summaryrefslogtreecommitdiff
path: root/libs/raylib/src/external/miniaudio.h
diff options
context:
space:
mode:
authorLuca Sas <sas.luca.alex@gmail.com>2020-10-01 19:17:58 +0100
committerLuca Sas <sas.luca.alex@gmail.com>2020-10-01 19:17:58 +0100
commit45ee5878397822c41b9109d0e3bc2d635c8c8634 (patch)
treee94f7a4c3d7c94760ff5b96886a2632f0d3d5f6b /libs/raylib/src/external/miniaudio.h
parent224c1c2087195c48d4a116ba9db0faa209e50332 (diff)
downloadgamejam-slgj-2024-45ee5878397822c41b9109d0e3bc2d635c8c8634.tar.gz
gamejam-slgj-2024-45ee5878397822c41b9109d0e3bc2d635c8c8634.tar.bz2
gamejam-slgj-2024-45ee5878397822c41b9109d0e3bc2d635c8c8634.zip
Updated to raylib 3.0
Diffstat (limited to 'libs/raylib/src/external/miniaudio.h')
-rw-r--r--libs/raylib/src/external/miniaudio.h18887
1 files changed, 10978 insertions, 7909 deletions
diff --git a/libs/raylib/src/external/miniaudio.h b/libs/raylib/src/external/miniaudio.h
index 1927d96..7d26cf7 100644
--- a/libs/raylib/src/external/miniaudio.h
+++ b/libs/raylib/src/external/miniaudio.h
@@ -1,6 +1,6 @@
/*
Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file.
-miniaudio (formerly mini_al) - v0.9.8 - 2019-10-07
+miniaudio (formerly mini_al) - v0.xx.xx - 2020-xx-xx
David Reid - davidreidsoftware@gmail.com
@@ -8,329 +8,385 @@ https://github.com/dr-soft/miniaudio
*/
/*
-MAJOR CHANGES IN VERSION 0.9
+RELEASE NOTES - VERSION 0.10
============================
-Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into
-detail about the major changes I would like to apologize. I know it's annoying dealing with breaking API changes, but I think
-it's best to get these changes out of the way now while the library is still relatively young and unknown.
+Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert
+audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies
+to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign.
-There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in
-advance for this. You may want to hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for
-you, and you don't need full-duplex support, you can avoid upgrading (though you won't be getting future bug fixes).
+Changes to Data Conversion
+--------------------------
+The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other
+situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a
+pointer to the input data directly rather than dealing with a callback.
-Rebranding to "miniaudio"
--------------------------
-The decision was made to rename mini_al to miniaudio. Don't worry, it's the same project. The reason for this is simple:
+The following are the data conversion APIs that have been removed and their replacements:
-1) Having the word "audio" in the title makes it immediately clear that the library is related to audio; and
-2) I don't like the look of the underscore.
+ - ma_format_converter -> ma_convert_pcm_frames_format()
+ - ma_channel_router -> ma_channel_converter
+ - ma_src -> ma_resampler
+ - ma_pcm_converter -> ma_data_converter
-This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's
-better to get this out of the road now rather than later. Also, since there are necessary API changes for full-duplex support
-I think it's better to just get the namespace change over and done with at the same time as the full-duplex changes. I'm hoping
-this will be the last of the major API changes. Fingers crossed!
+The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the
+`*_process_pcm_frames()` function as a pointer to a buffer.
-The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's
-your preference.
+The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel
+conversion is also simple which you can do with `ma_channel_router` via `ma_channel_router_process_pcm_frames().
+Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you
+call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to
+output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated.
-Full-Duplex Support
--------------------
-The major feature added to version 0.9 is full-duplex. This has necessitated a few API changes.
+The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably
+makes it the best option if you need to do data conversion.
-1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted
- to avoid a third callback just for full-duplex so the decision was made to break this API and unify the callbacks. Now,
- there is just one callback which is the same for all three modes (playback, capture, duplex). The new callback looks like
- the following:
+In addition to changes to the API design, a few other changes have been made to the data conversion pipeline:
- void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
+ - The sinc resampler has been removed. This was completely broken and never actually worked properly.
+ - The linear resampler can now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with
+ the `lpfCount` option, which has a maximum value of MA_MAX_RESAMPLER_LPF_FILTERS.
+ - Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before
+ processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however
+ `ma_data_converter` will handle this for you.
- This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In
- playback-only mode, pInput will be null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer
- returned from the callback since it's not necessary for miniaudio anymore.
-2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client
- to choose a different PCM format for the playback and capture sides. The old ma_device_config object simply did not allow
- this and needed to change. With these changes you now specify the device ID, format, channels, channel map and share mode
- on a per-playback and per-capture basis (see example below). The sample rate must be the same for playback and capture.
+Custom Memory Allocators
+------------------------
+miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more
+flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the
+`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure.
- Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now,
- the device ID, device type and callback user data are set in the config. ma_device_init() is now simplified down to taking
- just the context, device config and a pointer to the device object being initialized. The rationale for this change is that
- it just makes more sense to me that these are set as part of the config like everything else.
+The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by
+`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same
+way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults.
- Example device initialization:
+The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults.
+Otherwise they will use the relevant callback in the structure.
- ma_device_config config = ma_device_config_init(ma_device_type_duplex); // Or ma_device_type_playback or ma_device_type_capture.
- config.playback.pDeviceID = &myPlaybackDeviceID; // Or NULL for the default playback device.
- config.playback.format = ma_format_f32;
- config.playback.channels = 2;
- config.capture.pDeviceID = &myCaptureDeviceID; // Or NULL for the default capture device.
- config.capture.format = ma_format_s16;
- config.capture.channels = 1;
- config.sampleRate = 44100;
- config.dataCallback = data_callback;
- config.pUserData = &myUserData;
+ - ma_malloc()
+ - ma_realloc()
+ - ma_free()
+ - ma_aligned_malloc()
+ - ma_aligned_free()
+ - ma_rb_init() / ma_rb_init_ex()
+ - ma_pcm_rb_init() / ma_pcm_rb_init_ex()
- result = ma_device_init(&myContext, &config, &device);
- if (result != MA_SUCCESS) {
- ... handle error ...
- }
+Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom
+allocation callbacks.
- Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has
- been renamed to "stopCallback".
-This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample
-rate conversion is required for the playback device:
- - Core Audio
- - JACK
- - AAudio
- - OpenSL
- - WebAudio
+Buffer and Period Configuration Changes
+---------------------------------------
+The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables
+`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by
+the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine
+latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called
+`periodSizeInFrames` and `periodSizeInMilliseconds`.
-In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such
-thorough testing. If you experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample
-program that reproduces the issue if possible).
+These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is
+that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to
+configure latency.
+
+The following unused APIs have been removed:
+
+ ma_get_default_buffer_size_in_milliseconds()
+ ma_get_default_buffer_size_in_frames()
+
+The following macros have been removed:
+
+ MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
+ MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
Other API Changes
-----------------
-In addition to the above, the following API changes have been made:
+Other less major API changes have also been made in version 0.10.
-- The log callback is no longer passed to ma_context_config_init(). Instead you need to set it manually after initialization.
-- The onLogCallback member of ma_context_config has been renamed to "logCallback".
-- The log callback now takes a logLevel parameter. The new callback looks like: void log_callback(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
- - You can use ma_log_level_to_string() to convert the logLevel to human readable text if you want to log it.
-- Some APIs have been renamed:
- - mal_decoder_read() -> ma_decoder_read_pcm_frames()
- - mal_decoder_seek_to_frame() -> ma_decoder_seek_to_pcm_frame()
- - mal_sine_wave_read() -> ma_sine_wave_read_f32()
- - mal_sine_wave_read_ex() -> ma_sine_wave_read_f32_ex()
-- Some APIs have been removed:
- - mal_device_get_buffer_size_in_bytes()
- - mal_device_set_recv_callback()
- - mal_device_set_send_callback()
- - mal_src_set_input_sample_rate()
- - mal_src_set_output_sample_rate()
-- Error codes have been rearranged. If you're a binding maintainer you will need to update.
-- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection
- and to make it easier to see the priority. If you're a binding maintainer you will need to update.
-- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with
- some future planned high-level APIs.
-- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that
- the pointer comes before the count. The rationale for this is to keep it consistent with things like memcpy().
+`ma_device_set_stop_callback()` has been removed. You now must set the stop callback via the device config just like the data callback.
+
+The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including
+sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes the same
+parameters, except an additional `ma_waveform_type` value which you would set to `ma_waveform_type_sine`. Use `ma_waveform_read_pcm_frames()` in place of
+`ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`.
+
+`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies
+the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to
+take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it make it more
+flexible, to prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added.
+
+`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API.
+
+
+Biquad and Low-Pass Filters
+---------------------------
+A generic biquad filter has been added. This is used via the `ma_biquad` API. The biquad filter is used as the basis for the low-pass filter. The biquad filter
+supports 32-bit floating point samples which runs on a floating point pipeline and 16-bit signed integer samples which runs on a 32-bit fixed point pipeline.
+Both formats use transposed direct form 2.
+
+The low-pass filter is just a biquad filter. By itself it's a second order low-pass filter, but it can be extended to higher orders by chaining low-pass
+filters together. Low-pass filtering is achieved via the `ma_lpf` API. Since the low-pass filter is just a biquad filter, it supports both 32-bit floating
+point and 16-bit signed integer formats.
+
+
+Sine, Square, Triangle and Sawtooth Waveforms
+---------------------------------------------
+Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old
+`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_init()` to initialize the waveform. Here you specify tyhe type of
+waveform you want to generated. You then read data using `ma_waveform_read_pcm_frames()`.
Miscellaneous Changes
---------------------
-The following miscellaneous changes have also been made.
+Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report.
-- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the
- record, this is one of the nicest audio APIs out there, just behind the BSD audio APIs).
-- The WebAudio backend has been added. This is based on ScriptProcessorNode. This removes the need for SDL.
-- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio
- was not explicitly supported. These are no longer needed and have therefore been removed.
-- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an
- exclusive mode device, or an error. The rationale for this change is to give the client more control over how to handle cases
- when the desired shared mode is unavailable.
-- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb"
- operates on PCM frames.
-- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but
- removes the attribution requirement. The rationale for this is to support countries that don't recognize public domain.
+The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on
+the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it
+was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work,
+this has been removed from all structures.
*/
+
/*
-ABOUT
-=====
-miniaudio is a single file library for audio playback and capture. It's written in C (compilable as
-C++) and released into the public domain.
-
-Supported Backends:
- - WASAPI
- - DirectSound
- - WinMM
- - Core Audio (Apple)
- - ALSA
- - PulseAudio
- - JACK
- - sndio (OpenBSD)
- - audio(4) (NetBSD and OpenBSD)
- - OSS (FreeBSD)
- - AAudio (Android 8.0+)
- - OpenSL|ES (Android only)
- - Web Audio (Emscripten)
- - Null (Silence)
-
-Supported Formats:
- - Unsigned 8-bit PCM
- - Signed 16-bit PCM
- - Signed 24-bit PCM (tightly packed)
- - Signed 32-bit PCM
- - IEEE 32-bit floating point PCM
-
-
-USAGE
-=====
-miniaudio is a single-file library. To use it, do something like the following in one .c file.
- #define MINIAUDIO_IMPLEMENTATION
- #include "miniaudio.h"
-
-You can then #include this file in other parts of the program as you would with any other header file.
-
-miniaudio uses an asynchronous, callback based API. You initialize a device with a configuration (sample rate,
-channel count, etc.) which includes the callback you want to use to handle data transmission to/from the
-device. In the callback you either read from a data pointer in the case of playback or write to it in the case
-of capture.
-
-Playback Example
-----------------
- void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount)
- {
- ma_decoder* pDecoder = (ma_decoder*)pDevice->pUserData;
- if (pDecoder == NULL) {
- return;
- }
-
- ma_decoder_read_pcm_frames(pDecoder, frameCount, pOutput);
- }
+Introduction
+============
+miniaudio is a single file library for audio playback and capture. To use it, do the following in one .c file:
- ...
+ ```c
+ #define MINIAUDIO_IMPLEMENTATION
+ #include "miniaudio.h
+ ```
- ma_device_config config = ma_device_config_init(ma_device_type_playback);
- config.playback.format = decoder.outputFormat;
- config.playback.channels = decoder.outputChannels;
- config.sampleRate = decoder.outputSampleRate;
- config.dataCallback = data_callback;
- config.pUserData = &decoder;
+You can #include miniaudio.h in other parts of the program just like any other header.
- ma_device device;
- if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) {
- ... An error occurred ...
- }
+miniaudio uses the concept of a "device" as the abstraction for physical devices. The idea is that you choose a physical device to emit or capture audio from,
+and then move data to/from the device when miniaudio tells you to. Data is delivered to and from devices asynchronously via a callback which you specify when
+initializing the device.
- ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually.
+When initializing the device you first need to configure it. The device configuration allows you to specify things like the format of the data delivered via
+the callback, the size of the internal buffer and the ID of the device you want to emit or capture audio from.
- ...
+Once you have the device configuration set up you can initialize the device. When initializing a device you need to allocate memory for the device object
+beforehand. This gives the application complete control over how the memory is allocated. In the example below we initialize a playback device on the stack,
+but you could allocate it on the heap if that suits your situation better.
- ma_device_uninit(&device); // This will stop the device so no need to do that manually.
+ ```c
+ void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount)
+ {
+ // In playback mode copy data to pOutput. In capture mode read data from pInput. In full-duplex mode, both pOutput and pInput will be valid and you can
+ // move data from pInput into pOutput. Never process more than frameCount frames.
+ }
+ ...
-BUILDING
-========
-miniaudio should Just Work by adding it to your project's source tree. You do not need to download or install
-any dependencies. See below for platform-specific details.
+ ma_device_config config = ma_device_config_init(ma_device_type_playback);
+ config.playback.format = MY_FORMAT;
+ config.playback.channels = MY_CHANNEL_COUNT;
+ config.sampleRate = MY_SAMPLE_RATE;
+ config.dataCallback = data_callback;
+ config.pUserData = pMyCustomData; // Can be accessed from the device object (device.pUserData).
+
+ ma_device device;
+ if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) {
+ ... An error occurred ...
+ }
+
+ ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually.
+
+ ...
+
+ ma_device_uninit(&device); // This will stop the device so no need to do that manually.
+ ```
+
+In the example above, `data_callback()` is where audio data is written and read from the device. The idea is in playback mode you cause sound to be emitted
+from the speakers by writing audio data to the output buffer (`pOutput` in the example). In capture mode you read data from the input buffer (`pInput`) to
+extract sound captured by the microphone. The `frameCount` parameter tells you how many frames can be written to the output buffer and read from the input
+buffer. A "frame" is one sample for each channel. For example, in a stereo stream (2 channels), one frame is 2 samples: one for the left, one for the right.
+The channel count is defined by the device config. The size in bytes of an individual sample is defined by the sample format which is also specified in the
+device config. Multi-channel audio data is always interleaved, which means the samples for each frame are stored next to each other in memory. For example, in
+a stereo stream the first pair of samples will be the left and right samples for the first frame, the second pair of samples will be the left and right samples
+for the second frame, etc.
+
+The configuration of the device is defined by the `ma_device_config` structure. The config object is always initialized with `ma_device_config_init()`. It's
+important to always initialize the config with this function as it initializes it with logical defaults and ensures your program doesn't break when new members
+are added to the `ma_device_config` structure. The example above uses a fairly simple and standard device configuration. The call to `ma_device_config_init()`
+takes a single parameter, which is whether or not the device is a playback, capture, duplex or loopback device (loopback devices are not supported on all
+backends). The `config.playback.format` member sets the sample format which can be one of the following (all formats are native-endian):
+
+ |---------------|----------------------------------------|---------------------------|
+ | Symbol | Description | Range |
+ |---------------|----------------------------------------|---------------------------|
+ | ma_format_f32 | 32-bit floating point | [-1, 1] |
+ | ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
+ | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
+ | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
+ | ma_format_u8 | 8-bit unsigned integer | [0, 255] |
+ |---------------|----------------------------------------|---------------------------|
+
+The `config.playback.channels` member sets the number of channels to use with the device. The channel count cannot exceed MA_MAX_CHANNELS. The
+`config.sampleRate` member sets the sample rate (which must be the same for both playback and capture in full-duplex configurations). This is usually set to
+44100 or 48000, but can be set to anything. It's recommended to keep this between 8000 and 384000, however.
+
+Note that leaving the format, channel count and/or sample rate at their default values will result in the internal device's native configuration being used
+which is useful if you want to avoid the overhead of miniaudio's automatic data conversion.
+
+In addition to the sample format, channel count and sample rate, the data callback and user data pointer are also set via the config. The user data pointer is
+not passed into the callback as a parameter, but is instead set to the `pUserData` member of `ma_device` which you can access directly since all miniaudio
+structures are transparent.
+
+Initializing the device is done with `ma_device_init()`. This will return a result code telling you what went wrong, if anything. On success it will return
+`MA_SUCCESS`. After initialization is complete the device will be in a stopped state. To start it, use `ma_device_start()`. Uninitializing the device will stop
+it, which is what the example above does, but you can also stop the device with `ma_device_stop()`. To resume the device simply call `ma_device_start()` again.
+Note that it's important to never stop or start the device from inside the callback. This will result in a deadlock. Instead you set a variable or signal an
+event indicating that the device needs to stop and handle it in a different thread. The following APIs must never be called inside the callback:
+
+ ma_device_init()
+ ma_device_init_ex()
+ ma_device_uninit()
+ ma_device_start()
+ ma_device_stop()
+
+You must never try uninitializing and reinitializing a device inside the callback. You must also never try to stop and start it from inside the callback. There
+are a few other things you shouldn't do in the callback depending on your requirements, however this isn't so much a thread-safety thing, but rather a real-
+time processing thing which is beyond the scope of this introduction.
+
+The example above demonstrates the initialization of a playback device, but it works exactly the same for capture. All you need to do is change the device type
+from `ma_device_type_playback` to `ma_device_type_capture` when setting up the config, like so:
+
+ ```c
+ ma_device_config config = ma_device_config_init(ma_device_type_capture);
+ config.capture.format = MY_FORMAT;
+ config.capture.channels = MY_CHANNELS;
+ ```
+
+In the data callback you just read from the input buffer (`pInput` in the example above) and leave the output buffer alone (it will be set to NULL when the
+device type is set to `ma_device_type_capture`).
+
+These are the available device types and how you should handle the buffers in the callback:
+
+ |-------------------------|--------------------------------------------------------|
+ | Device Type | Callback Behavior |
+ |-------------------------|--------------------------------------------------------|
+ | ma_device_type_playback | Write to output buffer, leave input buffer untouched. |
+ | ma_device_type_capture | Read from input buffer, leave output buffer untouched. |
+ | ma_device_type_duplex | Read from input buffer, write to output buffer. |
+ | ma_device_type_loopback | Read from input buffer, leave output buffer untouched. |
+ |-------------------------|--------------------------------------------------------|
+
+You will notice in the example above that the sample format and channel count is specified separately for playback and capture. This is to support different
+data formats between the playback and capture devices in a full-duplex system. An example may be that you want to capture audio data as a monaural stream (one
+channel), but output sound to a stereo speaker system. Note that if you use different formats between playback and capture in a full-duplex configuration you
+will need to convert the data yourself. There are functions available to help you do this which will be explained later.
+
+The example above did not specify a physical device to connect to which means it will use the operating system's default device. If you have multiple physical
+devices connected and you want to use a specific one you will need to specify the device ID in the configuration, like so:
+
+ ```
+ config.playback.pDeviceID = pMyPlaybackDeviceID; // Only if requesting a playback or duplex device.
+ config.capture.pDeviceID = pMyCaptureDeviceID; // Only if requesting a capture, duplex or loopback device.
+ ```
+
+To retrieve the device ID you will need to perform device enumeration, however this requires the use of a new concept call the "context". Conceptually speaking
+the context sits above the device. There is one context to many devices. The purpose of the context is to represent the backend at a more global level and to
+perform operations outside the scope of an individual device. Mainly it is used for performing run-time linking against backend libraries, initializing
+backends and enumerating devices. The example below shows how to enumerate devices.
+
+ ```c
+ ma_context context;
+ if (ma_context_init(NULL, 0, NULL, &context) != MA_SUCCESS) {
+ // Error.
+ }
+
+ ma_device_info* pPlaybackDeviceInfos;
+ ma_uint32 playbackDeviceCount;
+ ma_device_info* pCaptureDeviceInfos;
+ ma_uint32 captureDeviceCount;
+ if (ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, &pCaptureDeviceInfos, &captureDeviceCount) != MA_SUCCESS) {
+ // Error.
+ }
+
+ // Loop over the each device info and do something with it. Here we just print the name with their index. You may want to give the user the
+ // opportunity to choose which device they'd prefer.
+ for (ma_uint32 iDevice = 0; iDevice < playbackDeviceCount; iDevice += 1) {
+ printf("%d - %s\n", iDevice, pPlaybackDeviceInfos[iDevice].name);
+ }
-If you want to disable a specific backend, #define the appropriate MA_NO_* option before the implementation.
+ ma_device_config config = ma_device_config_init(ma_device_type_playback);
+ config.playback.pDeviceID = &pPlaybackDeviceInfos[chosenPlaybackDeviceIndex].id;
+ config.playback.format = MY_FORMAT;
+ config.playback.channels = MY_CHANNEL_COUNT;
+ config.sampleRate = MY_SAMPLE_RATE;
+ config.dataCallback = data_callback;
+ config.pUserData = pMyCustomData;
-Note that GCC and Clang requires "-msse2", "-mavx2", etc. for SIMD optimizations.
+ ma_device device;
+ if (ma_device_init(&context, &config, &device) != MA_SUCCESS) {
+ // Error
+ }
+ ...
-Building for Windows
---------------------
-The Windows build should compile clean on all popular compilers without the need to configure any include paths
-nor link to any libraries.
+ ma_device_uninit(&device);
+ ma_context_uninit(&context);
+ ```
-Building for macOS and iOS
---------------------------
-The macOS build should compile clean without the need to download any dependencies or link to any libraries or
-frameworks. The iOS build needs to be compiled as Objective-C (sorry) and will need to link the relevant frameworks
-but should Just Work with Xcode.
+The first thing we do in this example is initialize a `ma_context` object with `ma_context_init()`. The first parameter is a pointer to a list of `ma_backend`
+values which are used to override the default backend priorities. When this is NULL, as in this example, miniaudio's default priorities are used. The second
+parameter is the number of backends listed in the array pointed to by the first paramter. The third parameter is a pointer to a `ma_context_config` object
+which can be NULL, in which case defaults are used. The context configuration is used for setting the logging callback, custom memory allocation callbacks,
+user-defined data and some backend-specific configurations.
-Building for Linux
-------------------
-The Linux build only requires linking to -ldl, -lpthread and -lm. You do not need any development packages.
+Once the context has been initialized you can enumerate devices. In the example above we use the simpler `ma_context_get_devices()`, however you can also use a
+callback for handling devices by using `ma_context_enumerate_devices()`. When using `ma_context_get_devices()` you provide a pointer to a pointer that will,
+upon output, be set to a pointer to a buffer containing a list of `ma_device_info` structures. You also provide a pointer to an unsigned integer that will
+receive the number of items in the returned buffer. Do not free the returned buffers as their memory is managed internally by miniaudio.
-Building for BSD
-----------------
-The BSD build only requires linking to -ldl, -lpthread and -lm. NetBSD uses audio(4), OpenBSD uses sndio and
-FreeBSD uses OSS.
-
-Building for Android
---------------------
-AAudio is the highest priority backend on Android. This should work out out of the box without needing any kind of
-compiler configuration. Support for AAudio starts with Android 8 which means older versions will fall back to
-OpenSL|ES which requires API level 16+.
-
-Building for Emscripten
------------------------
-The Emscripten build emits Web Audio JavaScript directly and should Just Work without any configuration.
-
-
-NOTES
-=====
-- This library uses an asynchronous API for delivering and requesting audio data. Each device will have
- it's own worker thread which is managed by the library.
-- If ma_device_init() is called with a device that's not aligned to the 4 bytes on 32-bit or 8 bytes on
- 64-bit it will _not_ be thread-safe. The reason for this is that it depends on members of ma_device being
- correctly aligned for atomic assignments.
-- Sample data is always native-endian and interleaved. For example, ma_format_s16 means signed 16-bit
- integer samples, interleaved. Let me know if you need non-interleaved and I'll look into it.
-- The sndio backend is currently only enabled on OpenBSD builds.
-- The audio(4) backend is supported on OpenBSD, but you may need to disable sndiod before you can use it.
-- Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI
- and Core Audio, however other backends such as PulseAudio may naturally support it, though not all have
- been tested.
-- The contents of the output buffer passed into the data callback will always be pre-initialized to zero
- unless the noPreZeroedOutputBuffer config variable in ma_device_config is set to true, in which case
- it'll be undefined which will require you to write something to the entire buffer.
-- By default miniaudio will automatically clip samples. This only applies when the playback sample format
- is configured as ma_format_f32. If you are doing clipping yourself, you can disable this overhead by
- setting noClip to true in the device config.
-
-
-BACKEND NUANCES
-===============
+The `ma_device_info` structure contains an `id` member which is the ID you pass to the device config. It also contains the name of the device which is useful
+for presenting a list of devices to the user via the UI.
-WASAPI
-------
-- Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the
- device's native sample rate. To work around this, set wasapi.noAutoConvertSRC to true in the device config. This
- is due to IAudioClient3_InitializeSharedAudioStream() failing when the AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is
- specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's lower quality internal resampler being used
- instead which will in turn enable the use of low-latency shared mode.
+When creating your own context you will want to pass it to `ma_device_init()` when initializing the device. Passing in NULL, like we do in the first example,
+will result in miniaudio creating the context for you, which you don't want to do since you've already created a context. Note that internally the context is
+only tracked by it's pointer which means you must not change the location of the `ma_context` object. If this is an issue, consider using `malloc()` to
+allocate memory for the context.
-PulseAudio
-----------
-- If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki:
- https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling
- Alternatively, consider using a different backend such as ALSA.
-Android
+
+Building
+========
+miniaudio should work cleanly out of the box without the need to download or install any dependencies. See below for platform-specific details.
+
+
+Windows
-------
-- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest:
- <uses-permission android:name="android.permission.RECORD_AUDIO" />
-- With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES.
-- With AAudio, only default devices are enumerated. This is due to AAudio not having an enumeration API (devices are
- enumerated through Java). You can however perform your own device enumeration through Java and then set the ID in the
- ma_device_id structure (ma_device_id.aaudio) and pass it to ma_device_init().
-- The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in
- resampler is to take advantage of any potential device-specific optimizations the driver may implement.
+The Windows build should compile clean on all popular compilers without the need to configure any include paths nor link to any libraries.
-UWP
+macOS and iOS
+-------------
+The macOS build should compile clean without the need to download any dependencies or link to any libraries or frameworks. The iOS build needs to be compiled
+as Objective-C (sorry) and will need to link the relevant frameworks but should Just Work with Xcode. Compiling through the command line requires linking to
+-lpthread and -lm.
+
+Linux
+-----
+The Linux build only requires linking to -ldl, -lpthread and -lm. You do not need any development packages.
+
+BSD
---
-- UWP only supports default playback and capture devices.
-- UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest):
- <Package ...>
- ...
- <Capabilities>
- <DeviceCapability Name="microphone" />
- </Capabilities>
- </Package>
+The BSD build only requires linking to -lpthread and -lm. NetBSD uses audio(4), OpenBSD uses sndio and FreeBSD uses OSS.
-Web Audio / Emscripten
-----------------------
-- The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act
- as a factory for device objects.
-- Currently the Web Audio backend uses ScriptProcessorNode's, but this may need to change later as they've been deprecated.
-- Google is implementing a policy in their browsers that prevent automatic media output without first receiving some kind
- of user input. See here for details: https://developers.google.com/web/updates/2017/09/autoplay-policy-changes. Starting
- the device may fail if you try to start playback without first handling some kind of user input.
+Android
+-------
+AAudio is the highest priority backend on Android. This should work out out of the box without needing any kind of compiler configuration. Support for AAudio
+starts with Android 8 which means older versions will fall back to OpenSL|ES which requires API level 16+.
+
+Emscripten
+----------
+The Emscripten build emits Web Audio JavaScript directly and should Just Work without any configuration. You cannot use -std=c* compiler flags, nor -ansi.
-OPTIONS
-=======
-#define these options before including this file.
+Build Options
+-------------
+#define these options before including miniaudio.h.
#define MA_NO_WASAPI
Disables the WASAPI backend.
@@ -374,20 +430,12 @@ OPTIONS
#define MA_NO_NULL
Disables the null backend.
-#define MA_DEFAULT_PERIODS
- When a period count of 0 is specified when a device is initialized, it will default to this.
-
-#define MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
-#define MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
- When a buffer size of 0 is specified when a device is initialized it will default to a buffer of this size, depending
- on the chosen performance profile. These can be increased or decreased depending on your specific requirements.
-
#define MA_NO_DECODING
Disables the decoding APIs.
#define MA_NO_DEVICE_IO
- Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to
- use miniaudio's data conversion and/or decoding APIs.
+ Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to use miniaudio's data conversion and/or
+ decoding APIs.
#define MA_NO_STDIO
Disables file IO APIs.
@@ -418,10 +466,11 @@ OPTIONS
Windows only. The value to pass to internal calls to CoInitializeEx(). Defaults to COINIT_MULTITHREADED.
-DEFINITIONS
+
+Definitions
===========
-This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms
-throughout the audio space, so this section is intended to clarify how miniaudio uses each term.
+This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms throughout the audio space, so this
+section is intended to clarify how miniaudio uses each term.
Sample
------
@@ -429,37 +478,709 @@ A sample is a single unit of audio data. If the sample format is f32, then one s
Frame / PCM Frame
-----------------
-A frame is a groups of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame
-is 1 sample, a 5.1 surround sound frame is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in
-miniaudio. Note that this is different to a compressed frame. If ever miniaudio needs to refer to a compressed frame, such
-as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame" or whatnot.
+A frame is a groups of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame
+is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in miniaudio. Note that this is different to a compressed frame. If ever miniaudio
+needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame" or whatnot.
Channel
-------
-A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual
-microphone in a microphone system. A stereo stream has two channels (a left channel, and a right channel), a 5.1 surround
-sound system has 6 channels, etc. Some audio systems refer to a channel as a complex audio stream that's mixed with other
-channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and should not be
-confused.
+A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual microphone in a microphone system. A
+stereo stream has two channels (a left channel, and a right channel), a 5.1 surround sound system has 6 channels, etc. Some audio systems refer to a channel as
+a complex audio stream that's mixed with other channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and
+should not be confused.
Sample Rate
-----------
-The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are
-processed per second.
+The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are processed per second.
Formats
-------
Throughout miniaudio you will see references to different sample formats:
- Symbol | Description | Range
- -------|----------------------------------------|---------------------------
- u8 | Unsigned 8-bit integer | [0, 255]
- s16 | Signed 16-bit integer | [-32768, 32767]
- s24 | Signed 24-bit integer (tightly packed) | [-8388608, 8388607]
- s32 | Signed 32-bit integer | [-2147483648, 2147483647]
- f32 | 32-bit floating point | [-1, 1]
+ |---------------|----------------------------------------|---------------------------|
+ | Symbol | Description | Range |
+ |---------------|----------------------------------------|---------------------------|
+ | ma_format_f32 | 32-bit floating point | [-1, 1] |
+ | ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
+ | ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
+ | ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
+ | ma_format_u8 | 8-bit unsigned integer | [0, 255] |
+ |---------------|----------------------------------------|---------------------------|
All formats are native-endian.
+
+
+
+Decoding
+========
+The `ma_decoder` API is used for reading audio files. To enable a decoder you must #include the header of the relevant backend library before the
+implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio).
+
+The table below are the supported decoding backends:
+
+ |--------|-----------------|
+ | Type | Backend Library |
+ |--------|-----------------|
+ | WAV | dr_wav.h |
+ | FLAC | dr_flac.h |
+ | MP3 | dr_mp3.h |
+ | Vorbis | stb_vorbis.c |
+ |--------|-----------------|
+
+The code below is an example of how to enable decoding backends:
+
+ ```c
+ #include "dr_flac.h" // Enables FLAC decoding.
+ #include "dr_mp3.h" // Enables MP3 decoding.
+ #include "dr_wav.h" // Enables WAV decoding.
+
+ #define MINIAUDIO_IMPLEMENTATION
+ #include "miniaudio.h"
+ ```
+
+A decoder can be initialized from a file with `ma_decoder_init_file()`, a block of memory with `ma_decoder_init_memory()`, or from data delivered via callbacks
+with `ma_decoder_init()`. Here is an example for loading a decoder from a file:
+
+ ```c
+ ma_decoder decoder;
+ ma_result result = ma_decoder_init_file("MySong.mp3", NULL, &decoder);
+ if (result != MA_SUCCESS) {
+ return false; // An error occurred.
+ }
+
+ ...
+
+ ma_decoder_uninit(&decoder);
+ ```
+
+When initializing a decoder, you can optionally pass in a pointer to a ma_decoder_config object (the NULL argument in the example above) which allows you to
+configure the output format, channel count, sample rate and channel map:
+
+ ```c
+ ma_decoder_config config = ma_decoder_config_init(ma_format_f32, 2, 48000);
+ ```
+
+When passing in NULL for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend.
+
+Data is read from the decoder as PCM frames:
+
+ ```c
+ ma_uint64 framesRead = ma_decoder_read_pcm_frames(pDecoder, pFrames, framesToRead);
+ ```
+
+You can also seek to a specific frame like so:
+
+ ```c
+ ma_result result = ma_decoder_seek_to_pcm_frame(pDecoder, targetFrame);
+ if (result != MA_SUCCESS) {
+ return false; // An error occurred.
+ }
+ ```
+
+When loading a decoder, miniaudio uses a trial and error technique to find the appropriate decoding backend. This can be unnecessarily inefficient if the type
+is already known. In this case you can use the `_wav`, `_mp3`, etc. varients of the aforementioned initialization APIs:
+
+ ```c
+ ma_decoder_init_wav()
+ ma_decoder_init_mp3()
+ ma_decoder_init_memory_wav()
+ ma_decoder_init_memory_mp3()
+ ma_decoder_init_file_wav()
+ ma_decoder_init_file_mp3()
+ etc.
+ ```
+
+The `ma_decoder_init_file()` API will try using the file extension to determine which decoding backend to prefer.
+
+
+
+Sample Format Conversion
+========================
+Conversion between sample formats is achieved with the `ma_pcm_*_to_*()`, `ma_pcm_convert()` and `ma_convert_pcm_frames_format()` APIs. Use `ma_pcm_*_to_*()`
+to convert between two specific formats. Use `ma_pcm_convert()` to convert based on a `ma_format` variable. Use `ma_convert_pcm_frames_format()` to convert
+PCM frames where you want to specify the frame count and channel count as a variable instead of the total sample count.
+
+Dithering
+---------
+Dithering can be set using ditherMode parmater.
+
+The different dithering modes include the following, in order of efficiency:
+
+ |-----------|--------------------------|
+ | Type | Enum Token |
+ |-----------|--------------------------|
+ | None | ma_dither_mode_none |
+ | Rectangle | ma_dither_mode_rectangle |
+ | Triangle | ma_dither_mode_triangle |
+ |-----------|--------------------------|
+
+Note that even if the dither mode is set to something other than `ma_dither_mode_none`, it will be ignored for conversions where dithering is not needed.
+Dithering is available for the following conversions:
+
+ s16 -> u8
+ s24 -> u8
+ s32 -> u8
+ f32 -> u8
+ s24 -> s16
+ s32 -> s16
+ f32 -> s16
+
+Note that it is not an error to pass something other than ma_dither_mode_none for conversions where dither is not used. It will just be ignored.
+
+
+
+Channel Conversion
+==================
+Channel conversion is used for channel rearrangement and conversion from one channel count to another. The `ma_channel_converter` API is used for channel
+conversion. Below is an example of initializing a simple channel converter which converts from mono to stereo.
+
+ ```c
+ ma_channel_converter_config config = ma_channel_converter_config_init(ma_format, 1, NULL, 2, NULL, ma_channel_mix_mode_default, NULL);
+ result = ma_channel_converter_init(&config, &converter);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+ ```
+
+To process perform the conversion simply call `ma_channel_converter_process_pcm_frames()` like so:
+
+ ```c
+ ma_result result = ma_channel_converter_process_pcm_frames(&converter, pFramesOut, pFramesIn, frameCount);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+ ```
+
+It is up to the caller to ensure the output buffer is large enough to accomodate the new PCM frames.
+
+The only formats supported are `ma_format_s16` and `ma_format_f32`. If you need another format you need to convert your data manually which you can do with
+`ma_pcm_convert()`, etc.
+
+Input and output PCM frames are always interleaved. Deinterleaved layouts are not supported.
+
+
+Channel Mapping
+---------------
+In addition to converting from one channel count to another, like the example above, The channel converter can also be used to rearrange channels. When
+initializing the channel converter, you can optionally pass in channel maps for both the input and output frames. If the channel counts are the same, and each
+channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels with be performed. If,
+however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing
+mode which is specified when initializing the `ma_channel_converter_config` object.
+
+When converting from mono to multi-channel, the mono channel is simply copied to each output channel. When going the other way around, the audio of each output
+channel is simply averaged and copied to the mono channel.
+
+In more complicated cases blending is used. The `ma_channel_mix_mode_simple` mode will drop excess channels and silence extra channels. For example, converting
+from 4 to 2 channels, the 3rd and 4th channels will be dropped, whereas converting from 2 to 4 channels will put silence into the 3rd and 4th channels.
+
+The `ma_channel_mix_mode_rectangle` mode uses spacial locality based on a rectangle to compute a simple distribution between input and output. Imagine sitting
+in the middle of a room, with speakers on the walls representing channel positions. The MA_CHANNEL_FRONT_LEFT position can be thought of as being in the corner
+of the front and left walls.
+
+Finally, the `ma_channel_mix_mode_custom_weights` mode can be used to use custom user-defined weights. Custom weights can be passed in as the last parameter of
+`ma_channel_converter_config_init()`.
+
+Predefined channel maps can be retrieved with `ma_get_standard_channel_map()`. This takes a `ma_standard_channel_map` enum as it's first parameter, which can
+be one of the following:
+
+ |-----------------------------------|-----------------------------------------------------------|
+ | Name | Description |
+ |-----------------------------------|-----------------------------------------------------------|
+ | ma_standard_channel_map_default | Default channel map used by miniaudio. See below. |
+ | ma_standard_channel_map_microsoft | Channel map used by Microsoft's bitfield channel maps. |
+ | ma_standard_channel_map_alsa | Default ALSA channel map. |
+ | ma_standard_channel_map_rfc3551 | RFC 3551. Based on AIFF. |
+ | ma_standard_channel_map_flac | FLAC channel map. |
+ | ma_standard_channel_map_vorbis | Vorbis channel map. |
+ | ma_standard_channel_map_sound4 | FreeBSD's sound(4). |
+ | ma_standard_channel_map_sndio | sndio channel map. www.sndio.org/tips.html |
+ | ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering |
+ |-----------------------------------|-----------------------------------------------------------|
+
+Below are the channel maps used by default in miniaudio (ma_standard_channel_map_default):
+
+ |---------------|------------------------------|
+ | Channel Count | Mapping |
+ |---------------|------------------------------|
+ | 1 (Mono) | 0: MA_CHANNEL_MONO |
+ |---------------|------------------------------|
+ | 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ |---------------|------------------------------|
+ | 3 | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ |---------------|------------------------------|
+ | 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ | | 3: MA_CHANNEL_BACK_CENTER |
+ |---------------|------------------------------|
+ | 5 | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ | | 3: MA_CHANNEL_BACK_LEFT |
+ | | 4: MA_CHANNEL_BACK_RIGHT |
+ |---------------|------------------------------|
+ | 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ | | 3: MA_CHANNEL_LFE |
+ | | 4: MA_CHANNEL_SIDE_LEFT |
+ | | 5: MA_CHANNEL_SIDE_RIGHT |
+ |---------------|------------------------------|
+ | 7 | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ | | 3: MA_CHANNEL_LFE |
+ | | 4: MA_CHANNEL_BACK_CENTER |
+ | | 4: MA_CHANNEL_SIDE_LEFT |
+ | | 5: MA_CHANNEL_SIDE_RIGHT |
+ |---------------|------------------------------|
+ | 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT |
+ | | 1: MA_CHANNEL_FRONT_RIGHT |
+ | | 2: MA_CHANNEL_FRONT_CENTER |
+ | | 3: MA_CHANNEL_LFE |
+ | | 4: MA_CHANNEL_BACK_LEFT |
+ | | 5: MA_CHANNEL_BACK_RIGHT |
+ | | 6: MA_CHANNEL_SIDE_LEFT |
+ | | 7: MA_CHANNEL_SIDE_RIGHT |
+ |---------------|------------------------------|
+ | Other | All channels set to 0. This |
+ | | is equivalent to the same |
+ | | mapping as the device. |
+ |---------------|------------------------------|
+
+
+
+Resampling
+==========
+Resampling is achieved with the `ma_resampler` object. To create a resampler object, do something like the following:
+
+ ```c
+ ma_resampler_config config = ma_resampler_config_init(ma_format_s16, channels, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear);
+ ma_resampler resampler;
+ ma_result result = ma_resampler_init(&config, &resampler);
+ if (result != MA_SUCCESS) {
+ // An error occurred...
+ }
+ ```
+
+Do the following to uninitialize the resampler:
+
+ ```c
+ ma_resampler_uninit(&resampler);
+ ```
+
+The following example shows how data can be processed
+
+ ```c
+ ma_uint64 frameCountIn = 1000;
+ ma_uint64 frameCountOut = 2000;
+ ma_result result = ma_resampler_process_pcm_frames(&resampler, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut);
+ if (result != MA_SUCCESS) {
+ // An error occurred...
+ }
+
+ // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written.
+ ```
+
+To initialize the resampler you first need to set up a config (`ma_resampler_config`) with `ma_resampler_config_init()`. You need to specify the sample format
+you want to use, the number of channels, the input and output sample rate, and the algorithm.
+
+The sample format can be either `ma_format_s16` or `ma_format_f32`. If you need a different format you will need to perform pre- and post-conversions yourself
+where necessary. Note that the format is the same for both input and output. The format cannot be changed after initialization.
+
+The resampler supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization.
+
+The sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the
+only configuration property that can be changed after initialization.
+
+The miniaudio resampler supports multiple algorithms:
+
+ |-----------|------------------------------|
+ | Algorithm | Enum Token |
+ |-----------|------------------------------|
+ | Linear | ma_resample_algorithm_linear |
+ | Speex | ma_resample_algorithm_speex |
+ |-----------|------------------------------|
+
+Because Speex is not public domain it is strictly opt-in and the code is stored in separate files. if you opt-in to the Speex backend you will need to consider
+it's license, the text of which can be found in it's source files in "extras/speex_resampler". Details on how to opt-in to the Speex resampler is explained in
+the Speex Resampler section below.
+
+The algorithm cannot be changed after initialization.
+
+Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process
+frames, use `ma_resampler_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number of
+input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the
+number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large
+buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek.
+
+The sample rate can be changed dynamically on the fly. You can change this with explicit sample rates with `ma_resampler_set_rate()` and also with a decimal
+ratio with `ma_resampler_set_rate_ratio()`. The ratio is in/out.
+
+Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with
+`ma_resampler_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of
+input frames. You can do this with `ma_resampler_get_expected_output_frame_count()`.
+
+Due to the nature of how resampling works, the resampler introduces some latency. This can be retrieved in terms of both the input rate and the output rate
+with `ma_resampler_get_input_latency()` and `ma_resampler_get_output_latency()`.
+
+
+Resampling Algorithms
+---------------------
+The choice of resampling algorithm depends on your situation and requirements. The linear resampler is the most efficient and has the least amount of latency,
+but at the expense of poorer quality. The Speex resampler is higher quality, but slower with more latency. It also performs several heap applications
+internally for memory management.
+
+
+Linear Resampling
+-----------------
+The linear resampler is the fastest, but comes at the expense of poorer quality. There is, however, some control over the quality of the linear resampler which
+may make it a suitable option depending on your requirements.
+
+The linear resampler performs low-pass filtering before or after downsampling or upsampling, depending on the sample rates you're converting between. When
+decreasing the sample rate, the low-pass filter will be applied before downsampling. When increasing the rate it will be performed after upsampling. By default
+a second order low-pass filter will be applied. To improve quality you can chain low-pass filters together, up to a maximum of `MA_MAX_RESAMPLER_LPF_FILTERS`.
+This comes at the expense of increased computational cost and latency. You can also disable filtering altogether by setting the filter count to 0. The filter
+count is controlled with the `lpfCount` config variable.
+
+The low-pass filter has a cutoff frequency which defaults to half the sample rate of the lowest of the input and output sample rates (Nyquist Frequency). This
+can be controlled with the `lpfNyquistFactor` config variable. This defaults to 1, and should be in the range of 0..1, although a value of 0 does not make
+sense and should be avoided. A value of 1 will use the Nyquist Frequency as the cutoff. A value of 0.5 will use half the Nyquist Frequency as the cutoff, etc.
+Values less than 1 will result in more washed out sound due to more of the higher frequencies being removed. This config variable has no impact on performance
+and is a purely perceptual configuration.
+
+The API for the linear resampler is the same as the main resampler API, only it's called `ma_linear_resampler`.
+
+
+Speex Resampling
+----------------
+The Speex resampler is made up of third party code which is released under the BSD license. Because it is licensed differently to miniaudio, which is public
+domain, it is strictly opt-in and all of it's code is stored in separate files. If you opt-in to the Speex resampler you must consider the license text in it's
+source files. To opt-in, you must first #include the following file before the implementation of miniaudio.h:
+
+ #include "extras/speex_resampler/ma_speex_resampler.h"
+
+Both the header and implementation is contained within the same file. To implementation can be included in your program like so:
+
+ #define MINIAUDIO_SPEEX_RESAMPLER_IMPLEMENTATION
+ #include "extras/speex_resampler/ma_speex_resampler.h"
+
+Note that even if you opt-in to the Speex backend, miniaudio won't use it unless you explicitly ask for it in the respective config of the object you are
+initializing. If you try to use the Speex resampler without opting in, initialization of the `ma_resampler` object will fail with `MA_NO_BACKEND`.
+
+The only configuration option to consider with the Speex resampler is the `speex.quality` config variable. This is a value between 0 and 10, with 0 being
+the worst/fastest and 10 being the best/slowest. The default value is 3.
+
+
+
+
+General Data Conversion
+=======================
+The `ma_data_converter` API can be used to wrap sample format conversion, channel conversion and resampling into one operation. This is what miniaudio uses
+internally to convert between the format requested when the device was initialized and the format of the backend's native device. The API for general data
+conversion is very similar to the resampling API. Create a `ma_data_converter` object like this:
+
+ ```c
+ ma_data_converter_config config = ma_data_converter_config_init(inputFormat, outputFormat, inputChannels, outputChannels, inputSampleRate, outputSampleRate);
+ ma_data_converter converter;
+ ma_result result = ma_data_converter_init(&config, &converter);
+ if (result != MA_SUCCESS) {
+ // An error occurred...
+ }
+ ```
+
+In the example above we use `ma_data_converter_config_init()` to initialize the config, however there's many more properties that can be configured, such as
+channel maps and resampling quality. Something like the following may be more suitable depending on your requirements:
+
+ ```c
+ ma_data_converter_config config = ma_data_converter_config_init_default();
+ config.formatIn = inputFormat;
+ config.formatOut = outputFormat;
+ config.channelsIn = inputChannels;
+ config.channelsOut = outputChannels;
+ config.sampleRateIn = inputSampleRate;
+ config.sampleRateOut = outputSampleRate;
+ ma_get_standard_channel_map(ma_standard_channel_map_flac, config.channelCountIn, config.channelMapIn);
+ config.resampling.linear.lpfCount = MA_MAX_RESAMPLER_LPF_FILTERS;
+ ```
+
+Do the following to uninitialize the data converter:
+
+ ```c
+ ma_data_converter_uninit(&converter);
+ ```
+
+The following example shows how data can be processed
+
+ ```c
+ ma_uint64 frameCountIn = 1000;
+ ma_uint64 frameCountOut = 2000;
+ ma_result result = ma_data_converter_process_pcm_frames(&converter, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut);
+ if (result != MA_SUCCESS) {
+ // An error occurred...
+ }
+
+ // At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written.
+ ```
+
+The data converter supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization.
+
+The sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the
+only configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config`
+is set to MA_TRUE. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The
+resampling algorithm cannot be changed after initialization.
+
+Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process
+frames, use `ma_data_converter_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number
+of input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the
+number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large
+buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek.
+
+Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with
+`ma_data_converter_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of
+input frames. You can do this with `ma_data_converter_get_expected_output_frame_count()`.
+
+Due to the nature of how resampling works, the data converter introduces some latency if resampling is required. This can be retrieved in terms of both the
+input rate and the output rate with `ma_data_converter_get_input_latency()` and `ma_data_converter_get_output_latency()`.
+
+
+
+
+Biquad Filtering
+================
+Biquad filtering is achieved with the `ma_biquad` API. Example:
+
+ ```c
+ ma_biquad_config config = ma_biquad_config_init(ma_format_f32, channels, b0, b1, b2, a0, a1, a2);
+ ma_result result = ma_biquad_init(&config, &biquad);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+
+ ...
+
+ ma_biquad_process_pcm_frames(&biquad, pFramesOut, pFramesIn, frameCount);
+ ```
+
+Biquad filtering is implemented using transposed direct form 2. The numerator coefficients are b0, b1 and b2, and the denominator coefficients are a0, a1 and
+a2. The a0 coefficient is required and coefficients must not be pre-normalized.
+
+Supported formats are `ma_format_s16` and `ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. When using
+`ma_format_s16` the biquad filter will use fixed point arithmetic. When using `ma_format_f32`, floating point arithmetic will be used.
+
+Input and output frames are always interleaved.
+
+Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so:
+
+ ```c
+ ma_biquad_process_pcm_frames(&biquad, pMyData, pMyData, frameCount);
+ ```
+
+If you need to change the values of the coefficients, but maintain the values in the registers you can do so with `ma_biquad_reinit()`. This is useful if you
+need to change the properties of the filter while keeping the values of registers valid to avoid glitching or whatnot. Do not use `ma_biquad_init()` for this
+as it will do a full initialization which involves clearing the registers to 0. Note that changing the format or channel count after initialization is invalid
+and will result in an error.
+
+
+
+Low-Pass, High-Pass and Band-Pass Filtering
+===========================================
+Low-pass, high-pass and band-pass filtering is achieved with the `ma_lpf`, `ma_hpf` and `ma_bpf` APIs respective. Low-pass filter example:
+
+ ```c
+ ma_lpf_config config = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency);
+ ma_result result = ma_lpf_init(&config, &lpf);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+
+ ...
+
+ ma_lpf_process_pcm_frames(&lpf, pFramesOut, pFramesIn, frameCount);
+ ```
+
+Supported formats are `ma_format_s16` and` ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. Input and output
+frames are always interleaved.
+
+Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so:
+
+ ```c
+ ma_lpf_process_pcm_frames(&lpf, pMyData, pMyData, frameCount);
+ ```
+
+These filters are implemented as a biquad filter. If you need to increase the filter order, simply chain multiple filters together.
+
+ ```c
+ for (iFilter = 0; iFilter < filterCount; iFilter += 1) {
+ ma_lpf_process_pcm_frames(&lpf[iFilter], pMyData, pMyData, frameCount);
+ }
+ ```
+
+If you need to change the configuration of the filter, but need to maintain the state of internal registers you can do so with `ma_lpf_reinit()`. This may be
+useful if you need to change the sample rate and/or cutoff frequency dynamically while maintaing smooth transitions. Note that changing the format or channel
+count after initialization is invalid and will result in an error.
+
+The example code above is for low-pass filters, but the same applies for high-pass and band-pass filters, only you should use the `ma_hpf` and `ma_bpf` APIs
+instead.
