenizers::Tokenizer;
-mod audio;
-mod model;
-use model::{Config, Whisper};
mod multilingual;
-
-const DTYPE: DType = DType::F32;
-
-// Audio parameters.
-const SAMPLE_RATE: usize = 16000;
-const N_FFT: usize = 400;
-const N_MELS: usize = 80;
-const HOP_LENGTH: usize = 160;
-const CHUNK_LENGTH: usize = 30;
-const N_SAMPLES: usize = CHUNK_LENGTH * SAMPLE_RATE; // 480000 samples in a 30-second chunk
-const N_FRAMES: usize = N_SAMPLES / HOP_LENGTH; // 3000 frames in a mel spectrogram input
-
-const NO_SPEECH_THRESHOLD: f64 = 0.6;
-const LOGPROB_THRESHOLD: f64 = -1.0;
-const TEMPERATURES: [f64; 6] = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0];
-const COMPRESSION_RATIO_THRESHOLD: f64 = 2.4;
-
-// Tokenizer dependent bits.
-const SOT_TOKEN: &str = "<|startoftranscript|>";
-const TRANSCRIBE_TOKEN: &str = "<|transcribe|>";
-const TRANSLATE_TOKEN: &str = "<|translate|>";
-const NO_TIMESTAMPS_TOKEN: &str = "<|notimestamps|>";
-const EOT_TOKEN: &str = "<|endoftext|>";
-const NO_SPEECH_TOKEN: &str = "<|nocaptions|>";
+use candle_transformers::models::whisper::{self as m, audio, model};
+use model::{Config, Whisper};
#[allow(dead_code)]
#[derive(Debug, Clone)]
@@ -94,7 +69,7 @@ impl Decoder {
timestamps: bool,
verbose: bool,
) -> Result<Self> {
- let no_timestamps_token = token_id(&tokenizer, NO_TIMESTAMPS_TOKEN)?;
+ let no_timestamps_token = token_id(&tokenizer, m::NO_TIMESTAMPS_TOKEN)?;
// Suppress the notimestamps token when in timestamps mode.
// https://github.com/openai/whisper/blob/e8622f9afc4eba139bf796c210f5c01081000472/whisper/decoding.py#L452
let suppress_tokens: Vec<f32> = (0..model.config.vocab_size as u32)
@@ -109,11 +84,11 @@ impl Decoder {
})
.collect();
let suppress_tokens = Tensor::new(suppress_tokens.as_slice(), device)?;
- let sot_token = token_id(&tokenizer, SOT_TOKEN)?;
- let transcribe_token = token_id(&tokenizer, TRANSCRIBE_TOKEN)?;
- let translate_token = token_id(&tokenizer, TRANSLATE_TOKEN)?;
- let eot_token = token_id(&tokenizer, EOT_TOKEN)?;
- let no_speech_token = token_id(&tokenizer, NO_SPEECH_TOKEN)?;
+ let sot_token = token_id(&tokenizer, m::SOT_TOKEN)?;
+ let transcribe_token = token_id(&tokenizer, m::TRANSCRIBE_TOKEN)?;
+ let translate_token = token_id(&tokenizer, m::TRANSLATE_TOKEN)?;
+ let eot_token = token_id(&tokenizer, m::EOT_TOKEN)?;
+ let no_speech_token = token_id(&tokenizer, m::NO_SPEECH_TOKEN)?;
Ok(Self {
model,
rng: rand::rngs::StdRng::seed_from_u64(seed),
@@ -220,17 +195,17 @@ impl Decoder {
}
fn decode_with_fallback(&mut self, segment: &Tensor) -> Result<DecodingResult> {
- for (i, &t) in TEMPERATURES.iter().enumerate() {
+ for (i, &t) in m::TEMPERATURES.iter().enumerate() {
let dr: Result<DecodingResult> = self.decode(segment, t);
- if i == TEMPERATURES.len() - 1 {
+ if i == m::TEMPERATURES.len() - 1 {
return dr;
}
// On errors, we try again with a different temperature.
