| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
| |
* Groups support in conv-transpose-1d.
* Remove dangling file.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
* Add fuse-conv-bn method for Conv2d
* no unwrap
* run rustfmp and clippy
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
* Remove the parameters for the Wuerstchen layer-norm.
* Fixes.
* More fixes (including conv-transpose2d.
* More fixes.
* Again more fixes.
|
|
|
|
|
|
|
| |
* Add weight, bias methods to Conv(1|2)
* Add hidden_size method to Embedding
* Expose hidden_size
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* TinyViT.
* More TinyViT.
* Add more to the tinyvit backbone.
* Proper padding.
* Plus ViT.
* Add the tiniest vit spec.
|
|
|
|
|
|
|
|
|
|
|
| |
* More segment-anything.
* Split the model in multiple files.
* Start adding the transformer.
* Add the attention block.
* Move the MLP Block.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Add the dilation parameter.
* Restore the basic optimizer example.
* Dilation support in cudnn.
* Use the dilation parameter in the cpu backend.
* More dilation support.
* No support for dilation in transposed convolutions.
* Add dilation to a test.
* Remove a print.
* Helper function.
|
|
|
|
|
|
|
|
|
| |
* VarBuilder cleanup.
* Implement the basic varbuilders.
* Add the sharded code.
* Proper support for tensor sharding.
|
|
|
|
|
|
|
|
|
| |
* EfficientNet.
* Complete the efficientnet implementation.
* Improve group handling.
* Get the efficientnet to work.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Add some group parameter to convolutions.
* Avoid some unnecessary groups checks.
* Move the tensor convolution bits.
* Properh handling of groups.
* Bump the crate version.
* And add a changelog.
|
| |
|
|
|
|
|
|
|
| |
* Start adding the module trait.
* Use the module trait.
* Implement module for qmatmul.
|
|
|
|
|
| |
* Skeleton for the avg-pool2d and upsample-nearest2d ops.
* Preliminary conv2d support.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Start adding a stable-diffusion example.
* Proper computation of the causal mask.
* Add the chunk operation.
* Work in progress: port the attention module.
* Add some dummy modules for conv2d and group-norm, get the attention module to compile.
* Re-enable the 2d convolution.
* Add the embeddings module.
* Add the resnet module.
* Add the unet blocks.
* Add the unet.
* And add the variational auto-encoder.
* Use the pad function from utils.
|
| |
|
|
|
|
|
|
|
| |
* Add some documentation and test to the linear layer.
* Layer norm doc.
* Minor tweaks.
|
|
|