+
+
+
+Waveforms
+=========
+miniaudio supports generation of sine, square, triangle and sawtooth waveforms. This is achieved with the `ma_waveform` API. Example:
+
+ ```c
+ ma_waveform waveform;
+ ma_result result = ma_waveform_init(ma_waveform_type_sine, amplitude, frequency, sampleRate, &waveform);
+ if (result != MA_SUCCESS) {
+ // Error.
+ }
+
+ ...
+
+ ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount, FORMAT, CHANNELS);
+ ```
+
+The amplitude, frequency and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()` and
+`ma_waveform_set_sample_rate()` respectively.
+
+
+
+Ring Buffers
+============
+miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed via the `ma_rb` and `ma_pcm_rb` APIs. The `ma_rb` API operates
+on bytes, whereas the `ma_pcm_rb` operates on PCM frames. They are otherwise identical as `ma_pcm_rb` is just a wrapper around `ma_rb`.
+
+Unlike most other APIs in miniaudio, ring buffers support both interleaved and deinterleaved streams. The caller can also allocate their own backing memory for
+the ring buffer to use internally for added flexibility. Otherwise the ring buffer will manage it's internal memory for you.
+
+The examples below use the PCM frame variant of the ring buffer since that's most likely the one you will want to use. To initialize a ring buffer, do
+something like the following:
+
+ ```c
+ ma_pcm_rb rb;
+ ma_result result = ma_pcm_rb_init(FORMAT, CHANNELS, BUFFER_SIZE_IN_FRAMES, NULL, NULL, &rb);
+ if (result != MA_SUCCESS) {
+ // Error
+ }
+ ```
+
+The `ma_pcm_rb_init()` function takes the sample format and channel count as parameters because it's the PCM varient of the ring buffer API. For the regular
+ring buffer that operates on bytes you would call `ma_rb_init()` which leaves these out and just takes the size of the buffer in bytes instead of frames. The
+fourth parameter is an optional pre-allocated buffer and the fifth parameter is a pointer to a `ma_allocation_callbacks` structure for custom memory allocation
+routines. Passing in NULL for this results in MA_MALLOC() and MA_FREE() being used.
+
+Use `ma_pcm_rb_init_ex()` if you need a deinterleaved buffer. The data for each sub-buffer is offset from each other based on the stride. To manage your sub-
+buffers you can use `ma_pcm_rb_get_subbuffer_stride()`, `ma_pcm_rb_get_subbuffer_offset()` and `ma_pcm_rb_get_subbuffer_ptr()`.
+
+Use 'ma_pcm_rb_acquire_read()` and `ma_pcm_rb_acquire_write()` to retrieve a pointer to a section of the ring buffer. You specify the number of frames you
+need, and on output it will set to what was actually acquired. If the read or write pointer is positioned such that the number of frames requested will require
+a loop, it will be clamped to the end of the buffer. Therefore, the number of frames you're given may be less than the number you requested.
+
+After calling `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()`, you do your work on the buffer and then "commit" it with `ma_pcm_rb_commit_read()` or
+`ma_pcm_rb_commit_write()`. This is where the read/write pointers are updated. When you commit you need to pass in the buffer that was returned by the earlier
+call to `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()` and is only used for validation. The number of frames passed to `ma_pcm_rb_commit_read()` and
+`ma_pcm_rb_commit_write()` is what's used to increment the pointers.
+
+If you want to correct for drift between the write pointer and the read pointer you can use a combination of `ma_pcm_rb_pointer_distance()`,
+`ma_pcm_rb_seek_read()` and `ma_pcm_rb_seek_write()`. Note that you can only move the pointers forward, and you should only move the read pointer forward via
+the consumer thread, and the write pointer forward by the producer thread. If there is too much space between the pointers, move the read pointer forward. If
+there is too little space between the pointers, move the write pointer forward.
+
+You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the sample, only you will use the `ma_rb`
+functions instead of `ma_pcm_rb` and instead of frame counts you'll pass around byte counts.
+
+The maximum size of the buffer in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) due to the most significant bit being used to encode a flag and the internally
+managed buffers always being aligned to MA_SIMD_ALIGNMENT.
+
+Note that the ring buffer is only thread safe when used by a single consumer thread and single producer thread.
+
+
+
+Backends
+========
+The following backends are supported by miniaudio.
+
+ |-------------|-----------------------|--------------------------------------------------------|
+ | Name | Enum Name | Supported Operating Systems |
+ |-------------|-----------------------|--------------------------------------------------------|
+ | WASAPI | ma_backend_wasapi | Windows Vista+ |
+ | DirectSound | ma_backend_dsound | Windows XP+ |
+ | WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) |
+ | Core Audio | ma_backend_coreaudio | macOS, iOS |
+ | ALSA | ma_backend_alsa | Linux |
+ | PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) |
+ | JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) |
+ | sndio | ma_backend_sndio | OpenBSD |
+ | audio(4) | ma_backend_audio4 | NetBSD, OpenBSD |
+ | OSS | ma_backend_oss | FreeBSD |
+ | AAudio | ma_backend_aaudio | Android 8+ |
+ | OpenSL|ES | ma_backend_opensl | Android (API level 16+) |
+ | Web Audio | ma_backend_webaudio | Web (via Emscripten) |
+ | Null | ma_backend_null | Cross Platform (not used on Web) |
+ |-------------|-----------------------|--------------------------------------------------------|
+
+Some backends have some nuance details you may want to be aware of.
+
+WASAPI
+------
+- Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the device's native sample rate. To work around
+ this, set wasapi.noAutoConvertSRC to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the
+ AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's lower quality internal resampler being used
+ instead which will in turn enable the use of low-latency shared mode.
+
+PulseAudio
+----------
+- If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki:
+ https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling
+ Alternatively, consider using a different backend such as ALSA.
+
+Android
+-------
+- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest:
+ <uses-permission android:name="android.permission.RECORD_AUDIO" />
+- With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES.
+- With AAudio, only default devices are enumerated. This is due to AAudio not having an enumeration API (devices are enumerated through Java). You can however
+ perform your own device enumeration through Java and then set the ID in the ma_device_id structure (ma_device_id.aaudio) and pass it to ma_device_init().
+- The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in resampler is to take advantage of any
+ potential device-specific optimizations the driver may implement.
+
+UWP
+---
+- UWP only supports default playback and capture devices.
+- UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest):
+ <Package ...>
+ ...
+ <Capabilities>
+ <DeviceCapability Name="microphone" />
+ </Capabilities>
+ </Package>
+
+Web Audio / Emscripten
+----------------------
+- You cannot use -std=c* compiler flags, nor -ansi. This only applies to the Emscripten build.
+- The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act as a factory for device objects.
+- Currently the Web Audio backend uses ScriptProcessorNode's, but this may need to change later as they've been deprecated.
+- Google has implemented a policy in their browsers that prevent automatic media output without first receiving some kind of user input. The following web page
+ has additional details: https://developers.google.com/web/updates/2017/09/autoplay-policy-changes. Starting the device may fail if you try to start playback
+ without first handling some kind of user input.
+
+
+
+Miscellaneous Notes
+===================
+- Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI and Core Audio, however other backends such as
+ PulseAudio may naturally support it, though not all have been tested.
+- The contents of the output buffer passed into the data callback will always be pre-initialized to zero unless the noPreZeroedOutputBuffer config variable in
+ ma_device_config is set to true, in which case it'll be undefined which will require you to write something to the entire buffer.
+- By default miniaudio will automatically clip samples. This only applies when the playback sample format is configured as ma_format_f32. If you are doing
+ clipping yourself, you can disable this overhead by setting noClip to true in the device config.
+- The sndio backend is currently only enabled on OpenBSD builds.
+- The audio(4) backend is supported on OpenBSD, but you may need to disable sndiod before you can use it.
+- Note that GCC and Clang requires "-msse2", "-mavx2", etc. for SIMD optimizations.
*/
#ifndef miniaudio_h
@@ -492,6 +1213,7 @@ extern "C" {
#else
#define MA_POSIX
#include <pthread.h> /* Unfortunate #include, but needed for pthread_t, pthread_mutex_t and pthread_cond_t types. */
+ #include <semaphore.h>
#ifdef __unix__
#define MA_UNIX
@@ -622,12 +1344,6 @@ typedef ma_uint16 wchar_t;
#define MA_ALIGN(alignment)
#endif
-#ifdef _MSC_VER
-#define MA_ALIGNED_STRUCT(alignment) MA_ALIGN(alignment) struct
-#else
-#define MA_ALIGNED_STRUCT(alignment) struct MA_ALIGN(alignment)
-#endif
-
/* SIMD alignment in bytes. Currently set to 64 bytes in preparation for future AVX-512 optimizations. */
#define MA_SIMD_ALIGNMENT 64
@@ -700,7 +1416,7 @@ typedef ma_uint8 ma_channel;
#define MA_CHANNEL_AUX_31 51
#define MA_CHANNEL_LEFT MA_CHANNEL_FRONT_LEFT
#define MA_CHANNEL_RIGHT MA_CHANNEL_FRONT_RIGHT
-#define MA_CHANNEL_POSITION_COUNT MA_CHANNEL_AUX_31 + 1
+#define MA_CHANNEL_POSITION_COUNT (MA_CHANNEL_AUX_31 + 1)
typedef int ma_result;
@@ -744,7 +1460,8 @@ typedef int ma_result;
#define MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE -310
#define MA_FAILED_TO_CREATE_MUTEX -311
#define MA_FAILED_TO_CREATE_EVENT -312
-#define MA_FAILED_TO_CREATE_THREAD -313
+#define MA_FAILED_TO_CREATE_SEMAPHORE -313
+#define MA_FAILED_TO_CREATE_THREAD -314
/* Standard sample rates. */
@@ -763,17 +1480,10 @@ typedef int ma_result;
#define MA_SAMPLE_RATE_352800 352800
#define MA_SAMPLE_RATE_384000 384000
-#define MA_MIN_PCM_SAMPLE_SIZE_IN_BYTES 1 /* For simplicity, miniaudio does not support PCM samples that are not byte aligned. */
-#define MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES 8
#define MA_MIN_CHANNELS 1
#define MA_MAX_CHANNELS 32
#define MA_MIN_SAMPLE_RATE MA_SAMPLE_RATE_8000
#define MA_MAX_SAMPLE_RATE MA_SAMPLE_RATE_384000
-#define MA_SRC_SINC_MIN_WINDOW_WIDTH 2
-#define MA_SRC_SINC_MAX_WINDOW_WIDTH 32
-#define MA_SRC_SINC_DEFAULT_WINDOW_WIDTH 32
-#define MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION 8
-#define MA_SRC_INPUT_BUFFER_SIZE_IN_SAMPLES 256
typedef enum
{
@@ -837,191 +1547,135 @@ typedef enum
} ma_performance_profile;
-typedef struct ma_format_converter ma_format_converter;
-typedef ma_uint32 (* ma_format_converter_read_proc) (ma_format_converter* pConverter, ma_uint32 frameCount, void* pFramesOut, void* pUserData);
-typedef ma_uint32 (* ma_format_converter_read_deinterleaved_proc)(ma_format_converter* pConverter, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData);
-
typedef struct
{
- ma_format formatIn;
- ma_format formatOut;
- ma_uint32 channels;
- ma_stream_format streamFormatIn;
- ma_stream_format streamFormatOut;
- ma_dither_mode ditherMode;
- ma_bool32 noSSE2 : 1;
- ma_bool32 noAVX2 : 1;
- ma_bool32 noAVX512 : 1;
- ma_bool32 noNEON : 1;
- ma_format_converter_read_proc onRead;
- ma_format_converter_read_deinterleaved_proc onReadDeinterleaved;
void* pUserData;
-} ma_format_converter_config;
-
-struct ma_format_converter
-{
- ma_format_converter_config config;
- ma_bool32 useSSE2 : 1;
- ma_bool32 useAVX2 : 1;
- ma_bool32 useAVX512 : 1;
- ma_bool32 useNEON : 1;
- void (* onConvertPCM)(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode);
- void (* onInterleavePCM)(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels);
- void (* onDeinterleavePCM)(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels);
-};
+ void* (* onMalloc)(size_t sz, void* pUserData);
+ void* (* onRealloc)(void* p, size_t sz, void* pUserData);
+ void (* onFree)(void* p, void* pUserData);
+} ma_allocation_callbacks;
+/**************************************************************************************************************************************************************
-typedef struct ma_channel_router ma_channel_router;
-typedef ma_uint32 (* ma_channel_router_read_deinterleaved_proc)(ma_channel_router* pRouter, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData);
+Biquad Filtering
+
+**************************************************************************************************************************************************************/
+typedef union
+{
+ float f32;
+ ma_int32 s32;
+} ma_biquad_coefficient;
typedef struct
{
- ma_uint32 channelsIn;
- ma_uint32 channelsOut;
- ma_channel channelMapIn[MA_MAX_CHANNELS];
- ma_channel channelMapOut[MA_MAX_CHANNELS];
- ma_channel_mix_mode mixingMode;
- float weights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */
- ma_bool32 noSSE2 : 1;
- ma_bool32 noAVX2 : 1;
- ma_bool32 noAVX512 : 1;
- ma_bool32 noNEON : 1;
- ma_channel_router_read_deinterleaved_proc onReadDeinterleaved;
- void* pUserData;
-} ma_channel_router_config;
+ ma_format format;
+ ma_uint32 channels;
+ double b0;
+ double b1;
+ double b2;
+ double a0;
+ double a1;
+ double a2;
+} ma_biquad_config;
+
+ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2);
-struct ma_channel_router
+typedef struct
{
- ma_channel_router_config config;
- ma_bool32 isPassthrough : 1;
- ma_bool32 isSimpleShuffle : 1;
- ma_bool32 isSimpleMonoExpansion : 1;
- ma_bool32 isStereoToMono : 1;
- ma_bool32 useSSE2 : 1;
- ma_bool32 useAVX2 : 1;
- ma_bool32 useAVX512 : 1;
- ma_bool32 useNEON : 1;
- ma_uint8 shuffleTable[MA_MAX_CHANNELS];
-};
+ ma_format format;
+ ma_uint32 channels;
+ ma_biquad_coefficient b0;
+ ma_biquad_coefficient b1;
+ ma_biquad_coefficient b2;
+ ma_biquad_coefficient a1;
+ ma_biquad_coefficient a2;
+ ma_biquad_coefficient r1[MA_MAX_CHANNELS];
+ ma_biquad_coefficient r2[MA_MAX_CHANNELS];
+} ma_biquad;
+ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ);
+ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ);
+ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ);
-typedef struct ma_src ma_src;
-typedef ma_uint32 (* ma_src_read_deinterleaved_proc)(ma_src* pSRC, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData); /* Returns the number of frames that were read. */
+/**************************************************************************************************************************************************************
-typedef enum
-{
- ma_src_algorithm_linear = 0,
- ma_src_algorithm_sinc,
- ma_src_algorithm_none,
- ma_src_algorithm_default = ma_src_algorithm_linear
-} ma_src_algorithm;
+Low-Pass Filtering
-typedef enum
+**************************************************************************************************************************************************************/
+typedef struct
{
- ma_src_sinc_window_function_hann = 0,
- ma_src_sinc_window_function_rectangular,
- ma_src_sinc_window_function_default = ma_src_sinc_window_function_hann
-} ma_src_sinc_window_function;
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+} ma_lpf_config;
+
+ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
typedef struct
{
- ma_src_sinc_window_function windowFunction;
- ma_uint32 windowWidth;
-} ma_src_config_sinc;
+ ma_biquad bq; /* The low-pass filter is implemented as a biquad filter. */
+} ma_lpf;
+ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF);
+ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF);
+ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF);
+
+
+/**************************************************************************************************************************************************************
+
+High-Pass Filtering
+
+**************************************************************************************************************************************************************/
typedef struct
{
- ma_uint32 sampleRateIn;
- ma_uint32 sampleRateOut;
+ ma_format format;
ma_uint32 channels;
- ma_src_algorithm algorithm;
- ma_bool32 neverConsumeEndOfInput : 1;
- ma_bool32 noSSE2 : 1;
- ma_bool32 noAVX2 : 1;
- ma_bool32 noAVX512 : 1;
- ma_bool32 noNEON : 1;
- ma_src_read_deinterleaved_proc onReadDeinterleaved;
- void* pUserData;
- ma_src_config_sinc sinc;
-} ma_src_config;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+} ma_hpf_config;
+
+ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
-MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_src
+typedef struct
{
- union
- {
- struct
- {
- MA_ALIGN(MA_SIMD_ALIGNMENT) float input[MA_MAX_CHANNELS][MA_SRC_INPUT_BUFFER_SIZE_IN_SAMPLES];
- float timeIn;
- ma_uint32 leftoverFrames;
- } linear;
+ ma_biquad bq; /* The high-pass filter is implemented as a biquad filter. */
+} ma_hpf;
- struct
- {
- MA_ALIGN(MA_SIMD_ALIGNMENT) float input[MA_MAX_CHANNELS][MA_SRC_SINC_MAX_WINDOW_WIDTH*2 + MA_SRC_INPUT_BUFFER_SIZE_IN_SAMPLES];
- float timeIn;
- ma_uint32 inputFrameCount; /* The number of frames sitting in the input buffer, not including the first half of the window. */
- ma_uint32 windowPosInSamples; /* An offset of <input>. */
- float table[MA_SRC_SINC_MAX_WINDOW_WIDTH*1 * MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION]; /* Precomputed lookup table. The +1 is used to avoid the need for an overflow check. */
- } sinc;
- };
+ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF);
+ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF);
+ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF);
- ma_src_config config;
- ma_bool32 isEndOfInputLoaded : 1;
- ma_bool32 useSSE2 : 1;
- ma_bool32 useAVX2 : 1;
- ma_bool32 useAVX512 : 1;
- ma_bool32 useNEON : 1;
-};
-typedef struct ma_pcm_converter ma_pcm_converter;
-typedef ma_uint32 (* ma_pcm_converter_read_proc)(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData);
+/**************************************************************************************************************************************************************
+
+Band-Pass Filtering
+**************************************************************************************************************************************************************/
typedef struct
{
- ma_format formatIn;
- ma_uint32 channelsIn;
- ma_uint32 sampleRateIn;
- ma_channel channelMapIn[MA_MAX_CHANNELS];
- ma_format formatOut;
- ma_uint32 channelsOut;
- ma_uint32 sampleRateOut;
- ma_channel channelMapOut[MA_MAX_CHANNELS];
- ma_channel_mix_mode channelMixMode;
- ma_dither_mode ditherMode;
- ma_src_algorithm srcAlgorithm;
- ma_bool32 allowDynamicSampleRate;
- ma_bool32 neverConsumeEndOfInput : 1; /* <-- For SRC. */
- ma_bool32 noSSE2 : 1;
- ma_bool32 noAVX2 : 1;
- ma_bool32 noAVX512 : 1;
- ma_bool32 noNEON : 1;
- ma_pcm_converter_read_proc onRead;
- void* pUserData;
- union
- {
- ma_src_config_sinc sinc;
- };
-} ma_pcm_converter_config;
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRate;
+ double cutoffFrequency;
+} ma_bpf_config;
+
+ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
-MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_pcm_converter
+typedef struct
{
- ma_pcm_converter_read_proc onRead;
- void* pUserData;
- ma_format_converter formatConverterIn; /* For converting data to f32 in preparation for further processing. */
- ma_format_converter formatConverterOut; /* For converting data to the requested output format. Used as the final step in the processing pipeline. */
- ma_channel_router channelRouter; /* For channel conversion. */
- ma_src src; /* For sample rate conversion. */
- ma_bool32 isDynamicSampleRateAllowed : 1; /* ma_pcm_converter_set_input_sample_rate() and ma_pcm_converter_set_output_sample_rate() will fail if this is set to false. */
- ma_bool32 isPreFormatConversionRequired : 1;
- ma_bool32 isPostFormatConversionRequired : 1;
- ma_bool32 isChannelRoutingRequired : 1;
- ma_bool32 isSRCRequired : 1;
- ma_bool32 isChannelRoutingAtStart : 1;
- ma_bool32 isPassthrough : 1; /* <-- Will be set to true when the conversion pipeline is an optimized passthrough. */
-};
+ ma_biquad bq; /* The band-pass filter is implemented as a biquad filter. */
+} ma_bpf;
+
+ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF);
+ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF);
+ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
+ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF);
/************************************************************************************************************************************************************
@@ -1035,404 +1689,382 @@ This section contains the APIs for data conversion. You will find everything her
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
-/************************************************************************************************************************************************************
+/**************************************************************************************************************************************************************
-Channel Maps
-============
+Resampling
-Below is the channel map used by ma_standard_channel_map_default:
-
-|---------------|------------------------------|
-| Channel Count | Mapping |
-|---------------|------------------------------|
-| 1 (Mono) | 0: MA_CHANNEL_MONO |
-|---------------|------------------------------|
-| 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-|---------------|------------------------------|
-| 3 | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-|---------------|------------------------------|
-| 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-| | 3: MA_CHANNEL_BACK_CENTER |
-|---------------|------------------------------|
-| 5 | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-| | 3: MA_CHANNEL_BACK_LEFT |
-| | 4: MA_CHANNEL_BACK_RIGHT |
-|---------------|------------------------------|
-| 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-| | 3: MA_CHANNEL_LFE |
-| | 4: MA_CHANNEL_SIDE_LEFT |
-| | 5: MA_CHANNEL_SIDE_RIGHT |
-|---------------|------------------------------|
-| 7 | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-| | 3: MA_CHANNEL_LFE |
-| | 4: MA_CHANNEL_BACK_CENTER |
-| | 4: MA_CHANNEL_SIDE_LEFT |
-| | 5: MA_CHANNEL_SIDE_RIGHT |
-|---------------|------------------------------|
-| 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT |
-| | 1: MA_CHANNEL_FRONT_RIGHT |
-| | 2: MA_CHANNEL_FRONT_CENTER |
-| | 3: MA_CHANNEL_LFE |
-| | 4: MA_CHANNEL_BACK_LEFT |
-| | 5: MA_CHANNEL_BACK_RIGHT |
-| | 6: MA_CHANNEL_SIDE_LEFT |
-| | 7: MA_CHANNEL_SIDE_RIGHT |
-|---------------|------------------------------|
-| Other | All channels set to 0. This |
-| | is equivalent to the same |
-| | mapping as the device. |
-|---------------|------------------------------|
+**************************************************************************************************************************************************************/
+#ifndef MA_MAX_RESAMPLER_LPF_FILTERS
+#define MA_MAX_RESAMPLER_LPF_FILTERS 4
+#endif
-************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channels;
+ ma_uint32 sampleRateIn;
+ ma_uint32 sampleRateOut;
+ ma_uint32 lpfCount; /* How many low-pass filters to chain together. A single low-pass filter is second order. Setting this to 0 will disable low-pass filtering. */
+ double lpfNyquistFactor; /* 0..1. Defaults to 1. 1 = Half the sampling frequency (Nyquist Frequency), 0.5 = Quarter the sampling frequency (half Nyquest Frequency), etc. */
+} ma_linear_resampler_config;
-/*
-Helper for retrieving a standard channel map.
-*/
-void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]);
+ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
-/*
-Copies a channel map.
-*/
-void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels);
+typedef struct
+{
+ ma_linear_resampler_config config;
+ ma_uint32 inAdvanceInt;
+ ma_uint32 inAdvanceFrac;
+ ma_uint32 inTimeInt;
+ ma_uint32 inTimeFrac;
+ union
+ {
+ float f32[MA_MAX_CHANNELS];
+ ma_int16 s16[MA_MAX_CHANNELS];
+ } x0; /* The previous input frame. */
+ union
+ {
+ float f32[MA_MAX_CHANNELS];
+ ma_int16 s16[MA_MAX_CHANNELS];
+ } x1; /* The next input frame. */
+ ma_lpf lpf[MA_MAX_RESAMPLER_LPF_FILTERS];
+} ma_linear_resampler;
+
+ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler);
+void ma_linear_resampler_uninit(ma_linear_resampler* pResampler);
+ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
+ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut);
+ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount);
+ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount);
+ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler);
+ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler);
+typedef enum
+{
+ ma_resample_algorithm_linear = 0, /* Fastest, lowest quality. Optional low-pass filtering. Default. */
+ ma_resample_algorithm_speex
+} ma_resample_algorithm;
-/*
-Determines whether or not a channel map is valid.
+typedef struct
+{
+ ma_format format; /* Must be either ma_format_f32 or ma_format_s16. */
+ ma_uint32 channels;
+ ma_uint32 sampleRateIn;
+ ma_uint32 sampleRateOut;
+ ma_resample_algorithm algorithm;
+ struct
+ {
+ ma_uint32 lpfCount;
+ double lpfNyquistFactor;
+ } linear;
+ struct
+ {
+ int quality; /* 0 to 10. Defaults to 3. */
+ } speex;
+} ma_resampler_config;
-A blank channel map is valid (all channels set to MA_CHANNEL_NONE). The way a blank channel map is handled is context specific, but
-is usually treated as a passthrough.
+ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm);
-Invalid channel maps:
- - A channel map with no channels
- - A channel map with more than one channel and a mono channel
-*/
-ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
+typedef struct
+{
+ ma_resampler_config config;
+ union
+ {
+ ma_linear_resampler linear;
+ struct
+ {
+ void* pSpeexResamplerState; /* SpeexResamplerState* */
+ } speex;
+ } state;
+} ma_resampler;
/*
-Helper for comparing two channel maps for equality.
-
-This assumes the channel count is the same between the two.
+Initializes a new resampler object from a config.
*/
-ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]);
+ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler);
/*
-Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE).
+Uninitializes a resampler.
*/
-ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
+void ma_resampler_uninit(ma_resampler* pResampler);
/*
-Helper for determining whether or not a channel is present in the given channel map.
-*/
-ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition);
+Converts the given input data.
+Both the input and output frames must be in the format specified in the config when the resampler was initilized.
-/************************************************************************************************************************************************************
+On input, [pFrameCountOut] contains the number of output frames to process. On output it contains the number of output frames that
+were actually processed, which may be less than the requested amount which will happen if there's not enough input data. You can use
+ma_resampler_get_expected_output_frame_count() to know how many output frames will be processed for a given number of input frames.
-Format Conversion
-=================
-The format converter serves two purposes:
- 1) Conversion between data formats (u8 to f32, etc.)
- 2) Interleaving and deinterleaving
+On input, [pFrameCountIn] contains the number of input frames contained in [pFramesIn]. On output it contains the number of whole
+input frames that were actually processed. You can use ma_resampler_get_required_input_frame_count() to know how many input frames
+you should provide for a given number of output frames. [pFramesIn] can be NULL, in which case zeroes will be used instead.
-When initializing a converter, you specify the input and output formats (u8, s16, etc.) and read callbacks. There are two read callbacks - one for
-interleaved input data (onRead) and another for deinterleaved input data (onReadDeinterleaved). You implement whichever is most convenient for you. You
-can implement both, but it's not recommended as it just introduces unnecessary complexity.
+If [pFramesOut] is NULL, a seek is performed. In this case, if [pFrameCountOut] is not NULL it will seek by the specified number of
+output frames. Otherwise, if [pFramesCountOut] is NULL and [pFrameCountIn] is not NULL, it will seek by the specified number of input
+frames. When seeking, [pFramesIn] is allowed to NULL, in which case the internal timing state will be updated, but no input will be
+processed. In this case, any internal filter state will be updated as if zeroes were passed in.
-To read data as interleaved samples, use ma_format_converter_read(). Otherwise use ma_format_converter_read_deinterleaved().
+It is an error for [pFramesOut] to be non-NULL and [pFrameCountOut] to be NULL.
-Dithering
----------
-The format converter also supports dithering. Dithering can be set using ditherMode variable in the config, like so.
+It is an error for both [pFrameCountOut] and [pFrameCountIn] to be NULL.
+*/
+ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
- pConfig->ditherMode = ma_dither_mode_rectangle;
-The different dithering modes include the following, in order of efficiency:
- - None: ma_dither_mode_none
- - Rectangle: ma_dither_mode_rectangle
- - Triangle: ma_dither_mode_triangle
+/*
+Sets the input and output sample sample rate.
+*/
+ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
-Note that even if the dither mode is set to something other than ma_dither_mode_none, it will be ignored for conversions where dithering is not needed.
-Dithering is available for the following conversions:
- - s16 -> u8
- - s24 -> u8
- - s32 -> u8
- - f32 -> u8
- - s24 -> s16
- - s32 -> s16
- - f32 -> s16
+/*
+Sets the input and output sample rate as a ratio.
-Note that it is not an error to pass something other than ma_dither_mode_none for conversions where dither is not used. It will just be ignored.
+The ration is in/out.
+*/
+ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio);
-************************************************************************************************************************************************************/
/*
-Initializes a format converter.
+Calculates the number of whole input frames that would need to be read from the client in order to output the specified
+number of output frames.
+
+The returned value does not include cached input frames. It only returns the number of extra frames that would need to be
+read from the input buffer in order to output the specified number of output frames.
*/
-ma_result ma_format_converter_init(const ma_format_converter_config* pConfig, ma_format_converter* pConverter);
+ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount);
/*
-Reads data from the format converter as interleaved channels.
+Calculates the number of whole output frames that would be output after fully reading and consuming the specified number of
+input frames.
*/
-ma_uint64 ma_format_converter_read(ma_format_converter* pConverter, ma_uint64 frameCount, void* pFramesOut, void* pUserData);
+ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount);
+
/*
-Reads data from the format converter as deinterleaved channels.
+Retrieves the latency introduced by the resampler in input frames.
*/
-ma_uint64 ma_format_converter_read_deinterleaved(ma_format_converter* pConverter, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
+ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler);
/*
-Helper for initializing a format converter config.
+Retrieves the latency introduced by the resampler in output frames.
*/
-ma_format_converter_config ma_format_converter_config_init_new(void);
-ma_format_converter_config ma_format_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channels, ma_format_converter_read_proc onRead, void* pUserData);
-ma_format_converter_config ma_format_converter_config_init_deinterleaved(ma_format formatIn, ma_format formatOut, ma_uint32 channels, ma_format_converter_read_deinterleaved_proc onReadDeinterleaved, void* pUserData);
-
+ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler);
-/************************************************************************************************************************************************************
-Channel Routing
-===============
-There are two main things you can do with the channel router:
- 1) Rearrange channels
- 2) Convert from one channel count to another
-
-Channel Rearrangement
----------------------
-A simple example of channel rearrangement may be swapping the left and right channels in a stereo stream. To do this you just pass in the same channel
-count for both the input and output with channel maps that contain the same channels (in a different order).
+/**************************************************************************************************************************************************************
Channel Conversion
-------------------
-The channel router can also convert from one channel count to another, such as converting a 5.1 stream to stero. When changing the channel count, the
-router will first perform a 1:1 mapping of channel positions that are present in both the input and output channel maps. The second thing it will do
-is distribute the input mono channel (if any) across all output channels, excluding any None and LFE channels. If there is an output mono channel, all
-input channels will be averaged, excluding any None and LFE channels.
-
-The last case to consider is when a channel position in the input channel map is not present in the output channel map, and vice versa. In this case the
-channel router will perform a blend of other related channels to produce an audible channel. There are several blending modes.
- 1) Simple
- Unmatched channels are silenced.
- 2) Planar Blending
- Channels are blended based on a set of planes that each speaker emits audio from.
-
-Rectangular / Planar Blending
------------------------------
-In this mode, channel positions are associated with a set of planes where the channel conceptually emits audio from. An example is the front/left speaker.
-This speaker is positioned to the front of the listener, so you can think of it as emitting audio from the front plane. It is also positioned to the left
-of the listener so you can think of it as also emitting audio from the left plane. Now consider the (unrealistic) situation where the input channel map
-contains only the front/left channel position, but the output channel map contains both the front/left and front/center channel. When deciding on the audio
-data to send to the front/center speaker (which has no 1:1 mapping with an input channel) we need to use some logic based on our available input channel
-positions.
-
-As mentioned earlier, our front/left speaker is, conceptually speaking, emitting audio from the front _and_ the left planes. Similarly, the front/center
-speaker is emitting audio from _only_ the front plane. What these two channels have in common is that they are both emitting audio from the front plane.
-Thus, it makes sense that the front/center speaker should receive some contribution from the front/left channel. How much contribution depends on their
-planar relationship (thus the name of this blending technique).
-
-Because the front/left channel is emitting audio from two planes (front and left), you can think of it as though it's willing to dedicate 50% of it's total
-volume to each of it's planes (a channel position emitting from 1 plane would be willing to given 100% of it's total volume to that plane, and a channel
-position emitting from 3 planes would be willing to given 33% of it's total volume to each plane). Similarly, the front/center speaker is emitting audio
-from only one plane so you can think of it as though it's willing to _take_ 100% of it's volume from front plane emissions. Now, since the front/left
-channel is willing to _give_ 50% of it's total volume to the front plane, and the front/center speaker is willing to _take_ 100% of it's total volume
-from the front, you can imagine that 50% of the front/left speaker will be given to the front/center speaker.
-
-Usage
------
-To use the channel router you need to specify three things:
- 1) The input channel count and channel map
- 2) The output channel count and channel map
- 3) The mixing mode to use in the case where a 1:1 mapping is unavailable
-Note that input and output data is always deinterleaved 32-bit floating point.
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channelsIn;
+ ma_uint32 channelsOut;
+ ma_channel channelMapIn[MA_MAX_CHANNELS];
+ ma_channel channelMapOut[MA_MAX_CHANNELS];
+ ma_channel_mix_mode mixingMode;
+ float weights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */
+} ma_channel_converter_config;
-Initialize the channel router with ma_channel_router_init(). You will need to pass in a config object which specifies the input and output configuration,
-mixing mode and a callback for sending data to the router. This callback will be called when input data needs to be sent to the router for processing. Note
-that the mixing mode is only used when a 1:1 mapping is unavailable. This includes the custom weights mode.
+ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode);
-Read data from the channel router with ma_channel_router_read_deinterleaved(). Output data is always 32-bit floating point.
+typedef struct
+{
+ ma_format format;
+ ma_uint32 channelsIn;
+ ma_uint32 channelsOut;
+ ma_channel channelMapIn[MA_MAX_CHANNELS];
+ ma_channel channelMapOut[MA_MAX_CHANNELS];
+ ma_channel_mix_mode mixingMode;
+ union
+ {
+ float f32[MA_MAX_CHANNELS][MA_MAX_CHANNELS];
+ ma_int32 s16[MA_MAX_CHANNELS][MA_MAX_CHANNELS];
+ } weights;
+ ma_bool32 isPassthrough : 1;
+ ma_bool32 isSimpleShuffle : 1;
+ ma_bool32 isSimpleMonoExpansion : 1;
+ ma_bool32 isStereoToMono : 1;
+ ma_uint8 shuffleTable[MA_MAX_CHANNELS];
+} ma_channel_converter;
-************************************************************************************************************************************************************/
+ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter);
+void ma_channel_converter_uninit(ma_channel_converter* pConverter);
+ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
-/*
-Initializes a channel router where it is assumed that the input data is non-interleaved.
-*/
-ma_result ma_channel_router_init(const ma_channel_router_config* pConfig, ma_channel_router* pRouter);
-/*
-Reads data from the channel router as deinterleaved channels.
-*/
-ma_uint64 ma_channel_router_read_deinterleaved(ma_channel_router* pRouter, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
+/**************************************************************************************************************************************************************
-/*
-Helper for initializing a channel router config.
-*/
-ma_channel_router_config ma_channel_router_config_init(ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode, ma_channel_router_read_deinterleaved_proc onRead, void* pUserData);
+Data Conversion
+**************************************************************************************************************************************************************/
+typedef struct
+{
+ ma_format formatIn;
+ ma_format formatOut;
+ ma_uint32 channelsIn;
+ ma_uint32 channelsOut;
+ ma_uint32 sampleRateIn;
+ ma_uint32 sampleRateOut;
+ ma_channel channelMapIn[MA_MAX_CHANNELS];
+ ma_channel channelMapOut[MA_MAX_CHANNELS];
+ ma_dither_mode ditherMode;
+ ma_channel_mix_mode channelMixMode;
+ float channelWeights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when channelMixMode is set to ma_channel_mix_mode_custom_weights. */
+ struct
+ {
+ ma_resample_algorithm algorithm;
+ ma_bool32 allowDynamicSampleRate;
+ struct
+ {
+ ma_uint32 lpfCount;
+ double lpfNyquistFactor;
+ } linear;
+ struct
+ {
+ int quality;
+ } speex;
+ } resampling;
+} ma_data_converter_config;
-/************************************************************************************************************************************************************
+ma_data_converter_config ma_data_converter_config_init_default(void);
+ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
-Sample Rate Conversion
-======================
+typedef struct
+{
+ ma_data_converter_config config;
+ ma_channel_converter channelConverter;
+ ma_resampler resampler;
+ ma_bool32 hasPreFormatConversion : 1;
+ ma_bool32 hasPostFormatConversion : 1;
+ ma_bool32 hasChannelConverter : 1;
+ ma_bool32 hasResampler : 1;
+ ma_bool32 isPassthrough : 1;
+} ma_data_converter;
+
+ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter);
+void ma_data_converter_uninit(ma_data_converter* pConverter);
+ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
+ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut);
+ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount);
+ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount);
+ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter);
+ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
-************************************************************************************************************************************************************/
-/*
-Initializes a sample rate conversion object.
-*/
-ma_result ma_src_init(const ma_src_config* pConfig, ma_src* pSRC);
+/************************************************************************************************************************************************************
-/*
-Dynamically adjusts the sample rate.
+Format Conversion
-This is useful for dynamically adjust pitch. Keep in mind, however, that this will speed up or slow down the sound. If this
-is not acceptable you will need to use your own algorithm.
-*/
-ma_result ma_src_set_sample_rate(ma_src* pSRC, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+************************************************************************************************************************************************************/
+void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
+void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode);
+void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode);
/*
-Reads a number of frames.
-
-Returns the number of frames actually read.
+Deinterleaves an interleaved buffer.
*/
-ma_uint64 ma_src_read_deinterleaved(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
+void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames);
/*
-Helper for creating a sample rate conversion config.
+Interleaves a group of deinterleaved buffers.
*/
-ma_src_config ma_src_config_init_new(void);
-ma_src_config ma_src_config_init(ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_uint32 channels, ma_src_read_deinterleaved_proc onReadDeinterleaved, void* pUserData);
-
+void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames);
/************************************************************************************************************************************************************
-Conversion
+Channel Maps
************************************************************************************************************************************************************/
/*
-Initializes a DSP object.
+Helper for retrieving a standard channel map.
*/
-ma_result ma_pcm_converter_init(const ma_pcm_converter_config* pConfig, ma_pcm_converter* pDSP);
+void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]);
/*
-Dynamically adjusts the input sample rate.
-
-This will fail is the DSP was not initialized with allowDynamicSampleRate.
-
-DEPRECATED. Use ma_pcm_converter_set_sample_rate() instead.
+Copies a channel map.
*/
-ma_result ma_pcm_converter_set_input_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateOut);
+void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels);
-/*
-Dynamically adjusts the output sample rate.
-This is useful for dynamically adjust pitch. Keep in mind, however, that this will speed up or slow down the sound. If this
-is not acceptable you will need to use your own algorithm.
+/*
+Determines whether or not a channel map is valid.
-This will fail is the DSP was not initialized with allowDynamicSampleRate.
+A blank channel map is valid (all channels set to MA_CHANNEL_NONE). The way a blank channel map is handled is context specific, but
+is usually treated as a passthrough.
-DEPRECATED. Use ma_pcm_converter_set_sample_rate() instead.
+Invalid channel maps:
+ - A channel map with no channels
+ - A channel map with more than one channel and a mono channel
*/
-ma_result ma_pcm_converter_set_output_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateOut);
+ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
-Dynamically adjusts the output sample rate.
-
-This is useful for dynamically adjust pitch. Keep in mind, however, that this will speed up or slow down the sound. If this
-is not acceptable you will need to use your own algorithm.
+Helper for comparing two channel maps for equality.
-This will fail if the DSP was not initialized with allowDynamicSampleRate.
+This assumes the channel count is the same between the two.
*/
-ma_result ma_pcm_converter_set_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
+ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]);
/*
-Reads a number of frames and runs them through the DSP processor.
+Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE).
*/
-ma_uint64 ma_pcm_converter_read(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint64 frameCount);
+ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
-Helper for initializing a ma_pcm_converter_config object.
+Helper for determining whether or not a channel is present in the given channel map.
*/
-ma_pcm_converter_config ma_pcm_converter_config_init_new(void);
-ma_pcm_converter_config ma_pcm_converter_config_init(ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_pcm_converter_read_proc onRead, void* pUserData);
-ma_pcm_converter_config ma_pcm_converter_config_init_ex(ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_channel channelMapIn[MA_MAX_CHANNELS], ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_channel channelMapOut[MA_MAX_CHANNELS], ma_pcm_converter_read_proc onRead, void* pUserData);
+ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition);
+
+
+/************************************************************************************************************************************************************
+
+Conversion Helpers
+
+************************************************************************************************************************************************************/
/*
High-level helper for doing a full format conversion in one go. Returns the number of output frames. Call this with pOut set to NULL to
-determine the required size of the output buffer.
+determine the required size of the output buffer. frameCountOut should be set to the capacity of pOut. If pOut is NULL, frameCountOut is
+ignored.
A return value of 0 indicates an error.
-This function is useful for one-off bulk conversions, but if you're streaming data you should use the ma_pcm_converter APIs instead.
+This function is useful for one-off bulk conversions, but if you're streaming data you should use the ma_data_converter APIs instead.
*/
-ma_uint64 ma_convert_frames(void* pOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_uint64 frameCount);
-ma_uint64 ma_convert_frames_ex(void* pOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_channel channelMapOut[MA_MAX_CHANNELS], const void* pIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint64 frameCount);
+ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn);
+ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig);
/************************************************************************************************************************************************************
Ring Buffer
-===========
-
-Features
---------
-- Lock free (assuming single producer, single consumer)
-- Support for interleaved and deinterleaved streams
-- Allows the caller to allocate their own block of memory
-
-Usage
------
-- Call ma_rb_init() to initialize a simple buffer, with an optional pre-allocated buffer. If you pass in NULL
- for the pre-allocated buffer, it will be allocated for you and free()'d in ma_rb_uninit(). If you pass in
- your own pre-allocated buffer, free()-ing is left to you.
-
-- Call ma_rb_init_ex() if you need a deinterleaved buffer. The data for each sub-buffer is offset from each
- other based on the stride. Use ma_rb_get_subbuffer_stride(), ma_rb_get_subbuffer_offset() and
- ma_rb_get_subbuffer_ptr() to manage your sub-buffers.
-
-- Use ma_rb_acquire_read() and ma_rb_acquire_write() to retrieve a pointer to a section of the ring buffer.
- You specify the number of bytes you need, and on output it will set to what was actually acquired. If the
- read or write pointer is positioned such that the number of bytes requested will require a loop, it will be
- clamped to the end of the buffer. Therefore, the number of bytes you're given may be less than the number
- you requested.
-
-- After calling ma_rb_acquire_read/write(), you do your work on the buffer and then "commit" it with
- ma_rb_commit_read/write(). This is where the read/write pointers are updated. When you commit you need to
- pass in the buffer that was returned by the earlier call to ma_rb_acquire_read/write() and is only used
- for validation. The number of bytes passed to ma_rb_commit_read/write() is what's used to increment the
- pointers.
-
-- If you want to correct for drift between the write pointer and the read pointer you can use a combination
- of ma_rb_pointer_distance(), ma_rb_seek_read() and ma_rb_seek_write(). Note that you can only move the
- pointers forward, and you should only move the read pointer forward via the consumer thread, and the write
- pointer forward by the producer thread. If there is too much space between the pointers, move the read
- pointer forward. If there is too little space between the pointers, move the write pointer forward.
-
-
-Notes
------
-- Thread safety depends on a single producer, single consumer model. Only one thread is allowed to write, and
- only one thread is allowed to read. The producer is the only one allowed to move the write pointer, and the
- consumer is the only one allowed to move the read pointer.
-- Operates on bytes. Use ma_pcm_rb to operate in terms of PCM frames.
-- Maximum buffer size in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) because of reasons.
-
-
-PCM Ring Buffer
-===============
-This is the same as the regular ring buffer, except that it works on PCM frames instead of bytes.
************************************************************************************************************************************************************/
typedef struct
@@ -1445,10 +2077,11 @@ typedef struct
volatile ma_uint32 encodedWriteOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. */
ma_bool32 ownsBuffer : 1; /* Used to know whether or not miniaudio is responsible for free()-ing the buffer. */
ma_bool32 clearOnWriteAcquire : 1; /* When set, clears the acquired write buffer before returning from ma_rb_acquire_write(). */
+ ma_allocation_callbacks allocationCallbacks;
} ma_rb;
-ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, ma_rb* pRB);
-ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, ma_rb* pRB);
+ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
+ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
void ma_rb_uninit(ma_rb* pRB);
void ma_rb_reset(ma_rb* pRB);
ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
@@ -1473,8 +2106,8 @@ typedef struct
ma_uint32 channels;
} ma_pcm_rb;
-ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, ma_pcm_rb* pRB);
-ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, ma_pcm_rb* pRB);
+ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
+ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
void ma_pcm_rb_uninit(ma_pcm_rb* pRB);
void ma_pcm_rb_reset(ma_pcm_rb* pRB);
ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
@@ -1501,27 +2134,27 @@ Miscellaneous Helpers
/*
malloc(). Calls MA_MALLOC().
*/
-void* ma_malloc(size_t sz);
+void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
realloc(). Calls MA_REALLOC().
*/
-void* ma_realloc(void* p, size_t sz);
+void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
free(). Calls MA_FREE().
*/
-void ma_free(void* p);
+void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Performs an aligned malloc, with the assumption that the alignment is a power of 2.
*/
-void* ma_aligned_malloc(size_t sz, size_t alignment);
+void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Free's an aligned malloc'd buffer.
*/
-void ma_aligned_free(void* p);
+void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Retrieves a friendly name for a format.
@@ -1550,43 +2183,6 @@ Converts a log level to a string.
const char* ma_log_level_to_string(ma_uint32 logLevel);
-/************************************************************************************************************************************************************
-
-Format Conversion
-
-************************************************************************************************************************************************************/
-void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
-void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode);
-
-/*
-Deinterleaves an interleaved buffer.
-*/
-void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames);
-
-/*
-Interleaves a group of deinterleaved buffers.
-*/
-void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames);
-
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
@@ -1798,47 +2394,121 @@ typedef struct
};
} ma_event;
+typedef struct
+{
+ ma_context* pContext;
+
+ union
+ {
+#ifdef MA_WIN32
+ struct
+ {
+ /*HANDLE*/ ma_handle hSemaphore;
+ } win32;
+#endif
+#ifdef MA_POSIX
+ struct
+ {
+ sem_t semaphore;
+ } posix;
+#endif
+ int _unused;
+ };
+} ma_semaphore;
+
/*
The callback for processing audio data from the device.
-pOutput is a pointer to a buffer that will receive audio data that will later be played back through the speakers. This will be non-null
-for a playback or full-duplex device and null for a capture device.
+The data callback is fired by miniaudio whenever the device needs to have more data delivered to a playback device, or when a capture device has some data
+available. This is called as soon as the backend asks for more data which means it may be called with inconsistent frame counts. You cannot assume the
+callback will be fired with a consistent frame count.
+
+
+Parameters
+----------
+pDevice (in)
+ A pointer to the relevant device.
+
+pOutput (out)
+ A pointer to the output buffer that will receive audio data that will later be played back through the speakers. This will be non-null for a playback or
+ full-duplex device and null for a capture and loopback device.
+
+pInput (in)
+ A pointer to the buffer containing input data from a recording device. This will be non-null for a capture, full-duplex or loopback device and null for a
+ playback device.
-pInput is a pointer to a buffer containing input data from the device. This will be non-null for a capture or full-duplex device, and
-null for a playback device.
+frameCount (in)
+ The number of PCM frames to process. Note that this will not necessarily be equal to what you requested when you initialized the device. The
+ `periodSizeInFrames` and `periodSizeInMilliseconds` members of the device config are just hints, and are not necessarily exactly what you'll get. You must
+ not assume this will always be the same value each time the callback is fired.
-frameCount is the number of PCM frames to process. If an output buffer is provided (pOutput is not null), applications should write out
-to the entire output buffer. Note that frameCount will not necessarily be exactly what you asked for when you initialized the deviced.
-The bufferSizeInFrames and bufferSizeInMilliseconds members of the device config are just hints, and are not necessarily exactly what
-you'll get.
-Do _not_ call any miniaudio APIs from the callback. Attempting the stop the device can result in a deadlock. The proper way to stop the
-device is to call ma_device_stop() from a different thread, normally the main application thread.
+Remarks
+-------
+You cannot stop and start the device from inside the callback or else you'll get a deadlock. You must also not uninitialize the device from inside the
+callback. The following APIs cannot be called from inside the callback:
+
+ ma_device_init()
+ ma_device_init_ex()
+ ma_device_uninit()
+ ma_device_start()
+ ma_device_stop()
+
+The proper way to stop the device is to call `ma_device_stop()` from a different thread, normally the main application thread.
*/
typedef void (* ma_device_callback_proc)(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
/*
The callback for when the device has been stopped.
-This will be called when the device is stopped explicitly with ma_device_stop() and also called implicitly when the device is stopped
-through external forces such as being unplugged or an internal error occuring.
+This will be called when the device is stopped explicitly with `ma_device_stop()` and also called implicitly when the device is stopped through external forces
+such as being unplugged or an internal error occuring.
+
+
+Parameters
+----------
+pDevice (in)
+ A pointer to the device that has just stopped.
+
-Do not restart the device from the callback.
+Remarks
+-------
+Do not restart or uninitialize the device from the callback.
*/
typedef void (* ma_stop_proc)(ma_device* pDevice);
/*
The callback for handling log messages.
-It is possible for pDevice to be null in which case the log originated from the context. If it is non-null you can assume the message
-came from the device.
-logLevel is one of the following:
- MA_LOG_LEVEL_VERBOSE
- MA_LOG_LEVEL_INFO
- MA_LOG_LEVEL_WARNING
- MA_LOG_LEVEL_ERROR
+Parameters
+----------
+pContext (in)
+ A pointer to the context the log message originated from.
+
+pDevice (in)
+ A pointer to the device the log message originate from, if any. This can be null, in which case the message came from the context.
+
+logLevel (in)
+ The log level. This can be one of the following:
+
+ |----------------------|
+ | Log Level |
+ |----------------------|
+ | MA_LOG_LEVEL_VERBOSE |
+ | MA_LOG_LEVEL_INFO |
+ | MA_LOG_LEVEL_WARNING |
+ | MA_LOG_LEVEL_ERROR |
+ |----------------------|
+
+message (in)
+ The log message.
+
+
+Remarks
+-------
+Do not modify the state of the device from inside the callback.