match dr {
Ok(dr) => {
- let needs_fallback = dr.compression_ratio > COMPRESSION_RATIO_THRESHOLD
- || dr.avg_logprob < LOGPROB_THRESHOLD;
- if !needs_fallback || dr.no_speech_prob > NO_SPEECH_THRESHOLD {
+ let needs_fallback = dr.compression_ratio > m::COMPRESSION_RATIO_THRESHOLD
+ || dr.avg_logprob < m::LOGPROB_THRESHOLD;
+ if !needs_fallback || dr.no_speech_prob > m::NO_SPEECH_THRESHOLD {
return Ok(dr);
}
}
@@ -248,13 +223,13 @@ impl Decoder {
let mut segments = vec![];
while seek < content_frames {
let start = std::time::Instant::now();
- let time_offset = (seek * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
- let segment_size = usize::min(content_frames - seek, N_FRAMES);
+ let time_offset = (seek * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
+ let segment_size = usize::min(content_frames - seek, m::N_FRAMES);
let mel_segment = mel.narrow(2, seek, segment_size)?;
- let segment_duration = (segment_size * HOP_LENGTH) as f64 / SAMPLE_RATE as f64;
+ let segment_duration = (segment_size * m::HOP_LENGTH) as f64 / m::SAMPLE_RATE as f64;
let dr = self.decode_with_fallback(&mel_segment)?;
seek += segment_size;
- if dr.no_speech_prob > NO_SPEECH_THRESHOLD && dr.avg_logprob < LOGPROB_THRESHOLD {
+ if dr.no_speech_prob > m::NO_SPEECH_THRESHOLD && dr.avg_logprob < m::LOGPROB_THRESHOLD {
println!("no speech detected, skipping {seek} {dr:?}");
continue;
}
@@ -492,8 +467,8 @@ fn main() -> Result<()> {
let mut input = std::fs::File::open(input)?;
let (header, data) = wav::read(&mut input)?;
println!("loaded wav data: {header:?}");
- if header.sampling_rate != SAMPLE_RATE as u32 {
- anyhow::bail!("wav file must have a {} sampling rate", SAMPLE_RATE)
+ if header.sampling_rate != m::SAMPLE_RATE as u32 {
+ anyhow::bail!("wav file must have a {} sampling rate", m::SAMPLE_RATE)
}
let data = data.as_sixteen().expect("expected 16 bit wav file");
let pcm_data: Vec<_> = data[..data.len() / header.channel_count as usize]
@@ -501,14 +476,14 @@ fn main() -> Result<()> {
.map(|v| *v as f32 / 32768.)
.collect();
println!("pcm data loaded {}", pcm_data.len());
- let mel = audio::pcm_to_mel(&pcm_data, &mel_filters)?;
+ let mel = audio::pcm_to_mel(&pcm_data, &mel_filters);
let mel_len = mel.len();
- let mel = Tensor::from_vec(mel, (1, N_MELS, mel_len / N_MELS), &device)?;
+ let mel = Tensor::from_vec(mel, (1, m::N_MELS, mel_len / m::N_MELS), &device)?;
println!("loaded mel: {:?}", mel.dims());
let weights = unsafe { candle::safetensors::MmapedFile::new(weights_filename)? };
let weights = weights.deserialize()?;
- let vb = VarBuilder::from_safetensors(vec![weights], DTYPE, &device);
+ let vb = VarBuilder::from_safetensors(vec![weights], m::DTYPE, &device);
let config: Config = serde_json::from_str(&std::fs::read_to_string(config_filename)?)?;
let mut model = Whisper::load(&vb, config)?;
diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs
deleted file mode 100644
index e58ab2ca..00000000
--- a/candle-examples/examples/whisper/model.rs
+++ /dev/null
@@ -1,416 +0,0 @@
-use candle::{Device, IndexOp, Result, Tensor, D};
-use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, Module, VarBuilder};
-use serde::Deserialize;
-
-// The names in comments correspond to the original implementation:
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
-#[derive(Debug, Clone, PartialEq, Deserialize)]
-pub struct Config {
- pub num_mel_bins: usize, // n_mels
- pub max_source_positions: usize, // n_audio_ctx
- pub d_model: usize, // n_audio_state
- pub encoder_attention_heads: usize, // n_audio_head
- pub encoder_layers: usize, // n_audio_layer
- pub vocab_size: usize, // n_vocab
- pub max_target_positions: usize, // n_text_ctx
- // pub n_text_state: usize,
- pub decoder_attention_heads: usize, // n_text_head
- pub decoder_layers: usize, // n_text_layer
- pub suppress_tokens: Vec<u32>,
-}
-
-fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, hidden_size))
-}
-//
-// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
-// model.