*/
typedef void (* ma_log_proc)(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message);
@@ -1856,50 +2526,53 @@ typedef enum
ma_share_mode_exclusive
} ma_share_mode;
+/* iOS/tvOS/watchOS session categories. */
+typedef enum
+{
+ ma_ios_session_category_default = 0, /* AVAudioSessionCategoryPlayAndRecord with AVAudioSessionCategoryOptionDefaultToSpeaker. */
+ ma_ios_session_category_none, /* Leave the session category unchanged. */
+ ma_ios_session_category_ambient, /* AVAudioSessionCategoryAmbient */
+ ma_ios_session_category_solo_ambient, /* AVAudioSessionCategorySoloAmbient */
+ ma_ios_session_category_playback, /* AVAudioSessionCategoryPlayback */
+ ma_ios_session_category_record, /* AVAudioSessionCategoryRecord */
+ ma_ios_session_category_play_and_record, /* AVAudioSessionCategoryPlayAndRecord */
+ ma_ios_session_category_multi_route /* AVAudioSessionCategoryMultiRoute */
+} ma_ios_session_category;
+
+/* iOS/tvOS/watchOS session category options */
+typedef enum
+{
+ ma_ios_session_category_option_mix_with_others = 0x01, /* AVAudioSessionCategoryOptionMixWithOthers */
+ ma_ios_session_category_option_duck_others = 0x02, /* AVAudioSessionCategoryOptionDuckOthers */
+ ma_ios_session_category_option_allow_bluetooth = 0x04, /* AVAudioSessionCategoryOptionAllowBluetooth */
+ ma_ios_session_category_option_default_to_speaker = 0x08, /* AVAudioSessionCategoryOptionDefaultToSpeaker */
+ ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others = 0x11, /* AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers */
+ ma_ios_session_category_option_allow_bluetooth_a2dp = 0x20, /* AVAudioSessionCategoryOptionAllowBluetoothA2DP */
+ ma_ios_session_category_option_allow_air_play = 0x40, /* AVAudioSessionCategoryOptionAllowAirPlay */
+} ma_ios_session_category_option;
+
+typedef union
+{
+ ma_int64 counter;
+ double counterD;
+} ma_timer;
+
typedef union
{
-#ifdef MA_SUPPORT_WASAPI
wchar_t wasapi[64]; /* WASAPI uses a wchar_t string for identification. */
-#endif
-#ifdef MA_SUPPORT_DSOUND
ma_uint8 dsound[16]; /* DirectSound uses a GUID for identification. */
-#endif
-#ifdef MA_SUPPORT_WINMM
/*UINT_PTR*/ ma_uint32 winmm; /* When creating a device, WinMM expects a Win32 UINT_PTR for device identification. In practice it's actually just a UINT. */
-#endif
-#ifdef MA_SUPPORT_ALSA
char alsa[256]; /* ALSA uses a name string for identification. */
-#endif
-#ifdef MA_SUPPORT_PULSEAUDIO
char pulse[256]; /* PulseAudio uses a name string for identification. */
-#endif
-#ifdef MA_SUPPORT_JACK
int jack; /* JACK always uses default devices. */
-#endif
-#ifdef MA_SUPPORT_COREAUDIO
char coreaudio[256]; /* Core Audio uses a string for identification. */
-#endif
-#ifdef MA_SUPPORT_SNDIO
char sndio[256]; /* "snd/0", etc. */
-#endif
-#ifdef MA_SUPPORT_AUDIO4
char audio4[256]; /* "/dev/audio", etc. */
-#endif
-#ifdef MA_SUPPORT_OSS
char oss[64]; /* "dev/dsp0", etc. "dev/dsp" for the default device. */
-#endif
-#ifdef MA_SUPPORT_AAUDIO
ma_int32 aaudio; /* AAudio uses a 32-bit integer for identification. */
-#endif
-#ifdef MA_SUPPORT_OPENSL
ma_uint32 opensl; /* OpenSL|ES uses a 32-bit unsigned integer for identification. */
-#endif
-#ifdef MA_SUPPORT_WEBAUDIO
char webaudio[32]; /* Web Audio always uses default devices for now, but if this changes it'll be a GUID. */
-#endif
-#ifdef MA_SUPPORT_NULL
int nullbackend; /* The null backend uses an integer for device IDs. */
-#endif
} ma_device_id;
typedef struct
@@ -1922,20 +2595,19 @@ typedef struct
ma_uint32 maxChannels;
ma_uint32 minSampleRate;
ma_uint32 maxSampleRate;
-} ma_device_info;
-typedef union
-{
- ma_int64 counter;
- double counterD;
-} ma_timer;
+ struct
+ {
+ ma_bool32 isDefault;
+ } _private;
+} ma_device_info;
typedef struct
{
ma_device_type deviceType;
ma_uint32 sampleRate;
- ma_uint32 bufferSizeInFrames;
- ma_uint32 bufferSizeInMilliseconds;
+ ma_uint32 periodSizeInFrames;
+ ma_uint32 periodSizeInMilliseconds;
ma_uint32 periods;
ma_performance_profile performanceProfile;
ma_bool32 noPreZeroedOutputBuffer; /* When set to true, the contents of the output buffer passed into the data callback will be left undefined rather than initialized to zero. */
@@ -1945,6 +2617,18 @@ typedef struct
void* pUserData;
struct
{
+ ma_resample_algorithm algorithm;
+ struct
+ {
+ ma_uint32 lpfCount;
+ } linear;
+ struct
+ {
+ int quality;
+ } speex;
+ } resampling;
+ struct
+ {
ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
@@ -1964,6 +2648,8 @@ typedef struct
{
ma_bool32 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */
ma_bool32 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */
+ ma_bool32 noAutoStreamRouting; /* Disables automatic stream routing. */
+ ma_bool32 noHardwareOffloading; /* Disables WASAPI's hardware offloading feature. */
} wasapi;
struct
{
@@ -1981,7 +2667,7 @@ typedef struct
ma_log_proc logCallback;
ma_thread_priority threadPriority;
void* pUserData;
-
+ ma_allocation_callbacks allocationCallbacks;
struct
{
ma_bool32 useVerboseDeviceEnumeration;
@@ -1994,11 +2680,36 @@ typedef struct
} pulse;
struct
{
+ ma_ios_session_category sessionCategory;
+ ma_uint32 sessionCategoryOptions;
+ } coreaudio;
+ struct
+ {
const char* pClientName;
ma_bool32 tryStartServer;
} jack;
} ma_context_config;
+/*
+The callback for handling device enumeration. This is fired from `ma_context_enumerated_devices()`.
+
+
+Parameters
+----------
+pContext (in)
+ A pointer to the context performing the enumeration.
+
+deviceType (in)
+ The type of the device being enumerated. This will always be either `ma_device_type_playback` or `ma_device_type_capture`.
+
+pInfo (in)
+ A pointer to a `ma_device_info` containing the ID and name of the enumerated device. Note that this will not include detailed information about the device,
+ only basic information (ID and name). The reason for this is that it would otherwise require opening the backend device to probe for the information which
+ is too inefficient.
+
+pUserData (in)
+ The user data pointer passed into `ma_context_enumerate_devices()`.
+*/
typedef ma_bool32 (* ma_enum_devices_callback_proc)(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData);
struct ma_context
@@ -2007,6 +2718,7 @@ struct ma_context
ma_log_proc logCallback;
ma_thread_priority threadPriority;
void* pUserData;
+ ma_allocation_callbacks allocationCallbacks;
ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */
ma_mutex deviceInfoLock; /* Used to make ma_context_get_device_info() thread safe. */
ma_uint32 deviceInfoCapacity; /* Total capacity of pDeviceInfos. */
@@ -2290,6 +3002,7 @@ struct ma_context
ma_proc AAudioStreamBuilder_setBufferCapacityInFrames;
ma_proc AAudioStreamBuilder_setFramesPerDataCallback;
ma_proc AAudioStreamBuilder_setDataCallback;
+ ma_proc AAudioStreamBuilder_setErrorCallback;
ma_proc AAudioStreamBuilder_setPerformanceMode;
ma_proc AAudioStreamBuilder_openStream;
ma_proc AAudioStream_close;
@@ -2373,14 +3086,14 @@ struct ma_context
};
};
-MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
+struct ma_device
{
ma_context* pContext;
ma_device_type type;
ma_uint32 sampleRate;
- ma_uint32 state;
- ma_device_callback_proc onData;
- ma_stop_proc onStop;
+ volatile ma_uint32 state; /* The state of the device is variable and can change at any time on any thread, so tell the compiler as such with `volatile`. */
+ ma_device_callback_proc onData; /* Set once at initialization time and should not be changed after. */
+ ma_stop_proc onStop; /* Set once at initialization time and should not be changed after. */
void* pUserData; /* Application defined data. */
ma_mutex lock;
ma_event wakeupEvent;
@@ -2394,7 +3107,19 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
ma_bool32 isOwnerOfContext : 1; /* When set to true, uninitializing the device will also uninitialize the context. Set to true when NULL is passed into ma_device_init(). */
ma_bool32 noPreZeroedOutputBuffer : 1;
ma_bool32 noClip : 1;
- float masterVolumeFactor;
+ volatile float masterVolumeFactor; /* Volatile so we can use some thread safety when applying volume to periods. */
+ struct
+ {
+ ma_resample_algorithm algorithm;
+ struct
+ {
+ ma_uint32 lpfCount;
+ } linear;
+ struct
+ {
+ int quality;
+ } speex;
+ } resampling;
struct
{
char name[256]; /* Maybe temporary. Likely to be replaced with a query API. */
@@ -2409,11 +3134,9 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
- ma_pcm_converter converter;
- ma_uint32 _dspFrameCount; /* Internal use only. Used as the data source when reading from the device. */
- const ma_uint8* _dspFrames; /* ^^^ AS ABOVE ^^^ */
+ ma_data_converter converter;
} playback;
struct
{
@@ -2429,11 +3152,9 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
- ma_pcm_converter converter;
- ma_uint32 _dspFrameCount; /* Internal use only. Used as the data source when reading from the device. */
- const ma_uint8* _dspFrames; /* ^^^ AS ABOVE ^^^ */
+ ma_data_converter converter;
} capture;
union
@@ -2449,19 +3170,22 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
ma_IMMNotificationClient notificationClient;
/*HANDLE*/ ma_handle hEventPlayback; /* Auto reset. Initialized to signaled. */
/*HANDLE*/ ma_handle hEventCapture; /* Auto reset. Initialized to unsignaled. */
- ma_uint32 actualBufferSizeInFramesPlayback; /* Value from GetBufferSize(). internalBufferSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */
- ma_uint32 actualBufferSizeInFramesCapture;
- ma_uint32 originalBufferSizeInFrames;
- ma_uint32 originalBufferSizeInMilliseconds;
+ ma_uint32 actualPeriodSizeInFramesPlayback; /* Value from GetBufferSize(). internalPeriodSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */
+ ma_uint32 actualPeriodSizeInFramesCapture;
+ ma_uint32 originalPeriodSizeInFrames;
+ ma_uint32 originalPeriodSizeInMilliseconds;
ma_uint32 originalPeriods;
ma_bool32 hasDefaultPlaybackDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_bool32 hasDefaultCaptureDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_uint32 periodSizeInFramesPlayback;
ma_uint32 periodSizeInFramesCapture;
- ma_bool32 isStartedCapture;
- ma_bool32 isStartedPlayback;
- ma_bool32 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */
- ma_bool32 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */
+ ma_bool32 isStartedCapture; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
+ ma_bool32 isStartedPlayback; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
+ ma_bool32 noAutoConvertSRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */
+ ma_bool32 noDefaultQualitySRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */
+ ma_bool32 noHardwareOffloading : 1;
+ ma_bool32 allowCaptureAutoStreamRouting : 1;
+ ma_bool32 allowPlaybackAutoStreamRouting : 1;
} wasapi;
#endif
#ifdef MA_SUPPORT_DSOUND
@@ -2541,14 +3265,15 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
/*AudioUnit*/ ma_ptr audioUnitCapture;
/*AudioBufferList**/ ma_ptr pAudioBufferList; /* Only used for input devices. */
ma_event stopEvent;
- ma_uint32 originalBufferSizeInFrames;
- ma_uint32 originalBufferSizeInMilliseconds;
+ ma_uint32 originalPeriodSizeInFrames;
+ ma_uint32 originalPeriodSizeInMilliseconds;
ma_uint32 originalPeriods;
ma_bool32 isDefaultPlaybackDevice;
ma_bool32 isDefaultCaptureDevice;
ma_bool32 isSwitchingPlaybackDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */
ma_bool32 isSwitchingCaptureDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */
ma_pcm_rb duplexRB;
+ void* pRouteChangeHandler; /* Only used on mobile platforms. Obj-C object for handling route changes. */
} coreaudio;
#endif
#ifdef MA_SUPPORT_SNDIO
@@ -2593,6 +3318,8 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
/*SLRecordItf*/ ma_ptr pAudioRecorder;
/*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueuePlayback;
/*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueueCapture;
+ ma_bool32 isDrainingCapture;
+ ma_bool32 isDrainingPlayback;
ma_uint32 currentBufferIndexPlayback;
ma_uint32 currentBufferIndexCapture;
ma_uint8* pBufferPlayback; /* This is malloc()'d and is used for storing audio data. Typed as ma_uint8 for easy offsetting. */
@@ -2634,321 +3361,1077 @@ MA_ALIGNED_STRUCT(MA_SIMD_ALIGNMENT) ma_device
#endif
/*
+Initializes a `ma_context_config` object.
+
+
+Return Value
+------------
+A `ma_context_config` initialized to defaults.
+
+
+Remarks
+-------
+You must always use this to initialize the default state of the `ma_context_config` object. Not using this will result in your program breaking when miniaudio
+is updated and new members are added to `ma_context_config`. It also sets logical defaults.
+
+You can override members of the returned object by changing it's members directly.
+
+
+See Also
+--------
+ma_context_init()
+*/
+ma_context_config ma_context_config_init(void);
+
+/*
Initializes a context.
-The context is used for selecting and initializing the relevant backends.
-
-Note that the location of the context cannot change throughout it's lifetime. Consider allocating
-the ma_context object with malloc() if this is an issue. The reason for this is that a pointer
-to the context is stored in the ma_device structure.
-
-<backends> is used to allow the application to prioritize backends depending on it's specific
-requirements. This can be null in which case it uses the default priority, which is as follows:
- - WASAPI
- - DirectSound
- - WinMM
- - Core Audio (Apple)
- - sndio
- - audio(4)
- - OSS
- - PulseAudio
- - ALSA
- - JACK
- - AAudio
- - OpenSL|ES
- - Web Audio / Emscripten
- - Null
+The context is used for selecting and initializing an appropriate backend and to represent the backend at a more global level than that of an individual
+device. There is one context to many devices, and a device is created from a context. A context is required to enumerate devices.
+
-<pConfig> is used to configure the context. Use the logCallback config to set a callback for whenever a
-log message is posted. The priority of the worker thread can be set with the threadPriority config.
+Parameters
+----------
+backends (in, optional)
+ A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order.
-It is recommended that only a single context is active at any given time because it's a bulky data
-structure which performs run-time linking for the relevant backends every time it's initialized.
+backendCount (in, optional)
+ The number of items in `backend`. Ignored if `backend` is NULL.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
+pConfig (in, optional)
+ The context configuration.
-Thread Safety: UNSAFE
+pContext (in)
+ A pointer to the context object being initialized.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. Do not call this function across multiple threads as some backends read and write to global state.
+
+
+Remarks
+-------
+When `backends` is NULL, the default priority order will be used. Below is a list of backends in priority order:
+
+ |-------------|-----------------------|--------------------------------------------------------|
+ | Name | Enum Name | Supported Operating Systems |
+ |-------------|-----------------------|--------------------------------------------------------|
+ | WASAPI | ma_backend_wasapi | Windows Vista+ |
+ | DirectSound | ma_backend_dsound | Windows XP+ |
+ | WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) |
+ | Core Audio | ma_backend_coreaudio | macOS, iOS |
+ | ALSA | ma_backend_alsa | Linux |
+ | PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) |
+ | JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) |
+ | sndio | ma_backend_sndio | OpenBSD |
+ | audio(4) | ma_backend_audio4 | NetBSD, OpenBSD |
+ | OSS | ma_backend_oss | FreeBSD |
+ | AAudio | ma_backend_aaudio | Android 8+ |
+ | OpenSL|ES | ma_backend_opensl | Android (API level 16+) |
+ | Web Audio | ma_backend_webaudio | Web (via Emscripten) |
+ | Null | ma_backend_null | Cross Platform (not used on Web) |
+ |-------------|-----------------------|--------------------------------------------------------|
+
+The context can be configured via the `pConfig` argument. The config object is initialized with `ma_context_config_init()`. Individual configuration settings
+can then be set directly on the structure. Below are the members of the `ma_context_config` object.
+
+ logCallback
+ Callback for handling log messages from miniaudio.
+
+ threadPriority
+ The desired priority to use for the audio thread. Allowable values include the following:
+
+ |--------------------------------------|
+ | Thread Priority |
+ |--------------------------------------|
+ | ma_thread_priority_idle |
+ | ma_thread_priority_lowest |
+ | ma_thread_priority_low |
+ | ma_thread_priority_normal |
+ | ma_thread_priority_high |
+ | ma_thread_priority_highest (default) |
+ | ma_thread_priority_realtime |
+ | ma_thread_priority_default |
+ |--------------------------------------|
+
+ pUserData
+ A pointer to application-defined data. This can be accessed from the context object directly such as `context.pUserData`.
+
+ allocationCallbacks
+ Structure containing custom allocation callbacks. Leaving this at defaults will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. These allocation
+ callbacks will be used for anything tied to the context, including devices.
+
+ alsa.useVerboseDeviceEnumeration
+ ALSA will typically enumerate many different devices which can be intrusive and unuser-friendly. To combat this, miniaudio will enumerate only unique
+ card/device pairs by default. The problem with this is that you lose a bit of flexibility and control. Setting alsa.useVerboseDeviceEnumeration makes
+ it so the ALSA backend includes all devices. Defaults to false.
+
+ pulse.pApplicationName
+ PulseAudio only. The application name to use when initializing the PulseAudio context with `pa_context_new()`.
+
+ pulse.pServerName
+ PulseAudio only. The name of the server to connect to with `pa_context_connect()`.
+
+ pulse.tryAutoSpawn
+ PulseAudio only. Whether or not to try automatically starting the PulseAudio daemon. Defaults to false. If you set this to true, keep in mind that
+ miniaudio uses a trial and error method to find the most appropriate backend, and this will result in the PulseAudio daemon starting which may be
+ intrusive for the end user.
+
+ coreaudio.sessionCategory
+ iOS only. The session category to use for the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents.
+
+ |-----------------------------------------|-------------------------------------|
+ | miniaudio Token | Core Audio Token |
+ |-----------------------------------------|-------------------------------------|
+ | ma_ios_session_category_ambient | AVAudioSessionCategoryAmbient |
+ | ma_ios_session_category_solo_ambient | AVAudioSessionCategorySoloAmbient |
+ | ma_ios_session_category_playback | AVAudioSessionCategoryPlayback |
+ | ma_ios_session_category_record | AVAudioSessionCategoryRecord |
+ | ma_ios_session_category_play_and_record | AVAudioSessionCategoryPlayAndRecord |
+ | ma_ios_session_category_multi_route | AVAudioSessionCategoryMultiRoute |
+ | ma_ios_session_category_none | AVAudioSessionCategoryAmbient |
+ | ma_ios_session_category_default | AVAudioSessionCategoryAmbient |
+ |-----------------------------------------|-------------------------------------|
+
+ coreaudio.sessionCategoryOptions
+ iOS only. Session category options to use with the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents.
+
+ |---------------------------------------------------------------------------|------------------------------------------------------------------|
+ | miniaudio Token | Core Audio Token |
+ |---------------------------------------------------------------------------|------------------------------------------------------------------|
+ | ma_ios_session_category_option_mix_with_others | AVAudioSessionCategoryOptionMixWithOthers |
+ | ma_ios_session_category_option_duck_others | AVAudioSessionCategoryOptionDuckOthers |
+ | ma_ios_session_category_option_allow_bluetooth | AVAudioSessionCategoryOptionAllowBluetooth |
+ | ma_ios_session_category_option_default_to_speaker | AVAudioSessionCategoryOptionDefaultToSpeaker |
+ | ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others | AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers |
+ | ma_ios_session_category_option_allow_bluetooth_a2dp | AVAudioSessionCategoryOptionAllowBluetoothA2DP |
+ | ma_ios_session_category_option_allow_air_play | AVAudioSessionCategoryOptionAllowAirPlay |
+ |---------------------------------------------------------------------------|------------------------------------------------------------------|
+
+ jack.pClientName
+ The name of the client to pass to `jack_client_open()`.
+
+ jack.tryStartServer
+ Whether or not to try auto-starting the JACK server. Defaults to false.
+
+
+It is recommended that only a single context is active at any given time because it's a bulky data structure which performs run-time linking for the
+relevant backends every time it's initialized.
+
+The location of the context cannot change throughout it's lifetime. Consider allocating the `ma_context` object with `malloc()` if this is an issue. The
+reason for this is that a pointer to the context is stored in the `ma_device` structure.
+
+
+Example 1 - Default Initialization
+----------------------------------
+The example below shows how to initialize the context using the default configuration.
+
+```c
+ma_context context;
+ma_result result = ma_context_init(NULL, 0, NULL, &context);
+if (result != MA_SUCCESS) {
+ // Error.
+}
+```
+
+
+Example 2 - Custom Configuration
+--------------------------------
+The example below shows how to initialize the context using custom backend priorities and a custom configuration. In this hypothetical example, the program
+wants to prioritize ALSA over PulseAudio on Linux. They also want to avoid using the WinMM backend on Windows because it's latency is too high. They also
+want an error to be returned if no valid backend is available which they achieve by excluding the Null backend.
+
+For the configuration, the program wants to capture any log messages so they can, for example, route it to a log file and user interface.
+
+```c
+ma_backend backends[] = {
+ ma_backend_alsa,
+ ma_backend_pulseaudio,
+ ma_backend_wasapi,
+ ma_backend_dsound
+};
+
+ma_context_config config = ma_context_config_init();
+config.logCallback = my_log_callback;
+config.pUserData = pMyUserData;
+
+ma_context context;
+ma_result result = ma_context_init(backends, sizeof(backends)/sizeof(backends[0]), &config, &context);
+if (result != MA_SUCCESS) {
+ // Error.
+ if (result == MA_NO_BACKEND) {
+ // Couldn't find an appropriate backend.
+ }
+}
+```
+
+
+See Also
+--------
+ma_context_config_init()
+ma_context_uninit()
*/
ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext);
/*
Uninitializes a context.
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. Do not call this function across multiple threads as some backends read and write to global state.
+
+
+Remarks
+-------
Results are undefined if you call this while any device created by this context is still active.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
-Thread Safety: UNSAFE
+See Also
+--------
+ma_context_init()
*/
ma_result ma_context_uninit(ma_context* pContext);
/*
Enumerates over every device (both playback and capture).
-This is a lower-level enumeration function to the easier to use ma_context_get_devices(). Use
-ma_context_enumerate_devices() if you would rather not incur an internal heap allocation, or
-it simply suits your code better.
+This is a lower-level enumeration function to the easier to use `ma_context_get_devices()`. Use `ma_context_enumerate_devices()` if you would rather not incur
+an internal heap allocation, or it simply suits your code better.
+
+Note that this only retrieves the ID and name/description of the device. The reason for only retrieving basic information is that it would otherwise require
+opening the backend device in order to probe it for more detailed information which can be inefficient. Consider using `ma_context_get_device_info()` for this,
+but don't call it from within the enumeration callback.
+
+Returning false from the callback will stop enumeration. Returning true will continue enumeration.
+
+
+Parameters
+----------
+pContext (in)
+ A pointer to the context performing the enumeration.
+
+callback (in)
+ The callback to fire for each enumerated device.
+
+pUserData (in)
+ A pointer to application-defined data passed to the callback.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+Thread Safety
+-------------
+Safe. This is guarded using a simple mutex lock.
+
+
+Remarks
+-------
Do _not_ assume the first enumerated device of a given type is the default device.
Some backends and platforms may only support default playback and capture devices.
-Note that this only retrieves the ID and name/description of the device. The reason for only
-retrieving basic information is that it would otherwise require opening the backend device in
-order to probe it for more detailed information which can be inefficient. Consider using
-ma_context_get_device_info() for this, but don't call it from within the enumeration callback.
+In general, you should not do anything complicated from within the callback. In particular, do not try initializing a device from within the callback. Also,
+do not try to call `ma_context_get_device_info()` from within the callback.
-In general, you should not do anything complicated from within the callback. In particular, do
-not try initializing a device from within the callback.
+Consider using `ma_context_get_devices()` for a simpler and safer API, albeit at the expense of an internal heap allocation.
-Consider using ma_context_get_devices() for a simpler and safer API, albeit at the expense of
-an internal heap allocation.
-Returning false from the callback will stop enumeration. Returning true will continue enumeration.
+Example 1 - Simple Enumeration
+------------------------------
+ma_bool32 ma_device_enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData)
+{
+ printf("Device Name: %s\n", pInfo->name);
+ return MA_TRUE;
+}
+
+ma_result result = ma_context_enumerate_devices(&context, my_device_enum_callback, pMyUserData);
+if (result != MA_SUCCESS) {
+ // Error.
+}
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
-Thread Safety: SAFE
- This is guarded using a simple mutex lock.
+See Also
+--------
+ma_context_get_devices()
*/
ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData);
/*
Retrieves basic information about every active playback and/or capture device.
-You can pass in NULL for the playback or capture lists in which case they'll be ignored.
+This function will allocate memory internally for the device lists and return a pointer to them through the `ppPlaybackDeviceInfos` and `ppCaptureDeviceInfos`
+parameters. If you do not want to incur the overhead of these allocations consider using `ma_context_enumerate_devices()` which will instead use a callback.
+
+
+Parameters
+----------
+pContext (in)
+ A pointer to the context performing the enumeration.
+
+ppPlaybackDeviceInfos (out)
+ A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for playback devices.
+
+pPlaybackDeviceCount (out)
+ A pointer to an unsigned integer that will receive the number of playback devices.
+
+ppCaptureDeviceInfos (out)
+ A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for capture devices.
+
+pCaptureDeviceCount (out)
+ A pointer to an unsigned integer that will receive the number of capture devices.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. Since each call to this function invalidates the pointers from the previous call, you should not be calling this simultaneously across multiple
+threads. Instead, you need to make a copy of the returned data with your own higher level synchronization.
+
+Remarks
+-------
It is _not_ safe to assume the first device in the list is the default device.
-The returned pointers will become invalid upon the next call this this function, or when the
-context is uninitialized. Do not free the returned pointers.
+You can pass in NULL for the playback or capture lists in which case they'll be ignored.
-This function follows the same enumeration rules as ma_context_enumerate_devices(). See
-documentation for ma_context_enumerate_devices() for more information.
+The returned pointers will become invalid upon the next call this this function, or when the context is uninitialized. Do not free the returned pointers.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
-Thread Safety: SAFE
- Since each call to this function invalidates the pointers from the previous call, you
- should not be calling this simultaneously across multiple threads. Instead, you need to
- make a copy of the returned data with your own higher level synchronization.
+See Also
+--------
+ma_context_get_devices()
*/
ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount);
/*
-Retrieves information about a device with the given ID.
+Retrieves information about a device of the given type, with the specified ID and share mode.
-Do _not_ call this from within the ma_context_enumerate_devices() callback.
-It's possible for a device to have different information and capabilities depending on whether
-or not it's opened in shared or exclusive mode. For example, in shared mode, WASAPI always uses
-floating point samples for mixing, but in exclusive mode it can be anything. Therefore, this
-function allows you to specify which share mode you want information for. Note that not all
-backends and devices support shared or exclusive mode, in which case this function will fail
-if the requested share mode is unsupported.
+Parameters
+----------
+pContext (in)
+ A pointer to the context performing the query.
-This leaves pDeviceInfo unmodified in the result of an error.
+deviceType (in)
+ The type of the device being queried. Must be either `ma_device_type_playback` or `ma_device_type_capture`.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
+pDeviceID (in)
+ The ID of the device being queried.
-Thread Safety: SAFE
- This is guarded using a simple mutex lock.
+shareMode (in)
+ The share mode to query for device capabilities. This should be set to whatever you're intending on using when initializing the device. If you're unsure,
+ set this to `ma_share_mode_shared`.
+
+pDeviceInfo (out)
+ A pointer to the `ma_device_info` structure that will receive the device information.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Safe. This is guarded using a simple mutex lock.
+
+
+Remarks
+-------
+Do _not_ call this from within the `ma_context_enumerate_devices()` callback.
+
+It's possible for a device to have different information and capabilities depending on whether or not it's opened in shared or exclusive mode. For example, in
+shared mode, WASAPI always uses floating point samples for mixing, but in exclusive mode it can be anything. Therefore, this function allows you to specify
+which share mode you want information for. Note that not all backends and devices support shared or exclusive mode, in which case this function will fail if
+the requested share mode is unsupported.
+
+This leaves pDeviceInfo unmodified in the result of an error.
*/
ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo);
/*
Determines if the given context supports loopback mode.
+
+
+Parameters
+----------
+pContext (in)
+ A pointer to the context getting queried.
+
+
+Return Value
+------------
+MA_TRUE if the context supports loopback mode; MA_FALSE otherwise.
*/
ma_bool32 ma_context_is_loopback_supported(ma_context* pContext);
+
+
+/*
+Initializes a device config with default settings.
+
+
+Parameters
+----------
+deviceType (in)
+ The type of the device this config is being initialized for. This must set to one of the following:
+
+ |-------------------------|
+ | Device Type |
+ |-------------------------|
+ | ma_device_type_playback |
+ | ma_device_type_capture |
+ | ma_device_type_duplex |
+ | ma_device_type_loopback |
+ |-------------------------|
+
+
+Return Value
+------------
+A new device config object with default settings. You will typically want to adjust the config after this function returns. See remarks.
+
+
+Thread Safety
+-------------
+Safe.
+
+
+Callback Safety
+---------------
+Safe, but don't try initializing a device in a callback.
+
+
+Remarks
+-------
+The returned config will be initialized to defaults. You will normally want to customize a few variables before initializing the device. See Example 1 for a
+typical configuration which sets the sample format, channel count, sample rate, data callback and user data. These are usually things you will want to change
+before initializing the device.
+
+See `ma_device_init()` for details on specific configuration options.
+
+
+Example 1 - Simple Configuration
+--------------------------------
+The example below is what a program will typically want to configure for each device at a minimum. Notice how `ma_device_config_init()` is called first, and
+then the returned object is modified directly. This is important because it ensures that your program continues to work as new configuration options are added
+to the `ma_device_config` structure.
+
+```c
+ma_device_config config = ma_device_config_init(ma_device_type_playback);
+config.playback.format = ma_format_f32;
+config.playback.channels = 2;
+config.sampleRate = 48000;
+config.dataCallback = ma_data_callback;
+config.pUserData = pMyUserData;
+```
+
+
+See Also
+--------
+ma_device_init()
+ma_device_init_ex()
+*/
+ma_device_config ma_device_config_init(ma_device_type deviceType);
+
+
/*
Initializes a device.
-The context can be null in which case it uses the default. This is equivalent to passing in a
-context that was initialized like so:
+A device represents a physical audio device. The idea is you send or receive audio data from the device to either play it back through a speaker, or capture it
+from a microphone. Whether or not you should send or receive data from the device (or both) depends on the type of device you are initializing which can be
+playback, capture, full-duplex or loopback. (Note that loopback mode is only supported on select backends.) Sending and receiving audio data to and from the
+device is done via a callback which is fired by miniaudio at periodic time intervals.
+
+The frequency at which data is deilvered to and from a device depends on the size of it's period which is defined by a buffer size and a period count. The size
+of the buffer can be defined in terms of PCM frames or milliseconds, whichever is more convenient. The size of a period is the size of this buffer, divided by
+the period count. Generally speaking, the smaller the period, the lower the latency at the expense of higher CPU usage and increased risk of glitching due to
+the more frequent and granular data deliver intervals. The size of a period will depend on your requirements, but miniaudio's defaults should work fine for
+most scenarios. If you're building a game you should leave this fairly small, whereas if you're building a simple media player you can make it larger. Note
+that the period size you request is actually just a hint - miniaudio will tell the backend what you want, but the backend is ultimately responsible for what it
+gives you. You cannot assume you will get exactly what you ask for.
+
+When delivering data to and from a device you need to make sure it's in the correct format which you can set through the device configuration. You just set the
+format that you want to use and miniaudio will perform all of the necessary conversion for you internally. When delivering data to and from the callback you
+can assume the format is the same as what you requested when you initialized the device. See Remarks for more details on miniaudio's data conversion pipeline.
+
+
+Parameters
+----------
+pContext (in, optional)
+ A pointer to the context that owns the device. This can be null, in which case it creates a default context internally.
+
+pConfig (in)
+ A pointer to the device configuration. Cannot be null. See remarks for details.
+
+pDevice (out)
+ A pointer to the device object being initialized.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to
+calling this at the same time as `ma_device_uninit()`.
+
+Callback Safety
+---------------
+Unsafe. It is not safe to call this inside any callback.
+
+
+Remarks
+-------
+Setting `pContext` to NULL will result in miniaudio creating a default context internally and is equivalent to passing in a context initialized like so:
+
+ ```c
ma_context_init(NULL, 0, NULL, &context);
+ ```
+
+Do not set `pContext` to NULL if you are needing to open multiple devices. You can, however, use NULL when initializing the first device, and then use
+device.pContext for the initialization of other devices.
+
+The device can be configured via the `pConfig` argument. The config object is initialized with `ma_device_config_init()`. Individual configuration settings can
+then be set directly on the structure. Below are the members of the `ma_device_config` object.
+
+ deviceType
+ Must be `ma_device_type_playback`, `ma_device_type_capture`, `ma_device_type_duplex` of `ma_device_type_loopback`.
+
+ sampleRate
+ The sample rate, in hertz. The most common sample rates are 48000 and 44100. Setting this to 0 will use the device's native sample rate.
+
+ periodSizeInFrames
+ The desired size of a period in PCM frames. If this is 0, `periodSizeInMilliseconds` will be used instead. If both are 0 the default buffer size will
+ be used depending on the selected performance profile. This value affects latency. See below for details.
+
+ periodSizeInMilliseconds
+ The desired size of a period in milliseconds. If this is 0, `periodSizeInFrames` will be used instead. If both are 0 the default buffer size will be
+ used depending on the selected performance profile. The value affects latency. See below for details.
+
+ periods
+ The number of periods making up the device's entire buffer. The total buffer size is `periodSizeInFrames` or `periodSizeInMilliseconds` multiplied by
+ this value. This is just a hint as backends will be the ones who ultimately decide how your periods will be configured.
+
+ performanceProfile
+ A hint to miniaudio as to the performance requirements of your program. Can be either `ma_performance_profile_low_latency` (default) or
+ `ma_performance_profile_conservative`. This mainly affects the size of default buffers and can usually be left at it's default value.
+
+ noPreZeroedOutputBuffer
+ When set to true, the contents of the output buffer passed into the data callback will be left undefined. When set to false (default), the contents of
+ the output buffer will be cleared the zero. You can use this to avoid the overhead of zeroing out the buffer if you know can guarantee that your data
+ callback will write to every sample in the output buffer, or if you are doing your own clearing.
+
+ noClip
+ When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. When set to false (default), the
+ contents of the output buffer are left alone after returning and it will be left up to the backend itself to decide whether or not the clip. This only
+ applies when the playback sample format is f32.
+
+ dataCallback
+ The callback to fire whenever data is ready to be delivered to or from the device.
+
+ stopCallback
+ The callback to fire whenever the device has stopped, either explicitly via `ma_device_stop()`, or implicitly due to things like the device being
+ disconnected.
+
+ pUserData
+ The user data pointer to use with the device. You can access this directly from the device object like `device.pUserData`.
+
+ resampling.algorithm
+ The resampling algorithm to use when miniaudio needs to perform resampling between the rate specified by `sampleRate` and the device's native rate. The
+ default value is `ma_resample_algorithm_linear`, and the quality can be configured with `resampling.linear.lpfCount`.
+
+ resampling.linear.lpfCount
+ The linear resampler applies a low-pass filter as part of it's procesing for anti-aliasing. This setting controls the quality of the filter. The higher
+ the value, the better the quality. Setting this to 0 will disable low-pass filtering altogether. The maximum value is `MA_MAX_RESAMPLER_LPF_FILTERS`.
+ The default value is `min(2, MA_MAX_RESAMPLER_LPF_FILTERS)`.
+
+ playback.pDeviceID
+ A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's
+ default playback device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
+
+ playback.format
+ The sample format to use for playback. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after
+ initialization from the device object directly with `device.playback.format`.
+
+ playback.channels
+ The number of channels to use for playback. When set to 0 the device's native channel count will be used. This can be retrieved after initialization
+ from the device object directly with `device.playback.channels`.
+
+ playback.channelMap
+ The channel map to use for playback. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the
+ device object direct with `device.playback.channelMap`.
+
+ playback.shareMode
+ The preferred share mode to use for playback. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
+ exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired.
+
+ playback.pDeviceID
+ A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's
+ default playback device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
+
+ capture.format
+ The sample format to use for capture. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after
+ initialization from the device object directly with `device.capture.format`.
+
+ capture.channels
+ The number of channels to use for capture. When set to 0 the device's native channel count will be used. This can be retrieved after initialization
+ from the device object directly with `device.capture.channels`.
+
+ capture.channelMap
+ The channel map to use for capture. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the
+ device object direct with `device.capture.channelMap`.
+
+ capture.shareMode
+ The preferred share mode to use for capture. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
+ exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired.
+
+ wasapi.noAutoConvertSRC
+ WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false.
+
+ wasapi.noDefaultQualitySRC
+ WASAPI only. Only used when `wasapi.noAutoConvertSRC` is set to false. When set to true, disables the use of `AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY`.
+ You should usually leave this set to false, which is the default.
+
+ wasapi.noAutoStreamRouting
+ WASAPI only. When set to true, disables automatic stream routing on the WASAPI backend. Defaults to false.
+
+ wasapi.noHardwareOffloading
+ WASAPI only. When set to true, disables the use of WASAPI's hardware offloading feature. Defaults to false.
+
+ alsa.noMMap
+ ALSA only. When set to true, disables MMap mode. Defaults to false.
+
+ pulse.pStreamNamePlayback
+ PulseAudio only. Sets the stream name for playback.
+
+ pulse.pStreamNameCapture
+ PulseAudio only. Sets the stream name for capture.
+
+
+Once initialized, the device's config is immutable. If you need to change the config you will need to initialize a new device.
+
+If both `periodSizeInFrames` and `periodSizeInMilliseconds` are set to zero, it will default to `MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY` or
+`MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE`, depending on whether or not `performanceProfile` is set to `ma_performance_profile_low_latency` or
+`ma_performance_profile_conservative`.
+
+If you request exclusive mode and the backend does not support it an error will be returned. For robustness, you may want to first try initializing the device
+in exclusive mode, and then fall back to shared mode if required. Alternatively you can just request shared mode (the default if you leave it unset in the
+config) which is the most reliable option. Some backends do not have a practical way of choosing whether or not the device should be exclusive or not (ALSA,
+for example) in which case it just acts as a hint. Unless you have special requirements you should try avoiding exclusive mode as it's intrusive to the user.
+Starting with Windows 10, miniaudio will use low-latency shared mode where possible which may make exclusive mode unnecessary.
-Do not pass in null for the context if you are needing to open multiple devices. You can,
-however, use null when initializing the first device, and then use device.pContext for the
-initialization of other devices.
-
-The device's configuration is controlled with pConfig. This allows you to configure the sample
-format, channel count, sample rate, etc. Before calling ma_device_init(), you will need to
-initialize a ma_device_config object using ma_device_config_init(). You must set the callback in
-the device config. Once initialized, the device's config is immutable. If you need to change the
-config you will need to initialize a new device.
-
-Passing in 0 to any property in pConfig will force the use of a default value. In the case of
-sample format, channel count, sample rate and channel map it will default to the values used by
-the backend's internal device. For the size of the buffer you can set bufferSizeInFrames or
-bufferSizeInMilliseconds (if both are set it will prioritize bufferSizeInFrames). If both are
-set to zero, it will default to MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY or
-MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE, depending on whether or not performanceProfile
-is set to ma_performance_profile_low_latency or ma_performance_profile_conservative.
-
-If you request exclusive mode and the backend does not support it an error will be returned. For
-robustness, you may want to first try initializing the device in exclusive mode, and then fall back
-to shared mode if required. Alternatively you can just request shared mode (the default if you
-leave it unset in the config) which is the most reliable option. Some backends do not have a
-practical way of choosing whether or not the device should be exclusive or not (ALSA, for example)
-in which case it just acts as a hint. Unless you have special requirements you should try avoiding
-exclusive mode as it's intrusive to the user. Starting with Windows 10, miniaudio will use low-latency
-shared mode where possible which may make exclusive mode unnecessary.
-
-When sending or receiving data to/from a device, miniaudio will internally perform a format
-conversion to convert between the format specified by pConfig and the format used internally by
-the backend. If you pass in NULL for pConfig or 0 for the sample format, channel count,
-sample rate _and_ channel map, data transmission will run on an optimized pass-through fast path.
-
-The buffer size should be treated as a hint. miniaudio will try it's best to use exactly what you
-ask for, but it may differ. You should not assume the number of frames specified in each call to
-the data callback is exactly what you originally specified.
-
-The <periods> property controls how frequently the background thread is woken to check for more
-data. It's tied to the buffer size, so as an example, if your buffer size is equivalent to 10
-milliseconds and you have 2 periods, the CPU will wake up approximately every 5 milliseconds.
-
-When compiling for UWP you must ensure you call this function on the main UI thread because the
-operating system may need to present the user with a message asking for permissions. Please refer
-to the official documentation for ActivateAudioInterfaceAsync() for more information.
-
-ALSA Specific: When initializing the default device, requesting shared mode will try using the
-"dmix" device for playback and the "dsnoop" device for capture. If these fail it will try falling
-back to the "hw" device.
-
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
-
-Thread Safety: UNSAFE
- It is not safe to call this function simultaneously for different devices because some backends
- depend on and mutate global state (such as OpenSL|ES). The same applies to calling this at the
- same time as ma_device_uninit().
+After initializing the device it will be in a stopped state. To start it, use `ma_device_start()`.
+
+When sending or receiving data to/from a device, miniaudio will internally perform a format conversion to convert between the format specified by pConfig and
+the format used internally by the backend. If you pass in 0 for the sample format, channel count, sample rate _and_ channel map, data transmission will run on
+an optimized pass-through fast path. You can retrieve the format, channel count and sample rate by inspecting the `playback/capture.format`,
+`playback/capture.channels` and `sampleRate` members of the device object.
+
+When compiling for UWP you must ensure you call this function on the main UI thread because the operating system may need to present the user with a message
+asking for permissions. Please refer to the official documentation for ActivateAudioInterfaceAsync() for more information.
+
+ALSA Specific: When initializing the default device, requesting shared mode will try using the "dmix" device for playback and the "dsnoop" device for capture.
+If these fail it will try falling back to the "hw" device.
+
+
+Example 1 - Simple Initialization
+---------------------------------
+This example shows how to initialize a simple playback default using a standard configuration. If you are just needing to do simple playback from the default
+playback device this is usually all you need.
+
+```c
+ma_device_config config = ma_device_config_init(ma_device_type_playback);
+config.playback.format = ma_format_f32;
+config.playback.channels = 2;
+config.sampleRate = 48000;
+config.dataCallback = ma_data_callback;
+config.pMyUserData = pMyUserData;
+
+ma_device device;
+ma_result result = ma_device_init(NULL, &config, &device);
+if (result != MA_SUCCESS) {
+ // Error
+}
+```
+
+
+Example 2 - Advanced Initialization
+-----------------------------------
+This example show how you might do some more advanced initialization. In this hypothetical example we want to control the latency by setting the buffer size
+and period count. We also want to allow the user to be able to choose which device to output from which means we need a context so we can perform device
+enumeration.
+
+```c
+ma_context context;
+ma_result result = ma_context_init(NULL, 0, NULL, &context);
+if (result != MA_SUCCESS) {
+ // Error
+}
+
+ma_device_info* pPlaybackDeviceInfos;
+ma_uint32 playbackDeviceCount;
+result = ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, NULL, NULL);
+if (result != MA_SUCCESS) {
+ // Error
+}
+
+// ... choose a device from pPlaybackDeviceInfos ...
+
+ma_device_config config = ma_device_config_init(ma_device_type_playback);
+config.playback.pDeviceID = pMyChosenDeviceID; // <-- Get this from the `id` member of one of the `ma_device_info` objects returned by ma_context_get_devices().
+config.playback.format = ma_format_f32;
+config.playback.channels = 2;
+config.sampleRate = 48000;
+config.dataCallback = ma_data_callback;
+config.pUserData = pMyUserData;
+config.periodSizeInMilliseconds = 10;
+config.periods = 3;
+
+ma_device device;
+result = ma_device_init(&context, &config, &device);
+if (result != MA_SUCCESS) {
+ // Error
+}
+```
+
+
+See Also
+--------
+ma_device_config_init()
+ma_device_uninit()
+ma_device_start()
+ma_context_init()
+ma_context_get_devices()
+ma_context_enumerate_devices()
*/
ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice);
/*
-Initializes a device without a context, with extra parameters for controlling the configuration
-of the internal self-managed context.
+Initializes a device without a context, with extra parameters for controlling the configuration of the internal self-managed context.
+
+This is the same as `ma_device_init()`, only instead of a context being passed in, the parameters from `ma_context_init()` are passed in instead. This function
+allows you to configure the internally created context.
+
+
+Parameters
+----------
+backends (in, optional)
+ A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order.
+
+backendCount (in, optional)
+ The number of items in `backend`. Ignored if `backend` is NULL.
+
+pContextConfig (in, optional)
+ The context configuration.
-See ma_device_init() and ma_context_init().
+pConfig (in)
+ A pointer to the device configuration. Cannot be null. See remarks for details.
+
+pDevice (out)
+ A pointer to the device object being initialized.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to
+calling this at the same time as `ma_device_uninit()`.
+
+
+Callback Safety
+---------------
+Unsafe. It is not safe to call this inside any callback.
+
+
+Remarks
+-------
+You only need to use this function if you want to configure the context differently to it's defaults. You should never use this function if you want to manage
+your own context.
+
+See the documentation for `ma_context_init()` for information on the different context configuration options.
+
+
+See Also
+--------
+ma_device_init()
+ma_device_uninit()
+ma_device_config_init()
+ma_context_init()
*/
ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice);
/*
Uninitializes a device.
-This will explicitly stop the device. You do not need to call ma_device_stop() beforehand, but it's
-harmless if you do.
+This will explicitly stop the device. You do not need to call `ma_device_stop()` beforehand, but it's harmless if you do.
-Do not call this in any callback.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
+Parameters
+----------
+pDevice (in)
+ A pointer to the device to stop.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Unsafe. As soon as this API is called the device should be considered undefined.
+
+
+Callback Safety
+---------------
+Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock.
+
-Thread Safety: UNSAFE
- As soon as this API is called the device should be considered undefined. All bets are off if you
- try using the device at the same time as uninitializing it.
+See Also
+--------
+ma_device_init()
+ma_device_stop()
*/
void ma_device_uninit(ma_device* pDevice);
/*
-Sets the callback to use when the device has stopped, either explicitly or as a result of an error.
+Starts the device. For playback devices this begins playback. For capture devices it begins recording.
-Thread Safety: SAFE
- This API is implemented as a simple atomic assignment.
-*/
-void ma_device_set_stop_callback(ma_device* pDevice, ma_stop_proc proc);
+Use `ma_device_stop()` to stop the device.
-/*
-Activates the device. For playback devices this begins playback. For capture devices it begins
-recording.
-For a playback device, this will retrieve an initial chunk of audio data from the client before
-returning. The reason for this is to ensure there is valid audio data in the buffer, which needs
-to be done _before_ the device begins playback.
+Parameters
+----------
+pDevice (in)
+ A pointer to the device to start.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Safe. It's safe to call this from any thread with the exception of the callback thread.
+
+
+Callback Safety
+---------------
+Unsafe. It is not safe to call this inside any callback.
+
-This API waits until the backend device has been started for real by the worker thread. It also
-waits on a mutex for thread-safety.
+Remarks
+-------
+For a playback device, this will retrieve an initial chunk of audio data from the client before returning. The reason for this is to ensure there is valid
+audio data in the buffer, which needs to be done before the device begins playback.
+
+This API waits until the backend device has been started for real by the worker thread. It also waits on a mutex for thread-safety.
Do not call this in any callback.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
-Thread Safety: SAFE
+See Also
+--------
+ma_device_stop()
*/
ma_result ma_device_start(ma_device* pDevice);
/*
-Puts the device to sleep, but does not uninitialize it. Use ma_device_start() to start it up again.
+Stops the device. For playback devices this stops playback. For capture devices it stops recording.
+
+Use `ma_device_start()` to start the device again.
+
+
+Parameters
+----------
+pDevice (in)
+ A pointer to the device to stop.
+
+
+Return Value
+------------
+MA_SUCCESS if successful; any other error code otherwise.
+
+
+Thread Safety
+-------------
+Safe. It's safe to call this from any thread with the exception of the callback thread.
-This API needs to wait on the worker thread to stop the backend device properly before returning. It
-also waits on a mutex for thread-safety. In addition, some backends need to wait for the device to
-finish playback/recording of the current fragment which can take some time (usually proportionate to
-the buffer size that was specified at initialization time).
-This should not drop unprocessed samples. Backends are required to either pause the stream in-place
-or drain the buffer if pausing is not possible. The reason for this is that stopping the device and
-the resuming it with ma_device_start() (which you might do when your program loses focus) may result
-in a situation where those samples are never output to the speakers or received from the microphone
-which can in turn result in de-syncs.
+Callback Safety
+---------------
+Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock.
+
+
+Remarks
+-------
+This API needs to wait on the worker thread to stop the backend device properly before returning. It also waits on a mutex for thread-safety. In addition, some
+backends need to wait for the device to finish playback/recording of the current fragment which can take some time (usually proportionate to the buffer size
+that was specified at initialization time).
+
+Backends are required to either pause the stream in-place or drain the buffer if pausing is not possible. The reason for this is that stopping the device and
+the resuming it with ma_device_start() (which you might do when your program loses focus) may result in a situation where those samples are never output to the
+speakers or received from the microphone which can in turn result in de-syncs.
Do not call this in any callback.
-Return Value:
- MA_SUCCESS if successful; any other error code otherwise.
+This will be called implicitly by `ma_device_uninit()`.
-Thread Safety: SAFE
+
+See Also
+--------
+ma_device_start()
*/
ma_result ma_device_stop(ma_device* pDevice);
/*
Determines whether or not the device is started.
-This is implemented as a simple accessor.
-Return Value:
- True if the device is started, false otherwise.
+Parameters
+----------
+pDevice (in)
+ A pointer to the device whose start state is being retrieved.
-Thread Safety: SAFE
- If another thread calls ma_device_start() or ma_device_stop() at this same time as this function
- is called, there's a very small chance the return value will be out of sync.
+
+Return Value
+------------
+True if the device is started, false otherwise.
+
+
+Thread Safety
+-------------
+Safe. If another thread calls `ma_device_start()` or `ma_device_stop()` at this same time as this function is called, there's a very small chance the return
+value will be out of sync.
+
+
+Callback Safety
+---------------
+Safe. This is implemented as a simple accessor.
+
+
+See Also
+--------
+ma_device_start()
+ma_device_stop()
*/
ma_bool32 ma_device_is_started(ma_device* pDevice);
/*
Sets the master volume factor for the device.
-The volume factor must be between 0 (silence) and 1 (full volume). Use ma_device_set_master_gain_db() to
-use decibel notation, where 0 is full volume.
+The volume factor must be between 0 (silence) and 1 (full volume). Use `ma_device_set_master_gain_db()` to use decibel notation, where 0 is full volume and
+values less than 0 decreases the volume.
-This applies the volume factor across all channels.
-This does not change the operating system's volume. It only affects the volume for the given ma_device
-object's audio stream.
+Parameters
+----------
+pDevice (in)
+ A pointer to the device whose volume is being set.
+
+volume (in)
+ The new volume factor. Must be within the range of [0, 1].
+
Return Value
------------
MA_SUCCESS if the volume was set successfully.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if the volume factor is not within the range of [0, 1].
+
+
+Thread Safety
+-------------
+Safe. This just sets a local member of the device object.
+
+
+Callback Safety
+---------------
+Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied.
+
+
+Remarks
+-------
+This applies the volume factor across all channels.
+
+This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream.
+
+
+See Also
+--------
+ma_device_get_master_volume()
+ma_device_set_master_volume_gain_db()
+ma_device_get_master_volume_gain_db()
*/
ma_result ma_device_set_master_volume(ma_device* pDevice, float volume);
/*
Retrieves the master volume factor for the device.
+
+Parameters
+----------
+pDevice (in)
+ A pointer to the device whose volume factor is being retrieved.
+
+pVolume (in)
+ A pointer to the variable that will receive the volume factor. The returned value will be in the range of [0, 1].
+
+
Return Value
------------
MA_SUCCESS if successful.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if pVolume is NULL.
+
+
+Thread Safety
+-------------
+Safe. This just a simple member retrieval.
+
+
+Callback Safety
+---------------
+Safe.
+
+
+Remarks
+-------
+If an error occurs, `*pVolume` will be set to 0.
+
+
+See Also
+--------
+ma_device_set_master_volume()
+ma_device_set_master_volume_gain_db()
+ma_device_get_master_volume_gain_db()
*/
ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume);
@@ -2957,75 +4440,91 @@ Sets the master volume for the device as gain in decibels.
A gain of 0 is full volume, whereas a gain of < 0 will decrease the volume.
-This applies the gain across all channels.
-This does not change the operating system's volume. It only affects the volume for the given ma_device
-object's audio stream.
+Parameters
+----------
+pDevice (in)
+ A pointer to the device whose gain is being set.
+
+gainDB (in)
+ The new volume as gain in decibels. Must be less than or equal to 0, where 0 is full volume and anything less than 0 decreases the volume.
+
Return Value
------------
MA_SUCCESS if the volume was set successfully.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if the gain is > 0.
+
+
+Thread Safety
+-------------
+Safe. This just sets a local member of the device object.
+
+
+Callback Safety
+---------------
+Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied.
+
+
+Remarks
+-------
+This applies the gain across all channels.
+
+This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream.
+
+
+See Also
+--------
+ma_device_get_master_volume_gain_db()
+ma_device_set_master_volume()
+ma_device_get_master_volume()
*/
ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB);
/*
Retrieves the master gain in decibels.
+
+Parameters
+----------
+pDevice (in)
+ A pointer to the device whose gain is being retrieved.
+
+pGainDB (in)
+ A pointer to the variable that will receive the gain in decibels. The returned value will be <= 0.
+
+
Return Value
------------
MA_SUCCESS if successful.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if pGainDB is NULL.
-*/
-ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB);
-
-
-/*
-Helper function for initializing a ma_context_config object.
-*/
-ma_context_config ma_context_config_init(void);
-
-/*
-Initializes a device config.
-
-By default, the device config will use native device settings (format, channels, sample rate, etc.). Using native
-settings means you will get an optimized pass-through data transmission pipeline to and from the device, but you will
-need to do all format conversions manually. Normally you would want to use a known format that your program can handle
-natively, which you can do by specifying it after this function returns, like so:
- ma_device_config config = ma_device_config_init(ma_device_type_playback);
- config.callback = my_data_callback;
- config.pUserData = pMyUserData;
- config.format = ma_format_f32;
- config.channels = 2;
- config.sampleRate = 44100;
-
-In this case miniaudio will perform all of the necessary data conversion for you behind the scenes.
-Currently miniaudio only supports asynchronous, callback based data delivery which means you must specify callback. A
-pointer to user data can also be specified which is set in the pUserData member of the ma_device object.
+Thread Safety
+-------------
+Safe. This just a simple member retrieval.
-To specify a channel map you can use ma_get_standard_channel_map():
- ma_get_standard_channel_map(ma_standard_channel_map_default, config.channels, config.channelMap);
+Callback Safety
+---------------
+Safe.
-Alternatively you can set the channel map manually if you need something specific or something that isn't one of miniaudio's
-stock channel maps.
-By default the system's default device will be used. Set the pDeviceID member to a pointer to a ma_device_id object to
-use a specific device. You can enumerate over the devices with ma_context_enumerate_devices() or ma_context_get_devices()
-which will give you access to the device ID. Set pDeviceID to NULL to use the default device.
+Remarks
+-------
+If an error occurs, `*pGainDB` will be set to 0.
-The device type can be one of the ma_device_type's:
- ma_device_type_playback
- ma_device_type_capture
- ma_device_type_duplex
-Thread Safety: SAFE
+See Also
+--------
+ma_device_set_master_volume_gain_db()
+ma_device_set_master_volume()
+ma_device_get_master_volume()
*/
-ma_device_config ma_device_config_init(ma_device_type deviceType);
+ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB);
+
/************************************************************************************************************************************************************
@@ -3086,16 +4585,6 @@ Calculates a buffer size in frames from the specified number of milliseconds and
ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate);
/*
-Retrieves the default buffer size in milliseconds based on the specified performance profile.
-*/
-ma_uint32 ma_get_default_buffer_size_in_milliseconds(ma_performance_profile performanceProfile);
-
-/*
-Calculates a buffer size in frames for the specified performance profile and scale factor.
-*/
-ma_uint32 ma_get_default_buffer_size_in_frames(ma_performance_profile performanceProfile, ma_uint32 sampleRate);
-
-/*
Copies silent frames into the given buffer.
*/
void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels);
@@ -3156,6 +4645,10 @@ float ma_gain_db_to_factor(float gain);
/************************************************************************************************************************************************************
Decoding
+========
+
+Decoders are independent of the main device API. Decoding APIs can be called freely inside the device's data callback, but they are not thread safe unless
+you do your own synchronization.
************************************************************************************************************************************************************/
#ifndef MA_NO_DECODING
@@ -3168,8 +4661,9 @@ typedef enum
ma_seek_origin_current
} ma_seek_origin;
-typedef size_t (* ma_decoder_read_proc) (ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead); /* Returns the number of bytes read. */
+typedef size_t (* ma_decoder_read_proc) (ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead); /* Returns the number of bytes read. */
typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin);
+typedef ma_uint64 (* ma_decoder_read_pcm_frames_proc) (ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount); /* Returns the number of frames read. Output data is in internal format. */
typedef ma_result (* ma_decoder_seek_to_pcm_frame_proc) (ma_decoder* pDecoder, ma_uint64 frameIndex);
typedef ma_result (* ma_decoder_uninit_proc) (ma_decoder* pDecoder);
typedef ma_uint64 (* ma_decoder_get_length_in_pcm_frames_proc)(ma_decoder* pDecoder);
@@ -3182,11 +4676,19 @@ typedef struct
ma_channel channelMap[MA_MAX_CHANNELS];
ma_channel_mix_mode channelMixMode;
ma_dither_mode ditherMode;
- ma_src_algorithm srcAlgorithm;
- union
+ struct
{
- ma_src_config_sinc sinc;
- } src;
+ ma_resample_algorithm algorithm;
+ struct
+ {
+ ma_uint32 lpfCount;
+ } linear;
+ struct
+ {
+ int quality;
+ } speex;
+ } resampling;
+ ma_allocation_callbacks allocationCallbacks;
} ma_decoder_config;
struct ma_decoder
@@ -3203,7 +4705,9 @@ struct ma_decoder
ma_uint32 outputChannels;
ma_uint32 outputSampleRate;
ma_channel outputChannelMap[MA_MAX_CHANNELS];
- ma_pcm_converter dsp; /* <-- Format conversion is achieved by running frames through this. */
+ ma_data_converter converter; /* <-- Data conversion is achieved by running frames through this. */
+ ma_allocation_callbacks allocationCallbacks;
+ ma_decoder_read_pcm_frames_proc onReadPCMFrames;
ma_decoder_seek_to_pcm_frame_proc onSeekToPCMFrame;
ma_decoder_uninit_proc onUninit;
ma_decoder_get_length_in_pcm_frames_proc onGetLengthInPCMFrames;
@@ -3258,11 +4762,24 @@ If the length is unknown or an error occurs, 0 will be returned.
This will always return 0 for Vorbis decoders. This is due to a limitation with stb_vorbis in push mode which is what miniaudio
uses internally.
-This will run in linear time for MP3 decoders. Do not call this in time critical scenarios.
+For MP3's, this will decode the entire file. Do not call this in time critical scenarios.
+
+This function is not thread safe without your own synchronization.
*/
ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder);
+/*
+Reads PCM frames from the given decoder.
+
+This is not thread safe without your own synchronization.
+*/
ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount);
+
+/*
+Seeks to a PCM frame based on it's absolute index.
+
+This is not thread safe without your own synchronization.
+*/
ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex);
/*
@@ -3282,17 +4799,28 @@ ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config
Generation
************************************************************************************************************************************************************/
+typedef enum
+{
+ ma_waveform_type_sine,
+ ma_waveform_type_square,
+ ma_waveform_type_triangle,
+ ma_waveform_type_sawtooth
+} ma_waveform_type;
+
typedef struct
{
+ ma_waveform_type type;
double amplitude;
- double periodsPerSecond;
- double delta;
+ double frequency;
+ double deltaTime;
double time;
-} ma_sine_wave;
+} ma_waveform;
-ma_result ma_sine_wave_init(double amplitude, double period, ma_uint32 sampleRate, ma_sine_wave* pSineWave);
-ma_uint64 ma_sine_wave_read_f32(ma_sine_wave* pSineWave, ma_uint64 count, float* pSamples);
-ma_uint64 ma_sine_wave_read_f32_ex(ma_sine_wave* pSineWave, ma_uint64 frameCount, ma_uint32 channels, ma_stream_layout layout, float** ppFrames);
+ma_result ma_waveform_init(ma_waveform_type type, double amplitude, double frequency, ma_uint32 sampleRate, ma_waveform* pWaveform);
+ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
+ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude);
+ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency);
+ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate);
#ifdef __cplusplus
}
@@ -3313,86 +4841,19 @@ IMPLEMENTATION
#include <limits.h> /* For INT_MAX */
#include <math.h> /* sin(), etc. */
-#if defined(MA_DEBUG_OUTPUT)
-#include <stdio.h> /* for printf() for debug output */
+#if !defined(MA_NO_STDIO) || defined(MA_DEBUG_OUTPUT)
+ #include <stdio.h>
+ #if !defined(_MSC_VER) && !defined(__DMC__)
+ #include <strings.h> /* For strcasecmp(). */
+ #include <wchar.h> /* For wcslen(), wcsrtombs() */
+ #endif
#endif
#ifdef MA_WIN32
-// @raysan5: To avoid conflicting windows.h symbols with raylib, so flags are defined
-// WARNING: Those flags avoid inclusion of some Win32 headers that could be required
-// by user at some point and won't be included...
-//-------------------------------------------------------------------------------------
-
-// If defined, the following flags inhibit definition of the indicated items.
-#define NOGDICAPMASKS // CC_*, LC_*, PC_*, CP_*, TC_*, RC_
-#define NOVIRTUALKEYCODES // VK_*
-#define NOWINMESSAGES // WM_*, EM_*, LB_*, CB_*
-#define NOWINSTYLES // WS_*, CS_*, ES_*, LBS_*, SBS_*, CBS_*
-#define NOSYSMETRICS // SM_*
-#define NOMENUS // MF_*
-#define NOICONS // IDI_*
-#define NOKEYSTATES // MK_*
-#define NOSYSCOMMANDS // SC_*
-#define NORASTEROPS // Binary and Tertiary raster ops
-#define NOSHOWWINDOW // SW_*
-#define OEMRESOURCE // OEM Resource values
-#define NOATOM // Atom Manager routines
-#define NOCLIPBOARD // Clipboard routines
-#define NOCOLOR // Screen colors
-#define NOCTLMGR // Control and Dialog routines
-#define NODRAWTEXT // DrawText() and DT_*
-#define NOGDI // All GDI defines and routines
-#define NOKERNEL // All KERNEL defines and routines
-#define NOUSER // All USER defines and routines
-//#define NONLS // All NLS defines and routines
-#define NOMB // MB_* and MessageBox()
-#define NOMEMMGR // GMEM_*, LMEM_*, GHND, LHND, associated routines
-#define NOMETAFILE // typedef METAFILEPICT
-#define NOMINMAX // Macros min(a,b) and max(a,b)
-#define NOMSG // typedef MSG and associated routines
-#define NOOPENFILE // OpenFile(), OemToAnsi, AnsiToOem, and OF_*
-#define NOSCROLL // SB_* and scrolling routines
-#define NOSERVICE // All Service Controller routines, SERVICE_ equates, etc.
-#define NOSOUND // Sound driver routines
-#define NOTEXTMETRIC // typedef TEXTMETRIC and associated routines
-#define NOWH // SetWindowsHook and WH_*
-#define NOWINOFFSETS // GWL_*, GCL_*, associated routines
-#define NOCOMM // COMM driver routines
-#define NOKANJI // Kanji support stuff.
-#define NOHELP // Help engine interface.
-#define NOPROFILER // Profiler interface.
-#define NODEFERWINDOWPOS // DeferWindowPos routines
-#define NOMCX // Modem Configuration Extensions
-
-// Type required before windows.h inclusion
-typedef struct tagMSG *LPMSG;
-
#include <windows.h>
-
-// Type required by some unused function...
-typedef struct tagBITMAPINFOHEADER {
- DWORD biSize;
- LONG biWidth;
- LONG biHeight;
- WORD biPlanes;
- WORD biBitCount;
- DWORD biCompression;
- DWORD biSizeImage;
- LONG biXPelsPerMeter;
- LONG biYPelsPerMeter;
- DWORD biClrUsed;
- DWORD biClrImportant;
-} BITMAPINFOHEADER, *PBITMAPINFOHEADER;
-
#include <objbase.h>
#include <mmreg.h>
#include <mmsystem.h>
-
-// @raysan5: Some required types defined for MSVC/TinyC compiler
-#if defined(_MSC_VER) || defined(__TINYC__)
- #include "propidl.h"
-#endif
-//----------------------------------------------------------------------------------
#else
#include <stdlib.h> /* For malloc(), free(), wcstombs(). */
#include <string.h> /* For memset() */
@@ -3530,6 +4991,7 @@ typedef struct tagBITMAPINFOHEADER {
#endif
#endif
+/* Begin globally disabled warnings. */
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4752) /* found Intel(R) Advanced Vector Extensions; consider using /arch:AVX */
@@ -3747,6 +5209,23 @@ static MA_INLINE ma_bool32 ma_has_neon()
#endif
}
+#define MA_SIMD_NONE 0
+#define MA_SIMD_SSE2 1
+#define MA_SIMD_AVX2 2
+#define MA_SIMD_NEON 3
+
+#ifndef MA_PREFERRED_SIMD
+ # if defined(MA_SUPPORT_SSE2) && defined(MA_PREFER_SSE2)
+ #define MA_PREFERRED_SIMD MA_SIMD_SSE2
+ #elif defined(MA_SUPPORT_AVX2) && defined(MA_PREFER_AVX2)
+ #define MA_PREFERRED_SIMD MA_SIMD_AVX2
+ #elif defined(MA_SUPPORT_NEON) && defined(MA_PREFER_NEON)
+ #define MA_PREFERRED_SIMD MA_SIMD_NEON
+ #else
+ #define MA_PREFERRED_SIMD MA_SIMD_NONE
+ #endif
+#endif
+
static MA_INLINE ma_bool32 ma_is_little_endian()
{
@@ -3765,7 +5244,7 @@ static MA_INLINE ma_bool32 ma_is_big_endian()
#ifndef MA_COINIT_VALUE
-#define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED*/
+#define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED */
#endif
@@ -3786,32 +5265,41 @@ static MA_INLINE ma_bool32 ma_is_big_endian()
/* The default format when ma_format_unknown (0) is requested when initializing a device. */
#ifndef MA_DEFAULT_FORMAT
-#define MA_DEFAULT_FORMAT ma_format_f32
+#define MA_DEFAULT_FORMAT ma_format_f32
#endif
/* The default channel count to use when 0 is used when initializing a device. */
#ifndef MA_DEFAULT_CHANNELS
-#define MA_DEFAULT_CHANNELS 2
+#define MA_DEFAULT_CHANNELS 2
#endif
/* The default sample rate to use when 0 is used when initializing a device. */
#ifndef MA_DEFAULT_SAMPLE_RATE
-#define MA_DEFAULT_SAMPLE_RATE 48000
+#define MA_DEFAULT_SAMPLE_RATE 48000
#endif
/* Default periods when none is specified in ma_device_init(). More periods means more work on the CPU. */
#ifndef MA_DEFAULT_PERIODS
-#define MA_DEFAULT_PERIODS 3
+#define MA_DEFAULT_PERIODS 3
#endif
-/* The base buffer size in milliseconds for low latency mode. */
-#ifndef MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
-#define MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY (10*MA_DEFAULT_PERIODS)
+/* The default period size in milliseconds for low latency mode. */
+#ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY
+#define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY 10
#endif
-/* The base buffer size in milliseconds for conservative mode. */
-#ifndef MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
-#define MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE (100*MA_DEFAULT_PERIODS)
+/* The default buffer size in milliseconds for conservative mode. */
+#ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE
+#define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE 100
+#endif
+
+/* The default LPF count for linear resampling. Note that this is clamped to MA_MAX_RESAMPLER_LPF_FILTERS. */
+#ifndef MA_DEFAULT_RESAMPLER_LPF_FILTERS
+ #if MA_MAX_RESAMPLER_LPF_FILTERS >= 2
+ #define MA_DEFAULT_RESAMPLER_LPF_FILTERS 2
+ #else
+ #define MA_DEFAULT_RESAMPLER_LPF_FILTERS MA_MAX_RESAMPLER_LPF_FILTERS
+ #endif
#endif
@@ -3904,19 +5392,56 @@ Standard Library Stuff
#endif
#endif
-#define ma_zero_memory MA_ZERO_MEMORY
-#define ma_copy_memory MA_COPY_MEMORY
-#define ma_assert MA_ASSERT
+#define MA_ZERO_OBJECT(p) MA_ZERO_MEMORY((p), sizeof(*(p)))
-#define ma_zero_object(p) ma_zero_memory((p), sizeof(*(p)))
-#define ma_countof(x) (sizeof(x) / sizeof(x[0]))
-#define ma_max(x, y) (((x) > (y)) ? (x) : (y))
-#define ma_min(x, y) (((x) < (y)) ? (x) : (y))
-#define ma_clamp(x, lo, hi) (ma_max(lo, ma_min(x, hi)))
-#define ma_offset_ptr(p, offset) (((ma_uint8*)(p)) + (offset))
+#define ma_countof(x) (sizeof(x) / sizeof(x[0]))
+#define ma_max(x, y) (((x) > (y)) ? (x) : (y))
+#define ma_min(x, y) (((x) < (y)) ? (x) : (y))
+#define ma_abs(x) (((x) > 0) ? (x) : -(x))
+#define ma_clamp(x, lo, hi) (ma_max(lo, ma_min(x, hi)))
+#define ma_offset_ptr(p, offset) (((ma_uint8*)(p)) + (offset))
#define ma_buffer_frame_capacity(buffer, channels, format) (sizeof(buffer) / ma_get_bytes_per_sample(format) / (channels))
+static MA_INLINE double ma_sin(double x)
+{
+ /* TODO: Implement custom sin(x). */
+ return sin(x);
+}
+
+static MA_INLINE double ma_cos(double x)
+{
+ return ma_sin((MA_PI*0.5) - x);
+}
+
+static MA_INLINE double ma_log(double x)
+{
+ /* TODO: Implement custom log(x). */
+ return log(x);
+}
+
+static MA_INLINE double ma_pow(double x, double y)
+{
+ /* TODO: Implement custom pow(x, y). */
+ return pow(x, y);
+}
+
+static MA_INLINE double ma_log10(double x)
+{
+ return ma_log(x) * 0.43429448190325182765;
+}
+
+static MA_INLINE float ma_powf(float x, float y)
+{
+ return (float)ma_pow((double)x, (double)y);
+}
+
+static MA_INLINE float ma_log10f(float x)
+{
+ return (float)ma_log10((double)x);
+}
+
+
/*
Return Values:
0: Success
@@ -4184,10 +5709,10 @@ int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB)
return result;
}
-char* ma_copy_string(const char* src)
+char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t sz = strlen(src)+1;
- char* dst = (char*)ma_malloc(sz);
+ char* dst = (char*)ma_malloc(sz, pAllocationCallbacks);
if (dst == NULL) {
return NULL;
}
@@ -4198,6 +5723,46 @@ char* ma_copy_string(const char* src)
}
+static MA_INLINE void ma_copy_memory_64(void* dst, const void* src, ma_uint64 sizeInBytes)
+{
+#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
+ MA_COPY_MEMORY(dst, src, (size_t)sizeInBytes);
+#else
+ while (sizeInBytes > 0) {
+ ma_uint64 bytesToCopyNow = sizeInBytes;
+ if (bytesToCopyNow > MA_SIZE_MAX) {
+ bytesToCopyNow = MA_SIZE_MAX;
+ }
+
+ MA_COPY_MEMORY(dst, src, (size_t)bytesToCopyNow); /* Safe cast to size_t. */
+
+ sizeInBytes -= bytesToCopyNow;
+ dst = ( void*)(( ma_uint8*)dst + bytesToCopyNow);
+ src = (const void*)((const ma_uint8*)src + bytesToCopyNow);
+ }
+#endif
+}
+
+static MA_INLINE void ma_zero_memory_64(void* dst, ma_uint64 sizeInBytes)
+{
+#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
+ MA_ZERO_MEMORY(dst, (size_t)sizeInBytes);
+#else
+ while (sizeInBytes > 0) {
+ ma_uint64 bytesToZeroNow = sizeInBytes;
+ if (bytesToZeroNow > MA_SIZE_MAX) {
+ bytesToZeroNow = MA_SIZE_MAX;
+ }
+
+ MA_ZERO_MEMORY(dst, (size_t)bytesToZeroNow); /* Safe cast to size_t. */
+
+ sizeInBytes -= bytesToZeroNow;
+ dst = (void*)((ma_uint8*)dst + bytesToZeroNow);
+ }
+#endif
+}
+
+
/* Thanks to good old Bit Twiddling Hacks for this one: http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 */
static MA_INLINE unsigned int ma_next_power_of_2(unsigned int x)
{
@@ -4264,6 +5829,7 @@ static MA_INLINE float ma_mix_f32_fast(float x, float y, float a)
/*return x + (y - x)*a;*/
}
+
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE __m128 ma_mix_f32_fast__sse2(__m128 x, __m128 y, __m128 a)
{
@@ -4306,6 +5872,25 @@ static MA_INLINE float ma_scale_to_range_f32(float x, float lo, float hi)
/*
+Greatest common factor using Euclid's algorithm iteratively.
+*/
+static MA_INLINE ma_uint32 ma_gcf_u32(ma_uint32 a, ma_uint32 b)
+{
+ for (;;) {
+ if (b == 0) {
+ break;
+ } else {
+ ma_uint32 t = a;
+ a = b;
+ b = t % a;
+ }
+ }
+
+ return a;
+}
+
+
+/*
Random Number Generation
miniaudio uses the LCG random number generation algorithm. This is good enough for audio.
@@ -4319,12 +5904,12 @@ for miniaudio's purposes.
#define MA_LCG_C 0
static ma_int32 g_maLCG = 4321; /* Non-zero initial seed. Use ma_seed() to use an explicit seed. */
-void ma_seed(ma_int32 seed)
+static MA_INLINE void ma_seed(ma_int32 seed)
{
g_maLCG = seed;
}
-ma_int32 ma_rand_s32()
+static MA_INLINE ma_int32 ma_rand_s32()
{
ma_int32 lcg = g_maLCG;
ma_int32 r = (MA_LCG_A * lcg + MA_LCG_C) % MA_LCG_M;
@@ -4332,27 +5917,27 @@ ma_int32 ma_rand_s32()
return r;
}
-ma_uint32 ma_rand_u32()
+static MA_INLINE ma_uint32 ma_rand_u32()
{
return (ma_uint32)ma_rand_s32();
}
-double ma_rand_f64()
+static MA_INLINE double ma_rand_f64()
{
return ma_rand_s32() / (double)0x7FFFFFFF;
}
-float ma_rand_f32()
+static MA_INLINE float ma_rand_f32()
{
return (float)ma_rand_f64();
}
-float ma_rand_range_f32(float lo, float hi)
+static MA_INLINE float ma_rand_range_f32(float lo, float hi)
{
return ma_scale_to_range_f32(ma_rand_f32(), lo, hi);
}
-ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi)
+static MA_INLINE ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi)
{
if (lo == hi) {
return lo;
@@ -4402,52 +5987,6 @@ static MA_INLINE ma_int32 ma_dither_s32(ma_dither_mode ditherMode, ma_int32 dith
}
-/*
-Splits a buffer into parts of equal length and of the given alignment. The returned size of the split buffers will be a
-multiple of the alignment. The alignment must be a power of 2.
-*/
-void ma_split_buffer(void* pBuffer, size_t bufferSize, size_t splitCount, size_t alignment, void** ppBuffersOut, size_t* pSplitSizeOut)
-{
- ma_uintptr pBufferUnaligned;
- ma_uintptr pBufferAligned;
- size_t unalignedBytes;
- size_t splitSize;
-
- if (pSplitSizeOut) {
- *pSplitSizeOut = 0;
- }
-
- if (pBuffer == NULL || bufferSize == 0 || splitCount == 0) {
- return;
- }
-
- if (alignment == 0) {
- alignment = 1;
- }
-
- pBufferUnaligned = (ma_uintptr)pBuffer;
- pBufferAligned = (pBufferUnaligned + (alignment-1)) & ~(alignment-1);
- unalignedBytes = (size_t)(pBufferAligned - pBufferUnaligned);
-
- splitSize = 0;
- if (bufferSize >= unalignedBytes) {
- splitSize = (bufferSize - unalignedBytes) / splitCount;
- splitSize = splitSize & ~(alignment-1);
- }
-
- if (ppBuffersOut != NULL) {
- size_t i;
- for (i = 0; i < splitCount; ++i) {
- ppBuffersOut[i] = (ma_uint8*)(pBufferAligned + (splitSize*i));
- }
- }
-
- if (pSplitSizeOut) {
- *pSplitSizeOut = splitSize;
- }
-}
-
-
/******************************************************************************
Atomics
@@ -4495,32 +6034,152 @@ Atomics
#endif
-ma_uint32 ma_get_standard_sample_rate_priority_index(ma_uint32 sampleRate) /* Lower = higher priority */
+static void* ma__malloc_default(size_t sz, void* pUserData)
{
- ma_uint32 i;
- for (i = 0; i < ma_countof(g_maStandardSampleRatePriorities); ++i) {
- if (g_maStandardSampleRatePriorities[i] == sampleRate) {
- return i;
+ (void)pUserData;
+ return MA_MALLOC(sz);
+}
+
+static void* ma__realloc_default(void* p, size_t sz, void* pUserData)
+{
+ (void)pUserData;
+ return MA_REALLOC(p, sz);
+}
+
+static void ma__free_default(void* p, void* pUserData)
+{
+ (void)pUserData;
+ MA_FREE(p);
+}
+
+
+static void* ma__malloc_from_callbacks(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+
+ if (pAllocationCallbacks->onMalloc != NULL) {
+ return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
+ }
+
+ /* Try using realloc(). */
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
+ }
+
+ return NULL;
+}
+
+static void* ma__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (pAllocationCallbacks == NULL) {
+ return NULL;
+ }
+
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
+ }
+
+ /* Try emulating realloc() in terms of malloc()/free(). */
+ if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
+ void* p2;
+
+ p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
+ if (p2 == NULL) {
+ return NULL;
}
+
+ if (p != NULL) {
+ MA_COPY_MEMORY(p2, p, szOld);
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+
+ return p2;
}
- return (ma_uint32)-1;
+ return NULL;
}
-ma_uint64 ma_calculate_frame_count_after_src(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn)
+static MA_INLINE void* ma__calloc_from_callbacks(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
- double srcRatio = (double)sampleRateOut / sampleRateIn;
- double frameCountOutF = (ma_int64)frameCountIn * srcRatio; /* Cast to int64 required for VC6. */
- ma_uint64 frameCountOut = (ma_uint64)frameCountOutF;
+ void* p = ma__malloc_from_callbacks(sz, pAllocationCallbacks);
+ if (p != NULL) {
+ MA_ZERO_MEMORY(p, sz);
+ }
+
+ return p;
+}
- /* If the output frame count is fractional, make sure we add an extra frame to ensure there's enough room for that last sample. */
- if ((frameCountOutF - (ma_int64)frameCountOut) > 0.0) {
- frameCountOut += 1;
+static void ma__free_from_callbacks(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
+{
+ if (p == NULL || pAllocationCallbacks == NULL) {
+ return;
}
+ if (pAllocationCallbacks->onFree != NULL) {
+ pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
+ }
+}
+
+static ma_allocation_callbacks ma_allocation_callbacks_init_default()
+{
+ ma_allocation_callbacks callbacks;
+ callbacks.pUserData = NULL;
+ callbacks.onMalloc = ma__malloc_default;
+ callbacks.onRealloc = ma__realloc_default;
+ callbacks.onFree = ma__free_default;
+
+ return callbacks;
+}
+
+static ma_result ma_allocation_callbacks_init_copy(ma_allocation_callbacks* pDst, const ma_allocation_callbacks* pSrc)
+{
+ if (pDst == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pSrc == NULL) {
+ *pDst = ma_allocation_callbacks_init_default();
+ } else {
+ if (pSrc->pUserData == NULL && pSrc->onFree == NULL && pSrc->onMalloc == NULL && pSrc->onRealloc == NULL) {
+ *pDst = ma_allocation_callbacks_init_default();
+ } else {
+ if (pSrc->onFree == NULL || (pSrc->onMalloc == NULL && pSrc->onRealloc == NULL)) {
+ return MA_INVALID_ARGS; /* Invalid allocation callbacks. */
+ } else {
+ *pDst = *pSrc;
+ }
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+
+ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn)
+{
+ /* For robustness we're going to use a resampler object to calculate this since that already has a way of calculating this. */
+ ma_result result;
+ ma_uint64 frameCountOut;
+ ma_resampler_config config;
+ ma_resampler resampler;
+
+ config = ma_resampler_config_init(ma_format_s16, 1, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear);
+ result = ma_resampler_init(&config, &resampler);
+ if (result != MA_SUCCESS) {
+ return 0;
+ }
+
+ frameCountOut = ma_resampler_get_expected_output_frame_count(&resampler, frameCountIn);
+
+ ma_resampler_uninit(&resampler);
return frameCountOut;
}
+#ifndef MA_DATA_CONVERTER_STACK_BUFFER_SIZE
+#define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096
+#endif
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
@@ -4711,7 +6370,7 @@ const char* ma_log_level_to_string(ma_uint32 logLevel)
}
/* Posts a log message. */
-void ma_log(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
+static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
{
if (pContext == NULL) {
return;
@@ -4736,7 +6395,7 @@ void ma_log(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const
}
/* Posts an log message. Throw a breakpoint in here if you're needing to debug. The return value is always "resultCode". */
-ma_result ma_context_post_error(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
+static ma_result ma_context_post_error(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
{
/* Derive the context from the device if necessary. */
if (pContext == NULL) {
@@ -4745,11 +6404,11 @@ ma_result ma_context_post_error(ma_context* pContext, ma_device* pDevice, ma_uin
}
}
- ma_log(pContext, pDevice, logLevel, message);
+ ma_post_log_message(pContext, pDevice, logLevel, message);
return resultCode;
}
-ma_result ma_post_error(ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
+static ma_result ma_post_error(ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
{
return ma_context_post_error(NULL, pDevice, logLevel, message, resultCode);
}
@@ -4762,7 +6421,7 @@ Timing
*******************************************************************************/
#ifdef MA_WIN32
LARGE_INTEGER g_ma_TimerFrequency = {{0}};
-void ma_timer_init(ma_timer* pTimer)
+static void ma_timer_init(ma_timer* pTimer)
{
LARGE_INTEGER counter;
@@ -4774,7 +6433,7 @@ void ma_timer_init(ma_timer* pTimer)
pTimer->counter = counter.QuadPart;
}
-double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
LARGE_INTEGER counter;
if (!QueryPerformanceCounter(&counter)) {
@@ -4785,7 +6444,7 @@ double ma_timer_get_time_in_seconds(ma_timer* pTimer)
}
#elif defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
ma_uint64 g_ma_TimerFrequency = 0;
-void ma_timer_init(ma_timer* pTimer)
+static void ma_timer_init(ma_timer* pTimer)
{
mach_timebase_info_data_t baseTime;
mach_timebase_info(&baseTime);
@@ -4794,7 +6453,7 @@ void ma_timer_init(ma_timer* pTimer)
pTimer->counter = mach_absolute_time();
}
-double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter = mach_absolute_time();
ma_uint64 oldTimeCounter = pTimer->counter;
@@ -4802,12 +6461,12 @@ double ma_timer_get_time_in_seconds(ma_timer* pTimer)
return (newTimeCounter - oldTimeCounter) / g_ma_TimerFrequency;
}
#elif defined(MA_EMSCRIPTEN)
-void ma_timer_init(ma_timer* pTimer)
+static MA_INLINE void ma_timer_init(ma_timer* pTimer)
{
pTimer->counterD = emscripten_get_now();
}
-double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+static MA_INLINE double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
return (emscripten_get_now() - pTimer->counterD) / 1000; /* Emscripten is in milliseconds. */
}
@@ -4819,7 +6478,7 @@ double ma_timer_get_time_in_seconds(ma_timer* pTimer)
#define MA_CLOCK_ID CLOCK_REALTIME
#endif
-void ma_timer_init(ma_timer* pTimer)
+static void ma_timer_init(ma_timer* pTimer)
{
struct timespec newTime;
clock_gettime(MA_CLOCK_ID, &newTime);
@@ -4827,7 +6486,7 @@ void ma_timer_init(ma_timer* pTimer)
pTimer->counter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
}
-double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter;
ma_uint64 oldTimeCounter;
@@ -4841,7 +6500,7 @@ double ma_timer_get_time_in_seconds(ma_timer* pTimer)
return (newTimeCounter - oldTimeCounter) / 1000000000.0;
}
#else
-void ma_timer_init(ma_timer* pTimer)
+static void ma_timer_init(ma_timer* pTimer)
{
struct timeval newTime;
gettimeofday(&newTime, NULL);
@@ -4849,7 +6508,7 @@ void ma_timer_init(ma_timer* pTimer)
pTimer->counter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
}
-double ma_timer_get_time_in_seconds(ma_timer* pTimer)
+static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter;
ma_uint64 oldTimeCounter;
@@ -4879,7 +6538,7 @@ ma_handle ma_dlopen(ma_context* pContext, const char* filename)
if (pContext != NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Loading library: ", filename);
- ma_log(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
+ ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
}
#endif
@@ -4907,7 +6566,7 @@ ma_handle ma_dlopen(ma_context* pContext, const char* filename)
if (handle == NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Failed to load library: ", filename);
- ma_log(pContext, NULL, MA_LOG_LEVEL_INFO, message);
+ ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_INFO, message);
}
#endif
@@ -4934,7 +6593,7 @@ ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
if (pContext != NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Loading symbol: ", symbol);
- ma_log(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
+ ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
}
#endif
@@ -4955,7 +6614,7 @@ ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
if (handle == NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Failed to load symbol: ", symbol);
- ma_log(pContext, NULL, MA_LOG_LEVEL_WARNING, message);
+ ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_WARNING, message);
}
#endif
@@ -4970,7 +6629,7 @@ Threading
*******************************************************************************/
#ifdef MA_WIN32
-int ma_thread_priority_to_win32(ma_thread_priority priority)
+static int ma_thread_priority_to_win32(ma_thread_priority priority)
{
switch (priority) {
case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE;
@@ -4984,7 +6643,7 @@ int ma_thread_priority_to_win32(ma_thread_priority priority)
}
}
-ma_result ma_thread_create__win32(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
+static ma_result ma_thread_create__win32(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
{
pThread->win32.hThread = CreateThread(NULL, 0, entryProc, pData, 0, NULL);
if (pThread->win32.hThread == NULL) {
@@ -4996,18 +6655,18 @@ ma_result ma_thread_create__win32(ma_context* pContext, ma_thread* pThread, ma_t
return MA_SUCCESS;
}
-void ma_thread_wait__win32(ma_thread* pThread)
+static void ma_thread_wait__win32(ma_thread* pThread)
{
WaitForSingleObject(pThread->win32.hThread, INFINITE);
}
-void ma_sleep__win32(ma_uint32 milliseconds)
+static void ma_sleep__win32(ma_uint32 milliseconds)
{
Sleep((DWORD)milliseconds);
}
-ma_result ma_mutex_init__win32(ma_context* pContext, ma_mutex* pMutex)
+static ma_result ma_mutex_init__win32(ma_context* pContext, ma_mutex* pMutex)
{
(void)pContext;
@@ -5019,23 +6678,23 @@ ma_result ma_mutex_init__win32(ma_context* pContext, ma_mutex* pMutex)
return MA_SUCCESS;
}
-void ma_mutex_uninit__win32(ma_mutex* pMutex)
+static void ma_mutex_uninit__win32(ma_mutex* pMutex)
{
CloseHandle(pMutex->win32.hMutex);
}
-void ma_mutex_lock__win32(ma_mutex* pMutex)
+static void ma_mutex_lock__win32(ma_mutex* pMutex)
{
WaitForSingleObject(pMutex->win32.hMutex, INFINITE);
}
-void ma_mutex_unlock__win32(ma_mutex* pMutex)
+static void ma_mutex_unlock__win32(ma_mutex* pMutex)
{
SetEvent(pMutex->win32.hMutex);
}
-ma_result ma_event_init__win32(ma_context* pContext, ma_event* pEvent)
+static ma_result ma_event_init__win32(ma_context* pContext, ma_event* pEvent)
{
(void)pContext;
@@ -5047,20 +6706,48 @@ ma_result ma_event_init__win32(ma_context* pContext, ma_event* pEvent)
return MA_SUCCESS;
}
-void ma_event_uninit__win32(ma_event* pEvent)
+static void ma_event_uninit__win32(ma_event* pEvent)
{
CloseHandle(pEvent->win32.hEvent);
}
-ma_bool32 ma_event_wait__win32(ma_event* pEvent)
+static ma_bool32 ma_event_wait__win32(ma_event* pEvent)
{
return WaitForSingleObject(pEvent->win32.hEvent, INFINITE) == WAIT_OBJECT_0;
}
-ma_bool32 ma_event_signal__win32(ma_event* pEvent)
+static ma_bool32 ma_event_signal__win32(ma_event* pEvent)
{
return SetEvent(pEvent->win32.hEvent);
}
+
+
+static ma_result ma_semaphore_init__win32(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
+{
+ (void)pContext;
+
+ pSemaphore->win32.hSemaphore = CreateSemaphoreA(NULL, (LONG)initialValue, LONG_MAX, NULL);
+ if (pSemaphore->win32.hSemaphore == NULL) {
+ return MA_FAILED_TO_CREATE_SEMAPHORE;
+ }
+
+ return MA_SUCCESS;
+}
+
+static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore)
+{
+ CloseHandle((HANDLE)pSemaphore->win32.hSemaphore);
+}
+
+static ma_bool32 ma_semaphore_wait__win32(ma_semaphore* pSemaphore)
+{
+ return WaitForSingleObject((HANDLE)pSemaphore->win32.hSemaphore, INFINITE) == WAIT_OBJECT_0;
+}
+
+static ma_bool32 ma_semaphore_release__win32(ma_semaphore* pSemaphore)
+{
+ return ReleaseSemaphore((HANDLE)pSemaphore->win32.hSemaphore, 1, NULL) != 0;
+}
#endif
@@ -5083,7 +6770,7 @@ typedef int (* ma_pthread_attr_setschedpolicy_proc)(pthread_attr_t *attr, int po
typedef int (* ma_pthread_attr_getschedparam_proc)(const pthread_attr_t *attr, struct sched_param *param);
typedef int (* ma_pthread_attr_setschedparam_proc)(pthread_attr_t *attr, const struct sched_param *param);
-ma_result ma_thread_create__posix(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
+static ma_result ma_thread_create__posix(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
{
int result;
pthread_attr_t* pAttr = NULL;
@@ -5150,16 +6837,17 @@ ma_result ma_thread_create__posix(ma_context* pContext, ma_thread* pThread, ma_t
return MA_SUCCESS;
}
-void ma_thread_wait__posix(ma_thread* pThread)
+static void ma_thread_wait__posix(ma_thread* pThread)
{
((ma_pthread_join_proc)pThread->pContext->posix.pthread_join)(pThread->posix.thread, NULL);
}
-void ma_sleep__posix(ma_uint32 milliseconds)
+#if !defined(MA_EMSCRIPTEN)
+static void ma_sleep__posix(ma_uint32 milliseconds)
{
#ifdef MA_EMSCRIPTEN
(void)milliseconds;
- ma_assert(MA_FALSE); /* The Emscripten build should never sleep. */
+ MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */
#else
#if _POSIX_C_SOURCE >= 199309L
struct timespec ts;
@@ -5174,9 +6862,10 @@ void ma_sleep__posix(ma_uint32 milliseconds)
#endif
#endif
}
+#endif /* MA_EMSCRIPTEN */
-ma_result ma_mutex_init__posix(ma_context* pContext, ma_mutex* pMutex)
+static ma_result ma_mutex_init__posix(ma_context* pContext, ma_mutex* pMutex)
{
int result = ((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pMutex->posix.mutex, NULL);
if (result != 0) {
@@ -5186,23 +6875,23 @@ ma_result ma_mutex_init__posix(ma_context* pContext, ma_mutex* pMutex)
return MA_SUCCESS;
}
-void ma_mutex_uninit__posix(ma_mutex* pMutex)
+static void ma_mutex_uninit__posix(ma_mutex* pMutex)
{
((ma_pthread_mutex_destroy_proc)pMutex->pContext->posix.pthread_mutex_destroy)(&pMutex->posix.mutex);
}
-void ma_mutex_lock__posix(ma_mutex* pMutex)
+static void ma_mutex_lock__posix(ma_mutex* pMutex)
{
((ma_pthread_mutex_lock_proc)pMutex->pContext->posix.pthread_mutex_lock)(&pMutex->posix.mutex);
}
-void ma_mutex_unlock__posix(ma_mutex* pMutex)
+static void ma_mutex_unlock__posix(ma_mutex* pMutex)
{
((ma_pthread_mutex_unlock_proc)pMutex->pContext->posix.pthread_mutex_unlock)(&pMutex->posix.mutex);
}
-ma_result ma_event_init__posix(ma_context* pContext, ma_event* pEvent)
+static ma_result ma_event_init__posix(ma_context* pContext, ma_event* pEvent)
{
if (((ma_pthread_mutex_init_proc)pContext->posix.pthread_mutex_init)(&pEvent->posix.mutex, NULL) != 0) {
return MA_FAILED_TO_CREATE_MUTEX;
@@ -5216,13 +6905,13 @@ ma_result ma_event_init__posix(ma_context* pContext, ma_event* pEvent)
return MA_SUCCESS;
}
-void ma_event_uninit__posix(ma_event* pEvent)
+static void ma_event_uninit__posix(ma_event* pEvent)
{
((ma_pthread_cond_destroy_proc)pEvent->pContext->posix.pthread_cond_destroy)(&pEvent->posix.condition);
((ma_pthread_mutex_destroy_proc)pEvent->pContext->posix.pthread_mutex_destroy)(&pEvent->posix.mutex);
}
-ma_bool32 ma_event_wait__posix(ma_event* pEvent)
+static ma_bool32 ma_event_wait__posix(ma_event* pEvent)
{
((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex);
{
@@ -5236,7 +6925,7 @@ ma_bool32 ma_event_wait__posix(ma_event* pEvent)
return MA_TRUE;
}
-ma_bool32 ma_event_signal__posix(ma_event* pEvent)
+static ma_bool32 ma_event_signal__posix(ma_event* pEvent)
{
((ma_pthread_mutex_lock_proc)pEvent->pContext->posix.pthread_mutex_lock)(&pEvent->posix.mutex);
{
@@ -5247,9 +6936,41 @@ ma_bool32 ma_event_signal__posix(ma_event* pEvent)
return MA_TRUE;
}
+
+
+static ma_result ma_semaphore_init__posix(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
+{
+ (void)pContext;
+
+#if defined(MA_APPLE)
+ /* Not yet implemented for Apple platforms since sem_init() is deprecated. Need to use a named semaphore via sem_open() instead. */
+ return MA_INVALID_OPERATION;
+#else
+ if (sem_init(&pSemaphore->posix.semaphore, 0, (unsigned int)initialValue) == 0) {
+ return MA_FAILED_TO_CREATE_SEMAPHORE;
+ }
#endif
-ma_result ma_thread_create(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
+ return MA_SUCCESS;
+}
+
+static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore)
+{
+ sem_close(&pSemaphore->posix.semaphore);
+}
+
+static ma_bool32 ma_semaphore_wait__posix(ma_semaphore* pSemaphore)
+{
+ return sem_wait(&pSemaphore->posix.semaphore) != -1;
+}
+
+static ma_bool32 ma_semaphore_release__posix(ma_semaphore* pSemaphore)
+{
+ return sem_post(&pSemaphore->posix.semaphore) != -1;
+}
+#endif
+
+static ma_result ma_thread_create(ma_context* pContext, ma_thread* pThread, ma_thread_entry_proc entryProc, void* pData)
{
if (pContext == NULL || pThread == NULL || entryProc == NULL) {
return MA_FALSE;
@@ -5265,7 +6986,7 @@ ma_result ma_thread_create(ma_context* pContext, ma_thread* pThread, ma_thread_e
#endif
}
-void ma_thread_wait(ma_thread* pThread)
+static void ma_thread_wait(ma_thread* pThread)
{
if (pThread == NULL) {
return;
@@ -5279,7 +7000,8 @@ void ma_thread_wait(ma_thread* pThread)
#endif
}
-void ma_sleep(ma_uint32 milliseconds)
+#if !defined(MA_EMSCRIPTEN)
+static void ma_sleep(ma_uint32 milliseconds)
{
#ifdef MA_WIN32
ma_sleep__win32(milliseconds);
@@ -5288,6 +7010,7 @@ void ma_sleep(ma_uint32 milliseconds)
ma_sleep__posix(milliseconds);
#endif
}
+#endif
ma_result ma_mutex_init(ma_context* pContext, ma_mutex* pMutex)
@@ -5408,36 +7131,64 @@ ma_bool32 ma_event_signal(ma_event* pEvent)
}
-ma_uint32 ma_get_best_sample_rate_within_range(ma_uint32 sampleRateMin, ma_uint32 sampleRateMax)
+ma_result ma_semaphore_init(ma_context* pContext, int initialValue, ma_semaphore* pSemaphore)
{
- /* Normalize the range in case we were given something stupid. */
- if (sampleRateMin < MA_MIN_SAMPLE_RATE) {
- sampleRateMin = MA_MIN_SAMPLE_RATE;
+ if (pContext == NULL || pSemaphore == NULL) {
+ return MA_INVALID_ARGS;
}
- if (sampleRateMax > MA_MAX_SAMPLE_RATE) {
- sampleRateMax = MA_MAX_SAMPLE_RATE;
+
+#ifdef MA_WIN32
+ return ma_semaphore_init__win32(pContext, initialValue, pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_init__posix(pContext, initialValue, pSemaphore);
+#endif
+}
+
+void ma_semaphore_uninit(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return;
}
- if (sampleRateMin > sampleRateMax) {
- sampleRateMin = sampleRateMax;
+
+#ifdef MA_WIN32
+ ma_semaphore_uninit__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ ma_semaphore_uninit__posix(pSemaphore);
+#endif
+}
+
+ma_bool32 ma_semaphore_wait(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return MA_FALSE;
}
- if (sampleRateMin == sampleRateMax) {
- return sampleRateMax;
- } else {
- size_t iStandardRate;
- for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) {
- ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate];
- if (standardRate >= sampleRateMin && standardRate <= sampleRateMax) {
- return standardRate;
- }
- }
+#ifdef MA_WIN32
+ return ma_semaphore_wait__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_wait__posix(pSemaphore);
+#endif
+}
+
+ma_bool32 ma_semaphore_release(ma_semaphore* pSemaphore)
+{
+ if (pSemaphore == NULL) {
+ return MA_FALSE;
}
- /* Should never get here. */
- ma_assert(MA_FALSE);
- return 0;
+#ifdef MA_WIN32
+ return ma_semaphore_release__win32(pSemaphore);
+#endif
+#ifdef MA_POSIX
+ return ma_semaphore_release__posix(pSemaphore);
+#endif
}
+
+#if 0
ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
{
ma_uint32 closestRate = 0;
@@ -5466,7 +7217,7 @@ ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
return closestRate;
}
-
+#endif
ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale)
{
@@ -5483,42 +7234,9 @@ ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferS
return bufferSizeInMilliseconds * (sampleRate/1000);
}
-ma_uint32 ma_get_default_buffer_size_in_milliseconds(ma_performance_profile performanceProfile)
-{
- if (performanceProfile == ma_performance_profile_low_latency) {
- return MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY;
- } else {
- return MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE;
- }
-}
-
-ma_uint32 ma_get_default_buffer_size_in_frames(ma_performance_profile performanceProfile, ma_uint32 sampleRate)
-{
- ma_uint32 bufferSizeInMilliseconds;
- ma_uint32 sampleRateMS;
-
- bufferSizeInMilliseconds = ma_get_default_buffer_size_in_milliseconds(performanceProfile);
- if (bufferSizeInMilliseconds == 0) {
- bufferSizeInMilliseconds = 1;
- }
-
- sampleRateMS = (sampleRate/1000);
- if (sampleRateMS == 0) {
- sampleRateMS = 1;
- }
-
- return bufferSizeInMilliseconds * sampleRateMS;
-}
-
-ma_uint32 ma_get_fragment_size_in_bytes(ma_uint32 bufferSizeInFrames, ma_uint32 periods, ma_format format, ma_uint32 channels)
-{
- ma_uint32 fragmentSizeInFrames = bufferSizeInFrames / periods;
- return fragmentSizeInFrames * ma_get_bytes_per_frame(format, channels);
-}
-
void ma_zero_pcm_frames(void* p, ma_uint32 frameCount, ma_format format, ma_uint32 channels)
{
- ma_zero_memory(p, frameCount * ma_get_bytes_per_frame(format, channels));
+ MA_ZERO_MEMORY(p, frameCount * ma_get_bytes_per_frame(format, channels));
}
void ma_clip_samples_f32(float* p, ma_uint32 sampleCount)
@@ -5705,28 +7423,29 @@ void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint32 frameCount, m
float ma_factor_to_gain_db(float factor)
{
- return (float)(20*log10(factor));
+ return (float)(20*ma_log10f(factor));
}
float ma_gain_db_to_factor(float gain)
{
- return (float)pow(10, gain/20.0);
+ return (float)ma_powf(10, gain/20.0f);
}
-static MA_INLINE void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount)
+static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount)
{
- ma_device_callback_proc onData;
+ float masterVolumeFactor;
+
+ masterVolumeFactor = pDevice->masterVolumeFactor;
- onData = pDevice->onData;
- if (onData) {
+ if (pDevice->onData) {
if (!pDevice->noPreZeroedOutputBuffer && pFramesOut != NULL) {
ma_zero_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels);
}
/* Volume control of input makes things a bit awkward because the input buffer is read-only. We'll need to use a temp buffer and loop in this case. */
- if (pFramesIn != NULL && pDevice->masterVolumeFactor < 1) {
- ma_uint8 tempFramesIn[8192];
+ if (pFramesIn != NULL && masterVolumeFactor < 1) {
+ ma_uint8 tempFramesIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 bpfCapture = ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 bpfPlayback = ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint32 totalFramesProcessed = 0;
@@ -5736,21 +7455,21 @@ static MA_INLINE void ma_device__on_data(ma_device* pDevice, void* pFramesOut, c
framesToProcessThisIteration = sizeof(tempFramesIn)/bpfCapture;
}
- ma_copy_and_apply_volume_factor_pcm_frames(tempFramesIn, ma_offset_ptr(pFramesIn, totalFramesProcessed*bpfCapture), framesToProcessThisIteration, pDevice->capture.format, pDevice->capture.channels, pDevice->masterVolumeFactor);
+ ma_copy_and_apply_volume_factor_pcm_frames(tempFramesIn, ma_offset_ptr(pFramesIn, totalFramesProcessed*bpfCapture), framesToProcessThisIteration, pDevice->capture.format, pDevice->capture.channels, masterVolumeFactor);
- onData(pDevice, ma_offset_ptr(pFramesOut, totalFramesProcessed*bpfPlayback), tempFramesIn, framesToProcessThisIteration);
+ pDevice->onData(pDevice, ma_offset_ptr(pFramesOut, totalFramesProcessed*bpfPlayback), tempFramesIn, framesToProcessThisIteration);
totalFramesProcessed += framesToProcessThisIteration;
}
} else {
- onData(pDevice, pFramesOut, pFramesIn, frameCount);
+ pDevice->onData(pDevice, pFramesOut, pFramesIn, frameCount);
}
/* Volume control and clipping for playback devices. */
if (pFramesOut != NULL) {
- if (pDevice->masterVolumeFactor < 1) {
+ if (masterVolumeFactor < 1) {
if (pFramesIn == NULL) { /* <-- In full-duplex situations, the volume will have been applied to the input samples before the data callback. Applying it again post-callback will incorrectly compound it. */
- ma_apply_volume_factor_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels, pDevice->masterVolumeFactor);
+ ma_apply_volume_factor_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels, masterVolumeFactor);
}
}
@@ -5762,173 +7481,174 @@ static MA_INLINE void ma_device__on_data(ma_device* pDevice, void* pFramesOut, c
}
-/* The callback for reading from the client -> DSP -> device. */
-ma_uint32 ma_device__on_read_from_client(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
-{
- ma_device* pDevice = (ma_device*)pUserData;
-
- ma_assert(pDevice != NULL);
-
- ma_device__on_data(pDevice, pFramesOut, NULL, frameCount);
-
- (void)pDSP;
- return frameCount;
-}
-/* The PCM converter callback for reading from a buffer. */
-ma_uint32 ma_device__pcm_converter__on_read_from_buffer_capture(ma_pcm_converter* pConverter, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+/* A helper function for reading sample data from the client. */
+static void ma_device__read_frames_from_client(ma_device* pDevice, ma_uint32 frameCount, void* pFramesOut)
{
- ma_device* pDevice = (ma_device*)pUserData;
- ma_uint32 framesToRead;
- ma_uint32 bytesToRead;
-
- ma_assert(pDevice != NULL);
-
- if (pDevice->capture._dspFrameCount == 0) {
- return 0; /* Nothing left. */
- }
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(frameCount > 0);
+ MA_ASSERT(pFramesOut != NULL);
- framesToRead = frameCount;
- if (framesToRead > pDevice->capture._dspFrameCount) {
- framesToRead = pDevice->capture._dspFrameCount;
- }
-
- bytesToRead = framesToRead * ma_get_bytes_per_frame(pConverter->formatConverterIn.config.formatIn, pConverter->channelRouter.config.channelsIn);
-
- /* pDevice->capture._dspFrames can be null in which case it should be treated as silence. */
- if (pDevice->capture._dspFrames != NULL) {
- ma_copy_memory(pFramesOut, pDevice->capture._dspFrames, bytesToRead);
- pDevice->capture._dspFrames += bytesToRead;
+ if (pDevice->playback.converter.isPassthrough) {
+ ma_device__on_data(pDevice, pFramesOut, NULL, frameCount);
} else {
- ma_zero_memory(pFramesOut, bytesToRead);
- }
-
- pDevice->capture._dspFrameCount -= framesToRead;
-
- return framesToRead;
-}
-
-ma_uint32 ma_device__pcm_converter__on_read_from_buffer_playback(ma_pcm_converter* pConverter, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
-{
- ma_device* pDevice = (ma_device*)pUserData;
- ma_uint32 framesToRead;
- ma_uint32 bytesToRead;
-
- ma_assert(pDevice != NULL);
-
- if (pDevice->playback._dspFrameCount == 0) {
- return 0; /* Nothing left. */
- }
+ ma_result result;
+ ma_uint64 totalFramesReadOut;
+ ma_uint64 totalFramesReadIn;
+ void* pRunningFramesOut;
- framesToRead = frameCount;
- if (framesToRead > pDevice->playback._dspFrameCount) {
- framesToRead = pDevice->playback._dspFrameCount;
- }
+ totalFramesReadOut = 0;
+ totalFramesReadIn = 0;
+ pRunningFramesOut = pFramesOut;
- bytesToRead = framesToRead * ma_get_bytes_per_frame(pConverter->formatConverterIn.config.formatIn, pConverter->channelRouter.config.channelsIn);
+ while (totalFramesReadOut < frameCount) {
+ ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In client format. */
+ ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 framesToReadThisIterationIn;
+ ma_uint64 framesReadThisIterationIn;
+ ma_uint64 framesToReadThisIterationOut;
+ ma_uint64 framesReadThisIterationOut;
+ ma_uint64 requiredInputFrameCount;
- /* pDevice->playback._dspFrames can be null in which case it should be treated as silence. */
- if (pDevice->playback._dspFrames != NULL) {
- ma_copy_memory(pFramesOut, pDevice->playback._dspFrames, bytesToRead);
- pDevice->playback._dspFrames += bytesToRead;
- } else {
- ma_zero_memory(pFramesOut, bytesToRead);
- }
+ framesToReadThisIterationOut = (frameCount - totalFramesReadOut);
+ framesToReadThisIterationIn = framesToReadThisIterationOut;
+ if (framesToReadThisIterationIn > intermediaryBufferCap) {
+ framesToReadThisIterationIn = intermediaryBufferCap;
+ }
- pDevice->playback._dspFrameCount -= framesToRead;
-
- return framesToRead;
-}
+ requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, frameCount);
+ if (framesToReadThisIterationIn > requiredInputFrameCount) {
+ framesToReadThisIterationIn = requiredInputFrameCount;
+ }
+ if (framesToReadThisIterationIn > 0) {
+ ma_device__on_data(pDevice, pIntermediaryBuffer, NULL, (ma_uint32)framesToReadThisIterationIn);
+ totalFramesReadIn += framesToReadThisIterationIn;
+ }
+ /*
+ At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any
+ input frames, we still want to try processing frames because there may some output frames generated from cached input data.