-#[derive(Debug)]
-pub struct Linear {
- inner: candle_nn::Linear,
- span: tracing::Span,
-}
-
-impl Linear {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn conv1d(
- in_channels: usize,
- out_channels: usize,
- kernel_size: usize,
- config: Conv1dConfig,
- vb: VarBuilder,
-) -> Result<Conv1d> {
- let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
- let bias = vb.get(out_channels, "bias")?;
- Ok(Conv1d::new(weight, Some(bias), config))
-}
-
-fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
- let weight = vb.get(size, "weight")?;
- let bias = vb.get(size, "bias")?;
- Ok(LayerNorm::new(weight, bias, 1e-5))
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
-struct MultiHeadAttention {
- query: Linear,
- key: Linear,
- value: Linear,
- out: Linear,
- n_head: usize,
- span: tracing::Span,
- softmax_span: tracing::Span,
- matmul_span: tracing::Span,
- kv_cache: Option<(Tensor, Tensor)>,
-}
-
-impl MultiHeadAttention {
- fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "multi-head-attn");
- let softmax_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-softmax");
- let matmul_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-matmul");
- let query = linear(n_state, n_state, vb.pp("q_proj"))?;
- let value = linear(n_state, n_state, vb.pp("v_proj"))?;
- let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
- let out = linear(n_state, n_state, vb.pp("out_proj"))?;
- Ok(Self {
- query,
- key,
- value,
- out,
- n_head,
- span,
- softmax_span,
- matmul_span,
- kv_cache: None,
- })
- }
-
- fn forward(
- &mut self,
- x: &Tensor,
- xa: Option<&Tensor>,
- mask: Option<&Tensor>,
- flush_cache: bool,
- ) -> Result<Tensor> {
- let _enter = self.span.enter();
- let q = self.query.forward(x)?;
- let (k, v) = match xa {
- None => {
- let k = self.key.forward(x)?;
- let v = self.value.forward(x)?;
- (k, v)
- }
- Some(x) => {
- if flush_cache {
- self.kv_cache = None;
- }
- if let Some((k, v)) = &self.kv_cache {
- (k.clone(), v.clone())
- } else {
- let k = self.key.forward(x)?;
- let v = self.value.forward(x)?;
- self.kv_cache = Some((k.clone(), v.clone()));
- (k, v)
- }
- }
- };
- let wv = self.qkv_attention(&q, &k, &v, mask)?;
- let out = self.out.forward(&wv)?;
- Ok(out)
- }
-
- fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
- let (n_batch, n_ctx, n_state) = x.dims3()?;
- let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
- x.reshape(target_dims)?.transpose(1, 2)
- }
-
- fn qkv_attention(
- &self,
- q: &Tensor,
- k: &Tensor,
- v: &Tensor,
- mask: Option<&Tensor>,
- ) -> Result<Tensor> {
- let (_, n_ctx, n_state) = q.dims3()?;
- let scale = ((n_state / self.n_head) as f64).powf(-0.25);
- let q = (self.reshape_head(q)? * scale)?;
- let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
- let v = self.reshape_head(v)?.contiguous()?;
- let mut qk = {
- let _enter = self.matmul_span.enter();
- q.matmul(&k)?
- };
- if let Some(mask) = mask {
- let mask = mask.i((0..n_ctx, 0..n_ctx))?;
- qk = qk.broadcast_add(&mask)?
- }
- let w = {
- let _enter = self.softmax_span.enter();
- softmax(&qk, D::Minus1)?
- };
- let wv = {
- let _enter = self.matmul_span.enter();
- w.matmul(&v)?
- }
- .transpose(1, 2)?
- .flatten_from(2)?;
- Ok(wv)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
-struct ResidualAttentionBlock {
- attn: MultiHeadAttention,
- attn_ln: LayerNorm,
- cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
- mlp_linear1: Linear,
- mlp_linear2: Linear,
- mlp_ln: LayerNorm,
- span: tracing::Span,
-}
-
-impl ResidualAttentionBlock {
- fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
- let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
- let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
- let cross_attn = if ca {
- let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
- let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
- Some((cross_attn, cross_attn_ln))
- } else {
- None
- };
- let n_mlp = n_state * 4;
- let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
- let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
- let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
- Ok(Self {
- attn,
- attn_ln,
- cross_attn,
- mlp_linear1,
- mlp_linear2,
- mlp_ln,
- span,
- })
- }
-
- fn forward(
- &mut self,
- x: &Tensor,
- xa: Option<&Tensor>,
- mask: Option<&Tensor>,
- flush_kv_cache: bool,
- ) -> Result<Tensor> {
- let _enter = self.span.enter();
- let attn = self
- .attn
- .forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
- let mut x = (x + attn)?;
- if let Some((attn, ln)) = &mut self.cross_attn {
- x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
- }
- let mlp = self.mlp_linear2.forward(
- &self
- .mlp_linear1
- .forward(&self.mlp_ln.forward(&x)?)?
- .gelu()?,
- )?;
- x + mlp
- }
-}
-
-fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
- let max_timescale = 10000f32;
- let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
- let inv_timescales: Vec<_> = (0..channels / 2)
- .map(|i| (i as f32 * (-log_timescale_increment)).exp())
- .collect();
- let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
- let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
- .to_dtype(candle::DType::F32)?