+ */
+ framesReadThisIterationIn = framesToReadThisIterationIn;
+ framesReadThisIterationOut = framesToReadThisIterationOut;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut);
+ if (result != MA_SUCCESS) {
+ break;
+ }
-/* A helper function for reading sample data from the client. */
-static MA_INLINE void ma_device__read_frames_from_client(ma_device* pDevice, ma_uint32 frameCount, void* pFramesOut)
-{
- ma_assert(pDevice != NULL);
- ma_assert(frameCount > 0);
- ma_assert(pFramesOut != NULL);
+ totalFramesReadOut += framesReadThisIterationOut;
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
- if (pDevice->playback.converter.isPassthrough) {
- ma_device__on_data(pDevice, pFramesOut, NULL, frameCount);
- } else {
- ma_pcm_converter_read(&pDevice->playback.converter, pFramesOut, frameCount);
+ if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) {
+ break; /* We're done. */
+ }
+ }
}
}
/* A helper for sending sample data to the client. */
-static MA_INLINE void ma_device__send_frames_to_client(ma_device* pDevice, ma_uint32 frameCount, const void* pFrames)
+static void ma_device__send_frames_to_client(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat)
{
- ma_assert(pDevice != NULL);
- ma_assert(frameCount > 0);
- ma_assert(pFrames != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(frameCountInDeviceFormat > 0);
+ MA_ASSERT(pFramesInDeviceFormat != NULL);
if (pDevice->capture.converter.isPassthrough) {
- ma_device__on_data(pDevice, NULL, pFrames, frameCount);
+ ma_device__on_data(pDevice, NULL, pFramesInDeviceFormat, frameCountInDeviceFormat);
} else {
- ma_uint8 chunkBuffer[4096];
- ma_uint32 chunkFrameCount;
+ ma_result result;
+ ma_uint8 pFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint64 framesInClientFormatCap = sizeof(pFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint64 totalDeviceFramesProcessed = 0;
+ ma_uint64 totalClientFramesProcessed = 0;
+ const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat;
- pDevice->capture._dspFrameCount = frameCount;
- pDevice->capture._dspFrames = (const ma_uint8*)pFrames;
+ /* We just keep going until we've exhaused all of our input frames and cannot generate any more output frames. */
+ for (;;) {
+ ma_uint64 deviceFramesProcessedThisIteration;
+ ma_uint64 clientFramesProcessedThisIteration;
- chunkFrameCount = sizeof(chunkBuffer) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ deviceFramesProcessedThisIteration = (frameCountInDeviceFormat - totalDeviceFramesProcessed);
+ clientFramesProcessedThisIteration = framesInClientFormatCap;
- for (;;) {
- ma_uint32 framesJustRead = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, chunkBuffer, chunkFrameCount);
- if (framesJustRead == 0) {
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &deviceFramesProcessedThisIteration, pFramesInClientFormat, &clientFramesProcessedThisIteration);
+ if (result != MA_SUCCESS) {
break;
}
- ma_device__on_data(pDevice, NULL, chunkBuffer, framesJustRead);
+ if (clientFramesProcessedThisIteration > 0) {
+ ma_device__on_data(pDevice, NULL, pFramesInClientFormat, (ma_uint32)clientFramesProcessedThisIteration); /* Safe cast. */
+ }
+
+ pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, deviceFramesProcessedThisIteration * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+ totalDeviceFramesProcessed += deviceFramesProcessedThisIteration;
+ totalClientFramesProcessed += clientFramesProcessedThisIteration;
- if (framesJustRead < chunkFrameCount) {
- break;
+ if (deviceFramesProcessedThisIteration == 0 && clientFramesProcessedThisIteration == 0) {
+ break; /* We're done. */
}
}
}
}
-static MA_INLINE ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, ma_uint32 frameCount, const void* pFramesInInternalFormat, ma_pcm_rb* pRB)
+
+/* We only want to expose ma_device__handle_duplex_callback_capture() and ma_device__handle_duplex_callback_playback() if we have an asynchronous backend enabled. */
+#if defined(MA_HAS_JACK) || \
+ defined(MA_HAS_COREAUDIO) || \
+ defined(MA_HAS_AAUDIO) || \
+ defined(MA_HAS_OPENSL) || \
+ defined(MA_HAS_WEBAUDIO)
+static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat, ma_pcm_rb* pRB)
{
ma_result result;
+ ma_uint32 totalDeviceFramesProcessed = 0;
+ const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat;
- ma_assert(pDevice != NULL);
- ma_assert(frameCount > 0);
- ma_assert(pFramesInInternalFormat != NULL);
- ma_assert(pRB != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(frameCountInDeviceFormat > 0);
+ MA_ASSERT(pFramesInDeviceFormat != NULL);
+ MA_ASSERT(pRB != NULL);
- pDevice->capture._dspFrameCount = (ma_uint32)frameCount;
- pDevice->capture._dspFrames = (const ma_uint8*)pFramesInInternalFormat;
-
- /* Write to the ring buffer. The ring buffer is in the external format. */
+ /* Write to the ring buffer. The ring buffer is in the client format which means we need to convert. */
for (;;) {
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = 256;
- void* pFramesInExternalFormat;
+ ma_uint32 framesToProcessInDeviceFormat = (frameCountInDeviceFormat - totalDeviceFramesProcessed);
+ ma_uint32 framesToProcessInClientFormat = MA_DATA_CONVERTER_STACK_BUFFER_SIZE / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint64 framesProcessedInDeviceFormat;
+ ma_uint64 framesProcessedInClientFormat;
+ void* pFramesInClientFormat;
- result = ma_pcm_rb_acquire_write(pRB, &framesToProcess, &pFramesInExternalFormat);
+ result = ma_pcm_rb_acquire_write(pRB, &framesToProcessInClientFormat, &pFramesInClientFormat);
if (result != MA_SUCCESS) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "Failed to acquire capture PCM frames from ring buffer.", result);
break;
}
- if (framesToProcess == 0) {
+ if (framesToProcessInClientFormat == 0) {
if (ma_pcm_rb_pointer_disance(pRB) == (ma_int32)ma_pcm_rb_get_subbuffer_size(pRB)) {
break; /* Overrun. Not enough room in the ring buffer for input frame. Excess frames are dropped. */
}
}
/* Convert. */
- framesProcessed = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, pFramesInExternalFormat, framesToProcess);
+ framesProcessedInDeviceFormat = framesToProcessInDeviceFormat;
+ framesProcessedInClientFormat = framesToProcessInClientFormat;
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &framesProcessedInDeviceFormat, pFramesInClientFormat, &framesProcessedInClientFormat);
+ if (result != MA_SUCCESS) {
+ break;
+ }
- result = ma_pcm_rb_commit_write(pRB, framesProcessed, pFramesInExternalFormat);
+ result = ma_pcm_rb_commit_write(pRB, (ma_uint32)framesProcessedInDeviceFormat, pFramesInClientFormat); /* Safe cast. */
if (result != MA_SUCCESS) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "Failed to commit capture PCM frames to ring buffer.", result);
break;
}
- if (framesProcessed < framesToProcess) {
+ pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, framesProcessedInDeviceFormat * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+ totalDeviceFramesProcessed += (ma_uint32)framesProcessedInDeviceFormat; /* Safe cast. */
+
+ /* We're done when we're unable to process any client nor device frames. */
+ if (framesProcessedInClientFormat == 0 && framesProcessedInDeviceFormat == 0) {
break; /* Done. */
}
}
@@ -5936,27 +7656,28 @@ static MA_INLINE ma_result ma_device__handle_duplex_callback_capture(ma_device*
return MA_SUCCESS;
}
-static MA_INLINE ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, ma_uint32 frameCount, void* pFramesInInternalFormat, ma_pcm_rb* pRB)
+static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, ma_uint32 frameCount, void* pFramesInInternalFormat, ma_pcm_rb* pRB)
{
ma_result result;
- ma_uint8 playbackFramesInExternalFormat[4096];
- ma_uint8 silentInputFrames[4096];
+ ma_uint8 playbackFramesInExternalFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 silentInputFrames[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 totalFramesToReadFromClient;
ma_uint32 totalFramesReadFromClient;
+ ma_uint32 totalFramesReadOut = 0;
- ma_assert(pDevice != NULL);
- ma_assert(frameCount > 0);
- ma_assert(pFramesInInternalFormat != NULL);
- ma_assert(pRB != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(frameCount > 0);
+ MA_ASSERT(pFramesInInternalFormat != NULL);
+ MA_ASSERT(pRB != NULL);
/*
Sitting in the ring buffer should be captured data from the capture callback in external format. If there's not enough data in there for
the whole frameCount frames we just use silence instead for the input data.
*/
- ma_zero_memory(silentInputFrames, sizeof(silentInputFrames));
+ MA_ZERO_MEMORY(silentInputFrames, sizeof(silentInputFrames));
/* We need to calculate how many output frames are required to be read from the client to completely fill frameCount internal frames. */
- totalFramesToReadFromClient = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->playback.internalSampleRate, frameCount); /* ma_pcm_converter_get_required_input_frame_count(&pDevice->playback.converter, (ma_uint32)frameCount); */
+ totalFramesToReadFromClient = (ma_uint32)ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, frameCount);
totalFramesReadFromClient = 0;
while (totalFramesReadFromClient < totalFramesToReadFromClient && ma_device_is_started(pDevice)) {
ma_uint32 framesRemainingFromClient;
@@ -5999,16 +7720,20 @@ static MA_INLINE ma_result ma_device__handle_duplex_callback_playback(ma_device*
}
/* We have samples in external format so now we need to convert to internal format and output to the device. */
- pDevice->playback._dspFrameCount = inputFrameCount;
- pDevice->playback._dspFrames = (const ma_uint8*)playbackFramesInExternalFormat;
- ma_pcm_converter_read(&pDevice->playback.converter, pFramesInInternalFormat, inputFrameCount);
+ {
+ ma_uint64 framesConvertedIn = inputFrameCount;
+ ma_uint64 framesConvertedOut = (frameCount - totalFramesReadOut);
+ ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackFramesInExternalFormat, &framesConvertedIn, pFramesInInternalFormat, &framesConvertedOut);
- totalFramesReadFromClient += inputFrameCount;
- pFramesInInternalFormat = ma_offset_ptr(pFramesInInternalFormat, inputFrameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
+ totalFramesReadFromClient += (ma_uint32)framesConvertedIn; /* Safe cast. */
+ totalFramesReadOut += (ma_uint32)framesConvertedOut; /* Safe cast. */
+ pFramesInInternalFormat = ma_offset_ptr(pFramesInInternalFormat, framesConvertedOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
+ }
}
return MA_SUCCESS;
}
+#endif /* Asynchronous backends. */
/* A helper for changing the state of the device. */
static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_uint32 newState)
@@ -6019,10 +7744,7 @@ static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_uint32 newStat
/* A helper for getting the state of the device. */
static MA_INLINE ma_uint32 ma_device__get_state(ma_device* pDevice)
{
- ma_uint32 state;
- ma_atomic_exchange_32(&state, pDevice->state);
-
- return state;
+ return pDevice->state;
}
@@ -6034,25 +7756,6 @@ static MA_INLINE ma_uint32 ma_device__get_state(ma_device* pDevice)
#endif
-ma_bool32 ma_context__device_id_equal(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
-{
- ma_assert(pContext != NULL);
-
- if (pID0 == pID1) return MA_TRUE;
-
- if ((pID0 == NULL && pID1 != NULL) ||
- (pID0 != NULL && pID1 == NULL)) {
- return MA_FALSE;
- }
-
- if (pContext->onDeviceIDEqual) {
- return pContext->onDeviceIDEqual(pContext, pID0, pID1);
- }
-
- return MA_FALSE;
-}
-
-
typedef struct
{
ma_device_type deviceType;
@@ -6062,10 +7765,10 @@ typedef struct
ma_bool32 foundDevice;
} ma_context__try_get_device_name_by_id__enum_callback_data;
-ma_bool32 ma_context__try_get_device_name_by_id__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
+static ma_bool32 ma_context__try_get_device_name_by_id__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
{
ma_context__try_get_device_name_by_id__enum_callback_data* pData = (ma_context__try_get_device_name_by_id__enum_callback_data*)pUserData;
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
if (pData->deviceType == deviceType) {
if (pContext->onDeviceIDEqual(pContext, pData->pDeviceID, &pDeviceInfo->id)) {
@@ -6082,13 +7785,13 @@ Generic function for retrieving the name of a device by it's ID.
This function simply enumerates every device and then retrieves the name of the first device that has the same ID.
*/
-ma_result ma_context__try_get_device_name_by_id(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, char* pName, size_t nameBufferSize)
+static ma_result ma_context__try_get_device_name_by_id(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, char* pName, size_t nameBufferSize)
{
ma_result result;
ma_context__try_get_device_name_by_id__enum_callback_data data;
- ma_assert(pContext != NULL);
- ma_assert(pName != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pName != NULL);
if (pDeviceID == NULL) {
return MA_NO_DEVICE;
@@ -6125,7 +7828,7 @@ ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */
return (ma_uint32)-1;
}
-void ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType);
+static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType);
/*******************************************************************************
@@ -6140,10 +7843,10 @@ Null Backend
#define MA_DEVICE_OP_SUSPEND__NULL 2
#define MA_DEVICE_OP_KILL__NULL 3
-ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
+static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
{
ma_device* pDevice = (ma_device*)pData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
for (;;) { /* Keep the thread alive until the device is uninitialized. */
/* Wait for an operation to be requested. */
@@ -6193,7 +7896,7 @@ ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
/* Getting a signal on a "none" operation probably means an error. Return invalid operation. */
if (pDevice->null_device.operation == MA_DEVICE_OP_NONE__NULL) {
- ma_assert(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */
+ MA_ASSERT(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */
ma_atomic_exchange_32(&pDevice->null_device.operationResult, MA_INVALID_OPERATION);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue; /* Continue the loop. Don't terminate. */
@@ -6203,7 +7906,7 @@ ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
return (ma_thread_result)0;
}
-ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation)
+static ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation)
{
ma_atomic_exchange_32(&pDevice->null_device.operation, operation);
if (!ma_event_signal(&pDevice->null_device.operationEvent)) {
@@ -6217,7 +7920,7 @@ ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation)
return pDevice->null_device.operationResult;
}
-ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice)
+static ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice)
{
ma_uint32 internalSampleRate;
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -6230,27 +7933,27 @@ ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice)
return (ma_uint64)((pDevice->null_device.priorRunTime + ma_timer_get_time_in_seconds(&pDevice->null_device.timer)) * internalSampleRate);
}
-ma_bool32 ma_context_is_device_id_equal__null(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__null(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->nullbackend == pID1->nullbackend;
}
-ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Playback Device", (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
@@ -6258,7 +7961,7 @@ ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devic
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Capture Device", (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
@@ -6266,11 +7969,11 @@ ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devic
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_uint32 iFormat;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (pDeviceID != NULL && pDeviceID->nullbackend != 0) {
return MA_NO_DEVICE; /* Don't know the device. */
@@ -6300,9 +8003,9 @@ ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type
}
-void ma_device_uninit__null(ma_device* pDevice)
+static void ma_device_uninit__null(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* Keep it clean and wait for the device thread to finish before returning. */
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_KILL__NULL);
@@ -6312,22 +8015,22 @@ void ma_device_uninit__null(ma_device* pDevice)
ma_event_uninit(&pDevice->null_device.operationEvent);
}
-ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->null_device);
+ MA_ZERO_OBJECT(&pDevice->null_device);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
- bufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (bufferSizeInFrames == 0) {
- bufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, pConfig->sampleRate);
+ periodSizeInFrames = pConfig->periodSizeInFrames;
+ if (periodSizeInFrames == 0) {
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate);
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
@@ -6335,7 +8038,7 @@ ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pCo
pDevice->capture.internalFormat = pConfig->capture.format;
pDevice->capture.internalChannels = pConfig->capture.channels;
ma_channel_map_copy(pDevice->capture.internalChannelMap, pConfig->capture.channelMap, pConfig->capture.channels);
- pDevice->capture.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = pConfig->periods;
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
@@ -6343,7 +8046,7 @@ ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pCo
pDevice->playback.internalFormat = pConfig->playback.format;
pDevice->playback.internalChannels = pConfig->playback.channels;
ma_channel_map_copy(pDevice->playback.internalChannelMap, pConfig->playback.channelMap, pConfig->playback.channels);
- pDevice->playback.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = pConfig->periods;
}
@@ -6369,9 +8072,9 @@ ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pCo
return MA_SUCCESS;
}
-ma_result ma_device_start__null(ma_device* pDevice)
+static ma_result ma_device_start__null(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_START__NULL);
@@ -6379,9 +8082,9 @@ ma_result ma_device_start__null(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__null(ma_device* pDevice)
+static ma_result ma_device_stop__null(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_SUSPEND__NULL);
@@ -6389,7 +8092,7 @@ ma_result ma_device_stop__null(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_result result = MA_SUCCESS;
ma_uint32 totalPCMFramesProcessed;
@@ -6434,7 +8137,7 @@ ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_u
}
/* If we've consumed the whole buffer we can return now. */
- ma_assert(totalPCMFramesProcessed <= frameCount);
+ MA_ASSERT(totalPCMFramesProcessed <= frameCount);
if (totalPCMFramesProcessed == frameCount) {
break;
}
@@ -6458,8 +8161,8 @@ ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_u
ma_sleep(10);
}
- pDevice->null_device.lastProcessedFramePlayback += pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
- pDevice->null_device.currentPeriodFramesRemainingPlayback = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ pDevice->null_device.lastProcessedFramePlayback += pDevice->playback.internalPeriodSizeInFrames;
+ pDevice->null_device.currentPeriodFramesRemainingPlayback = pDevice->playback.internalPeriodSizeInFrames;
}
if (pFramesWritten != NULL) {
@@ -6469,7 +8172,7 @@ ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_u
return result;
}
-ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_result result = MA_SUCCESS;
ma_uint32 totalPCMFramesProcessed;
@@ -6493,7 +8196,7 @@ ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 f
}
/* We need to ensured the output buffer is zeroed. */
- ma_zero_memory(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf);
+ MA_ZERO_MEMORY(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf);
pDevice->null_device.currentPeriodFramesRemainingCapture -= framesToProcess;
totalPCMFramesProcessed += framesToProcess;
@@ -6505,13 +8208,13 @@ ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 f
}
/* If we've consumed the whole buffer we can return now. */
- ma_assert(totalPCMFramesProcessed <= frameCount);
+ MA_ASSERT(totalPCMFramesProcessed <= frameCount);
if (totalPCMFramesProcessed == frameCount) {
break;
}
/* Getting here means we've still got more frames to consume, we but need to wait for it to become available. */
- targetFrame = pDevice->null_device.lastProcessedFrameCapture + (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods);
+ targetFrame = pDevice->null_device.lastProcessedFrameCapture + pDevice->capture.internalPeriodSizeInFrames;
for (;;) {
ma_uint64 currentFrame;
@@ -6529,8 +8232,8 @@ ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 f
ma_sleep(10);
}
- pDevice->null_device.lastProcessedFrameCapture += pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
- pDevice->null_device.currentPeriodFramesRemainingCapture = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ pDevice->null_device.lastProcessedFrameCapture += pDevice->capture.internalPeriodSizeInFrames;
+ pDevice->null_device.currentPeriodFramesRemainingCapture = pDevice->capture.internalPeriodSizeInFrames;
}
if (pFramesRead != NULL) {
@@ -6540,12 +8243,12 @@ ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 f
return result;
}
-ma_result ma_device_main_loop__null(ma_device* pDevice)
+static ma_result ma_device_main_loop__null(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -6561,77 +8264,89 @@ ma_result ma_device_main_loop__null(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__null(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__null(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
+ /* At this point we have our captured data in device format and we now need to convert it to client format. */
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
+ }
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__null(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__null(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__null()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
@@ -6640,7 +8355,7 @@ ma_result ma_device_main_loop__null(ma_device* pDevice)
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -6667,7 +8382,7 @@ ma_result ma_device_main_loop__null(ma_device* pDevice)
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -6702,18 +8417,18 @@ ma_result ma_device_main_loop__null(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__null(ma_context* pContext)
+static ma_result ma_context_uninit__null(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_null);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_null);
(void)pContext;
return MA_SUCCESS;
}
-ma_result ma_context_init__null(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__null(const ma_context_config* pConfig, ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -6820,10 +8535,10 @@ typedef struct
#define WAVE_FORMAT_IEEE_FLOAT 0x0003
#endif
-GUID MA_GUID_NULL = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
+static GUID MA_GUID_NULL = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
/* Converts an individual Win32-style channel identifier (SPEAKER_FRONT_LEFT, etc.) to miniaudio. */
-ma_uint8 ma_channel_id_to_ma__win32(DWORD id)
+static ma_uint8 ma_channel_id_to_ma__win32(DWORD id)
{
switch (id)
{
@@ -6850,7 +8565,7 @@ ma_uint8 ma_channel_id_to_ma__win32(DWORD id)
}
/* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to Win32-style. */
-DWORD ma_channel_id_to_win32(DWORD id)
+static DWORD ma_channel_id_to_win32(DWORD id)
{
switch (id)
{
@@ -6878,7 +8593,7 @@ DWORD ma_channel_id_to_win32(DWORD id)
}
/* Converts a channel mapping to a Win32-style channel mask. */
-DWORD ma_channel_map_to_channel_mask__win32(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
+static DWORD ma_channel_map_to_channel_mask__win32(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
{
DWORD dwChannelMask = 0;
ma_uint32 iChannel;
@@ -6891,7 +8606,7 @@ DWORD ma_channel_map_to_channel_mask__win32(const ma_channel channelMap[MA_MAX_C
}
/* Converts a Win32-style channel mask to a miniaudio channel map. */
-void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+static void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channels == 1 && dwChannelMask == 0) {
channelMap[0] = MA_CHANNEL_MONO;
@@ -6919,7 +8634,7 @@ void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channe
}
#ifdef __cplusplus
-ma_bool32 ma_is_guid_equal(const void* a, const void* b)
+static ma_bool32 ma_is_guid_equal(const void* a, const void* b)
{
return IsEqualGUID(*(const GUID*)a, *(const GUID*)b);
}
@@ -6927,9 +8642,9 @@ ma_bool32 ma_is_guid_equal(const void* a, const void* b)
#define ma_is_guid_equal(a, b) IsEqualGUID((const GUID*)a, (const GUID*)b)
#endif
-ma_format ma_format_from_WAVEFORMATEX(const WAVEFORMATEX* pWF)
+static ma_format ma_format_from_WAVEFORMATEX(const WAVEFORMATEX* pWF)
{
- ma_assert(pWF != NULL);
+ MA_ASSERT(pWF != NULL);
if (pWF->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
const WAVEFORMATEXTENSIBLE* pWFEX = (const WAVEFORMATEXTENSIBLE*)pWF;
@@ -7010,9 +8725,6 @@ WASAPI Backend
#endif
#endif /* 0 */
-
-
-
/* Some compilers don't define VerifyVersionInfoW. Need to write this ourselves. */
#define MA_WIN32_WINNT_VISTA 0x0600
#define MA_VER_MINORVERSION 0x01
@@ -7050,30 +8762,30 @@ typedef struct
/* Some compilers don't define PropVariantInit(). We just do this ourselves since it's just a memset(). */
static MA_INLINE void ma_PropVariantInit(PROPVARIANT* pProp)
{
- ma_zero_object(pProp);
+ MA_ZERO_OBJECT(pProp);
}
-const PROPERTYKEY MA_PKEY_Device_FriendlyName = {{0xA45C254E, 0xDF1C, 0x4EFD, {0x80, 0x20, 0x67, 0xD1, 0x46, 0xA8, 0x50, 0xE0}}, 14};
-const PROPERTYKEY MA_PKEY_AudioEngine_DeviceFormat = {{0xF19F064D, 0x82C, 0x4E27, {0xBC, 0x73, 0x68, 0x82, 0xA1, 0xBB, 0x8E, 0x4C}}, 0};
+static const PROPERTYKEY MA_PKEY_Device_FriendlyName = {{0xA45C254E, 0xDF1C, 0x4EFD, {0x80, 0x20, 0x67, 0xD1, 0x46, 0xA8, 0x50, 0xE0}}, 14};
+static const PROPERTYKEY MA_PKEY_AudioEngine_DeviceFormat = {{0xF19F064D, 0x82C, 0x4E27, {0xBC, 0x73, 0x68, 0x82, 0xA1, 0xBB, 0x8E, 0x4C}}, 0};
-const IID MA_IID_IUnknown = {0x00000000, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; /* 00000000-0000-0000-C000-000000000046 */
-const IID MA_IID_IAgileObject = {0x94EA2B94, 0xE9CC, 0x49E0, {0xC0, 0xFF, 0xEE, 0x64, 0xCA, 0x8F, 0x5B, 0x90}}; /* 94EA2B94-E9CC-49E0-C0FF-EE64CA8F5B90 */
+static const IID MA_IID_IUnknown = {0x00000000, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; /* 00000000-0000-0000-C000-000000000046 */
+static const IID MA_IID_IAgileObject = {0x94EA2B94, 0xE9CC, 0x49E0, {0xC0, 0xFF, 0xEE, 0x64, 0xCA, 0x8F, 0x5B, 0x90}}; /* 94EA2B94-E9CC-49E0-C0FF-EE64CA8F5B90 */
-const IID MA_IID_IAudioClient = {0x1CB9AD4C, 0xDBFA, 0x4C32, {0xB1, 0x78, 0xC2, 0xF5, 0x68, 0xA7, 0x03, 0xB2}}; /* 1CB9AD4C-DBFA-4C32-B178-C2F568A703B2 = __uuidof(IAudioClient) */
-const IID MA_IID_IAudioClient2 = {0x726778CD, 0xF60A, 0x4EDA, {0x82, 0xDE, 0xE4, 0x76, 0x10, 0xCD, 0x78, 0xAA}}; /* 726778CD-F60A-4EDA-82DE-E47610CD78AA = __uuidof(IAudioClient2) */
-const IID MA_IID_IAudioClient3 = {0x7ED4EE07, 0x8E67, 0x4CD4, {0x8C, 0x1A, 0x2B, 0x7A, 0x59, 0x87, 0xAD, 0x42}}; /* 7ED4EE07-8E67-4CD4-8C1A-2B7A5987AD42 = __uuidof(IAudioClient3) */
-const IID MA_IID_IAudioRenderClient = {0xF294ACFC, 0x3146, 0x4483, {0xA7, 0xBF, 0xAD, 0xDC, 0xA7, 0xC2, 0x60, 0xE2}}; /* F294ACFC-3146-4483-A7BF-ADDCA7C260E2 = __uuidof(IAudioRenderClient) */
-const IID MA_IID_IAudioCaptureClient = {0xC8ADBD64, 0xE71E, 0x48A0, {0xA4, 0xDE, 0x18, 0x5C, 0x39, 0x5C, 0xD3, 0x17}}; /* C8ADBD64-E71E-48A0-A4DE-185C395CD317 = __uuidof(IAudioCaptureClient) */
-const IID MA_IID_IMMNotificationClient = {0x7991EEC9, 0x7E89, 0x4D85, {0x83, 0x90, 0x6C, 0x70, 0x3C, 0xEC, 0x60, 0xC0}}; /* 7991EEC9-7E89-4D85-8390-6C703CEC60C0 = __uuidof(IMMNotificationClient) */
+static const IID MA_IID_IAudioClient = {0x1CB9AD4C, 0xDBFA, 0x4C32, {0xB1, 0x78, 0xC2, 0xF5, 0x68, 0xA7, 0x03, 0xB2}}; /* 1CB9AD4C-DBFA-4C32-B178-C2F568A703B2 = __uuidof(IAudioClient) */
+static const IID MA_IID_IAudioClient2 = {0x726778CD, 0xF60A, 0x4EDA, {0x82, 0xDE, 0xE4, 0x76, 0x10, 0xCD, 0x78, 0xAA}}; /* 726778CD-F60A-4EDA-82DE-E47610CD78AA = __uuidof(IAudioClient2) */
+static const IID MA_IID_IAudioClient3 = {0x7ED4EE07, 0x8E67, 0x4CD4, {0x8C, 0x1A, 0x2B, 0x7A, 0x59, 0x87, 0xAD, 0x42}}; /* 7ED4EE07-8E67-4CD4-8C1A-2B7A5987AD42 = __uuidof(IAudioClient3) */
+static const IID MA_IID_IAudioRenderClient = {0xF294ACFC, 0x3146, 0x4483, {0xA7, 0xBF, 0xAD, 0xDC, 0xA7, 0xC2, 0x60, 0xE2}}; /* F294ACFC-3146-4483-A7BF-ADDCA7C260E2 = __uuidof(IAudioRenderClient) */
+static const IID MA_IID_IAudioCaptureClient = {0xC8ADBD64, 0xE71E, 0x48A0, {0xA4, 0xDE, 0x18, 0x5C, 0x39, 0x5C, 0xD3, 0x17}}; /* C8ADBD64-E71E-48A0-A4DE-185C395CD317 = __uuidof(IAudioCaptureClient) */
+static const IID MA_IID_IMMNotificationClient = {0x7991EEC9, 0x7E89, 0x4D85, {0x83, 0x90, 0x6C, 0x70, 0x3C, 0xEC, 0x60, 0xC0}}; /* 7991EEC9-7E89-4D85-8390-6C703CEC60C0 = __uuidof(IMMNotificationClient) */
#ifndef MA_WIN32_DESKTOP
-const IID MA_IID_DEVINTERFACE_AUDIO_RENDER = {0xE6327CAD, 0xDCEC, 0x4949, {0xAE, 0x8A, 0x99, 0x1E, 0x97, 0x6A, 0x79, 0xD2}}; /* E6327CAD-DCEC-4949-AE8A-991E976A79D2 */
-const IID MA_IID_DEVINTERFACE_AUDIO_CAPTURE = {0x2EEF81BE, 0x33FA, 0x4800, {0x96, 0x70, 0x1C, 0xD4, 0x74, 0x97, 0x2C, 0x3F}}; /* 2EEF81BE-33FA-4800-9670-1CD474972C3F */
-const IID MA_IID_IActivateAudioInterfaceCompletionHandler = {0x41D949AB, 0x9862, 0x444A, {0x80, 0xF6, 0xC2, 0x61, 0x33, 0x4D, 0xA5, 0xEB}}; /* 41D949AB-9862-444A-80F6-C261334DA5EB */
+static const IID MA_IID_DEVINTERFACE_AUDIO_RENDER = {0xE6327CAD, 0xDCEC, 0x4949, {0xAE, 0x8A, 0x99, 0x1E, 0x97, 0x6A, 0x79, 0xD2}}; /* E6327CAD-DCEC-4949-AE8A-991E976A79D2 */
+static const IID MA_IID_DEVINTERFACE_AUDIO_CAPTURE = {0x2EEF81BE, 0x33FA, 0x4800, {0x96, 0x70, 0x1C, 0xD4, 0x74, 0x97, 0x2C, 0x3F}}; /* 2EEF81BE-33FA-4800-9670-1CD474972C3F */
+static const IID MA_IID_IActivateAudioInterfaceCompletionHandler = {0x41D949AB, 0x9862, 0x444A, {0x80, 0xF6, 0xC2, 0x61, 0x33, 0x4D, 0xA5, 0xEB}}; /* 41D949AB-9862-444A-80F6-C261334DA5EB */
#endif
-const IID MA_CLSID_MMDeviceEnumerator_Instance = {0xBCDE0395, 0xE52F, 0x467C, {0x8E, 0x3D, 0xC4, 0x57, 0x92, 0x91, 0x69, 0x2E}}; /* BCDE0395-E52F-467C-8E3D-C4579291692E = __uuidof(MMDeviceEnumerator) */
-const IID MA_IID_IMMDeviceEnumerator_Instance = {0xA95664D2, 0x9614, 0x4F35, {0xA7, 0x46, 0xDE, 0x8D, 0xB6, 0x36, 0x17, 0xE6}}; /* A95664D2-9614-4F35-A746-DE8DB63617E6 = __uuidof(IMMDeviceEnumerator) */
+static const IID MA_CLSID_MMDeviceEnumerator_Instance = {0xBCDE0395, 0xE52F, 0x467C, {0x8E, 0x3D, 0xC4, 0x57, 0x92, 0x91, 0x69, 0x2E}}; /* BCDE0395-E52F-467C-8E3D-C4579291692E = __uuidof(MMDeviceEnumerator) */
+static const IID MA_IID_IMMDeviceEnumerator_Instance = {0xA95664D2, 0x9614, 0x4F35, {0xA7, 0x46, 0xDE, 0x8D, 0xB6, 0x36, 0x17, 0xE6}}; /* A95664D2-9614-4F35-A746-DE8DB63617E6 = __uuidof(IMMDeviceEnumerator) */
#ifdef __cplusplus
#define MA_CLSID_MMDeviceEnumerator MA_CLSID_MMDeviceEnumerator_Instance
#define MA_IID_IMMDeviceEnumerator MA_IID_IMMDeviceEnumerator_Instance
@@ -7171,9 +8883,9 @@ struct ma_IUnknown
{
ma_IUnknownVtbl* lpVtbl;
};
-HRESULT ma_IUnknown_QueryInterface(ma_IUnknown* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IUnknown_AddRef(ma_IUnknown* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IUnknown_Release(ma_IUnknown* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IUnknown_QueryInterface(ma_IUnknown* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IUnknown_AddRef(ma_IUnknown* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IUnknown_Release(ma_IUnknown* pThis) { return pThis->lpVtbl->Release(pThis); }
#ifdef MA_WIN32_DESKTOP
/* IMMNotificationClient */
@@ -7211,14 +8923,14 @@ ULONG ma_IUnknown_Release(ma_IUnknown* pThis)
{
ma_IMMDeviceEnumeratorVtbl* lpVtbl;
};
- HRESULT ma_IMMDeviceEnumerator_QueryInterface(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
- ULONG ma_IMMDeviceEnumerator_AddRef(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->AddRef(pThis); }
- ULONG ma_IMMDeviceEnumerator_Release(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->Release(pThis); }
- HRESULT ma_IMMDeviceEnumerator_EnumAudioEndpoints(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices) { return pThis->lpVtbl->EnumAudioEndpoints(pThis, dataFlow, dwStateMask, ppDevices); }
- HRESULT ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint) { return pThis->lpVtbl->GetDefaultAudioEndpoint(pThis, dataFlow, role, ppEndpoint); }
- HRESULT ma_IMMDeviceEnumerator_GetDevice(ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->GetDevice(pThis, pID, ppDevice); }
- HRESULT ma_IMMDeviceEnumerator_RegisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->RegisterEndpointNotificationCallback(pThis, pClient); }
- HRESULT ma_IMMDeviceEnumerator_UnregisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->UnregisterEndpointNotificationCallback(pThis, pClient); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_QueryInterface(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+ static MA_INLINE ULONG ma_IMMDeviceEnumerator_AddRef(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+ static MA_INLINE ULONG ma_IMMDeviceEnumerator_Release(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->Release(pThis); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_EnumAudioEndpoints(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices) { return pThis->lpVtbl->EnumAudioEndpoints(pThis, dataFlow, dwStateMask, ppDevices); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint) { return pThis->lpVtbl->GetDefaultAudioEndpoint(pThis, dataFlow, role, ppEndpoint); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDevice(ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->GetDevice(pThis, pID, ppDevice); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_RegisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->RegisterEndpointNotificationCallback(pThis, pClient); }
+ static MA_INLINE HRESULT ma_IMMDeviceEnumerator_UnregisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->UnregisterEndpointNotificationCallback(pThis, pClient); }
/* IMMDeviceCollection */
@@ -7237,11 +8949,11 @@ ULONG ma_IUnknown_Release(ma_IUnknown* pThis)
{
ma_IMMDeviceCollectionVtbl* lpVtbl;
};
- HRESULT ma_IMMDeviceCollection_QueryInterface(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
- ULONG ma_IMMDeviceCollection_AddRef(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->AddRef(pThis); }
- ULONG ma_IMMDeviceCollection_Release(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->Release(pThis); }
- HRESULT ma_IMMDeviceCollection_GetCount(ma_IMMDeviceCollection* pThis, UINT* pDevices) { return pThis->lpVtbl->GetCount(pThis, pDevices); }
- HRESULT ma_IMMDeviceCollection_Item(ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->Item(pThis, nDevice, ppDevice); }
+ static MA_INLINE HRESULT ma_IMMDeviceCollection_QueryInterface(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+ static MA_INLINE ULONG ma_IMMDeviceCollection_AddRef(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+ static MA_INLINE ULONG ma_IMMDeviceCollection_Release(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->Release(pThis); }
+ static MA_INLINE HRESULT ma_IMMDeviceCollection_GetCount(ma_IMMDeviceCollection* pThis, UINT* pDevices) { return pThis->lpVtbl->GetCount(pThis, pDevices); }
+ static MA_INLINE HRESULT ma_IMMDeviceCollection_Item(ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->Item(pThis, nDevice, ppDevice); }
/* IMMDevice */
@@ -7262,13 +8974,13 @@ ULONG ma_IUnknown_Release(ma_IUnknown* pThis)
{
ma_IMMDeviceVtbl* lpVtbl;
};
- HRESULT ma_IMMDevice_QueryInterface(ma_IMMDevice* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
- ULONG ma_IMMDevice_AddRef(ma_IMMDevice* pThis) { return pThis->lpVtbl->AddRef(pThis); }
- ULONG ma_IMMDevice_Release(ma_IMMDevice* pThis) { return pThis->lpVtbl->Release(pThis); }
- HRESULT ma_IMMDevice_Activate(ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface) { return pThis->lpVtbl->Activate(pThis, iid, dwClsCtx, pActivationParams, ppInterface); }
- HRESULT ma_IMMDevice_OpenPropertyStore(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties) { return pThis->lpVtbl->OpenPropertyStore(pThis, stgmAccess, ppProperties); }
- HRESULT ma_IMMDevice_GetId(ma_IMMDevice* pThis, LPWSTR *pID) { return pThis->lpVtbl->GetId(pThis, pID); }
- HRESULT ma_IMMDevice_GetState(ma_IMMDevice* pThis, DWORD *pState) { return pThis->lpVtbl->GetState(pThis, pState); }
+ static MA_INLINE HRESULT ma_IMMDevice_QueryInterface(ma_IMMDevice* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+ static MA_INLINE ULONG ma_IMMDevice_AddRef(ma_IMMDevice* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+ static MA_INLINE ULONG ma_IMMDevice_Release(ma_IMMDevice* pThis) { return pThis->lpVtbl->Release(pThis); }
+ static MA_INLINE HRESULT ma_IMMDevice_Activate(ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface) { return pThis->lpVtbl->Activate(pThis, iid, dwClsCtx, pActivationParams, ppInterface); }
+ static MA_INLINE HRESULT ma_IMMDevice_OpenPropertyStore(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties) { return pThis->lpVtbl->OpenPropertyStore(pThis, stgmAccess, ppProperties); }
+ static MA_INLINE HRESULT ma_IMMDevice_GetId(ma_IMMDevice* pThis, LPWSTR *pID) { return pThis->lpVtbl->GetId(pThis, pID); }
+ static MA_INLINE HRESULT ma_IMMDevice_GetState(ma_IMMDevice* pThis, DWORD *pState) { return pThis->lpVtbl->GetState(pThis, pState); }
#else
/* IActivateAudioInterfaceAsyncOperation */
typedef struct
@@ -7285,10 +8997,10 @@ ULONG ma_IUnknown_Release(ma_IUnknown* pThis)
{
ma_IActivateAudioInterfaceAsyncOperationVtbl* lpVtbl;
};
- HRESULT ma_IActivateAudioInterfaceAsyncOperation_QueryInterface(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
- ULONG ma_IActivateAudioInterfaceAsyncOperation_AddRef(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->AddRef(pThis); }
- ULONG ma_IActivateAudioInterfaceAsyncOperation_Release(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->Release(pThis); }
- HRESULT ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface) { return pThis->lpVtbl->GetActivateResult(pThis, pActivateResult, ppActivatedInterface); }
+ static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_QueryInterface(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+ static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_AddRef(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+ static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_Release(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->Release(pThis); }
+ static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface) { return pThis->lpVtbl->GetActivateResult(pThis, pActivateResult, ppActivatedInterface); }
#endif
/* IPropertyStore */
@@ -7310,14 +9022,14 @@ struct ma_IPropertyStore
{
ma_IPropertyStoreVtbl* lpVtbl;
};
-HRESULT ma_IPropertyStore_QueryInterface(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IPropertyStore_AddRef(ma_IPropertyStore* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IPropertyStore_Release(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IPropertyStore_GetCount(ma_IPropertyStore* pThis, DWORD* pPropCount) { return pThis->lpVtbl->GetCount(pThis, pPropCount); }
-HRESULT ma_IPropertyStore_GetAt(ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey) { return pThis->lpVtbl->GetAt(pThis, propIndex, pPropKey); }
-HRESULT ma_IPropertyStore_GetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar) { return pThis->lpVtbl->GetValue(pThis, pKey, pPropVar); }
-HRESULT ma_IPropertyStore_SetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar) { return pThis->lpVtbl->SetValue(pThis, pKey, pPropVar); }
-HRESULT ma_IPropertyStore_Commit(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Commit(pThis); }
+static MA_INLINE HRESULT ma_IPropertyStore_QueryInterface(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IPropertyStore_AddRef(ma_IPropertyStore* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IPropertyStore_Release(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IPropertyStore_GetCount(ma_IPropertyStore* pThis, DWORD* pPropCount) { return pThis->lpVtbl->GetCount(pThis, pPropCount); }
+static MA_INLINE HRESULT ma_IPropertyStore_GetAt(ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey) { return pThis->lpVtbl->GetAt(pThis, propIndex, pPropKey); }
+static MA_INLINE HRESULT ma_IPropertyStore_GetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar) { return pThis->lpVtbl->GetValue(pThis, pKey, pPropVar); }
+static MA_INLINE HRESULT ma_IPropertyStore_SetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar) { return pThis->lpVtbl->SetValue(pThis, pKey, pPropVar); }
+static MA_INLINE HRESULT ma_IPropertyStore_Commit(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Commit(pThis); }
/* IAudioClient */
@@ -7346,21 +9058,21 @@ struct ma_IAudioClient
{
ma_IAudioClientVtbl* lpVtbl;
};
-HRESULT ma_IAudioClient_QueryInterface(ma_IAudioClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IAudioClient_AddRef(ma_IAudioClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IAudioClient_Release(ma_IAudioClient* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IAudioClient_Initialize(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
-HRESULT ma_IAudioClient_GetBufferSize(ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
-HRESULT ma_IAudioClient_GetStreamLatency(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
-HRESULT ma_IAudioClient_GetCurrentPadding(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
-HRESULT ma_IAudioClient_IsFormatSupported(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
-HRESULT ma_IAudioClient_GetMixFormat(ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
-HRESULT ma_IAudioClient_GetDevicePeriod(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
-HRESULT ma_IAudioClient_Start(ma_IAudioClient* pThis) { return pThis->lpVtbl->Start(pThis); }
-HRESULT ma_IAudioClient_Stop(ma_IAudioClient* pThis) { return pThis->lpVtbl->Stop(pThis); }
-HRESULT ma_IAudioClient_Reset(ma_IAudioClient* pThis) { return pThis->lpVtbl->Reset(pThis); }
-HRESULT ma_IAudioClient_SetEventHandle(ma_IAudioClient* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
-HRESULT ma_IAudioClient_GetService(ma_IAudioClient* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
+static MA_INLINE HRESULT ma_IAudioClient_QueryInterface(ma_IAudioClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IAudioClient_AddRef(ma_IAudioClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IAudioClient_Release(ma_IAudioClient* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient_Initialize(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
+static MA_INLINE HRESULT ma_IAudioClient_GetBufferSize(ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
+static MA_INLINE HRESULT ma_IAudioClient_GetStreamLatency(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
+static MA_INLINE HRESULT ma_IAudioClient_GetCurrentPadding(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
+static MA_INLINE HRESULT ma_IAudioClient_IsFormatSupported(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
+static MA_INLINE HRESULT ma_IAudioClient_GetMixFormat(ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
+static MA_INLINE HRESULT ma_IAudioClient_GetDevicePeriod(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
+static MA_INLINE HRESULT ma_IAudioClient_Start(ma_IAudioClient* pThis) { return pThis->lpVtbl->Start(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient_Stop(ma_IAudioClient* pThis) { return pThis->lpVtbl->Stop(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient_Reset(ma_IAudioClient* pThis) { return pThis->lpVtbl->Reset(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient_SetEventHandle(ma_IAudioClient* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
+static MA_INLINE HRESULT ma_IAudioClient_GetService(ma_IAudioClient* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
/* IAudioClient2 */
typedef struct
@@ -7393,24 +9105,24 @@ struct ma_IAudioClient2
{
ma_IAudioClient2Vtbl* lpVtbl;
};
-HRESULT ma_IAudioClient2_QueryInterface(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IAudioClient2_AddRef(ma_IAudioClient2* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IAudioClient2_Release(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IAudioClient2_Initialize(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
-HRESULT ma_IAudioClient2_GetBufferSize(ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
-HRESULT ma_IAudioClient2_GetStreamLatency(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
-HRESULT ma_IAudioClient2_GetCurrentPadding(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
-HRESULT ma_IAudioClient2_IsFormatSupported(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
-HRESULT ma_IAudioClient2_GetMixFormat(ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
-HRESULT ma_IAudioClient2_GetDevicePeriod(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
-HRESULT ma_IAudioClient2_Start(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Start(pThis); }
-HRESULT ma_IAudioClient2_Stop(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Stop(pThis); }
-HRESULT ma_IAudioClient2_Reset(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Reset(pThis); }
-HRESULT ma_IAudioClient2_SetEventHandle(ma_IAudioClient2* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
-HRESULT ma_IAudioClient2_GetService(ma_IAudioClient2* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
-HRESULT ma_IAudioClient2_IsOffloadCapable(ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
-HRESULT ma_IAudioClient2_SetClientProperties(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
-HRESULT ma_IAudioClient2_GetBufferSizeLimits(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
+static MA_INLINE HRESULT ma_IAudioClient2_QueryInterface(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IAudioClient2_AddRef(ma_IAudioClient2* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IAudioClient2_Release(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient2_Initialize(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSize(ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetStreamLatency(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetCurrentPadding(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
+static MA_INLINE HRESULT ma_IAudioClient2_IsFormatSupported(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetMixFormat(ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetDevicePeriod(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
+static MA_INLINE HRESULT ma_IAudioClient2_Start(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Start(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient2_Stop(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Stop(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient2_Reset(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Reset(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient2_SetEventHandle(ma_IAudioClient2* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetService(ma_IAudioClient2* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
+static MA_INLINE HRESULT ma_IAudioClient2_IsOffloadCapable(ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
+static MA_INLINE HRESULT ma_IAudioClient2_SetClientProperties(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
+static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSizeLimits(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
/* IAudioClient3 */
@@ -7449,27 +9161,27 @@ struct ma_IAudioClient3
{
ma_IAudioClient3Vtbl* lpVtbl;
};
-HRESULT ma_IAudioClient3_QueryInterface(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IAudioClient3_AddRef(ma_IAudioClient3* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IAudioClient3_Release(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IAudioClient3_Initialize(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
-HRESULT ma_IAudioClient3_GetBufferSize(ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
-HRESULT ma_IAudioClient3_GetStreamLatency(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
-HRESULT ma_IAudioClient3_GetCurrentPadding(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
-HRESULT ma_IAudioClient3_IsFormatSupported(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
-HRESULT ma_IAudioClient3_GetMixFormat(ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
-HRESULT ma_IAudioClient3_GetDevicePeriod(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
-HRESULT ma_IAudioClient3_Start(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Start(pThis); }
-HRESULT ma_IAudioClient3_Stop(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Stop(pThis); }
-HRESULT ma_IAudioClient3_Reset(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Reset(pThis); }
-HRESULT ma_IAudioClient3_SetEventHandle(ma_IAudioClient3* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
-HRESULT ma_IAudioClient3_GetService(ma_IAudioClient3* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
-HRESULT ma_IAudioClient3_IsOffloadCapable(ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
-HRESULT ma_IAudioClient3_SetClientProperties(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
-HRESULT ma_IAudioClient3_GetBufferSizeLimits(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
-HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); }
-HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); }
-HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); }
+static MA_INLINE HRESULT ma_IAudioClient3_QueryInterface(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IAudioClient3_AddRef(ma_IAudioClient3* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IAudioClient3_Release(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient3_Initialize(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSize(ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetStreamLatency(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentPadding(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
+static MA_INLINE HRESULT ma_IAudioClient3_IsFormatSupported(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetMixFormat(ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetDevicePeriod(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
+static MA_INLINE HRESULT ma_IAudioClient3_Start(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Start(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient3_Stop(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Stop(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient3_Reset(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Reset(pThis); }
+static MA_INLINE HRESULT ma_IAudioClient3_SetEventHandle(ma_IAudioClient3* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetService(ma_IAudioClient3* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
+static MA_INLINE HRESULT ma_IAudioClient3_IsOffloadCapable(ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
+static MA_INLINE HRESULT ma_IAudioClient3_SetClientProperties(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSizeLimits(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); }
+static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); }
+static MA_INLINE HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); }
/* IAudioRenderClient */
@@ -7488,11 +9200,11 @@ struct ma_IAudioRenderClient
{
ma_IAudioRenderClientVtbl* lpVtbl;
};
-HRESULT ma_IAudioRenderClient_QueryInterface(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IAudioRenderClient_AddRef(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IAudioRenderClient_Release(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IAudioRenderClient_GetBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData) { return pThis->lpVtbl->GetBuffer(pThis, numFramesRequested, ppData); }
-HRESULT ma_IAudioRenderClient_ReleaseBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesWritten, dwFlags); }
+static MA_INLINE HRESULT ma_IAudioRenderClient_QueryInterface(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IAudioRenderClient_AddRef(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IAudioRenderClient_Release(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IAudioRenderClient_GetBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData) { return pThis->lpVtbl->GetBuffer(pThis, numFramesRequested, ppData); }
+static MA_INLINE HRESULT ma_IAudioRenderClient_ReleaseBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesWritten, dwFlags); }
/* IAudioCaptureClient */
@@ -7512,12 +9224,12 @@ struct ma_IAudioCaptureClient
{
ma_IAudioCaptureClientVtbl* lpVtbl;
};
-HRESULT ma_IAudioCaptureClient_QueryInterface(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IAudioCaptureClient_AddRef(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IAudioCaptureClient_Release(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IAudioCaptureClient_GetBuffer(ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition) { return pThis->lpVtbl->GetBuffer(pThis, ppData, pNumFramesToRead, pFlags, pDevicePosition, pQPCPosition); }
-HRESULT ma_IAudioCaptureClient_ReleaseBuffer(ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesRead); }
-HRESULT ma_IAudioCaptureClient_GetNextPacketSize(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket) { return pThis->lpVtbl->GetNextPacketSize(pThis, pNumFramesInNextPacket); }
+static MA_INLINE HRESULT ma_IAudioCaptureClient_QueryInterface(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IAudioCaptureClient_AddRef(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IAudioCaptureClient_Release(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IAudioCaptureClient_GetBuffer(ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition) { return pThis->lpVtbl->GetBuffer(pThis, ppData, pNumFramesToRead, pFlags, pDevicePosition, pQPCPosition); }
+static MA_INLINE HRESULT ma_IAudioCaptureClient_ReleaseBuffer(ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesRead); }
+static MA_INLINE HRESULT ma_IAudioCaptureClient_GetNextPacketSize(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket) { return pThis->lpVtbl->GetNextPacketSize(pThis, pNumFramesInNextPacket); }
#ifndef MA_WIN32_DESKTOP
#include <mmdeviceapi.h>
@@ -7540,7 +9252,7 @@ struct ma_completion_handler_uwp
HANDLE hEvent;
};
-HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject)
+static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject)
{
/*
We need to "implement" IAgileObject which is just an indicator that's used internally by WASAPI for some multithreading management. To
@@ -7557,12 +9269,12 @@ HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_completion
return S_OK;
}
-ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis)
+static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis)
{
return (ULONG)ma_atomic_increment_32(&pThis->counter);
}
-ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis)
+static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis)
{
ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter);
if (newRefCount == 0) {
@@ -7572,7 +9284,7 @@ ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_
return (ULONG)newRefCount;
}
-HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_ActivateCompleted(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation)
+static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_ActivateCompleted(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation)
{
(void)pActivateOperation;
SetEvent(pThis->hEvent);
@@ -7587,10 +9299,10 @@ static ma_completion_handler_uwp_vtbl g_maCompletionHandlerVtblInstance = {
ma_completion_handler_uwp_ActivateCompleted
};
-ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHandler)
+static ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHandler)
{
- ma_assert(pHandler != NULL);
- ma_zero_object(pHandler);
+ MA_ASSERT(pHandler != NULL);
+ MA_ZERO_OBJECT(pHandler);
pHandler->lpVtbl = &g_maCompletionHandlerVtblInstance;
pHandler->counter = 1;
@@ -7602,14 +9314,14 @@ ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHandler)
return MA_SUCCESS;
}
-void ma_completion_handler_uwp_uninit(ma_completion_handler_uwp* pHandler)
+static void ma_completion_handler_uwp_uninit(ma_completion_handler_uwp* pHandler)
{
if (pHandler->hEvent != NULL) {
CloseHandle(pHandler->hEvent);
}
}
-void ma_completion_handler_uwp_wait(ma_completion_handler_uwp* pHandler)
+static void ma_completion_handler_uwp_wait(ma_completion_handler_uwp* pHandler)
{
WaitForSingleObject(pHandler->hEvent, INFINITE);
}
@@ -7617,7 +9329,7 @@ void ma_completion_handler_uwp_wait(ma_completion_handler_uwp* pHandler)
/* We need a virtual table for our notification client object that's used for detecting changes to the default device. */
#ifdef MA_WIN32_DESKTOP
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject)
{
/*
We care about two interfaces - IUnknown and IMMNotificationClient. If the requested IID is something else
@@ -7634,12 +9346,12 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMNotifica
return S_OK;
}
-ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis)
+static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis)
{
return (ULONG)ma_atomic_increment_32(&pThis->counter);
}
-ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis)
+static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis)
{
ma_uint32 newRefCount = ma_atomic_decrement_32(&pThis->counter);
if (newRefCount == 0) {
@@ -7650,7 +9362,7 @@ ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClien
}
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState)
{
#ifdef MA_DEBUG_OUTPUT
printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);
@@ -7662,7 +9374,7 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNo
return S_OK;
}
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
@@ -7674,7 +9386,7 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificat
return S_OK;
}
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
@@ -7686,7 +9398,7 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotific
return S_OK;
}
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");
@@ -7703,6 +9415,12 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMM
return S_OK;
}
+ /* Don't do automatic stream routing if we're not allowed. */
+ if ((dataFlow == ma_eRender && pThis->pDevice->wasapi.allowPlaybackAutoStreamRouting == MA_FALSE) ||
+ (dataFlow == ma_eCapture && pThis->pDevice->wasapi.allowCaptureAutoStreamRouting == MA_FALSE)) {
+ return S_OK;
+ }
+
/*
Not currently supporting automatic stream routing in exclusive mode. This is not working correctly on my machine due to
AUDCLNT_E_DEVICE_IN_USE errors when reinitializing the device. If this is a bug in miniaudio, we can try re-enabling this once
@@ -7729,7 +9447,7 @@ HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMM
return S_OK;
}
-HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key)
+static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key)
{
#ifdef MA_DEBUG_OUTPUT
printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");
@@ -7761,20 +9479,20 @@ typedef ma_IUnknown ma_WASAPIDeviceInterface;
-ma_bool32 ma_context_is_device_id_equal__wasapi(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__wasapi(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return memcmp(pID0->wasapi, pID1->wasapi, sizeof(pID0->wasapi)) == 0;
}
-void ma_set_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_device_info* pInfo)
+static void ma_set_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_device_info* pInfo)
{
- ma_assert(pWF != NULL);
- ma_assert(pInfo != NULL);
+ MA_ASSERT(pWF != NULL);
+ MA_ASSERT(pInfo != NULL);
pInfo->formatCount = 1;
pInfo->formats[0] = ma_format_from_WAVEFORMATEX(pWF);
@@ -7784,10 +9502,10 @@ void ma_set_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_device_inf
pInfo->maxSampleRate = pWF->nSamplesPerSec;
}
-ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_share_mode shareMode, ma_device_info* pInfo)
+static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_share_mode shareMode, ma_device_info* pInfo)
{
- ma_assert(pAudioClient != NULL);
- ma_assert(pInfo != NULL);
+ MA_ASSERT(pAudioClient != NULL);
+ MA_ASSERT(pInfo != NULL);
/* We use a different technique to retrieve the device information depending on whether or not we are using shared or exclusive mode. */
if (shareMode == ma_share_mode_shared) {
@@ -7846,7 +9564,7 @@ ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pCont
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, channels, defaultChannelMap);
- ma_zero_object(&wf);
+ MA_ZERO_OBJECT(&wf);
wf.Format.cbSize = sizeof(wf);
wf.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
wf.Format.nChannels = (WORD)channels;
@@ -7907,13 +9625,96 @@ ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pCont
}
#ifdef MA_WIN32_DESKTOP
-ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IMMDevice** ppMMDevice)
+static ma_EDataFlow ma_device_type_to_EDataFlow(ma_device_type deviceType)
+{
+ if (deviceType == ma_device_type_playback) {
+ return ma_eRender;
+ } else if (deviceType == ma_device_type_capture) {
+ return ma_eCapture;
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return ma_eRender; /* Should never hit this. */
+ }
+}
+
+static ma_result ma_context_create_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator** ppDeviceEnumerator)
{
+ HRESULT hr;
ma_IMMDeviceEnumerator* pDeviceEnumerator;
+
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppDeviceEnumerator != NULL);
+
+ hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
+ if (FAILED(hr)) {
+ return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_ERROR);
+ }
+
+ *ppDeviceEnumerator = pDeviceEnumerator;
+
+ return MA_SUCCESS;
+}
+
+static LPWSTR ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType)
+{
HRESULT hr;
+ ma_IMMDevice* pMMDefaultDevice = NULL;
+ LPWSTR pDefaultDeviceID = NULL;
+ ma_EDataFlow dataFlow;
+ ma_ERole role;
+
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDeviceEnumerator != NULL);
+
+ /* Grab the EDataFlow type from the device type. */
+ dataFlow = ma_device_type_to_EDataFlow(deviceType);
+
+ /* The role is always eConsole, but we may make this configurable later. */
+ role = ma_eConsole;
+
+ hr = ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(pDeviceEnumerator, dataFlow, role, &pMMDefaultDevice);
+ if (FAILED(hr)) {
+ return NULL;
+ }
+
+ hr = ma_IMMDevice_GetId(pMMDefaultDevice, &pDefaultDeviceID);
- ma_assert(pContext != NULL);
- ma_assert(ppMMDevice != NULL);
+ ma_IMMDevice_Release(pMMDefaultDevice);
+ pMMDefaultDevice = NULL;
+
+ if (FAILED(hr)) {
+ return NULL;
+ }
+
+ return pDefaultDeviceID;
+}
+
+static LPWSTR ma_context_get_default_device_id__wasapi(ma_context* pContext, ma_device_type deviceType) /* Free the returned pointer with ma_CoTaskMemFree() */
+{
+ ma_result result;
+ ma_IMMDeviceEnumerator* pDeviceEnumerator;
+ LPWSTR pDefaultDeviceID = NULL;
+
+ MA_ASSERT(pContext != NULL);
+
+ result = ma_context_create_IMMDeviceEnumerator__wasapi(pContext, &pDeviceEnumerator);
+ if (result != MA_SUCCESS) {
+ return NULL;
+ }
+
+ pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType);
+
+ ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
+ return pDefaultDeviceID;
+}
+
+static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IMMDevice** ppMMDevice)
+{
+ ma_IMMDeviceEnumerator* pDeviceEnumerator;
+ HRESULT hr;
+
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppMMDevice != NULL);
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
@@ -7934,29 +9735,36 @@ ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device_type d
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, ma_share_mode shareMode, ma_bool32 onlySimpleInfo, ma_device_info* pInfo)
+static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, ma_share_mode shareMode, LPWSTR pDefaultDeviceID, ma_bool32 onlySimpleInfo, ma_device_info* pInfo)
{
- LPWSTR id;
+ LPWSTR pDeviceID;
HRESULT hr;
- ma_assert(pContext != NULL);
- ma_assert(pMMDevice != NULL);
- ma_assert(pInfo != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pMMDevice != NULL);
+ MA_ASSERT(pInfo != NULL);
/* ID. */
- hr = ma_IMMDevice_GetId(pMMDevice, &id);
+ hr = ma_IMMDevice_GetId(pMMDevice, &pDeviceID);
if (SUCCEEDED(hr)) {
- size_t idlen = wcslen(id);
+ size_t idlen = wcslen(pDeviceID);
if (idlen+1 > ma_countof(pInfo->id.wasapi)) {
- ma_CoTaskMemFree(pContext, id);
- ma_assert(MA_FALSE); /* NOTE: If this is triggered, please report it. It means the format of the ID must haved change and is too long to fit in our fixed sized buffer. */
+ ma_CoTaskMemFree(pContext, pDeviceID);
+ MA_ASSERT(MA_FALSE); /* NOTE: If this is triggered, please report it. It means the format of the ID must haved change and is too long to fit in our fixed sized buffer. */
return MA_ERROR;
}
- ma_copy_memory(pInfo->id.wasapi, id, idlen * sizeof(wchar_t));
+ MA_COPY_MEMORY(pInfo->id.wasapi, pDeviceID, idlen * sizeof(wchar_t));
pInfo->id.wasapi[idlen] = '\0';
- ma_CoTaskMemFree(pContext, id);
+ if (pDefaultDeviceID != NULL) {
+ if (wcscmp(pDeviceID, pDefaultDeviceID) == 0) {
+ /* It's a default device. */
+ pInfo->_private.isDefault = MA_TRUE;
+ }
+ }
+
+ ma_CoTaskMemFree(pContext, pDeviceID);
}
{
@@ -7994,53 +9802,73 @@ ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext,
return MA_SUCCESS;
}
-ma_result ma_context_enumerate_device_collection__wasapi(ma_context* pContext, ma_IMMDeviceCollection* pDeviceCollection, ma_device_type deviceType, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType, ma_enum_devices_callback_proc callback, void* pUserData)
{
+ ma_result result = MA_SUCCESS;
UINT deviceCount;
HRESULT hr;
ma_uint32 iDevice;
+ LPWSTR pDefaultDeviceID = NULL;
+ ma_IMMDeviceCollection* pDeviceCollection = NULL;
+
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ /* Grab the default device. We use this to know whether or not flag the returned device info as being the default. */
+ pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType);
- hr = ma_IMMDeviceCollection_GetCount(pDeviceCollection, &deviceCount);
- if (FAILED(hr)) {
- return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get playback device count.", MA_NO_DEVICE);
- }
+ /* We need to enumerate the devices which returns a device collection. */
+ hr = ma_IMMDeviceEnumerator_EnumAudioEndpoints(pDeviceEnumerator, ma_device_type_to_EDataFlow(deviceType), MA_MM_DEVICE_STATE_ACTIVE, &pDeviceCollection);
+ if (SUCCEEDED(hr)) {
+ hr = ma_IMMDeviceCollection_GetCount(pDeviceCollection, &deviceCount);
+ if (FAILED(hr)) {
+ result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get device count.", MA_NO_DEVICE);
+ goto done;
+ }
- for (iDevice = 0; iDevice < deviceCount; ++iDevice) {
- ma_device_info deviceInfo;
- ma_IMMDevice* pMMDevice;
+ for (iDevice = 0; iDevice < deviceCount; ++iDevice) {
+ ma_device_info deviceInfo;
+ ma_IMMDevice* pMMDevice;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
- hr = ma_IMMDeviceCollection_Item(pDeviceCollection, iDevice, &pMMDevice);
- if (SUCCEEDED(hr)) {
- ma_result result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, ma_share_mode_shared, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */
+ hr = ma_IMMDeviceCollection_Item(pDeviceCollection, iDevice, &pMMDevice);
+ if (SUCCEEDED(hr)) {
+ result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, ma_share_mode_shared, pDefaultDeviceID, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */
- ma_IMMDevice_Release(pMMDevice);
- if (result == MA_SUCCESS) {
- ma_bool32 cbResult = callback(pContext, deviceType, &deviceInfo, pUserData);
- if (cbResult == MA_FALSE) {
- break;
+ ma_IMMDevice_Release(pMMDevice);
+ if (result == MA_SUCCESS) {
+ ma_bool32 cbResult = callback(pContext, deviceType, &deviceInfo, pUserData);
+ if (cbResult == MA_FALSE) {
+ break;
+ }
}
}
}
}
- return MA_SUCCESS;
+done:
+ if (pDefaultDeviceID != NULL) {
+ ma_CoTaskMemFree(pContext, pDefaultDeviceID);
+ pDefaultDeviceID = NULL;
+ }
+
+ if (pDeviceCollection != NULL) {
+ ma_IMMDeviceCollection_Release(pDeviceCollection);
+ pDeviceCollection = NULL;
+ }
+
+ return result;
}
-#endif
-#ifdef MA_WIN32_DESKTOP
-ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IMMDevice** ppMMDevice)
+static ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IMMDevice** ppMMDevice)
{
ma_result result;
HRESULT hr;
- ma_assert(pContext != NULL);
- ma_assert(ppAudioClient != NULL);
- ma_assert(ppMMDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppAudioClient != NULL);
+ MA_ASSERT(ppMMDevice != NULL);
result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, ppMMDevice);
if (result != MA_SUCCESS) {
@@ -8055,7 +9883,7 @@ ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContext, ma_d
return MA_SUCCESS;
}
#else
-ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IUnknown** ppActivatedInterface)
+static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IUnknown** ppActivatedInterface)
{
ma_IActivateAudioInterfaceAsyncOperation *pAsyncOp = NULL;
ma_completion_handler_uwp completionHandler;
@@ -8066,11 +9894,11 @@ ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_devic
HRESULT activateResult;
ma_IUnknown* pActivatedInterface;
- ma_assert(pContext != NULL);
- ma_assert(ppAudioClient != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppAudioClient != NULL);
if (pDeviceID != NULL) {
- ma_copy_memory(&iid, pDeviceID->wasapi, sizeof(iid));
+ MA_COPY_MEMORY(&iid, pDeviceID->wasapi, sizeof(iid));
} else {
if (deviceType == ma_device_type_playback) {
iid = MA_IID_DEVINTERFACE_AUDIO_RENDER;
@@ -8134,7 +9962,7 @@ ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_devic
}
#endif
-ma_result ma_context_get_IAudioClient__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_WASAPIDeviceInterface** ppDeviceInterface)
+static ma_result ma_context_get_IAudioClient__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_WASAPIDeviceInterface** ppDeviceInterface)
{
#ifdef MA_WIN32_DESKTOP
return ma_context_get_IAudioClient_Desktop__wasapi(pContext, deviceType, pDeviceID, ppAudioClient, ppDeviceInterface);
@@ -8144,33 +9972,21 @@ ma_result ma_context_get_IAudioClient__wasapi(ma_context* pContext, ma_device_ty
}
-ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
/* Different enumeration for desktop and UWP. */
#ifdef MA_WIN32_DESKTOP
/* Desktop */
HRESULT hr;
ma_IMMDeviceEnumerator* pDeviceEnumerator;
- ma_IMMDeviceCollection* pDeviceCollection;
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
- /* Playback. */
- hr = ma_IMMDeviceEnumerator_EnumAudioEndpoints(pDeviceEnumerator, ma_eRender, MA_MM_DEVICE_STATE_ACTIVE, &pDeviceCollection);
- if (SUCCEEDED(hr)) {
- ma_context_enumerate_device_collection__wasapi(pContext, pDeviceCollection, ma_device_type_playback, callback, pUserData);
- ma_IMMDeviceCollection_Release(pDeviceCollection);
- }
-
- /* Capture. */
- hr = ma_IMMDeviceEnumerator_EnumAudioEndpoints(pDeviceEnumerator, ma_eCapture, MA_MM_DEVICE_STATE_ACTIVE, &pDeviceCollection);
- if (SUCCEEDED(hr)) {
- ma_context_enumerate_device_collection__wasapi(pContext, pDeviceCollection, ma_device_type_capture, callback, pUserData);
- ma_IMMDeviceCollection_Release(pDeviceCollection);
- }
+ ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_playback, callback, pUserData);
+ ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_capture, callback, pUserData);
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
#else
@@ -8188,16 +10004,18 @@ ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_dev
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
+ deviceInfo._private.isDefault = MA_TRUE;
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
+ deviceInfo._private.isDefault = MA_TRUE;
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
}
@@ -8206,20 +10024,30 @@ ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_dev
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
#ifdef MA_WIN32_DESKTOP
- ma_IMMDevice* pMMDevice = NULL;
ma_result result;
+ ma_IMMDevice* pMMDevice = NULL;
+ LPWSTR pDefaultDeviceID = NULL;
result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, &pMMDevice);
if (result != MA_SUCCESS) {
return result;
}
- result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, shareMode, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */
+ /* We need the default device ID so we can set the isDefault flag in the device info. */
+ pDefaultDeviceID = ma_context_get_default_device_id__wasapi(pContext, deviceType);
+
+ result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, shareMode, pDefaultDeviceID, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */
+
+ if (pDefaultDeviceID != NULL) {
+ ma_CoTaskMemFree(pContext, pDefaultDeviceID);
+ pDefaultDeviceID = NULL;
+ }
ma_IMMDevice_Release(pMMDevice);
+
return result;
#else
ma_IAudioClient* pAudioClient;
@@ -8244,14 +10072,16 @@ ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_typ
result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, NULL, pAudioClient, shareMode, pDeviceInfo);
+ pDeviceInfo->_private.isDefault = MA_TRUE; /* UWP only supports default devices. */
+
ma_IAudioClient_Release(pAudioClient);
return result;
#endif
}
-void ma_device_uninit__wasapi(ma_device* pDevice)
+static void ma_device_uninit__wasapi(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
#ifdef MA_WIN32_DESKTOP
if (pDevice->wasapi.pDeviceEnumerator) {
@@ -8290,8 +10120,8 @@ typedef struct
ma_uint32 channelsIn;
ma_uint32 sampleRateIn;
ma_channel channelMapIn[MA_MAX_CHANNELS];
- ma_uint32 bufferSizeInFramesIn;
- ma_uint32 bufferSizeInMillisecondsIn;
+ ma_uint32 periodSizeInFramesIn;
+ ma_uint32 periodSizeInMillisecondsIn;
ma_uint32 periodsIn;
ma_bool32 usingDefaultFormat;
ma_bool32 usingDefaultChannels;
@@ -8300,6 +10130,7 @@ typedef struct
ma_share_mode shareMode;
ma_bool32 noAutoConvertSRC;
ma_bool32 noDefaultQualitySRC;
+ ma_bool32 noHardwareOffloading;
/* Output. */
ma_IAudioClient* pAudioClient;
@@ -8309,29 +10140,28 @@ typedef struct
ma_uint32 channelsOut;
ma_uint32 sampleRateOut;
ma_channel channelMapOut[MA_MAX_CHANNELS];
- ma_uint32 bufferSizeInFramesOut;
ma_uint32 periodSizeInFramesOut;
ma_uint32 periodsOut;
ma_bool32 usingAudioClient3;
char deviceName[256];
} ma_device_init_internal_data__wasapi;
-ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__wasapi* pData)
+static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__wasapi* pData)
{
HRESULT hr;
ma_result result = MA_SUCCESS;
const char* errorMsg = "";
MA_AUDCLNT_SHAREMODE shareMode = MA_AUDCLNT_SHAREMODE_SHARED;
DWORD streamFlags = 0;
- MA_REFERENCE_TIME bufferDurationInMicroseconds;
+ MA_REFERENCE_TIME periodDurationInMicroseconds;
ma_bool32 wasInitializedUsingIAudioClient3 = MA_FALSE;
WAVEFORMATEXTENSIBLE wf = {0};
ma_WASAPIDeviceInterface* pDeviceInterface = NULL;
ma_IAudioClient2* pAudioClient2;
ma_uint32 nativeSampleRate;
- ma_assert(pContext != NULL);
- ma_assert(pData != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pData != NULL);
/* This function is only used to initialize one device type: either playback, capture or loopback. Never full-duplex. */
if (deviceType == ma_device_type_duplex) {
@@ -8360,20 +10190,22 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
/* Try enabling hardware offloading. */
- hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient2, (void**)&pAudioClient2);
- if (SUCCEEDED(hr)) {
- BOOL isHardwareOffloadingSupported = 0;
- hr = ma_IAudioClient2_IsOffloadCapable(pAudioClient2, MA_AudioCategory_Other, &isHardwareOffloadingSupported);
- if (SUCCEEDED(hr) && isHardwareOffloadingSupported) {
- ma_AudioClientProperties clientProperties;
- ma_zero_object(&clientProperties);
- clientProperties.cbSize = sizeof(clientProperties);
- clientProperties.bIsOffload = 1;
- clientProperties.eCategory = MA_AudioCategory_Other;
- ma_IAudioClient2_SetClientProperties(pAudioClient2, &clientProperties);
- }
+ if (!pData->noHardwareOffloading) {
+ hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient2, (void**)&pAudioClient2);
+ if (SUCCEEDED(hr)) {
+ BOOL isHardwareOffloadingSupported = 0;
+ hr = ma_IAudioClient2_IsOffloadCapable(pAudioClient2, MA_AudioCategory_Other, &isHardwareOffloadingSupported);
+ if (SUCCEEDED(hr) && isHardwareOffloadingSupported) {
+ ma_AudioClientProperties clientProperties;
+ MA_ZERO_OBJECT(&clientProperties);
+ clientProperties.cbSize = sizeof(clientProperties);
+ clientProperties.bIsOffload = 1;
+ clientProperties.eCategory = MA_AudioCategory_Other;
+ ma_IAudioClient2_SetClientProperties(pAudioClient2, &clientProperties);
+ }
- pAudioClient2->lpVtbl->Release(pAudioClient2);
+ pAudioClient2->lpVtbl->Release(pAudioClient2);
+ }
}
/* Here is where we try to determine the best format to use with the device. If the client if wanting exclusive mode, first try finding the best format for that. If this fails, fall back to shared mode. */
@@ -8391,7 +10223,7 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
WAVEFORMATEX* pActualFormat = (WAVEFORMATEX*)prop.blob.pBlobData;
hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pData->pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pActualFormat, NULL);
if (SUCCEEDED(hr)) {
- ma_copy_memory(&wf, pActualFormat, sizeof(WAVEFORMATEXTENSIBLE));
+ MA_COPY_MEMORY(&wf, pActualFormat, sizeof(WAVEFORMATEXTENSIBLE));
}
ma_PropVariantClear(pContext, &prop);
@@ -8423,7 +10255,7 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
if (hr != S_OK) {
result = MA_FORMAT_NOT_SUPPORTED;
} else {
- ma_copy_memory(&wf, pNativeFormat, sizeof(wf));
+ MA_COPY_MEMORY(&wf, pNativeFormat, sizeof(wf));
result = MA_SUCCESS;
}
@@ -8455,19 +10287,19 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
/* Get the internal channel map based on the channel mask. */
ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pData->channelsOut, pData->channelMapOut);
- /* If we're using a default buffer size we need to calculate it based on the efficiency of the system. */
+ /* Period size. */
pData->periodsOut = pData->periodsIn;
- pData->bufferSizeInFramesOut = pData->bufferSizeInFramesIn;
- if (pData->bufferSizeInFramesOut == 0) {
- pData->bufferSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->bufferSizeInMillisecondsIn, wf.Format.nSamplesPerSec);
+ pData->periodSizeInFramesOut = pData->periodSizeInFramesIn;
+ if (pData->periodSizeInFramesOut == 0) {
+ pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, wf.Format.nSamplesPerSec);
}
- bufferDurationInMicroseconds = ((ma_uint64)pData->bufferSizeInFramesOut * 1000 * 1000) / wf.Format.nSamplesPerSec;
+ periodDurationInMicroseconds = ((ma_uint64)pData->periodSizeInFramesOut * 1000 * 1000) / wf.Format.nSamplesPerSec;
/* Slightly different initialization for shared and exclusive modes. We try exclusive mode first, and if it fails, fall back to shared mode. */
if (shareMode == MA_AUDCLNT_SHAREMODE_EXCLUSIVE) {
- MA_REFERENCE_TIME bufferDuration = (bufferDurationInMicroseconds / pData->periodsOut) * 10;
+ MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * 10;
/*
If the periodicy is too small, Initialize() will fail with AUDCLNT_E_INVALID_DEVICE_PERIOD. In this case we should just keep increasing
@@ -8548,7 +10380,7 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
UINT32 maxPeriodInFrames;
hr = ma_IAudioClient3_GetSharedModeEnginePeriod(pAudioClient3, (WAVEFORMATEX*)&wf, &defaultPeriodInFrames, &fundamentalPeriodInFrames, &minPeriodInFrames, &maxPeriodInFrames);
if (SUCCEEDED(hr)) {
- UINT32 desiredPeriodInFrames = pData->bufferSizeInFramesOut / pData->periodsOut;
+ UINT32 desiredPeriodInFrames = pData->periodSizeInFramesOut;
UINT32 actualPeriodInFrames = desiredPeriodInFrames;
/* Make sure the period size is a multiple of fundamentalPeriodInFrames. */
@@ -8576,11 +10408,9 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
if (SUCCEEDED(hr)) {
wasInitializedUsingIAudioClient3 = MA_TRUE;
pData->periodSizeInFramesOut = actualPeriodInFrames;
- pData->bufferSizeInFramesOut = actualPeriodInFrames * pData->periodsOut;
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] Using IAudioClient3\n");
printf(" periodSizeInFramesOut=%d\n", pData->periodSizeInFramesOut);
- printf(" bufferSizeInFramesOut=%d\n", pData->bufferSizeInFramesOut);
#endif
} else {
#if defined(MA_DEBUG_OUTPUT)
@@ -8610,7 +10440,7 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
/* If we don't have an IAudioClient3 then we need to use the normal initialization routine. */
if (!wasInitializedUsingIAudioClient3) {
- MA_REFERENCE_TIME bufferDuration = bufferDurationInMicroseconds*10;
+ MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * pData->periodsOut * 10; /* <-- Multiply by 10 for microseconds to 100-nanoseconds. */
hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, 0, (WAVEFORMATEX*)&wf, NULL);
if (FAILED(hr)) {
if (hr == E_ACCESSDENIED) {
@@ -8627,13 +10457,14 @@ ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type d
}
if (!wasInitializedUsingIAudioClient3) {
- hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &pData->bufferSizeInFramesOut);
+ ma_uint32 bufferSizeInFrames;
+ hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames);
if (FAILED(hr)) {
errorMsg = "[WASAPI] Failed to get audio client's actual buffer size.", result = MA_FAILED_TO_OPEN_BACKEND_DEVICE;
goto done;
}
- pData->periodSizeInFramesOut = pData->bufferSizeInFramesOut / pData->periodsOut;
+ pData->periodSizeInFramesOut = bufferSizeInFrames / pData->periodsOut;
}
pData->usingAudioClient3 = wasInitializedUsingIAudioClient3;
@@ -8701,12 +10532,12 @@ done:
}
}
-ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType)
+static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
ma_device_init_internal_data__wasapi data;
ma_result result;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* We only re-initialize the playback or capture device. Never a full-duplex device. */
if (deviceType == ma_device_type_duplex) {
@@ -8716,7 +10547,7 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
if (deviceType == ma_device_type_playback) {
data.formatIn = pDevice->playback.format;
data.channelsIn = pDevice->playback.channels;
- ma_copy_memory(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
data.shareMode = pDevice->playback.shareMode;
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
@@ -8724,7 +10555,7 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
} else {
data.formatIn = pDevice->capture.format;
data.channelsIn = pDevice->capture.channels;
- ma_copy_memory(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
data.shareMode = pDevice->capture.shareMode;
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
@@ -8733,11 +10564,12 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
data.sampleRateIn = pDevice->sampleRate;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
- data.bufferSizeInFramesIn = pDevice->wasapi.originalBufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pDevice->wasapi.originalBufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pDevice->wasapi.originalPeriodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pDevice->wasapi.originalPeriodSizeInMilliseconds;
data.periodsIn = pDevice->wasapi.originalPeriods;
data.noAutoConvertSRC = pDevice->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pDevice->wasapi.noDefaultQualitySRC;
+ data.noHardwareOffloading = pDevice->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, deviceType, NULL, &data);
if (result != MA_SUCCESS) {
return result;
@@ -8761,15 +10593,15 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->capture.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName);
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture);
pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut;
- ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualBufferSizeInFramesCapture);
+ ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualPeriodSizeInFramesCapture);
/* The device may be in a started state. If so we need to immediately restart it. */
if (pDevice->wasapi.isStartedCapture) {
@@ -8797,15 +10629,15 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->playback.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName);
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback);
pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut;
- ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualBufferSizeInFramesPlayback);
+ ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualPeriodSizeInFramesPlayback);
/* The device may be in a started state. If so we need to immediately restart it. */
if (pDevice->wasapi.isStartedPlayback) {
@@ -8819,21 +10651,22 @@ ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType
return MA_SUCCESS;
}
-ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
(void)pContext;
- ma_assert(pContext != NULL);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->wasapi);
- pDevice->wasapi.originalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- pDevice->wasapi.originalBufferSizeInMilliseconds = pConfig->bufferSizeInMilliseconds;
+ MA_ZERO_OBJECT(&pDevice->wasapi);
+ pDevice->wasapi.originalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ pDevice->wasapi.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
pDevice->wasapi.originalPeriods = pConfig->periods;
- pDevice->wasapi.noAutoConvertSRC = pDevice->wasapi.noAutoConvertSRC;
- pDevice->wasapi.noDefaultQualitySRC = pDevice->wasapi.noDefaultQualitySRC;
+ pDevice->wasapi.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
+ pDevice->wasapi.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
+ pDevice->wasapi.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
/* Exclusive mode is not allowed with loopback. */
if (pConfig->deviceType == ma_device_type_loopback && pConfig->playback.shareMode == ma_share_mode_exclusive) {
@@ -8845,17 +10678,18 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
data.formatIn = pConfig->capture.format;
data.channelsIn = pConfig->capture.channels;
data.sampleRateIn = pConfig->sampleRate;
- ma_copy_memory(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
data.shareMode = pConfig->capture.shareMode;
- data.bufferSizeInFramesIn = pConfig->bufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pConfig->bufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
+ data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture, pConfig->capture.pDeviceID, &data);
if (result != MA_SUCCESS) {
@@ -8868,8 +10702,8 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->capture.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName);
@@ -8893,7 +10727,7 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture);
pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut;
- ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualBufferSizeInFramesCapture);
+ ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualPeriodSizeInFramesCapture);
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
@@ -8901,17 +10735,18 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
data.formatIn = pConfig->playback.format;
data.channelsIn = pConfig->playback.channels;
data.sampleRateIn = pConfig->sampleRate;
- ma_copy_memory(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap;
data.shareMode = pConfig->playback.shareMode;
- data.bufferSizeInFramesIn = pConfig->bufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pConfig->bufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
+ data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, ma_device_type_playback, pConfig->playback.pDeviceID, &data);
if (result != MA_SUCCESS) {
@@ -8937,8 +10772,8 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->playback.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName);
@@ -8979,7 +10814,7 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback);
pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut;
- ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualBufferSizeInFramesPlayback);
+ ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualPeriodSizeInFramesPlayback);
}
/*
@@ -8987,24 +10822,33 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
registering a IMMNotificationClient with it. We only care about this if it's the default device.
*/
#ifdef MA_WIN32_DESKTOP
- {
- ma_IMMDeviceEnumerator* pDeviceEnumerator;
- HRESULT hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
- if (FAILED(hr)) {
- ma_device_uninit__wasapi(pDevice);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ if (pConfig->wasapi.noAutoStreamRouting == MA_FALSE) {
+ if ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID == NULL) {
+ pDevice->wasapi.allowCaptureAutoStreamRouting = MA_TRUE;
+ }
+ if ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID == NULL) {
+ pDevice->wasapi.allowPlaybackAutoStreamRouting = MA_TRUE;
}
- pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl;
- pDevice->wasapi.notificationClient.counter = 1;
- pDevice->wasapi.notificationClient.pDevice = pDevice;
+ if (pDevice->wasapi.allowCaptureAutoStreamRouting || pDevice->wasapi.allowPlaybackAutoStreamRouting) {
+ ma_IMMDeviceEnumerator* pDeviceEnumerator;
+ HRESULT hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
+ if (FAILED(hr)) {
+ ma_device_uninit__wasapi(pDevice);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
+ }
- hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient);
- if (SUCCEEDED(hr)) {
- pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator;
- } else {
- /* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */
- ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
+ pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl;
+ pDevice->wasapi.notificationClient.counter = 1;
+ pDevice->wasapi.notificationClient.pDevice = pDevice;
+
+ hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient);
+ if (SUCCEEDED(hr)) {
+ pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator;
+ } else {
+ /* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */
+ ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
+ }
}
}
#endif
@@ -9015,14 +10859,14 @@ ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* p
return MA_SUCCESS;
}
-ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioClient* pAudioClient, ma_uint32* pFrameCount)
+static ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioClient* pAudioClient, ma_uint32* pFrameCount)
{
ma_uint32 paddingFramesCount;
HRESULT hr;
ma_share_mode shareMode;
- ma_assert(pDevice != NULL);
- ma_assert(pFrameCount != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pFrameCount != NULL);
*pFrameCount = 0;
@@ -9041,7 +10885,7 @@ ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioC
*pFrameCount = paddingFramesCount;
} else {
if ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) {
- *pFrameCount = pDevice->wasapi.actualBufferSizeInFramesPlayback - paddingFramesCount;
+ *pFrameCount = pDevice->wasapi.actualPeriodSizeInFramesPlayback - paddingFramesCount;
} else {
*pFrameCount = paddingFramesCount;
}
@@ -9050,9 +10894,9 @@ ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioC
return MA_SUCCESS;
}
-ma_bool32 ma_device_is_reroute_required__wasapi(ma_device* pDevice, ma_device_type deviceType)
+static ma_bool32 ma_device_is_reroute_required__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_playback) {
return pDevice->wasapi.hasDefaultPlaybackDeviceChanged;
@@ -9065,7 +10909,7 @@ ma_bool32 ma_device_is_reroute_required__wasapi(ma_device* pDevice, ma_device_ty
return MA_FALSE;
}
-ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceType)
+static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
ma_result result;
@@ -9096,9 +10940,9 @@ ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceTyp
}
-ma_result ma_device_stop__wasapi(ma_device* pDevice)
+static ma_result ma_device_stop__wasapi(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/*
We need to explicitly signal the capture event in loopback mode to ensure we return from WaitForSingleObject() when nothing is being played. When nothing
@@ -9112,31 +10956,35 @@ ma_result ma_device_stop__wasapi(ma_device* pDevice)
}
-ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
+static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
{
ma_result result;
HRESULT hr;
ma_bool32 exitLoop = MA_FALSE;
ma_uint32 framesWrittenToPlaybackDevice = 0;
- ma_uint32 mappedBufferSizeInFramesCapture = 0;
- ma_uint32 mappedBufferSizeInFramesPlayback = 0;
- ma_uint32 mappedBufferFramesRemainingCapture = 0;
- ma_uint32 mappedBufferFramesRemainingPlayback = 0;
- BYTE* pMappedBufferCapture = NULL;
- BYTE* pMappedBufferPlayback = NULL;
- ma_uint32 bpfCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 bpfPlayback = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint8 inputDataInExternalFormat[4096];
- ma_uint32 inputDataInExternalFormatCap = sizeof(inputDataInExternalFormat) / bpfCapture;
- ma_uint8 outputDataInExternalFormat[4096];
- ma_uint32 outputDataInExternalFormatCap = sizeof(outputDataInExternalFormat) / bpfPlayback;
+ ma_uint32 mappedDeviceBufferSizeInFramesCapture = 0;
+ ma_uint32 mappedDeviceBufferSizeInFramesPlayback = 0;
+ ma_uint32 mappedDeviceBufferFramesRemainingCapture = 0;
+ ma_uint32 mappedDeviceBufferFramesRemainingPlayback = 0;
+ BYTE* pMappedDeviceBufferCapture = NULL;
+ BYTE* pMappedDeviceBufferPlayback = NULL;
+ ma_uint32 bpfCaptureDevice = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 bpfPlaybackDevice = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 bpfCaptureClient = ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 bpfPlaybackClient = ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint8 inputDataInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 inputDataInClientFormatCap = sizeof(inputDataInClientFormat) / bpfCaptureClient;
+ ma_uint8 outputDataInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 outputDataInClientFormatCap = sizeof(outputDataInClientFormat) / bpfPlaybackClient;
+ ma_uint32 outputDataInClientFormatCount = 0;
+ ma_uint32 outputDataInClientFormatConsumed = 0;
ma_uint32 periodSizeInFramesCapture = 0;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) {
- periodSizeInFramesCapture = (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods);
+ periodSizeInFramesCapture = pDevice->capture.internalPeriodSizeInFrames;
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
@@ -9171,7 +11019,7 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
DWORD flagsCapture; /* Passed to IAudioCaptureClient_GetBuffer(). */
/* The process is to map the playback buffer and fill it as quickly as possible from input data. */
- if (pMappedBufferPlayback == NULL) {
+ if (pMappedDeviceBufferPlayback == NULL) {
/* WASAPI is weird with exclusive mode. You need to wait on the event _before_ querying the available frames. */
if (pDevice->playback.shareMode == ma_share_mode_exclusive) {
if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) {
@@ -9207,21 +11055,21 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* We're ready to map the playback device's buffer. We don't release this until it's been entirely filled. */
- hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedBufferPlayback);
+ hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
break;
}
- mappedBufferSizeInFramesPlayback = framesAvailablePlayback;
- mappedBufferFramesRemainingPlayback = framesAvailablePlayback;
+ mappedDeviceBufferSizeInFramesPlayback = framesAvailablePlayback;
+ mappedDeviceBufferFramesRemainingPlayback = framesAvailablePlayback;
}
/* At this point we should have a buffer available for output. We need to keep writing input samples to it. */
for (;;) {
/* Try grabbing some captured data if we haven't already got a mapped buffer. */
- if (pMappedBufferCapture == NULL) {
+ if (pMappedDeviceBufferCapture == NULL) {
if (pDevice->capture.shareMode == ma_share_mode_shared) {
if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) {
return MA_ERROR; /* Wait failed. */
@@ -9249,8 +11097,8 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* Getting here means there's data available for writing to the output device. */
- mappedBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
- hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedBufferCapture, &mappedBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
+ mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
+ hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9262,7 +11110,7 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if ((flagsCapture & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) {
/* Glitched. Probably due to an overrun. */
#ifdef MA_DEBUG_OUTPUT
- printf("[WASAPI] Data discontinuity (possible overrun). framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedBufferSizeInFramesCapture);
+ printf("[WASAPI] Data discontinuity (possible overrun). framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
/*
@@ -9270,34 +11118,34 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
by dropping every frame until we're left with only a single period. To do this we just keep retrieving and immediately releasing buffers until we're down to the
last period.