- .unsqueeze(1)?;
- let sh = (length, channels / 2);
- let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
- let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
- Ok(sincos)
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
-pub struct AudioEncoder {
- conv1: Conv1d,
- conv2: Conv1d,
- positional_embedding: Tensor,
- blocks: Vec<ResidualAttentionBlock>,
- ln_post: LayerNorm,
- span: tracing::Span,
- conv1_span: tracing::Span,
- conv2_span: tracing::Span,
-}
-
-impl AudioEncoder {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "audio-encoder");
- let conv1_span = tracing::span!(tracing::Level::TRACE, "conv1");
- let conv2_span = tracing::span!(tracing::Level::TRACE, "conv2");
- let n_state = cfg.d_model;
- let n_head = cfg.encoder_attention_heads;
- let n_ctx = cfg.max_source_positions;
- let cfg1 = Conv1dConfig {
- padding: 1,
- stride: 1,
- groups: 1,
- dilation: 1,
- };
- let cfg2 = Conv1dConfig {
- padding: 1,
- stride: 2,
- groups: 1,
- dilation: 1,
- };
- let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
- let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
- let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
- let blocks = (0..cfg.encoder_layers)
- .map(|i| {
- ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
- })
- .collect::<Result<Vec<_>>>()?;
- let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
- Ok(Self {
- conv1,
- conv2,
- positional_embedding,
- blocks,
- ln_post,
- conv1_span,
- conv2_span,
- span,
- })
- }
-
- pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
- let _enter = self.span.enter();
- let x = {
- let _enter = self.conv1_span.enter();
- self.conv1.forward(x)?.gelu()?
- };
- let x = {
- let _enter = self.conv2_span.enter();
- self.conv2.forward(&x)?.gelu()?
- };
- let x = x.transpose(1, 2)?;
- let (_bsize, seq_len, _hidden) = x.dims3()?;
- let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
- let mut x = x.broadcast_add(&positional_embedding)?;
- for block in self.blocks.iter_mut() {
- x = block.forward(&x, None, None, flush_kv_cache)?
- }
- let x = self.ln_post.forward(&x)?;
- Ok(x)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
-pub struct TextDecoder {
- token_embedding: Embedding,
- positional_embedding: Tensor,
- blocks: Vec<ResidualAttentionBlock>,
- ln: LayerNorm,
- mask: Tensor,
- span: tracing::Span,
- span_final: tracing::Span,
-}
-
-impl TextDecoder {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "text-decoder");
- let span_final = tracing::span!(tracing::Level::TRACE, "text-decoder-final");
- let n_state = cfg.d_model;
- let n_head = cfg.decoder_attention_heads;
- let n_ctx = cfg.max_target_positions;
- let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
- let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
- let blocks = (0..cfg.decoder_layers)
- .map(|i| {
- ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
- })
- .collect::<Result<Vec<_>>>()?;
- let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
- let mask: Vec<_> = (0..n_ctx)
- .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
- .collect();
- let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
- Ok(Self {
- token_embedding,
- positional_embedding,
- blocks,
- ln,
- mask,
- span,
- span_final,
- })
- }
-
- pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
- let _enter = self.span.enter();
- let last = x.dim(D::Minus1)?;
- let token_embedding = self.token_embedding.forward(x)?;
- let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
- let mut x = token_embedding.broadcast_add(&positional_embedding)?;
- for block in self.blocks.iter_mut() {
- x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
- }
- self.ln.forward(&x)
- }
-
- pub fn final_linear(&self, x: &Tensor) -> Result<Tensor> {
- let b_size = x.dim(0)?;
- let w = self.token_embedding.embeddings().broadcast_left(b_size)?;
- let logits = {
- let _enter = self.span_final.enter();
- x.matmul(&w.t()?)?
- };
- Ok(logits)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
-pub struct Whisper {
- pub encoder: AudioEncoder,
- pub decoder: TextDecoder,
- pub config: Config,
-}
-
-impl Whisper {
- pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
- let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
- let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
- Ok(Self {
- encoder,
- decoder,
- config,
- })
- }
-}
diff --git a/candle-examples/examples/whisper/multilingual.rs b/candle-examples/examples/whisper/multilingual.rs
index bc0bae1f..a82b09ef 100644
--- a/candle-examples/examples/whisper/multilingual.rs
+++ b/candle-examples/examples/whisper/multilingual.rs
@@ -113,7 +113,7 @@ pub fn detect_language(model: &mut Whisper, tokenizer: &Tokenizer, mel: &Tensor)
.iter()
.map(|(t, _)| crate::token_id(tokenizer, &format!("<|{t}|>")))
.collect::<Result<Vec<_>>>()?;
- let sot_token = crate::token_id(tokenizer, crate::SOT_TOKEN)?;
+ let sot_token = crate::token_id(tokenizer, crate::m::SOT_TOKEN)?;
let audio_features = model.encoder.forward(&mel, true)?;
let tokens = Tensor::new(&[[sot_token]], device)?;
let language_token_ids = Tensor::new(language_token_ids.as_slice(), device)?;