*/
- if (framesAvailableCapture >= pDevice->wasapi.actualBufferSizeInFramesCapture /*(pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods)*/) {
+ if (framesAvailableCapture >= pDevice->wasapi.actualPeriodSizeInFramesCapture) {
#ifdef MA_DEBUG_OUTPUT
printf("[WASAPI] Synchronizing capture stream. ");
#endif
do
{
- hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedBufferSizeInFramesCapture);
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
break;
}
- framesAvailableCapture -= mappedBufferSizeInFramesCapture;
+ framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture;
if (framesAvailableCapture > 0) {
- mappedBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
- hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedBufferCapture, &mappedBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
+ mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
+ hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
break;
}
} else {
- pMappedBufferCapture = NULL;
- mappedBufferSizeInFramesCapture = 0;
+ pMappedDeviceBufferCapture = NULL;
+ mappedDeviceBufferSizeInFramesCapture = 0;
}
} while (framesAvailableCapture > periodSizeInFramesCapture);
#ifdef MA_DEBUG_OUTPUT
- printf("framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedBufferSizeInFramesCapture);
+ printf("framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
}
} else {
@@ -9308,35 +11156,36 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
#endif
}
- mappedBufferFramesRemainingCapture = mappedBufferSizeInFramesCapture;
-
- pDevice->capture._dspFrameCount = mappedBufferSizeInFramesCapture;
- if ((flagsCapture & MA_AUDCLNT_BUFFERFLAGS_SILENT) == 0) {
- pDevice->capture._dspFrames = (const ma_uint8*)pMappedBufferCapture;
- } else {
- pDevice->capture._dspFrames = NULL;
- }
+ mappedDeviceBufferFramesRemainingCapture = mappedDeviceBufferSizeInFramesCapture;
}
/* At this point we should have both input and output data available. We now need to convert the data and post it to the client. */
for (;;) {
- BYTE* pRunningBufferCapture;
- BYTE* pRunningBufferPlayback;
+ BYTE* pRunningDeviceBufferCapture;
+ BYTE* pRunningDeviceBufferPlayback;
ma_uint32 framesToProcess;
ma_uint32 framesProcessed;
- pRunningBufferCapture = pMappedBufferCapture + ((mappedBufferSizeInFramesCapture - mappedBufferFramesRemainingCapture ) * bpfPlayback);
- pRunningBufferPlayback = pMappedBufferPlayback + ((mappedBufferSizeInFramesPlayback - mappedBufferFramesRemainingPlayback) * bpfPlayback);
+ pRunningDeviceBufferCapture = pMappedDeviceBufferCapture + ((mappedDeviceBufferSizeInFramesCapture - mappedDeviceBufferFramesRemainingCapture ) * bpfCaptureDevice);
+ pRunningDeviceBufferPlayback = pMappedDeviceBufferPlayback + ((mappedDeviceBufferSizeInFramesPlayback - mappedDeviceBufferFramesRemainingPlayback) * bpfPlaybackDevice);
/* There may be some data sitting in the converter that needs to be processed first. Once this is exhaused, run the data callback again. */
- if (!pDevice->playback.converter.isPassthrough) {
- framesProcessed = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, pRunningBufferPlayback, mappedBufferFramesRemainingPlayback);
- if (framesProcessed > 0) {
- mappedBufferFramesRemainingPlayback -= framesProcessed;
- if (mappedBufferFramesRemainingPlayback == 0) {
- break;
- }
+ if (!pDevice->playback.converter.isPassthrough && outputDataInClientFormatConsumed < outputDataInClientFormatCount) {
+ ma_uint64 convertedFrameCountClient = (outputDataInClientFormatCount - outputDataInClientFormatConsumed);
+ ma_uint64 convertedFrameCountDevice = mappedDeviceBufferFramesRemainingPlayback;
+ void* pConvertedFramesClient = outputDataInClientFormat + (outputDataInClientFormatConsumed * bpfPlaybackClient);
+ void* pConvertedFramesDevice = pRunningDeviceBufferPlayback;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pConvertedFramesClient, &convertedFrameCountClient, pConvertedFramesDevice, &convertedFrameCountDevice);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ outputDataInClientFormatConsumed += (ma_uint32)convertedFrameCountClient; /* Safe cast. */
+ mappedDeviceBufferFramesRemainingPlayback -= (ma_uint32)convertedFrameCountDevice; /* Safe cast. */
+
+ if (mappedDeviceBufferFramesRemainingPlayback == 0) {
+ break;
}
}
@@ -9346,81 +11195,76 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
*/
if (pDevice->capture.converter.isPassthrough && pDevice->playback.converter.isPassthrough) {
/* Optimal path. We can pass mapped pointers directly to the callback. */
- framesToProcess = ma_min(mappedBufferFramesRemainingCapture, mappedBufferFramesRemainingPlayback);
+ framesToProcess = ma_min(mappedDeviceBufferFramesRemainingCapture, mappedDeviceBufferFramesRemainingPlayback);
framesProcessed = framesToProcess;
- ma_device__on_data(pDevice, pRunningBufferPlayback, pRunningBufferCapture, framesToProcess);
+ ma_device__on_data(pDevice, pRunningDeviceBufferPlayback, pRunningDeviceBufferCapture, framesToProcess);
- mappedBufferFramesRemainingCapture -= framesProcessed;
- mappedBufferFramesRemainingPlayback -= framesProcessed;
+ mappedDeviceBufferFramesRemainingCapture -= framesProcessed;
+ mappedDeviceBufferFramesRemainingPlayback -= framesProcessed;
- if (mappedBufferFramesRemainingCapture == 0) {
+ if (mappedDeviceBufferFramesRemainingCapture == 0) {
break; /* Exhausted input data. */
}
- if (mappedBufferFramesRemainingPlayback == 0) {
+ if (mappedDeviceBufferFramesRemainingPlayback == 0) {
break; /* Exhausted output data. */
}
} else if (pDevice->capture.converter.isPassthrough) {
/* The input buffer is a passthrough, but the playback buffer requires a conversion. */
- framesToProcess = ma_min(mappedBufferFramesRemainingCapture, outputDataInExternalFormatCap);
+ framesToProcess = ma_min(mappedDeviceBufferFramesRemainingCapture, outputDataInClientFormatCap);
framesProcessed = framesToProcess;
- ma_device__on_data(pDevice, outputDataInExternalFormat, pRunningBufferCapture, framesToProcess);
- mappedBufferFramesRemainingCapture -= framesProcessed;
+ ma_device__on_data(pDevice, outputDataInClientFormat, pRunningDeviceBufferCapture, framesToProcess);
+ outputDataInClientFormatCount = framesProcessed;
+ outputDataInClientFormatConsumed = 0;
- pDevice->playback._dspFrameCount = framesProcessed;
- pDevice->playback._dspFrames = (const ma_uint8*)outputDataInExternalFormat;
-
- if (mappedBufferFramesRemainingCapture == 0) {
+ mappedDeviceBufferFramesRemainingCapture -= framesProcessed;
+ if (mappedDeviceBufferFramesRemainingCapture == 0) {
break; /* Exhausted input data. */
}
} else if (pDevice->playback.converter.isPassthrough) {
/* The input buffer requires conversion, the playback buffer is passthrough. */
- framesToProcess = ma_min(inputDataInExternalFormatCap, mappedBufferFramesRemainingPlayback);
- framesProcessed = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, inputDataInExternalFormat, framesToProcess);
- if (framesProcessed == 0) {
- /* Getting here means we've run out of input data. */
- mappedBufferFramesRemainingCapture = 0;
+ ma_uint64 capturedDeviceFramesToProcess = mappedDeviceBufferFramesRemainingCapture;
+ ma_uint64 capturedClientFramesToProcess = ma_min(inputDataInClientFormatCap, mappedDeviceBufferFramesRemainingPlayback);
+
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningDeviceBufferCapture, &capturedDeviceFramesToProcess, inputDataInClientFormat, &capturedClientFramesToProcess);
+ if (result != MA_SUCCESS) {
break;
}
- ma_device__on_data(pDevice, pRunningBufferPlayback, inputDataInExternalFormat, framesProcessed);
- mappedBufferFramesRemainingPlayback -= framesProcessed;
-
- if (framesProcessed < framesToProcess) {
- mappedBufferFramesRemainingCapture = 0;
- break; /* Exhausted input data. */
+ if (capturedClientFramesToProcess == 0) {
+ break;
}
- if (mappedBufferFramesRemainingPlayback == 0) {
- break; /* Exhausted output data. */
- }
+ ma_device__on_data(pDevice, pRunningDeviceBufferPlayback, inputDataInClientFormat, (ma_uint32)capturedClientFramesToProcess); /* Safe cast. */
+
+ mappedDeviceBufferFramesRemainingCapture -= (ma_uint32)capturedDeviceFramesToProcess;
+ mappedDeviceBufferFramesRemainingPlayback -= (ma_uint32)capturedClientFramesToProcess;
} else {
- framesToProcess = ma_min(inputDataInExternalFormatCap, outputDataInExternalFormatCap);
- framesProcessed = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, inputDataInExternalFormat, framesToProcess);
- if (framesProcessed == 0) {
- /* Getting here means we've run out of input data. */
- mappedBufferFramesRemainingCapture = 0;
+ ma_uint64 capturedDeviceFramesToProcess = mappedDeviceBufferFramesRemainingCapture;
+ ma_uint64 capturedClientFramesToProcess = ma_min(inputDataInClientFormatCap, outputDataInClientFormatCap);
+
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningDeviceBufferCapture, &capturedDeviceFramesToProcess, inputDataInClientFormat, &capturedClientFramesToProcess);
+ if (result != MA_SUCCESS) {
break;
}
- ma_device__on_data(pDevice, outputDataInExternalFormat, inputDataInExternalFormat, framesProcessed);
-
- pDevice->playback._dspFrameCount = framesProcessed;
- pDevice->playback._dspFrames = (const ma_uint8*)outputDataInExternalFormat;
-
- if (framesProcessed < framesToProcess) {
- /* Getting here means we've run out of input data. */
- mappedBufferFramesRemainingCapture = 0;
+ if (capturedClientFramesToProcess == 0) {
break;
}
+
+ ma_device__on_data(pDevice, outputDataInClientFormat, inputDataInClientFormat, (ma_uint32)capturedClientFramesToProcess);
+
+ mappedDeviceBufferFramesRemainingCapture -= (ma_uint32)capturedDeviceFramesToProcess;
+ outputDataInClientFormatCount = (ma_uint32)capturedClientFramesToProcess;
+ outputDataInClientFormatConsumed = 0;
}
}
/* If at this point we've run out of capture data we need to release the buffer. */
- if (mappedBufferFramesRemainingCapture == 0 && pMappedBufferCapture != NULL) {
- hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedBufferSizeInFramesCapture);
+ if (mappedDeviceBufferFramesRemainingCapture == 0 && pMappedDeviceBufferCapture != NULL) {
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9429,21 +11273,21 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
/*printf("TRACE: Released capture buffer\n");*/
- pMappedBufferCapture = NULL;
- mappedBufferFramesRemainingCapture = 0;
- mappedBufferSizeInFramesCapture = 0;
+ pMappedDeviceBufferCapture = NULL;
+ mappedDeviceBufferFramesRemainingCapture = 0;
+ mappedDeviceBufferSizeInFramesCapture = 0;
}
/* Get out of this loop if we're run out of room in the playback buffer. */
- if (mappedBufferFramesRemainingPlayback == 0) {
+ if (mappedDeviceBufferFramesRemainingPlayback == 0) {
break;
}
}
/* If at this point we've run out of data we need to release the buffer. */
- if (mappedBufferFramesRemainingPlayback == 0 && pMappedBufferPlayback != NULL) {
- hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedBufferSizeInFramesPlayback, 0);
+ if (mappedDeviceBufferFramesRemainingPlayback == 0 && pMappedDeviceBufferPlayback != NULL) {
+ hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedDeviceBufferSizeInFramesPlayback, 0);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9451,19 +11295,19 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/*printf("TRACE: Released playback buffer\n");*/
- framesWrittenToPlaybackDevice += mappedBufferSizeInFramesPlayback;
+ framesWrittenToPlaybackDevice += mappedDeviceBufferSizeInFramesPlayback;
- pMappedBufferPlayback = NULL;
- mappedBufferFramesRemainingPlayback = 0;
- mappedBufferSizeInFramesPlayback = 0;
+ pMappedDeviceBufferPlayback = NULL;
+ mappedDeviceBufferFramesRemainingPlayback = 0;
+ mappedDeviceBufferSizeInFramesPlayback = 0;
}
if (!pDevice->wasapi.isStartedPlayback) {
- ma_uint32 startThreshold = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods * 1;
+ ma_uint32 startThreshold = pDevice->playback.internalPeriodSizeInFrames * 1;
/* Prevent a deadlock. If we don't clamp against the actual buffer size we'll never end up starting the playback device which will result in a deadlock. */
- if (startThreshold > pDevice->wasapi.actualBufferSizeInFramesPlayback) {
- startThreshold = pDevice->wasapi.actualBufferSizeInFramesPlayback;
+ if (startThreshold > pDevice->wasapi.actualPeriodSizeInFramesPlayback) {
+ startThreshold = pDevice->wasapi.actualPeriodSizeInFramesPlayback;
}
if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= startThreshold) {
@@ -9504,8 +11348,8 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* Map the data buffer in preparation for sending to the client. */
- mappedBufferSizeInFramesCapture = framesAvailableCapture;
- hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedBufferCapture, &mappedBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
+ mappedDeviceBufferSizeInFramesCapture = framesAvailableCapture;
+ hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9513,12 +11357,12 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* We should have a buffer at this point. */
- ma_device__send_frames_to_client(pDevice, mappedBufferSizeInFramesCapture, pMappedBufferCapture);
+ ma_device__send_frames_to_client(pDevice, mappedDeviceBufferSizeInFramesCapture, pMappedDeviceBufferCapture);
/* At this point we're done with the buffer. */
- hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedBufferSizeInFramesCapture);
- pMappedBufferCapture = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
- mappedBufferSizeInFramesCapture = 0;
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
+ pMappedDeviceBufferCapture = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
+ mappedDeviceBufferSizeInFramesCapture = 0;
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9550,7 +11394,7 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* Map a the data buffer in preparation for the callback. */
- hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedBufferPlayback);
+ hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
exitLoop = MA_TRUE;
@@ -9558,12 +11402,12 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
}
/* We should have a buffer at this point. */
- ma_device__read_frames_from_client(pDevice, framesAvailablePlayback, pMappedBufferPlayback);
+ ma_device__read_frames_from_client(pDevice, framesAvailablePlayback, pMappedDeviceBufferPlayback);
/* At this point we're done writing to the device and we just need to release the buffer. */
hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, 0);
- pMappedBufferPlayback = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
- mappedBufferSizeInFramesPlayback = 0;
+ pMappedDeviceBufferPlayback = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
+ mappedDeviceBufferSizeInFramesPlayback = 0;
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
@@ -9573,7 +11417,7 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
framesWrittenToPlaybackDevice += framesAvailablePlayback;
if (!pDevice->wasapi.isStartedPlayback) {
- if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= (pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)*1) {
+ if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames*1) {
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", MA_FAILED_TO_START_BACKEND_DEVICE);
@@ -9592,8 +11436,8 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
/* Here is where the device needs to be stopped. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) {
/* Any mapped buffers need to be released. */
- if (pMappedBufferCapture != NULL) {
- hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedBufferSizeInFramesCapture);
+ if (pMappedDeviceBufferCapture != NULL) {
+ hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
}
hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
@@ -9612,8 +11456,8 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
/* Any mapped buffers need to be released. */
- if (pMappedBufferPlayback != NULL) {
- hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedBufferSizeInFramesPlayback, 0);
+ if (pMappedDeviceBufferPlayback != NULL) {
+ hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedDeviceBufferSizeInFramesPlayback, 0);
}
/*
@@ -9632,7 +11476,7 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
break;
}
- if (framesAvailablePlayback >= pDevice->wasapi.actualBufferSizeInFramesPlayback) {
+ if (framesAvailablePlayback >= pDevice->wasapi.actualPeriodSizeInFramesPlayback) {
break;
}
@@ -9668,20 +11512,20 @@ ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_context_uninit__wasapi(ma_context* pContext)
+static ma_result ma_context_uninit__wasapi(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_wasapi);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_wasapi);
(void)pContext;
return MA_SUCCESS;
}
-ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_context* pContext)
{
ma_result result = MA_SUCCESS;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -9710,7 +11554,7 @@ ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_context*
return MA_NO_BACKEND;
}
- ma_zero_object(&osvi);
+ MA_ZERO_OBJECT(&osvi);
osvi.dwOSVersionInfoSize = sizeof(osvi);
osvi.dwMajorVersion = HIBYTE(MA_WIN32_WINNT_VISTA);
osvi.dwMinorVersion = LOBYTE(MA_WIN32_WINNT_VISTA);
@@ -9751,7 +11595,7 @@ DirectSound Backend
#ifdef MA_HAS_DSOUND
/*#include <dsound.h>*/
-GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}};
+static const GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}};
/* miniaudio only uses priority or exclusive modes. */
#define MA_DSSCL_NORMAL 1
@@ -9913,17 +11757,17 @@ struct ma_IDirectSound
{
ma_IDirectSoundVtbl* lpVtbl;
};
-HRESULT ma_IDirectSound_QueryInterface(ma_IDirectSound* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IDirectSound_AddRef(ma_IDirectSound* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IDirectSound_Release(ma_IDirectSound* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IDirectSound_CreateSoundBuffer(ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateSoundBuffer(pThis, pDSBufferDesc, ppDSBuffer, pUnkOuter); }
-HRESULT ma_IDirectSound_GetCaps(ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCaps); }
-HRESULT ma_IDirectSound_DuplicateSoundBuffer(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate) { return pThis->lpVtbl->DuplicateSoundBuffer(pThis, pDSBufferOriginal, ppDSBufferDuplicate); }
-HRESULT ma_IDirectSound_SetCooperativeLevel(ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel) { return pThis->lpVtbl->SetCooperativeLevel(pThis, hwnd, dwLevel); }
-HRESULT ma_IDirectSound_Compact(ma_IDirectSound* pThis) { return pThis->lpVtbl->Compact(pThis); }
-HRESULT ma_IDirectSound_GetSpeakerConfig(ma_IDirectSound* pThis, DWORD* pSpeakerConfig) { return pThis->lpVtbl->GetSpeakerConfig(pThis, pSpeakerConfig); }
-HRESULT ma_IDirectSound_SetSpeakerConfig(ma_IDirectSound* pThis, DWORD dwSpeakerConfig) { return pThis->lpVtbl->SetSpeakerConfig(pThis, dwSpeakerConfig); }
-HRESULT ma_IDirectSound_Initialize(ma_IDirectSound* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
+static MA_INLINE HRESULT ma_IDirectSound_QueryInterface(ma_IDirectSound* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IDirectSound_AddRef(ma_IDirectSound* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IDirectSound_Release(ma_IDirectSound* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IDirectSound_CreateSoundBuffer(ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateSoundBuffer(pThis, pDSBufferDesc, ppDSBuffer, pUnkOuter); }
+static MA_INLINE HRESULT ma_IDirectSound_GetCaps(ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCaps); }
+static MA_INLINE HRESULT ma_IDirectSound_DuplicateSoundBuffer(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate) { return pThis->lpVtbl->DuplicateSoundBuffer(pThis, pDSBufferOriginal, ppDSBufferDuplicate); }
+static MA_INLINE HRESULT ma_IDirectSound_SetCooperativeLevel(ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel) { return pThis->lpVtbl->SetCooperativeLevel(pThis, hwnd, dwLevel); }
+static MA_INLINE HRESULT ma_IDirectSound_Compact(ma_IDirectSound* pThis) { return pThis->lpVtbl->Compact(pThis); }
+static MA_INLINE HRESULT ma_IDirectSound_GetSpeakerConfig(ma_IDirectSound* pThis, DWORD* pSpeakerConfig) { return pThis->lpVtbl->GetSpeakerConfig(pThis, pSpeakerConfig); }
+static MA_INLINE HRESULT ma_IDirectSound_SetSpeakerConfig(ma_IDirectSound* pThis, DWORD dwSpeakerConfig) { return pThis->lpVtbl->SetSpeakerConfig(pThis, dwSpeakerConfig); }
+static MA_INLINE HRESULT ma_IDirectSound_Initialize(ma_IDirectSound* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
/* IDirectSoundBuffer */
@@ -9958,27 +11802,27 @@ struct ma_IDirectSoundBuffer
{
ma_IDirectSoundBufferVtbl* lpVtbl;
};
-HRESULT ma_IDirectSoundBuffer_QueryInterface(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IDirectSoundBuffer_AddRef(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IDirectSoundBuffer_Release(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IDirectSoundBuffer_GetCaps(ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSBufferCaps); }
-HRESULT ma_IDirectSoundBuffer_GetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCurrentPlayCursor, pCurrentWriteCursor); }
-HRESULT ma_IDirectSoundBuffer_GetFormat(ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
-HRESULT ma_IDirectSoundBuffer_GetVolume(ma_IDirectSoundBuffer* pThis, LONG* pVolume) { return pThis->lpVtbl->GetVolume(pThis, pVolume); }
-HRESULT ma_IDirectSoundBuffer_GetPan(ma_IDirectSoundBuffer* pThis, LONG* pPan) { return pThis->lpVtbl->GetPan(pThis, pPan); }
-HRESULT ma_IDirectSoundBuffer_GetFrequency(ma_IDirectSoundBuffer* pThis, DWORD* pFrequency) { return pThis->lpVtbl->GetFrequency(pThis, pFrequency); }
-HRESULT ma_IDirectSoundBuffer_GetStatus(ma_IDirectSoundBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
-HRESULT ma_IDirectSoundBuffer_Initialize(ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSound, pDSBufferDesc); }
-HRESULT ma_IDirectSoundBuffer_Lock(ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
-HRESULT ma_IDirectSoundBuffer_Play(ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags) { return pThis->lpVtbl->Play(pThis, dwReserved1, dwPriority, dwFlags); }
-HRESULT ma_IDirectSoundBuffer_SetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition) { return pThis->lpVtbl->SetCurrentPosition(pThis, dwNewPosition); }
-HRESULT ma_IDirectSoundBuffer_SetFormat(ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat) { return pThis->lpVtbl->SetFormat(pThis, pFormat); }
-HRESULT ma_IDirectSoundBuffer_SetVolume(ma_IDirectSoundBuffer* pThis, LONG volume) { return pThis->lpVtbl->SetVolume(pThis, volume); }
-HRESULT ma_IDirectSoundBuffer_SetPan(ma_IDirectSoundBuffer* pThis, LONG pan) { return pThis->lpVtbl->SetPan(pThis, pan); }
-HRESULT ma_IDirectSoundBuffer_SetFrequency(ma_IDirectSoundBuffer* pThis, DWORD dwFrequency) { return pThis->lpVtbl->SetFrequency(pThis, dwFrequency); }
-HRESULT ma_IDirectSoundBuffer_Stop(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
-HRESULT ma_IDirectSoundBuffer_Unlock(ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
-HRESULT ma_IDirectSoundBuffer_Restore(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Restore(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_QueryInterface(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IDirectSoundBuffer_AddRef(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IDirectSoundBuffer_Release(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCaps(ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSBufferCaps); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCurrentPlayCursor, pCurrentWriteCursor); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFormat(ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetVolume(ma_IDirectSoundBuffer* pThis, LONG* pVolume) { return pThis->lpVtbl->GetVolume(pThis, pVolume); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetPan(ma_IDirectSoundBuffer* pThis, LONG* pPan) { return pThis->lpVtbl->GetPan(pThis, pPan); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFrequency(ma_IDirectSoundBuffer* pThis, DWORD* pFrequency) { return pThis->lpVtbl->GetFrequency(pThis, pFrequency); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetStatus(ma_IDirectSoundBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Initialize(ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSound, pDSBufferDesc); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Lock(ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Play(ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags) { return pThis->lpVtbl->Play(pThis, dwReserved1, dwPriority, dwFlags); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition) { return pThis->lpVtbl->SetCurrentPosition(pThis, dwNewPosition); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFormat(ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat) { return pThis->lpVtbl->SetFormat(pThis, pFormat); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetVolume(ma_IDirectSoundBuffer* pThis, LONG volume) { return pThis->lpVtbl->SetVolume(pThis, volume); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetPan(ma_IDirectSoundBuffer* pThis, LONG pan) { return pThis->lpVtbl->SetPan(pThis, pan); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFrequency(ma_IDirectSoundBuffer* pThis, DWORD dwFrequency) { return pThis->lpVtbl->SetFrequency(pThis, dwFrequency); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Stop(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Unlock(ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
+static MA_INLINE HRESULT ma_IDirectSoundBuffer_Restore(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Restore(pThis); }
/* IDirectSoundCapture */
@@ -9998,12 +11842,12 @@ struct ma_IDirectSoundCapture
{
ma_IDirectSoundCaptureVtbl* lpVtbl;
};
-HRESULT ma_IDirectSoundCapture_QueryInterface(ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IDirectSoundCapture_AddRef(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IDirectSoundCapture_Release(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IDirectSoundCapture_CreateCaptureBuffer(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateCaptureBuffer(pThis, pDSCBufferDesc, ppDSCBuffer, pUnkOuter); }
-HRESULT ma_IDirectSoundCapture_GetCaps (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCCaps); }
-HRESULT ma_IDirectSoundCapture_Initialize (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
+static MA_INLINE HRESULT ma_IDirectSoundCapture_QueryInterface(ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IDirectSoundCapture_AddRef(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IDirectSoundCapture_Release(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundCapture_CreateCaptureBuffer(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateCaptureBuffer(pThis, pDSCBufferDesc, ppDSCBuffer, pUnkOuter); }
+static MA_INLINE HRESULT ma_IDirectSoundCapture_GetCaps (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCCaps); }
+static MA_INLINE HRESULT ma_IDirectSoundCapture_Initialize (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
/* IDirectSoundCaptureBuffer */
@@ -10029,18 +11873,18 @@ struct ma_IDirectSoundCaptureBuffer
{
ma_IDirectSoundCaptureBufferVtbl* lpVtbl;
};
-HRESULT ma_IDirectSoundCaptureBuffer_QueryInterface(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IDirectSoundCaptureBuffer_AddRef(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IDirectSoundCaptureBuffer_Release(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IDirectSoundCaptureBuffer_GetCaps(ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCBCaps); }
-HRESULT ma_IDirectSoundCaptureBuffer_GetCurrentPosition(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCapturePosition, pReadPosition); }
-HRESULT ma_IDirectSoundCaptureBuffer_GetFormat(ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
-HRESULT ma_IDirectSoundCaptureBuffer_GetStatus(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
-HRESULT ma_IDirectSoundCaptureBuffer_Initialize(ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSoundCapture, pDSCBufferDesc); }
-HRESULT ma_IDirectSoundCaptureBuffer_Lock(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
-HRESULT ma_IDirectSoundCaptureBuffer_Start(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags) { return pThis->lpVtbl->Start(pThis, dwFlags); }
-HRESULT ma_IDirectSoundCaptureBuffer_Stop(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
-HRESULT ma_IDirectSoundCaptureBuffer_Unlock(ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_QueryInterface(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_AddRef(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_Release(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCaps(ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCBCaps); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCurrentPosition(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCapturePosition, pReadPosition); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetFormat(ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetStatus(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Initialize(ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSoundCapture, pDSCBufferDesc); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Lock(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Start(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags) { return pThis->lpVtbl->Start(pThis, dwFlags); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Stop(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Unlock(ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
/* IDirectSoundNotify */
@@ -10058,10 +11902,10 @@ struct ma_IDirectSoundNotify
{
ma_IDirectSoundNotifyVtbl* lpVtbl;
};
-HRESULT ma_IDirectSoundNotify_QueryInterface(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
-ULONG ma_IDirectSoundNotify_AddRef(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->AddRef(pThis); }
-ULONG ma_IDirectSoundNotify_Release(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->Release(pThis); }
-HRESULT ma_IDirectSoundNotify_SetNotificationPositions(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies) { return pThis->lpVtbl->SetNotificationPositions(pThis, dwPositionNotifies, pPositionNotifies); }
+static MA_INLINE HRESULT ma_IDirectSoundNotify_QueryInterface(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
+static MA_INLINE ULONG ma_IDirectSoundNotify_AddRef(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->AddRef(pThis); }
+static MA_INLINE ULONG ma_IDirectSoundNotify_Release(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->Release(pThis); }
+static MA_INLINE HRESULT ma_IDirectSoundNotify_SetNotificationPositions(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies) { return pThis->lpVtbl->SetNotificationPositions(pThis, dwPositionNotifies, pPositionNotifies); }
typedef BOOL (CALLBACK * ma_DSEnumCallbackAProc) (LPGUID pDeviceGUID, LPCSTR pDeviceDescription, LPCSTR pModule, LPVOID pContext);
@@ -10070,12 +11914,41 @@ typedef HRESULT (WINAPI * ma_DirectSoundEnumerateAProc) (ma_DSEnumCallba
typedef HRESULT (WINAPI * ma_DirectSoundCaptureCreateProc) (const GUID* pcGuidDevice, ma_IDirectSoundCapture** ppDSC8, LPUNKNOWN pUnkOuter);
typedef HRESULT (WINAPI * ma_DirectSoundCaptureEnumerateAProc)(ma_DSEnumCallbackAProc pDSEnumCallback, LPVOID pContext);
+static ma_uint32 ma_get_best_sample_rate_within_range(ma_uint32 sampleRateMin, ma_uint32 sampleRateMax)
+{
+ /* Normalize the range in case we were given something stupid. */
+ if (sampleRateMin < MA_MIN_SAMPLE_RATE) {
+ sampleRateMin = MA_MIN_SAMPLE_RATE;
+ }
+ if (sampleRateMax > MA_MAX_SAMPLE_RATE) {
+ sampleRateMax = MA_MAX_SAMPLE_RATE;
+ }
+ if (sampleRateMin > sampleRateMax) {
+ sampleRateMin = sampleRateMax;
+ }
+
+ if (sampleRateMin == sampleRateMax) {
+ return sampleRateMax;
+ } else {
+ size_t iStandardRate;
+ for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) {
+ ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate];
+ if (standardRate >= sampleRateMin && standardRate <= sampleRateMax) {
+ return standardRate;
+ }
+ }
+ }
+
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
+}
/*
Retrieves the channel count and channel map for the given speaker configuration. If the speaker configuration is unknown,
the channel count and channel map will be left unmodified.
*/
-void ma_get_channels_from_speaker_config__dsound(DWORD speakerConfig, WORD* pChannelsOut, DWORD* pChannelMapOut)
+static void ma_get_channels_from_speaker_config__dsound(DWORD speakerConfig, WORD* pChannelsOut, DWORD* pChannelMapOut)
{
WORD channels;
DWORD channelMap;
@@ -10117,13 +11990,13 @@ void ma_get_channels_from_speaker_config__dsound(DWORD speakerConfig, WORD* pCha
}
-ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSound** ppDirectSound)
+static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSound** ppDirectSound)
{
ma_IDirectSound* pDirectSound;
HWND hWnd;
- ma_assert(pContext != NULL);
- ma_assert(ppDirectSound != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppDirectSound != NULL);
*ppDirectSound = NULL;
pDirectSound = NULL;
@@ -10145,12 +12018,12 @@ ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma_share_
return MA_SUCCESS;
}
-ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSoundCapture** ppDirectSoundCapture)
+static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSoundCapture** ppDirectSoundCapture)
{
ma_IDirectSoundCapture* pDirectSoundCapture;
- ma_assert(pContext != NULL);
- ma_assert(ppDirectSoundCapture != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppDirectSoundCapture != NULL);
/* DirectSound does not support exclusive mode for capture. */
if (shareMode == ma_share_mode_exclusive) {
@@ -10168,14 +12041,14 @@ ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma
return MA_SUCCESS;
}
-ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context* pContext, ma_IDirectSoundCapture* pDirectSoundCapture, WORD* pChannels, WORD* pBitsPerSample, DWORD* pSampleRate)
+static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context* pContext, ma_IDirectSoundCapture* pDirectSoundCapture, WORD* pChannels, WORD* pBitsPerSample, DWORD* pSampleRate)
{
MA_DSCCAPS caps;
WORD bitsPerSample;
DWORD sampleRate;
- ma_assert(pContext != NULL);
- ma_assert(pDirectSoundCapture != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDirectSoundCapture != NULL);
if (pChannels) {
*pChannels = 0;
@@ -10187,7 +12060,7 @@ ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context*
*pSampleRate = 0;
}
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
if (FAILED(ma_IDirectSoundCapture_GetCaps(pDirectSoundCapture, &caps))) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_GetCaps() failed for capture device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
@@ -10267,11 +12140,11 @@ ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context*
return MA_SUCCESS;
}
-ma_bool32 ma_context_is_device_id_equal__dsound(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__dsound(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return memcmp(pID0->dsound, pID1->dsound, sizeof(pID0->dsound)) == 0;
@@ -10287,18 +12160,18 @@ typedef struct
ma_bool32 terminated;
} ma_context_enumerate_devices_callback_data__dsound;
-BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
+static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
{
ma_context_enumerate_devices_callback_data__dsound* pData = (ma_context_enumerate_devices_callback_data__dsound*)lpContext;
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
/* ID. */
if (lpGuid != NULL) {
- ma_copy_memory(deviceInfo.id.dsound, lpGuid, 16);
+ MA_COPY_MEMORY(deviceInfo.id.dsound, lpGuid, 16);
} else {
- ma_zero_memory(deviceInfo.id.dsound, 16);
+ MA_ZERO_MEMORY(deviceInfo.id.dsound, 16);
}
/* Name / Description */
@@ -10306,7 +12179,7 @@ BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCST
/* Call the callback function, but make sure we stop enumerating if the callee requested so. */
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
pData->terminated = !pData->callback(pData->pContext, pData->deviceType, &deviceInfo, pData->pUserData);
if (pData->terminated) {
return FALSE; /* Stop enumeration. */
@@ -10317,12 +12190,12 @@ BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCST
(void)lpcstrModule;
}
-ma_result ma_context_enumerate_devices__dsound(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__dsound(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_context_enumerate_devices_callback_data__dsound data;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
data.pContext = pContext;
data.callback = callback;
@@ -10352,10 +12225,10 @@ typedef struct
ma_bool32 found;
} ma_context_get_device_info_callback_data__dsound;
-BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
+static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
{
ma_context_get_device_info_callback_data__dsound* pData = (ma_context_get_device_info_callback_data__dsound*)lpContext;
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
if ((pData->pDeviceID == NULL || ma_is_guid_equal(pData->pDeviceID->dsound, &MA_GUID_NULL)) && (lpGuid == NULL || ma_is_guid_equal(lpGuid, &MA_GUID_NULL))) {
/* Default device. */
@@ -10364,7 +12237,7 @@ BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR
return FALSE; /* Stop enumeration. */
} else {
/* Not the default device. */
- if (lpGuid != NULL) {
+ if (lpGuid != NULL && pData->pDeviceID != NULL) {
if (memcmp(pData->pDeviceID->dsound, lpGuid, sizeof(pData->pDeviceID->dsound)) == 0) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1);
pData->found = MA_TRUE;
@@ -10377,7 +12250,7 @@ BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR
return TRUE;
}
-ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
/* Exclusive mode and capture not supported with DirectSound. */
if (deviceType == ma_device_type_capture && shareMode == ma_share_mode_exclusive) {
@@ -10388,7 +12261,7 @@ ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_typ
ma_context_get_device_info_callback_data__dsound data;
/* ID. */
- ma_copy_memory(pDeviceInfo->id.dsound, pDeviceID->dsound, 16);
+ MA_COPY_MEMORY(pDeviceInfo->id.dsound, pDeviceID->dsound, 16);
/* Name / Description. This is retrieved by enumerating over each device until we find that one that matches the input ID. */
data.pDeviceID = pDeviceID;
@@ -10407,7 +12280,7 @@ ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_typ
/* I don't think there's a way to get the name of the default device with DirectSound. In this case we just need to use defaults. */
/* ID */
- ma_zero_memory(pDeviceInfo->id.dsound, 16);
+ MA_ZERO_MEMORY(pDeviceInfo->id.dsound, 16);
/* Name / Description */
if (deviceType == ma_device_type_playback) {
@@ -10430,7 +12303,7 @@ ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_typ
return result;
}
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
if (FAILED(ma_IDirectSound_GetCaps(pDirectSound, &caps))) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
@@ -10530,44 +12403,10 @@ ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_typ
}
-typedef struct
-{
- ma_uint32 deviceCount;
- ma_uint32 infoCount;
- ma_device_info* pInfo;
-} ma_device_enum_data__dsound;
-
-BOOL CALLBACK ma_enum_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
-{
- ma_device_enum_data__dsound* pData = (ma_device_enum_data__dsound*)lpContext;
- ma_assert(pData != NULL);
-
- if (pData->pInfo != NULL) {
- if (pData->infoCount > 0) {
- ma_zero_object(pData->pInfo);
- ma_strncpy_s(pData->pInfo->name, sizeof(pData->pInfo->name), lpcstrDescription, (size_t)-1);
-
- if (lpGuid != NULL) {
- ma_copy_memory(pData->pInfo->id.dsound, lpGuid, 16);
- } else {
- ma_zero_memory(pData->pInfo->id.dsound, 16);
- }
-
- pData->pInfo += 1;
- pData->infoCount -= 1;
- pData->deviceCount += 1;
- }
- } else {
- pData->deviceCount += 1;
- }
-
- (void)lpcstrModule;
- return TRUE;
-}
-void ma_device_uninit__dsound(ma_device* pDevice)
+static void ma_device_uninit__dsound(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->dsound.pCaptureBuffer != NULL) {
ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
@@ -10587,7 +12426,7 @@ void ma_device_uninit__dsound(ma_device* pDevice)
}
}
-ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* pChannelMap, WAVEFORMATEXTENSIBLE* pWF)
+static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* pChannelMap, WAVEFORMATEXTENSIBLE* pWF)
{
GUID subformat;
@@ -10611,7 +12450,7 @@ ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels
return MA_FORMAT_NOT_SUPPORTED;
}
- ma_zero_object(pWF);
+ MA_ZERO_OBJECT(pWF);
pWF->Format.cbSize = sizeof(*pWF);
pWF->Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
pWF->Format.nChannels = (WORD)channels;
@@ -10626,35 +12465,35 @@ ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels
return MA_SUCCESS;
}
-ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
- ma_uint32 bufferSizeInMilliseconds;
+ ma_uint32 periodSizeInMilliseconds;
- ma_assert(pDevice != NULL);
- ma_zero_object(&pDevice->dsound);
+ MA_ASSERT(pDevice != NULL);
+ MA_ZERO_OBJECT(&pDevice->dsound);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
- bufferSizeInMilliseconds = pConfig->bufferSizeInMilliseconds;
- if (bufferSizeInMilliseconds == 0) {
- bufferSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->bufferSizeInFrames, pConfig->sampleRate);
+ periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
+ if (periodSizeInMilliseconds == 0) {
+ periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
/* DirectSound should use a latency of about 20ms per period for low latency mode. */
if (pDevice->usingDefaultBufferSize) {
if (pConfig->performanceProfile == ma_performance_profile_low_latency) {
- bufferSizeInMilliseconds = 20 * pConfig->periods;
+ periodSizeInMilliseconds = 20;
} else {
- bufferSizeInMilliseconds = 200 * pConfig->periods;
+ periodSizeInMilliseconds = 200;
}
}
/* DirectSound breaks down with tiny buffer sizes (bad glitching and silent output). I am therefore restricting the size of the buffer to a minimum of 20 milliseconds. */
- if ((bufferSizeInMilliseconds/pConfig->periods) < 20) {
- bufferSizeInMilliseconds = pConfig->periods * 20;
+ if (periodSizeInMilliseconds < 20) {
+ periodSizeInMilliseconds = 20;
}
/*
@@ -10665,7 +12504,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
WAVEFORMATEXTENSIBLE wf;
MA_DSCBUFFERDESC descDS;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */
WAVEFORMATEXTENSIBLE* pActualFormat;
@@ -10692,12 +12531,12 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM;
/* The size of the buffer must be a clean multiple of the period count. */
- bufferSizeInFrames = (ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, wf.Format.nSamplesPerSec) / pConfig->periods) * pConfig->periods;
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, wf.Format.nSamplesPerSec);
- ma_zero_object(&descDS);
+ MA_ZERO_OBJECT(&descDS);
descDS.dwSize = sizeof(descDS);
descDS.dwFlags = 0;
- descDS.dwBufferBytes = bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels);
+ descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
if (FAILED(ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL))) {
ma_device_uninit__dsound(pDevice);
@@ -10726,8 +12565,8 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
After getting the actual format the size of the buffer in frames may have actually changed. However, we want this to be as close to what the
user has asked for as possible, so let's go ahead and release the old capture buffer and create a new one in this case.
*/
- if (bufferSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels))) {
- descDS.dwBufferBytes = bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels);
+ if (periodSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pConfig->periods)) {
+ descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels) * pConfig->periods;
ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
if (FAILED(ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL))) {
@@ -10737,7 +12576,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
}
/* DirectSound should give us a buffer exactly the size we asked for. */
- pDevice->capture.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = pConfig->periods;
}
@@ -10747,7 +12586,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
MA_DSCAPS caps;
char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */
WAVEFORMATEXTENSIBLE* pActualFormat;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
MA_DSBUFFERDESC descDS;
result = ma_config_to_WAVEFORMATEXTENSIBLE(pConfig->playback.format, pConfig->playback.channels, pConfig->sampleRate, pConfig->playback.channelMap, &wf);
@@ -10761,7 +12600,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
return result;
}
- ma_zero_object(&descDSPrimary);
+ MA_ZERO_OBJECT(&descDSPrimary);
descDSPrimary.dwSize = sizeof(MA_DSBUFFERDESC);
descDSPrimary.dwFlags = MA_DSBCAPS_PRIMARYBUFFER | MA_DSBCAPS_CTRLVOLUME;
if (FAILED(ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDSPrimary, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackPrimaryBuffer, NULL))) {
@@ -10771,7 +12610,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
/* We may want to make some adjustments to the format if we are using defaults. */
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
if (FAILED(ma_IDirectSound_GetCaps((ma_IDirectSound*)pDevice->dsound.pPlayback, &caps))) {
ma_device_uninit__dsound(pDevice);
@@ -10838,7 +12677,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
}
/* The size of the buffer must be a clean multiple of the period count. */
- bufferSizeInFrames = (ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, pDevice->playback.internalSampleRate) / pConfig->periods) * pConfig->periods;
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
/*
Meaning of dwFlags (from MSDN):
@@ -10855,10 +12694,10 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
sound cards; it was directly behind the write cursor. Now, if the DSBCAPS_GETCURRENTPOSITION2 flag is specified, the
application can get a more accurate play cursor.
*/
- ma_zero_object(&descDS);
+ MA_ZERO_OBJECT(&descDS);
descDS.dwSize = sizeof(descDS);
descDS.dwFlags = MA_DSBCAPS_CTRLPOSITIONNOTIFY | MA_DSBCAPS_GLOBALFOCUS | MA_DSBCAPS_GETCURRENTPOSITION2;
- descDS.dwBufferBytes = bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
if (FAILED(ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL))) {
ma_device_uninit__dsound(pDevice);
@@ -10866,7 +12705,7 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
}
/* DirectSound should give us a buffer exactly the size we asked for. */
- pDevice->playback.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = pConfig->periods;
}
@@ -10875,20 +12714,21 @@ ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* p
}
-ma_result ma_device_main_loop__dsound(ma_device* pDevice)
+static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
- ma_uint32 bpfCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 bpfPlayback = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 bpfDeviceCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 bpfDevicePlayback = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
HRESULT hr;
DWORD lockOffsetInBytesCapture;
DWORD lockSizeInBytesCapture;
DWORD mappedSizeInBytesCapture;
- void* pMappedBufferCapture;
+ DWORD mappedDeviceFramesProcessedCapture;
+ void* pMappedDeviceBufferCapture;
DWORD lockOffsetInBytesPlayback;
DWORD lockSizeInBytesPlayback;
DWORD mappedSizeInBytesPlayback;
- void* pMappedBufferPlayback;
+ void* pMappedDeviceBufferPlayback;
DWORD prevReadCursorInBytesCapture = 0;
DWORD prevPlayCursorInBytesPlayback = 0;
ma_bool32 physicalPlayCursorLoopFlagPlayback = 0;
@@ -10898,7 +12738,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
ma_uint32 framesWrittenToPlaybackDevice = 0; /* For knowing whether or not the playback device needs to be started. */
ma_uint32 waitTimeInMilliseconds = 1;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* The first thing to do is start the capture device. The playback device is only started after the first period is written. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -10937,10 +12777,10 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything,
do it again from the start.
*/
- if (prevReadCursorInBytesCapture < pDevice->capture.internalBufferSizeInFrames*bpfCapture) {
+ if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) {
/* Lock up to the end of the buffer. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
- lockSizeInBytesCapture = (pDevice->capture.internalBufferSizeInFrames*bpfCapture) - prevReadCursorInBytesCapture;
+ lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture;
} else {
/* Lock starting from the start of the buffer. */
lockOffsetInBytesCapture = 0;
@@ -10953,32 +12793,37 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
continue; /* Nothing is available in the capture buffer. */
}
- hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
+ hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
}
/* At this point we have some input data that we need to output. We do not return until every mapped frame of the input data is written to the playback device. */
- pDevice->capture._dspFrameCount = mappedSizeInBytesCapture / bpfCapture;
- pDevice->capture._dspFrames = (const ma_uint8*)pMappedBufferCapture;
+ mappedDeviceFramesProcessedCapture = 0;
+
for (;;) { /* Keep writing to the playback device. */
- ma_uint8 inputFramesInExternalFormat[4096];
- ma_uint32 inputFramesInExternalFormatCap = sizeof(inputFramesInExternalFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 inputFramesInExternalFormatCount;
- ma_uint8 outputFramesInExternalFormat[4096];
- ma_uint32 outputFramesInExternalFormatCap = sizeof(outputFramesInExternalFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- inputFramesInExternalFormatCount = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, inputFramesInExternalFormat, ma_min(inputFramesInExternalFormatCap, outputFramesInExternalFormatCap));
- if (inputFramesInExternalFormatCount == 0) {
- break; /* No more input data. */
+ ma_uint8 inputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 inputFramesInClientFormatCap = sizeof(inputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint8 outputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 outputFramesInClientFormatCap = sizeof(outputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint32 outputFramesInClientFormatCount;
+ ma_uint32 outputFramesInClientFormatConsumed = 0;
+ ma_uint64 clientCapturedFramesToProcess = ma_min(inputFramesInClientFormatCap, outputFramesInClientFormatCap);
+ ma_uint64 deviceCapturedFramesToProcess = (mappedSizeInBytesCapture / bpfDeviceCapture) - mappedDeviceFramesProcessedCapture;
+ void* pRunningMappedDeviceBufferCapture = ma_offset_ptr(pMappedDeviceBufferCapture, mappedDeviceFramesProcessedCapture * bpfDeviceCapture);
+
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningMappedDeviceBufferCapture, &deviceCapturedFramesToProcess, inputFramesInClientFormat, &clientCapturedFramesToProcess);
+ if (result != MA_SUCCESS) {
+ break;
}
- ma_device__on_data(pDevice, outputFramesInExternalFormat, inputFramesInExternalFormat, inputFramesInExternalFormatCount);
+ outputFramesInClientFormatCount = (ma_uint32)clientCapturedFramesToProcess;
+ mappedDeviceFramesProcessedCapture += (ma_uint32)deviceCapturedFramesToProcess;
+
+ ma_device__on_data(pDevice, outputFramesInClientFormat, inputFramesInClientFormat, (ma_uint32)clientCapturedFramesToProcess);
- /* At this point we have input and output data in external format. All we need to do now is convert it to the output format. This may take a few passes. */
- pDevice->playback._dspFrameCount = inputFramesInExternalFormatCount;
- pDevice->playback._dspFrames = (const ma_uint8*)outputFramesInExternalFormat;
+ /* At this point we have input and output data in client format. All we need to do now is convert it to the output device format. This may take a few passes. */
for (;;) {
ma_uint32 framesWrittenThisIteration;
DWORD physicalPlayCursorInBytes;
@@ -11000,7 +12845,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
- availableBytesPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - virtualWriteCursorInBytesPlayback;
+ availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
/* This is an error. */
@@ -11046,13 +12891,13 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback;
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. Go up to the end of the buffer. */
- lockSizeInBytesPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - virtualWriteCursorInBytesPlayback;
+ lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
} else {
/* Different loop iterations. Go up to the physical play cursor. */
lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
}
- hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
+ hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
break;
@@ -11063,9 +12908,9 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
endless glitching due to it constantly running out of data.
*/
if (isPlaybackDeviceStarted) {
- DWORD bytesQueuedForPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - availableBytesPlayback;
- if (bytesQueuedForPlayback < ((pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)*bpfPlayback)) {
- silentPaddingInBytes = ((pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)*2*bpfPlayback) - bytesQueuedForPlayback;
+ DWORD bytesQueuedForPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - availableBytesPlayback;
+ if (bytesQueuedForPlayback < (pDevice->playback.internalPeriodSizeInFrames*bpfDevicePlayback)) {
+ silentPaddingInBytes = (pDevice->playback.internalPeriodSizeInFrames*2*bpfDevicePlayback) - bytesQueuedForPlayback;
if (silentPaddingInBytes > lockSizeInBytesPlayback) {
silentPaddingInBytes = lockSizeInBytesPlayback;
}
@@ -11078,21 +12923,32 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
/* At this point we have a buffer for output. */
if (silentPaddingInBytes > 0) {
- ma_zero_memory(pMappedBufferPlayback, silentPaddingInBytes);
- framesWrittenThisIteration = silentPaddingInBytes/bpfPlayback;
+ MA_ZERO_MEMORY(pMappedDeviceBufferPlayback, silentPaddingInBytes);
+ framesWrittenThisIteration = silentPaddingInBytes/bpfDevicePlayback;
} else {
- framesWrittenThisIteration = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, pMappedBufferPlayback, mappedSizeInBytesPlayback/bpfPlayback);
+ ma_uint64 convertedFrameCountIn = (outputFramesInClientFormatCount - outputFramesInClientFormatConsumed);
+ ma_uint64 convertedFrameCountOut = mappedSizeInBytesPlayback/bpfDevicePlayback;
+ void* pConvertedFramesIn = ma_offset_ptr(outputFramesInClientFormat, outputFramesInClientFormatConsumed * bpfDevicePlayback);
+ void* pConvertedFramesOut = pMappedDeviceBufferPlayback;
+
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pConvertedFramesIn, &convertedFrameCountIn, pConvertedFramesOut, &convertedFrameCountOut);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ outputFramesInClientFormatConsumed += (ma_uint32)convertedFrameCountOut;
+ framesWrittenThisIteration = (ma_uint32)convertedFrameCountOut;
}
- hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedBufferPlayback, framesWrittenThisIteration*bpfPlayback, NULL, 0);
+ hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, framesWrittenThisIteration*bpfDevicePlayback, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
break;
}
- virtualWriteCursorInBytesPlayback += framesWrittenThisIteration*bpfPlayback;
- if ((virtualWriteCursorInBytesPlayback/bpfPlayback) == pDevice->playback.internalBufferSizeInFrames) {
+ virtualWriteCursorInBytesPlayback += framesWrittenThisIteration*bpfDevicePlayback;
+ if ((virtualWriteCursorInBytesPlayback/bpfDevicePlayback) == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods) {
virtualWriteCursorInBytesPlayback = 0;
virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback;
}
@@ -11102,7 +12958,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
a bit of a buffer to prevent the playback buffer from getting starved.
*/
framesWrittenToPlaybackDevice += framesWrittenThisIteration;
- if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= ((pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)*2)) {
+ if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= (pDevice->playback.internalPeriodSizeInFrames*2)) {
if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
@@ -11110,19 +12966,19 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
isPlaybackDeviceStarted = MA_TRUE;
}
- if (framesWrittenThisIteration < mappedSizeInBytesPlayback/bpfPlayback) {
+ if (framesWrittenThisIteration < mappedSizeInBytesPlayback/bpfDevicePlayback) {
break; /* We're finished with the output data.*/
}
}
- if (inputFramesInExternalFormatCount < inputFramesInExternalFormatCap) {
+ if (clientCapturedFramesToProcess == 0) {
break; /* We just consumed every input sample. */
}
}
/* At this point we're done with the mapped portion of the capture buffer. */
- hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedBufferCapture, mappedSizeInBytesCapture, NULL, 0);
+ hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
}
@@ -11155,10 +13011,10 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything,
do it again from the start.
*/
- if (prevReadCursorInBytesCapture < pDevice->capture.internalBufferSizeInFrames*bpfCapture) {
+ if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) {
/* Lock up to the end of the buffer. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
- lockSizeInBytesCapture = (pDevice->capture.internalBufferSizeInFrames*bpfCapture) - prevReadCursorInBytesCapture;
+ lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture;
} else {
/* Lock starting from the start of the buffer. */
lockOffsetInBytesCapture = 0;
@@ -11171,12 +13027,12 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
/*printf("[DirectSound] (Capture) lockOffsetInBytesCapture=%d, lockSizeInBytesCapture=%d\n", lockOffsetInBytesCapture, lockSizeInBytesCapture);*/
#endif
- if (lockSizeInBytesCapture < (pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods)) {
+ if (lockSizeInBytesCapture < pDevice->capture.internalPeriodSizeInFrames) {
ma_sleep(waitTimeInMilliseconds);
continue; /* Nothing is available in the capture buffer. */
}
- hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
+ hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
}
@@ -11187,15 +13043,15 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
}
#endif
- ma_device__send_frames_to_client(pDevice, mappedSizeInBytesCapture/bpfCapture, pMappedBufferCapture);
+ ma_device__send_frames_to_client(pDevice, mappedSizeInBytesCapture/bpfDeviceCapture, pMappedDeviceBufferCapture);
- hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedBufferCapture, mappedSizeInBytesCapture, NULL, 0);
+ hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
}
prevReadCursorInBytesCapture = lockOffsetInBytesCapture + mappedSizeInBytesCapture;
- if (prevReadCursorInBytesCapture == (pDevice->capture.internalBufferSizeInFrames*bpfCapture)) {
+ if (prevReadCursorInBytesCapture == (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture)) {
prevReadCursorInBytesCapture = 0;
}
} break;
@@ -11220,7 +13076,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
- availableBytesPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - virtualWriteCursorInBytesPlayback;
+ availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
/* This is an error. */
@@ -11247,7 +13103,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
#endif
/* If there's no room available for writing we need to wait for more. */
- if (availableBytesPlayback < (pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)) {
+ if (availableBytesPlayback < pDevice->playback.internalPeriodSizeInFrames) {
/* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */
if (availableBytesPlayback == 0 && !isPlaybackDeviceStarted) {
if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
@@ -11264,29 +13120,29 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback;
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. Go up to the end of the buffer. */
- lockSizeInBytesPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - virtualWriteCursorInBytesPlayback;
+ lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
} else {
/* Different loop iterations. Go up to the physical play cursor. */
lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
}
- hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
+ hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", MA_FAILED_TO_MAP_DEVICE_BUFFER);
break;
}
/* At this point we have a buffer for output. */
- ma_device__read_frames_from_client(pDevice, (mappedSizeInBytesPlayback/bpfPlayback), pMappedBufferPlayback);
+ ma_device__read_frames_from_client(pDevice, (mappedSizeInBytesPlayback/bpfDevicePlayback), pMappedDeviceBufferPlayback);
- hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedBufferPlayback, mappedSizeInBytesPlayback, NULL, 0);
+ hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, mappedSizeInBytesPlayback, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", MA_FAILED_TO_UNMAP_DEVICE_BUFFER);
break;
}
virtualWriteCursorInBytesPlayback += mappedSizeInBytesPlayback;
- if (virtualWriteCursorInBytesPlayback == pDevice->playback.internalBufferSizeInFrames*bpfPlayback) {
+ if (virtualWriteCursorInBytesPlayback == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) {
virtualWriteCursorInBytesPlayback = 0;
virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback;
}
@@ -11295,8 +13151,8 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds
a bit of a buffer to prevent the playback buffer from getting starved.
*/
- framesWrittenToPlaybackDevice += mappedSizeInBytesPlayback/bpfPlayback;
- if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= (pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods)) {
+ framesWrittenToPlaybackDevice += mappedSizeInBytesPlayback/bpfDevicePlayback;
+ if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames) {
if (FAILED(ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING))) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
}
@@ -11339,7 +13195,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
- availableBytesPlayback = (pDevice->playback.internalBufferSizeInFrames*bpfPlayback) - virtualWriteCursorInBytesPlayback;
+ availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
break;
@@ -11353,7 +13209,7 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
}
}
- if (availableBytesPlayback >= (pDevice->playback.internalBufferSizeInFrames*bpfPlayback)) {
+ if (availableBytesPlayback >= (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback)) {
break;
}
@@ -11371,19 +13227,19 @@ ma_result ma_device_main_loop__dsound(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_context_uninit__dsound(ma_context* pContext)
+static ma_result ma_context_uninit__dsound(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_dsound);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_dsound);
ma_dlclose(pContext, pContext->dsound.hDSoundDLL);
return MA_SUCCESS;
}
-ma_result ma_context_init__dsound(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__dsound(const ma_context_config* pConfig, ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -11471,7 +13327,7 @@ typedef MMRESULT (WINAPI * MA_PFN_waveInAddBuffer)(HWAVEIN hwi, LPWAVEHDR pwh, U
typedef MMRESULT (WINAPI * MA_PFN_waveInStart)(HWAVEIN hwi);
typedef MMRESULT (WINAPI * MA_PFN_waveInReset)(HWAVEIN hwi);
-ma_result ma_result_from_MMRESULT(MMRESULT resultMM)
+static ma_result ma_result_from_MMRESULT(MMRESULT resultMM)
{
switch (resultMM) {
case MMSYSERR_NOERROR: return MA_SUCCESS;
@@ -11486,7 +13342,7 @@ ma_result ma_result_from_MMRESULT(MMRESULT resultMM)
}
}
-char* ma_find_last_character(char* str, char ch)
+static char* ma_find_last_character(char* str, char ch)
{
char* last;
@@ -11506,6 +13362,11 @@ char* ma_find_last_character(char* str, char ch)
return last;
}
+static ma_uint32 ma_get_period_size_in_bytes(ma_uint32 periodSizeInFrames, ma_format format, ma_uint32 channels)
+{
+ return periodSizeInFrames * ma_get_bytes_per_frame(format, channels);
+}
+
/*
Our own "WAVECAPS" structure that contains generic information shared between WAVEOUTCAPS2 and WAVEINCAPS2 so
@@ -11519,7 +13380,7 @@ typedef struct
GUID NameGuid;
} MA_WAVECAPSA;
-ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WORD channels, WORD* pBitsPerSample, DWORD* pSampleRate)
+static ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WORD channels, WORD* pBitsPerSample, DWORD* pSampleRate)
{
WORD bitsPerSample = 0;
DWORD sampleRate = 0;
@@ -11599,11 +13460,11 @@ ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WORD chann
return MA_SUCCESS;
}
-ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels, WAVEFORMATEX* pWF)
+static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels, WAVEFORMATEX* pWF)
{
- ma_assert(pWF != NULL);
+ MA_ASSERT(pWF != NULL);
- ma_zero_object(pWF);
+ MA_ZERO_OBJECT(pWF);
pWF->cbSize = sizeof(*pWF);
pWF->wFormatTag = WAVE_FORMAT_PCM;
pWF->nChannels = (WORD)channels;
@@ -11675,15 +13536,15 @@ ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, MA_WAVECAPSA* pCaps, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, MA_WAVECAPSA* pCaps, ma_device_info* pDeviceInfo)
{
WORD bitsPerSample;
DWORD sampleRate;
ma_result result;
- ma_assert(pContext != NULL);
- ma_assert(pCaps != NULL);
- ma_assert(pDeviceInfo != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pCaps != NULL);
+ MA_ASSERT(pDeviceInfo != NULL);
/*
Name / Description
@@ -11772,30 +13633,30 @@ ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, MA_WAVE
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info_from_WAVEOUTCAPS2(ma_context* pContext, MA_WAVEOUTCAPS2A* pCaps, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info_from_WAVEOUTCAPS2(ma_context* pContext, MA_WAVEOUTCAPS2A* pCaps, ma_device_info* pDeviceInfo)
{
MA_WAVECAPSA caps;
- ma_assert(pContext != NULL);
- ma_assert(pCaps != NULL);
- ma_assert(pDeviceInfo != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pCaps != NULL);
+ MA_ASSERT(pDeviceInfo != NULL);
- ma_copy_memory(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
+ MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
caps.dwFormats = pCaps->dwFormats;
caps.wChannels = pCaps->wChannels;
caps.NameGuid = pCaps->NameGuid;
return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo);
}
-ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContext, MA_WAVEINCAPS2A* pCaps, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContext, MA_WAVEINCAPS2A* pCaps, ma_device_info* pDeviceInfo)
{
MA_WAVECAPSA caps;
- ma_assert(pContext != NULL);
- ma_assert(pCaps != NULL);
- ma_assert(pDeviceInfo != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pCaps != NULL);
+ MA_ASSERT(pDeviceInfo != NULL);
- ma_copy_memory(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
+ MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
caps.dwFormats = pCaps->dwFormats;
caps.wChannels = pCaps->wChannels;
caps.NameGuid = pCaps->NameGuid;
@@ -11803,25 +13664,25 @@ ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContext, MA_W
}
-ma_bool32 ma_context_is_device_id_equal__winmm(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__winmm(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->winmm == pID1->winmm;
}
-ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
UINT playbackDeviceCount;
UINT captureDeviceCount;
UINT iPlaybackDevice;
UINT iCaptureDevice;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* Playback. */
playbackDeviceCount = ((MA_PFN_waveOutGetNumDevs)pContext->winmm.waveOutGetNumDevs)();
@@ -11829,13 +13690,13 @@ ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devi
MMRESULT result;
MA_WAVEOUTCAPS2A caps;
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(iPlaybackDevice, (WAVEOUTCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.winmm = iPlaybackDevice;
if (ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) {
@@ -11853,13 +13714,13 @@ ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devi
MMRESULT result;
MA_WAVEINCAPS2A caps;
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(iCaptureDevice, (WAVEINCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.winmm = iCaptureDevice;
if (ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) {
@@ -11874,11 +13735,11 @@ ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devi
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
UINT winMMDeviceID;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
@@ -11895,7 +13756,7 @@ ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type
MMRESULT result;
MA_WAVEOUTCAPS2A caps;
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceID, (WAVEOUTCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
@@ -11905,7 +13766,7 @@ ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type
MMRESULT result;
MA_WAVEINCAPS2A caps;
- ma_zero_object(&caps);
+ MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceID, (WAVEINCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
@@ -11917,9 +13778,9 @@ ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type
}
-void ma_device_uninit__winmm(ma_device* pDevice)
+static void ma_device_uninit__winmm(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((MA_PFN_waveInClose)pDevice->pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture);
@@ -11932,12 +13793,12 @@ void ma_device_uninit__winmm(ma_device* pDevice)
CloseHandle((HANDLE)pDevice->winmm.hEventPlayback);
}
- ma_free(pDevice->winmm._pHeapData);
+ ma__free_from_callbacks(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks);
- ma_zero_object(&pDevice->winmm); /* Safety. */
+ MA_ZERO_OBJECT(&pDevice->winmm); /* Safety. */
}
-ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
const char* errorMsg = "";
ma_result errorCode = MA_ERROR;
@@ -11945,10 +13806,10 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
ma_uint32 heapSize;
UINT winMMDeviceIDPlayback = 0;
UINT winMMDeviceIDCapture = 0;
- ma_uint32 bufferSizeInMilliseconds;
+ ma_uint32 periodSizeInMilliseconds;
- ma_assert(pDevice != NULL);
- ma_zero_object(&pDevice->winmm);
+ MA_ASSERT(pDevice != NULL);
+ MA_ZERO_OBJECT(&pDevice->winmm);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -11960,17 +13821,17 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
return MA_SHARE_MODE_NOT_SUPPORTED;
}
- bufferSizeInMilliseconds = pConfig->bufferSizeInMilliseconds;
- if (bufferSizeInMilliseconds == 0) {
- bufferSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->bufferSizeInFrames, pConfig->sampleRate);
+ periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
+ if (periodSizeInMilliseconds == 0) {
+ periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
/* WinMM has horrible latency. */
if (pDevice->usingDefaultBufferSize) {
if (pConfig->performanceProfile == ma_performance_profile_low_latency) {
- bufferSizeInMilliseconds = 40 * pConfig->periods;
+ periodSizeInMilliseconds = 40;
} else {
- bufferSizeInMilliseconds = 400 * pConfig->periods;
+ periodSizeInMilliseconds = 400;
}
}
@@ -12013,12 +13874,12 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
goto on_error;
}
- pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
- pDevice->capture.internalChannels = wf.nChannels;
- pDevice->capture.internalSampleRate = wf.nSamplesPerSec;
+ pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
+ pDevice->capture.internalChannels = wf.nChannels;
+ pDevice->capture.internalSampleRate = wf.nSamplesPerSec;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
- pDevice->capture.internalPeriods = pConfig->periods;
- pDevice->capture.internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, pDevice->capture.internalSampleRate);
+ pDevice->capture.internalPeriods = pConfig->periods;
+ pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->capture.internalSampleRate);
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
@@ -12051,12 +13912,12 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
goto on_error;
}
- pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
- pDevice->playback.internalChannels = wf.nChannels;
- pDevice->playback.internalSampleRate = wf.nSamplesPerSec;
+ pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
+ pDevice->playback.internalChannels = wf.nChannels;
+ pDevice->playback.internalSampleRate = wf.nSamplesPerSec;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
- pDevice->playback.internalPeriods = pConfig->periods;
- pDevice->playback.internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, pDevice->playback.internalSampleRate);
+ pDevice->playback.internalPeriods = pConfig->periods;
+ pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
}
/*
@@ -12066,19 +13927,19 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
*/
heapSize = 0;
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
- heapSize += sizeof(WAVEHDR)*pDevice->capture.internalPeriods + (pDevice->capture.internalBufferSizeInFrames*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+ heapSize += sizeof(WAVEHDR)*pDevice->capture.internalPeriods + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
- heapSize += sizeof(WAVEHDR)*pDevice->playback.internalPeriods + (pDevice->playback.internalBufferSizeInFrames*ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
+ heapSize += sizeof(WAVEHDR)*pDevice->playback.internalPeriods + (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
}
- pDevice->winmm._pHeapData = (ma_uint8*)ma_malloc(heapSize);
+ pDevice->winmm._pHeapData = (ma_uint8*)ma__calloc_from_callbacks(heapSize, &pContext->allocationCallbacks);
if (pDevice->winmm._pHeapData == NULL) {
errorMsg = "[WinMM] Failed to allocate memory for the intermediary buffer.", errorCode = MA_OUT_OF_MEMORY;
goto on_error;
}
- ma_zero_memory(pDevice->winmm._pHeapData, heapSize);
+ MA_ZERO_MEMORY(pDevice->winmm._pHeapData, heapSize);
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 iPeriod;
@@ -12093,10 +13954,10 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
/* Prepare headers. */
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
- ma_uint32 fragmentSizeInBytes = ma_get_fragment_size_in_bytes(pDevice->capture.internalBufferSizeInFrames, pDevice->capture.internalPeriods, pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferCapture + (fragmentSizeInBytes*iPeriod));
- ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwBufferLength = fragmentSizeInBytes;
+ ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferCapture + (periodSizeInBytes*iPeriod));
+ ((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwBufferLength = periodSizeInBytes;
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwFlags = 0L;
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwLoops = 0L;
((MA_PFN_waveInPrepareHeader)pContext->winmm.waveInPrepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR));
@@ -12116,15 +13977,15 @@ ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pC
pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*pDevice->playback.internalPeriods);
} else {
pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods));
- pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods)) + (pDevice->playback.internalBufferSizeInFrames*ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
+ pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods)) + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
}
/* Prepare headers. */
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) {
- ma_uint32 fragmentSizeInBytes = ma_get_fragment_size_in_bytes(pDevice->playback.internalBufferSizeInFrames, pDevice->playback.internalPeriods, pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferPlayback + (fragmentSizeInBytes*iPeriod));
- ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwBufferLength = fragmentSizeInBytes;
+ ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferPlayback + (periodSizeInBytes*iPeriod));
+ ((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwBufferLength = periodSizeInBytes;
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwFlags = 0L;
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwLoops = 0L;
((MA_PFN_waveOutPrepareHeader)pContext->winmm.waveOutPrepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR));
@@ -12162,15 +14023,15 @@ on_error:
((MA_PFN_waveOutClose)pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
}
- ma_free(pDevice->winmm._pHeapData);
+ ma__free_from_callbacks(pDevice->winmm._pHeapData, &pContext->allocationCallbacks);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, errorMsg, errorCode);
}
-ma_result ma_device_stop__winmm(ma_device* pDevice)
+static ma_result ma_device_stop__winmm(ma_device* pDevice)
{
MMRESULT resultMM;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->winmm.hDeviceCapture == NULL) {
@@ -12184,10 +14045,25 @@ ma_result ma_device_stop__winmm(ma_device* pDevice)
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
+ ma_uint32 iPeriod;
+ WAVEHDR* pWAVEHDR;
+
if (pDevice->winmm.hDevicePlayback == NULL) {
return MA_INVALID_ARGS;
}
+ /* We need to drain the device. To do this we just loop over each header and if it's locked just wait for the event. */
+ pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback;
+ for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; iPeriod += 1) {
+ if (pWAVEHDR[iPeriod].dwUser == 1) { /* 1 = locked. */
+ if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventPlayback, INFINITE) != WAIT_OBJECT_0) {
+ break; /* An error occurred so just abandon ship and stop the device without draining. */
+ }
+
+ pWAVEHDR[iPeriod].dwUser = 0;
+ }
+ }
+
resultMM = ((MA_PFN_waveOutReset)pDevice->pContext->winmm.waveOutReset)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
if (resultMM != MMSYSERR_NOERROR) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] WARNING: Failed to reset playback device.", ma_result_from_MMRESULT(resultMM));
@@ -12197,15 +14073,15 @@ ma_result ma_device_stop__winmm(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_result result = MA_SUCCESS;
MMRESULT resultMM;
ma_uint32 totalFramesWritten;
WAVEHDR* pWAVEHDR;
- ma_assert(pDevice != NULL);
- ma_assert(pPCMFrames != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pPCMFrames != NULL);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
@@ -12228,7 +14104,7 @@ ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_
ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesWritten));
const void* pSrc = ma_offset_ptr(pPCMFrames, totalFramesWritten*bpf);
void* pDst = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].lpData, pDevice->winmm.headerFramesConsumedPlayback*bpf);
- ma_copy_memory(pDst, pSrc, framesToCopy*bpf);
+ MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf);
pDevice->winmm.headerFramesConsumedPlayback += framesToCopy;
totalFramesWritten += framesToCopy;
@@ -12255,7 +14131,7 @@ ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_
}
/* If at this point we have consumed the entire input buffer we can return. */
- ma_assert(totalFramesWritten <= frameCount);
+ MA_ASSERT(totalFramesWritten <= frameCount);
if (totalFramesWritten == frameCount) {
break;
}
@@ -12289,15 +14165,15 @@ ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_
return result;
}
-ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_result result = MA_SUCCESS;
MMRESULT resultMM;
ma_uint32 totalFramesRead;
WAVEHDR* pWAVEHDR;
- ma_assert(pDevice != NULL);
- ma_assert(pPCMFrames != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pPCMFrames != NULL);
if (pFramesRead != NULL) {
*pFramesRead = 0;
@@ -12317,7 +14193,7 @@ ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32
ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesRead));
const void* pSrc = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderCapture].lpData, pDevice->winmm.headerFramesConsumedCapture*bpf);
void* pDst = ma_offset_ptr(pPCMFrames, totalFramesRead*bpf);
- ma_copy_memory(pDst, pSrc, framesToCopy*bpf);
+ MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf);
pDevice->winmm.headerFramesConsumedCapture += framesToCopy;
totalFramesRead += framesToCopy;
@@ -12344,7 +14220,7 @@ ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32
}
/* If at this point we have filled the entire input buffer we can return. */
- ma_assert(totalFramesRead <= frameCount);
+ MA_ASSERT(totalFramesRead <= frameCount);
if (totalFramesRead == frameCount) {
break;
}
@@ -12378,12 +14254,12 @@ ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32
return result;
}
-ma_result ma_device_main_loop__winmm(ma_device* pDevice)
+static ma_result ma_device_main_loop__winmm(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -12421,86 +14297,97 @@ ma_result ma_device_main_loop__winmm(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__winmm(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__winmm(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
+ }
+
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__winmm(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__winmm(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__winmm()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -12525,9 +14412,9 @@ ma_result ma_device_main_loop__winmm(ma_device* pDevice)
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -12562,18 +14449,18 @@ ma_result ma_device_main_loop__winmm(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__winmm(ma_context* pContext)
+static ma_result ma_context_uninit__winmm(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_winmm);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_winmm);
ma_dlclose(pContext, pContext->winmm.hWinMM);
return MA_SUCCESS;
}
-ma_result ma_context_init__winmm(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__winmm(const ma_context_config* pConfig, ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -12877,7 +14764,7 @@ typedef const char* (* ma_snd_pcm_info_get_name_proc) (
typedef int (* ma_snd_config_update_free_global_proc) ();
/* This array specifies each of the common devices that can be used for both playback and capture. */
-const char* g_maCommonDeviceNamesALSA[] = {
+static const char* g_maCommonDeviceNamesALSA[] = {
"default",
"null",
"pulse",
@@ -12885,12 +14772,12 @@ const char* g_maCommonDeviceNamesALSA[] = {
};
/* This array allows us to blacklist specific playback devices. */
-const char* g_maBlacklistedPlaybackDeviceNamesALSA[] = {
+static const char* g_maBlacklistedPlaybackDeviceNamesALSA[] = {
""
};
/* This array allows us to blacklist specific capture devices. */
-const char* g_maBlacklistedCaptureDeviceNamesALSA[] = {
+static const char* g_maBlacklistedCaptureDeviceNamesALSA[] = {
""
};
@@ -12908,7 +14795,7 @@ static struct
{"bcm2835 ALSA", 2.0f}
};
-float ma_find_default_buffer_size_scale__alsa(const char* deviceName)
+static float ma_find_default_buffer_size_scale__alsa(const char* deviceName)
{
size_t i;
@@ -12925,7 +14812,7 @@ float ma_find_default_buffer_size_scale__alsa(const char* deviceName)
return 1;
}
-ma_snd_pcm_format_t ma_convert_ma_format_to_alsa_format(ma_format format)
+static ma_snd_pcm_format_t ma_convert_ma_format_to_alsa_format(ma_format format)
{
ma_snd_pcm_format_t ALSAFormats[] = {
MA_SND_PCM_FORMAT_UNKNOWN, /* ma_format_unknown */
@@ -12948,7 +14835,7 @@ ma_snd_pcm_format_t ma_convert_ma_format_to_alsa_format(ma_format format)
return ALSAFormats[format];
}
-ma_format ma_format_from_alsa(ma_snd_pcm_format_t formatALSA)
+static ma_format ma_format_from_alsa(ma_snd_pcm_format_t formatALSA)
{
if (ma_is_little_endian()) {
switch (formatALSA) {
@@ -12975,7 +14862,7 @@ ma_format ma_format_from_alsa(ma_snd_pcm_format_t formatALSA)
}
}
-ma_channel ma_convert_alsa_channel_position_to_ma_channel(unsigned int alsaChannelPos)
+static ma_channel ma_convert_alsa_channel_position_to_ma_channel(unsigned int alsaChannelPos)
{
switch (alsaChannelPos)
{
@@ -13011,7 +14898,7 @@ ma_channel ma_convert_alsa_channel_position_to_ma_channel(unsigned int alsaChann
return 0;
}
-ma_bool32 ma_is_common_device_name__alsa(const char* name)
+static ma_bool32 ma_is_common_device_name__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maCommonDeviceNamesALSA); ++iName) {
@@ -13024,7 +14911,7 @@ ma_bool32 ma_is_common_device_name__alsa(const char* name)
}
-ma_bool32 ma_is_playback_device_blacklisted__alsa(const char* name)
+static ma_bool32 ma_is_playback_device_blacklisted__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maBlacklistedPlaybackDeviceNamesALSA); ++iName) {
@@ -13036,7 +14923,7 @@ ma_bool32 ma_is_playback_device_blacklisted__alsa(const char* name)
return MA_FALSE;
}
-ma_bool32 ma_is_capture_device_blacklisted__alsa(const char* name)
+static ma_bool32 ma_is_capture_device_blacklisted__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maBlacklistedCaptureDeviceNamesALSA); ++iName) {
@@ -13048,7 +14935,7 @@ ma_bool32 ma_is_capture_device_blacklisted__alsa(const char* name)
return MA_FALSE;
}
-ma_bool32 ma_is_device_blacklisted__alsa(ma_device_type deviceType, const char* name)
+static ma_bool32 ma_is_device_blacklisted__alsa(ma_device_type deviceType, const char* name)
{
if (deviceType == ma_device_type_playback) {
return ma_is_playback_device_blacklisted__alsa(name);
@@ -13058,7 +14945,7 @@ ma_bool32 ma_is_device_blacklisted__alsa(ma_device_type deviceType, const char*
}
-const char* ma_find_char(const char* str, char c, int* index)
+static const char* ma_find_char(const char* str, char c, int* index)
{
int i = 0;
for (;;) {
@@ -13080,7 +14967,7 @@ const char* ma_find_char(const char* str, char c, int* index)
return NULL;
}
-ma_bool32 ma_is_device_name_in_hw_format__alsa(const char* hwid)
+static ma_bool32 ma_is_device_name_in_hw_format__alsa(const char* hwid)
{
/* This function is just checking whether or not hwid is in "hw:%d,%d" format. */
@@ -13124,7 +15011,7 @@ ma_bool32 ma_is_device_name_in_hw_format__alsa(const char* hwid)
return MA_TRUE;
}
-int ma_convert_device_name_to_hw_format__alsa(ma_context* pContext, char* dst, size_t dstSize, const char* src) /* Returns 0 on success, non-0 on error. */
+static int ma_convert_device_name_to_hw_format__alsa(ma_context* pContext, char* dst, size_t dstSize, const char* src) /* Returns 0 on success, non-0 on error. */
{
/* src should look something like this: "hw:CARD=I82801AAICH,DEV=0" */
@@ -13188,11 +15075,11 @@ int ma_convert_device_name_to_hw_format__alsa(ma_context* pContext, char* dst, s
return 0;
}
-ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uint32 count, const char* pHWID)
+static ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uint32 count, const char* pHWID)
{
ma_uint32 i;
- ma_assert(pHWID != NULL);
+ MA_ASSERT(pHWID != NULL);
for (i = 0; i < count; ++i) {
if (ma_strcmp(pUniqueIDs[i].alsa, pHWID) == 0) {
@@ -13204,14 +15091,14 @@ ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uint32 cou
}
-ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_snd_pcm_t** ppPCM)
+static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_snd_pcm_t** ppPCM)
{
ma_snd_pcm_t* pPCM;
ma_snd_pcm_stream_t stream;
int openMode;
- ma_assert(pContext != NULL);
- ma_assert(ppPCM != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppPCM != NULL);
*ppPCM = NULL;
pPCM = NULL;
@@ -13330,17 +15217,17 @@ ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMod
}
-ma_bool32 ma_context_is_device_id_equal__alsa(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__alsa(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->alsa, pID1->alsa) == 0;
}
-ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
char** ppDeviceHints;
@@ -13348,8 +15235,8 @@ ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devic
ma_uint32 uniqueIDCount = 0;
char** ppNextDeviceHint;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
ma_mutex_lock(&pContext->alsa.internalDeviceEnumLock);
@@ -13400,21 +15287,23 @@ ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devic
goto next_device; /* The device has already been enumerated. Move on to the next one. */
} else {
/* The device has not yet been enumerated. Make sure it's added to our list so that it's not enumerated again. */
- ma_device_id* pNewUniqueIDs = (ma_device_id*)ma_realloc(pUniqueIDs, sizeof(*pUniqueIDs) * (uniqueIDCount + 1));
+ size_t oldCapacity = sizeof(*pUniqueIDs) * uniqueIDCount;
+ size_t newCapacity = sizeof(*pUniqueIDs) * (uniqueIDCount + 1);
+ ma_device_id* pNewUniqueIDs = (ma_device_id*)ma__realloc_from_callbacks(pUniqueIDs, newCapacity, oldCapacity, &pContext->allocationCallbacks);
if (pNewUniqueIDs == NULL) {
goto next_device; /* Failed to allocate memory. */
}
pUniqueIDs = pNewUniqueIDs;
- ma_copy_memory(pUniqueIDs[uniqueIDCount].alsa, hwid, sizeof(hwid));
+ MA_COPY_MEMORY(pUniqueIDs[uniqueIDCount].alsa, hwid, sizeof(hwid));
uniqueIDCount += 1;
}
}
} else {
- ma_zero_memory(hwid, sizeof(hwid));
+ MA_ZERO_MEMORY(hwid, sizeof(hwid));
}
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.id.alsa, sizeof(deviceInfo.id.alsa), hwid, (size_t)-1);
/*
@@ -13488,7 +15377,7 @@ ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devic
}
}
- ma_free(pUniqueIDs);
+ ma__free_from_callbacks(pUniqueIDs, &pContext->allocationCallbacks);
((ma_snd_device_name_free_hint_proc)pContext->alsa.snd_device_name_free_hint)((void**)ppDeviceHints);
ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock);
@@ -13506,10 +15395,10 @@ typedef struct
ma_bool32 foundDevice;
} ma_context_get_device_info_enum_callback_data__alsa;
-ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
+static ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
{
ma_context_get_device_info_enum_callback_data__alsa* pData = (ma_context_get_device_info_enum_callback_data__alsa*)pUserData;
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
if (pData->pDeviceID == NULL && ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1);
@@ -13525,7 +15414,7 @@ ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pContext, m
return !pData->foundDevice;
}
-ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_context_get_device_info_enum_callback_data__alsa data;
ma_result result;
@@ -13534,7 +15423,7 @@ ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type
ma_snd_pcm_format_mask_t* pFormatMask;
int sampleRateDir = 0;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* We just enumerate to find basic information about the device. */
data.deviceType = deviceType;
@@ -13558,7 +15447,7 @@ ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type
}
/* We need to initialize a HW parameters object in order to know what formats are supported. */
- pHWParams = (ma_snd_pcm_hw_params_t*)calloc(1, ((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)());
+ pHWParams = (ma_snd_pcm_hw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks);
if (pHWParams == NULL) {
return MA_OUT_OF_MEMORY;
}
@@ -13573,7 +15462,7 @@ ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type
((ma_snd_pcm_hw_params_get_rate_max_proc)pContext->alsa.snd_pcm_hw_params_get_rate_max)(pHWParams, &pDeviceInfo->maxSampleRate, &sampleRateDir);
/* Formats. */
- pFormatMask = (ma_snd_pcm_format_mask_t*)calloc(1, ((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)());
+ pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks);
if (pFormatMask == NULL) {
return MA_OUT_OF_MEMORY;
}
@@ -13597,8 +15486,8 @@ ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_f32;
}
- ma_free(pFormatMask);
- ma_free(pHWParams);
+ ma__free_from_callbacks(pFormatMask, &pContext->allocationCallbacks);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM);
return MA_SUCCESS;
@@ -13612,9 +15501,9 @@ value is the number of frames available.
This will return early if the main loop is broken with ma_device__break_main_loop().
*/
-ma_uint32 ma_device__wait_for_frames__alsa(ma_device* pDevice, ma_bool32* pRequiresRestart)
+static ma_uint32 ma_device__wait_for_frames__alsa(ma_device* pDevice, ma_bool32* pRequiresRestart)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pRequiresRestart) *pRequiresRestart = MA_FALSE;
@@ -13672,9 +15561,9 @@ ma_uint32 ma_device__wait_for_frames__alsa(ma_device* pDevice, ma_bool32* pRequi
return framesAvailable;
}
-ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice)
+static ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (!ma_device_is_started(pDevice) && ma_device__get_state(pDevice) != MA_STATE_STARTING) {
return MA_FALSE;
}
@@ -13773,9 +15662,9 @@ ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice)
return MA_TRUE;
}
-ma_bool32 ma_device_read_and_send_to_client__alsa(ma_device* pDevice)
+static ma_bool32 ma_device_read_and_send_to_client__alsa(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (!ma_device_is_started(pDevice)) {
return MA_FALSE;
}
@@ -13872,9 +15761,9 @@ ma_bool32 ma_device_read_and_send_to_client__alsa(ma_device* pDevice)
}
#endif /* 0 */
-void ma_device_uninit__alsa(ma_device* pDevice)
+static void ma_device_uninit__alsa(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if ((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
@@ -13885,7 +15774,7 @@ void ma_device_uninit__alsa(ma_device* pDevice)
}
}
-ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
+static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
ma_result result;
ma_snd_pcm_t* pPCM;
@@ -13897,17 +15786,17 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
ma_snd_pcm_hw_params_t* pHWParams;
ma_snd_pcm_sw_params_t* pSWParams;
ma_snd_pcm_uframes_t bufferBoundary;
float bufferSizeScaleFactor;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(deviceType != ma_device_type_duplex); /* This function should only be called for playback _or_ capture, never duplex. */
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should only be called for playback _or_ capture, never duplex. */
+ MA_ASSERT(pDevice != NULL);
formatALSA = ma_convert_ma_format_to_alsa_format((deviceType == ma_device_type_capture) ? pConfig->capture.format : pConfig->playback.format);
shareMode = (deviceType == ma_device_type_capture) ? pConfig->capture.shareMode : pConfig->playback.shareMode;
@@ -13921,7 +15810,7 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
/* If using the default buffer size we may want to apply some device-specific scaling for known devices that have peculiar latency characteristics */
bufferSizeScaleFactor = 1;
if (pDevice->usingDefaultBufferSize) {
- ma_snd_pcm_info_t* pInfo = (ma_snd_pcm_info_t*)calloc(1, ((ma_snd_pcm_info_sizeof_proc)pContext->alsa.snd_pcm_info_sizeof)());
+ ma_snd_pcm_info_t* pInfo = (ma_snd_pcm_info_t*)ma__calloc_from_callbacks(((ma_snd_pcm_info_sizeof_proc)pContext->alsa.snd_pcm_info_sizeof)(), &pContext->allocationCallbacks);
if (pInfo == NULL) {
return MA_OUT_OF_MEMORY;
}
@@ -13936,7 +15825,7 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
/* It's the default device. We need to use DESC from snd_device_name_hint(). */
if (((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints) < 0) {
- ma_free(pInfo);
+ ma__free_from_callbacks(pInfo, &pContext->allocationCallbacks);
return MA_NO_BACKEND;
}
@@ -13972,18 +15861,18 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
}
}
- ma_free(pInfo);
+ ma__free_from_callbacks(pInfo, &pContext->allocationCallbacks);
}
/* Hardware parameters. */
- pHWParams = (ma_snd_pcm_hw_params_t*)calloc(1, ((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)());
+ pHWParams = (ma_snd_pcm_hw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks);
if (pHWParams == NULL) {
return MA_OUT_OF_MEMORY;
}
if (((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
@@ -14002,7 +15891,7 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
if (!isUsingMMap) {
if (((ma_snd_pcm_hw_params_set_access_proc)pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_RW_INTERLEAVED) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set access mode to neither SND_PCM_ACCESS_MMAP_INTERLEAVED nor SND_PCM_ACCESS_RW_INTERLEAVED. snd_pcm_hw_params_set_access() failed.", MA_FORMAT_NOT_SUPPORTED);
}
@@ -14018,9 +15907,9 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
ma_snd_pcm_format_mask_t* pFormatMask;
/* Try getting every supported format first. */
- pFormatMask = (ma_snd_pcm_format_mask_t*)calloc(1, ((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)());
+ pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks);
if (pFormatMask == NULL) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return MA_OUT_OF_MEMORY;
}
@@ -14060,24 +15949,24 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
}
if (formatALSA == MA_SND_PCM_FORMAT_UNKNOWN) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. The device does not support any miniaudio formats.", MA_FORMAT_NOT_SUPPORTED);
}
}
- ma_free(pFormatMask);
+ ma__free_from_callbacks(pFormatMask, &pContext->allocationCallbacks);
pFormatMask = NULL;
if (((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, formatALSA) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed.", MA_FORMAT_NOT_SUPPORTED);
}
internalFormat = ma_format_from_alsa(formatALSA);
if (internalFormat == ma_format_unknown) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] The chosen format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
}
@@ -14087,7 +15976,7 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
{
unsigned int channels = (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels;
if (((ma_snd_pcm_hw_params_set_channels_near_proc)pContext->alsa.snd_pcm_hw_params_set_channels_near)(pPCM, pHWParams, &channels) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set channel count. snd_pcm_hw_params_set_channels_near() failed.", MA_FORMAT_NOT_SUPPORTED);
}
@@ -14119,71 +16008,71 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
sampleRate = pConfig->sampleRate;
if (((ma_snd_pcm_hw_params_set_rate_near_proc)pContext->alsa.snd_pcm_hw_params_set_rate_near)(pPCM, pHWParams, &sampleRate, 0) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Sample rate not supported. snd_pcm_hw_params_set_rate_near() failed.", MA_FORMAT_NOT_SUPPORTED);
}
internalSampleRate = (ma_uint32)sampleRate;
}
+ /* Periods. */
+ {
+ ma_uint32 periods = pConfig->periods;
+ if (((ma_snd_pcm_hw_params_set_periods_near_proc)pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL) < 0) {
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
+ ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed.", MA_FORMAT_NOT_SUPPORTED);
+ }
+ internalPeriods = periods;
+ }
+
/* Buffer Size */
{
- ma_snd_pcm_uframes_t actualBufferSizeInFrames = pConfig->bufferSizeInFrames;
+ ma_snd_pcm_uframes_t actualBufferSizeInFrames = pConfig->periodSizeInFrames * internalPeriods;
if (actualBufferSizeInFrames == 0) {
- actualBufferSizeInFrames = ma_scale_buffer_size(ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, internalSampleRate), bufferSizeScaleFactor);
+ actualBufferSizeInFrames = ma_scale_buffer_size(ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate), bufferSizeScaleFactor) * internalPeriods;
}
if (((ma_snd_pcm_hw_params_set_buffer_size_near_proc)pContext->alsa.snd_pcm_hw_params_set_buffer_size_near)(pPCM, pHWParams, &actualBufferSizeInFrames) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set buffer size for device. snd_pcm_hw_params_set_buffer_size() failed.", MA_FORMAT_NOT_SUPPORTED);
}
- internalBufferSizeInFrames = actualBufferSizeInFrames;
- }
-
- /* Periods. */
- {
- ma_uint32 periods = pConfig->periods;
- if (((ma_snd_pcm_hw_params_set_periods_near_proc)pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL) < 0) {
- ma_free(pHWParams);
- ((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed.", MA_FORMAT_NOT_SUPPORTED);
- }
- internalPeriods = periods;
+ internalPeriodSizeInFrames = actualBufferSizeInFrames / internalPeriods;
}
/* Apply hardware parameters. */
if (((ma_snd_pcm_hw_params_proc)pContext->alsa.snd_pcm_hw_params)(pPCM, pHWParams) < 0) {
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set hardware parameters. snd_pcm_hw_params() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
- ma_free(pHWParams);
+ ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
pHWParams = NULL;
/* Software parameters. */
- pSWParams = (ma_snd_pcm_sw_params_t*)calloc(1, ((ma_snd_pcm_sw_params_sizeof_proc)pContext->alsa.snd_pcm_sw_params_sizeof)());
+ pSWParams = (ma_snd_pcm_sw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_sw_params_sizeof_proc)pContext->alsa.snd_pcm_sw_params_sizeof)(), &pContext->allocationCallbacks);
if (pSWParams == NULL) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return MA_OUT_OF_MEMORY;
}
if (((ma_snd_pcm_sw_params_current_proc)pContext->alsa.snd_pcm_sw_params_current)(pPCM, pSWParams) != 0) {
- ma_free(pSWParams);
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize software parameters. snd_pcm_sw_params_current() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
- if (((ma_snd_pcm_sw_params_set_avail_min_proc)pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalBufferSizeInFrames/internalPeriods)) != 0) {
- ma_free(pSWParams);
+ if (((ma_snd_pcm_sw_params_set_avail_min_proc)pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalPeriodSizeInFrames)) != 0) {
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_sw_params_set_avail_min() failed.", MA_FORMAT_NOT_SUPPORTED);
}
if (((ma_snd_pcm_sw_params_get_boundary_proc)pContext->alsa.snd_pcm_sw_params_get_boundary)(pSWParams, &bufferBoundary) < 0) {
- bufferBoundary = internalBufferSizeInFrames;
+ bufferBoundary = internalPeriodSizeInFrames * internalPeriods;
}
/*printf("TRACE: bufferBoundary=%ld\n", bufferBoundary);*/
@@ -14193,25 +16082,25 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
Subtle detail here with the start threshold. When in playback-only mode (no full-duplex) we can set the start threshold to
the size of a period. But for full-duplex we need to set it such that it is at least two periods.
*/
- if (((ma_snd_pcm_sw_params_set_start_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, (internalBufferSizeInFrames/internalPeriods)*2) != 0) {
- ma_free(pSWParams);
+ if (((ma_snd_pcm_sw_params_set_start_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, internalPeriodSizeInFrames*2) != 0) {
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set start threshold for playback device. snd_pcm_sw_params_set_start_threshold() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
if (((ma_snd_pcm_sw_params_set_stop_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_stop_threshold)(pPCM, pSWParams, bufferBoundary) != 0) { /* Set to boundary to loop instead of stop in the event of an xrun. */
- ma_free(pSWParams);
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set stop threshold for playback device. snd_pcm_sw_params_set_stop_threshold() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
}
if (((ma_snd_pcm_sw_params_proc)pContext->alsa.snd_pcm_sw_params)(pPCM, pSWParams) != 0) {
- ma_free(pSWParams);
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set software parameters. snd_pcm_sw_params() failed.", MA_FAILED_TO_CONFIGURE_BACKEND_DEVICE);
}
- ma_free(pSWParams);
+ ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
pSWParams = NULL;
@@ -14284,7 +16173,7 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_channel_map_copy(pDevice->capture.internalChannelMap, internalChannelMap, internalChannels);
- pDevice->capture.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->alsa.pPCMPlayback = (ma_ptr)pPCM;
@@ -14293,18 +16182,18 @@ ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_con
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_channel_map_copy(pDevice->playback.internalChannelMap, internalChannelMap, internalChannels);
- pDevice->playback.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
return MA_SUCCESS;
}
-ma_result ma_device_init__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->alsa);
+ MA_ZERO_OBJECT(&pDevice->alsa);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -14327,73 +16216,12 @@ ma_result ma_device_init__alsa(ma_context* pContext, const ma_device_config* pCo
return MA_SUCCESS;
}
-#if 0
-ma_result ma_device_start__alsa(ma_device* pDevice)
-{
- ma_assert(pDevice != NULL);
-
- /* Prepare the device first... */
- if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)((ma_snd_pcm_t*)pDevice->alsa.pPCM) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to prepare device.", MA_FAILED_TO_START_BACKEND_DEVICE);
- }
-
- /*
- ... and then grab an initial chunk from the client. After this is done, the device should
- automatically start playing, since that's how we configured the software parameters.
- */
- if (pDevice->type == ma_device_type_playback) {
- if (!ma_device_read_from_client_and_write__alsa(pDevice)) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write initial chunk of data to the playback device.", MA_FAILED_TO_SEND_DATA_TO_DEVICE);
- }
-
- /* mmap mode requires an explicit start. */
- if (pDevice->alsa.isUsingMMap) {
- if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCM) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
- }
- }
- } else {
- if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCM) < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
- }
- }
-
- return MA_SUCCESS;
-}
-
-ma_result ma_device_break_main_loop__alsa(ma_device* pDevice)
-{
- ma_assert(pDevice != NULL);
-
- pDevice->alsa.breakFromMainLoop = MA_TRUE;
- return MA_SUCCESS;
-}
-
-ma_result ma_device_main_loop__alsa(ma_device* pDevice)
-{
- ma_assert(pDevice != NULL);
-
- pDevice->alsa.breakFromMainLoop = MA_FALSE;
- if (pDevice->type == ma_device_type_playback) {
- /* Playback. Read from client, write to device. */
- while (!pDevice->alsa.breakFromMainLoop && ma_device_read_from_client_and_write__alsa(pDevice)) {
- }
- } else {
- /* Capture. Read from device, write to client. */
- while (!pDevice->alsa.breakFromMainLoop && ma_device_read_and_send_to_client__alsa(pDevice)) {
- }
- }
-
- return MA_SUCCESS;
-}
-#endif /* 0 */
-
-ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_snd_pcm_sframes_t resultALSA;
- ma_assert(pDevice != NULL);
- ma_assert(pFramesOut != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pFramesOut != NULL);
if (pFramesRead != NULL) {
*pFramesRead = 0;
@@ -14408,7 +16236,9 @@ ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 f
/*printf("TRACE: EGAIN (read)\n");*/
continue; /* Try again. */
} else if (resultALSA == -EPIPE) {
- /*printf("TRACE: EPIPE (read)\n");*/
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("TRACE: EPIPE (read)\n");
+ #endif
/* Overrun. Recover and try again. If this fails we need to return an error. */
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, resultALSA, MA_TRUE) < 0) {
@@ -14434,12 +16264,12 @@ ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 f
return MA_SUCCESS;
}
-ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_snd_pcm_sframes_t resultALSA;
- ma_assert(pDevice != NULL);
- ma_assert(pFrames != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pFrames != NULL);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
@@ -14454,7 +16284,9 @@ ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint
/*printf("TRACE: EGAIN (write)\n");*/
continue; /* Try again. */
} else if (resultALSA == -EPIPE) {
- /*printf("TRACE: EPIPE (write)\n");*/
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("TRACE: EPIPE (write)\n");
+ #endif
/* Underrun. Recover and try again. If this fails we need to return an error. */
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, resultALSA, MA_TRUE) < 0) { /* MA_TRUE=silent (don't print anything on error). */
@@ -14487,12 +16319,12 @@ ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint
return MA_SUCCESS;
}
-ma_result ma_device_main_loop__alsa(ma_device* pDevice)
+static ma_result ma_device_main_loop__alsa(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* Capture devices need to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -14513,77 +16345,88 @@ ma_result ma_device_main_loop__alsa(ma_device* pDevice)
/* readi() and writei() */
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__alsa(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__alsa(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__alsa(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__alsa(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__alsa()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
}
} break;
@@ -14597,9 +16440,9 @@ ma_result ma_device_main_loop__alsa(ma_device* pDevice)
/* readi() */
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -14631,9 +16474,9 @@ ma_result ma_device_main_loop__alsa(ma_device* pDevice)
/* writei() */
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -14688,10 +16531,10 @@ ma_result ma_device_main_loop__alsa(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__alsa(ma_context* pContext)
+static ma_result ma_context_uninit__alsa(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_alsa);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_alsa);
/* Clean up memory for memory leak checkers. */
((ma_snd_config_update_free_global_proc)pContext->alsa.snd_config_update_free_global)();
@@ -14705,7 +16548,7 @@ ma_result ma_context_uninit__alsa(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libasoundNames[] = {
@@ -15466,7 +17309,7 @@ typedef struct
ma_device_info* pInfo;
} ma_pulse_device_enum_data;
-ma_result ma_result_from_pulse(int result)
+static ma_result ma_result_from_pulse(int result)
{
switch (result) {
case MA_PA_OK: return MA_SUCCESS;
@@ -15478,7 +17321,7 @@ ma_result ma_result_from_pulse(int result)
}
#if 0
-ma_pa_sample_format_t ma_format_to_pulse(ma_format format)
+static ma_pa_sample_format_t ma_format_to_pulse(ma_format format)
{
if (ma_is_little_endian()) {
switch (format) {
@@ -15506,7 +17349,7 @@ ma_pa_sample_format_t ma_format_to_pulse(ma_format format)
}
#endif
-ma_format ma_format_from_pulse(ma_pa_sample_format_t format)
+static ma_format ma_format_from_pulse(ma_pa_sample_format_t format)
{
if (ma_is_little_endian()) {
switch (format) {
@@ -15533,7 +17376,7 @@ ma_format ma_format_from_pulse(ma_pa_sample_format_t format)
}
}
-ma_channel ma_channel_position_from_pulse(ma_pa_channel_position_t position)
+static ma_channel ma_channel_position_from_pulse(ma_pa_channel_position_t position)
{
switch (position)
{
@@ -15594,7 +17437,7 @@ ma_channel ma_channel_position_from_pulse(ma_pa_channel_position_t position)
}
#if 0
-ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position)
+static ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position)
{
switch (position)
{
@@ -15636,11 +17479,11 @@ ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position)
}
#endif
-ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_mainloop* pMainLoop, ma_pa_operation* pOP)
+static ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_mainloop* pMainLoop, ma_pa_operation* pOP)
{
- ma_assert(pContext != NULL);
- ma_assert(pMainLoop != NULL);
- ma_assert(pOP != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pMainLoop != NULL);
+ MA_ASSERT(pOP != NULL);
while (((ma_pa_operation_get_state_proc)pContext->pulse.pa_operation_get_state)(pOP) == MA_PA_OPERATION_RUNNING) {
int error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL);
@@ -15652,20 +17495,20 @@ ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_mainloop* pMa
return MA_SUCCESS;
}
-ma_result ma_device__wait_for_operation__pulse(ma_device* pDevice, ma_pa_operation* pOP)
+static ma_result ma_device__wait_for_operation__pulse(ma_device* pDevice, ma_pa_operation* pOP)
{
- ma_assert(pDevice != NULL);
- ma_assert(pOP != NULL);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pOP != NULL);
return ma_wait_for_operation__pulse(pDevice->pContext, (ma_pa_mainloop*)pDevice->pulse.pMainLoop, pOP);
}
-ma_bool32 ma_context_is_device_id_equal__pulse(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__pulse(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->pulse, pID1->pulse) == 0;
@@ -15680,18 +17523,18 @@ typedef struct
ma_bool32 isTerminated;
} ma_context_enumerate_devices_callback_data__pulse;
-void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData)
+static void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData)
{
ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData;
ma_device_info deviceInfo;
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
if (endOfList || pData->isTerminated) {
return;
}
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
/* The name from PulseAudio is the ID for miniaudio. */
if (pSinkInfo->name != NULL) {
@@ -15708,18 +17551,18 @@ void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseCont
(void)pPulseContext; /* Unused. */
}
-void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSinkInfo, int endOfList, void* pUserData)
+static void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSinkInfo, int endOfList, void* pUserData)
{
ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData;
ma_device_info deviceInfo;
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
if (endOfList || pData->isTerminated) {
return;
}
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
/* The name from PulseAudio is the ID for miniaudio. */
if (pSinkInfo->name != NULL) {
@@ -15736,7 +17579,7 @@ void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseCo
(void)pPulseContext; /* Unused. */
}
-ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_result result = MA_SUCCESS;
ma_context_enumerate_devices_callback_data__pulse callbackData;
@@ -15746,8 +17589,8 @@ ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devi
ma_pa_context* pPulseContext;
int error;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
callbackData.pContext = pContext;
callbackData.callback = callback;
@@ -15849,7 +17692,7 @@ typedef struct
ma_bool32 foundDevice;
} ma_context_get_device_info_callback_data__pulse;
-void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
+static void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData;
@@ -15857,7 +17700,7 @@ void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContex
return;
}
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
pData->foundDevice = MA_TRUE;
if (pInfo->name != NULL) {
@@ -15878,7 +17721,7 @@ void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContex
(void)pPulseContext; /* Unused. */
}
-void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
+static void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData;
@@ -15886,7 +17729,7 @@ void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseCont
return;
}
- ma_assert(pData != NULL);
+ MA_ASSERT(pData != NULL);
pData->foundDevice = MA_TRUE;
if (pInfo->name != NULL) {
@@ -15907,7 +17750,7 @@ void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseCont
(void)pPulseContext; /* Unused. */
}
-ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_result result = MA_SUCCESS;
ma_context_get_device_info_callback_data__pulse callbackData;
@@ -15917,7 +17760,7 @@ ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type
ma_pa_context* pPulseContext;
int error;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* No exclusive mode with the PulseAudio backend. */
if (shareMode == ma_share_mode_exclusive) {
@@ -16004,16 +17847,16 @@ done:
}
-void ma_pulse_device_state_callback(ma_pa_context* pPulseContext, void* pUserData)
+static void ma_pulse_device_state_callback(ma_pa_context* pPulseContext, void* pUserData)
{
ma_device* pDevice;
ma_context* pContext;
pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
pDevice->pulse.pulseContextState = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext);
}
@@ -16027,14 +17870,14 @@ void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink
}
pInfoOut = (ma_pa_sink_info*)pUserData;
- ma_assert(pInfoOut != NULL);
+ MA_ASSERT(pInfoOut != NULL);
*pInfoOut = *pInfo;
(void)pPulseContext; /* Unused. */
}
-void ma_device_source_info_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
+static void ma_device_source_info_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_pa_source_info* pInfoOut;
@@ -16043,14 +17886,14 @@ void ma_device_source_info_callback(ma_pa_context* pPulseContext, const ma_pa_so
}
pInfoOut = (ma_pa_source_info*)pUserData;
- ma_assert(pInfoOut != NULL);
+ MA_ASSERT(pInfoOut != NULL);
*pInfoOut = *pInfo;
(void)pPulseContext; /* Unused. */
}
-void ma_device_sink_name_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
+static void ma_device_sink_name_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_device* pDevice;
@@ -16059,14 +17902,14 @@ void ma_device_sink_name_callback(ma_pa_context* pPulseContext, const ma_pa_sink
}
pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), pInfo->description, (size_t)-1);
(void)pPulseContext; /* Unused. */
}
-void ma_device_source_name_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
+static void ma_device_source_name_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_device* pDevice;
@@ -16075,21 +17918,21 @@ void ma_device_source_name_callback(ma_pa_context* pPulseContext, const ma_pa_so
}
pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), pInfo->description, (size_t)-1);
(void)pPulseContext; /* Unused. */
}
-void ma_device_uninit__pulse(ma_device* pDevice)
+static void ma_device_uninit__pulse(ma_device* pDevice)
{
ma_context* pContext;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
@@ -16105,10 +17948,10 @@ void ma_device_uninit__pulse(ma_device* pDevice)
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop);
}
-ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 bufferSizeInFrames, ma_uint32 periods, const ma_pa_sample_spec* ss)
+static ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 periodSizeInFrames, ma_uint32 periods, const ma_pa_sample_spec* ss)
{
ma_pa_buffer_attr attr;
- attr.maxlength = bufferSizeInFrames * ma_get_bytes_per_sample(ma_format_from_pulse(ss->format)) * ss->channels;
+ attr.maxlength = periodSizeInFrames * periods * ma_get_bytes_per_frame(ma_format_from_pulse(ss->format), ss->channels);
attr.tlength = attr.maxlength / periods;
attr.prebuf = (ma_uint32)-1;
attr.minreq = (ma_uint32)-1;
@@ -16117,7 +17960,7 @@ ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 bufferSizeInFrames, ma
return attr;
}
-ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap)
+static ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap)
{
static int g_StreamCounter = 0;
char actualStreamName[256];
@@ -16133,13 +17976,13 @@ ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pS
return ((ma_pa_stream_new_proc)pDevice->pContext->pulse.pa_stream_new)((ma_pa_context*)pDevice->pulse.pPulseContext, actualStreamName, ss, cmap);
}
-ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
int error = 0;
const char* devPlayback = NULL;
const char* devCapture = NULL;
- ma_uint32 bufferSizeInMilliseconds;
+ ma_uint32 periodSizeInMilliseconds;
ma_pa_sink_info sinkInfo;
ma_pa_source_info sourceInfo;
ma_pa_operation* pOP = NULL;
@@ -16152,8 +17995,8 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
ma_uint32 iChannel;
ma_pa_stream_flags_t streamFlags;
- ma_assert(pDevice != NULL);
- ma_zero_object(&pDevice->pulse);
+ MA_ASSERT(pDevice != NULL);
+ MA_ZERO_OBJECT(&pDevice->pulse);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -16172,9 +18015,9 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
devCapture = pConfig->capture.pDeviceID->pulse;
}
- bufferSizeInMilliseconds = pConfig->bufferSizeInMilliseconds;
- if (bufferSizeInMilliseconds == 0) {
- bufferSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->bufferSizeInFrames, pConfig->sampleRate);
+ periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
+ if (periodSizeInMilliseconds == 0) {
+ periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
pDevice->pulse.pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
@@ -16237,12 +18080,12 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
ss = sourceInfo.sample_spec;
cmap = sourceInfo.channel_map;
- pDevice->capture.internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, ss.rate);
+ pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate);
pDevice->capture.internalPeriods = pConfig->periods;
- attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalBufferSizeInFrames, pConfig->periods, &ss);
+ attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalPeriodSizeInFrames, pConfig->periods, &ss);
#ifdef MA_DEBUG_OUTPUT
- printf("[PulseAudio] Capture attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalBufferSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalBufferSizeInFrames);
+ printf("[PulseAudio] Capture attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames);
#endif
pDevice->pulse.pStreamCapture = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNameCapture, &ss, &cmap);
@@ -16275,7 +18118,7 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
if (pActualSS != NULL) {
/* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */
if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) {
- attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalBufferSizeInFrames, pConfig->periods, pActualSS);
+ attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalPeriodSizeInFrames, pConfig->periods, pActualSS);
pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &attr, NULL, NULL);
if (pOP != NULL) {
@@ -16305,10 +18148,10 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
if (pActualAttr != NULL) {
attr = *pActualAttr;
}
- pDevice->capture.internalBufferSizeInFrames = attr.maxlength / (ma_get_bytes_per_sample(pDevice->capture.internalFormat) * pDevice->capture.internalChannels);
pDevice->capture.internalPeriods = attr.maxlength / attr.fragsize;
+ pDevice->capture.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pDevice->capture.internalPeriods;
#ifdef MA_DEBUG_OUTPUT
- printf("[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalBufferSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalBufferSizeInFrames);
+ printf("[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames);
#endif
/* Name. */
@@ -16335,12 +18178,12 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
ss = sinkInfo.sample_spec;
cmap = sinkInfo.channel_map;
- pDevice->playback.internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(bufferSizeInMilliseconds, ss.rate);
+ pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate);
pDevice->playback.internalPeriods = pConfig->periods;
- attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalBufferSizeInFrames, pConfig->periods, &ss);
+ attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalPeriodSizeInFrames, pConfig->periods, &ss);
#ifdef MA_DEBUG_OUTPUT
- printf("[PulseAudio] Playback attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalBufferSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalBufferSizeInFrames);
+ printf("[PulseAudio] Playback attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames);
#endif
pDevice->pulse.pStreamPlayback = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNamePlayback, &ss, &cmap);
@@ -16373,7 +18216,7 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
if (pActualSS != NULL) {
/* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */
if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) {
- attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalBufferSizeInFrames, pConfig->periods, pActualSS);
+ attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalPeriodSizeInFrames, pConfig->periods, pActualSS);
pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, &attr, NULL, NULL);
if (pOP != NULL) {
@@ -16403,10 +18246,10 @@ ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pC
if (pActualAttr != NULL) {
attr = *pActualAttr;
}
- pDevice->playback.internalBufferSizeInFrames = attr.maxlength / (ma_get_bytes_per_sample(pDevice->playback.internalFormat) * pDevice->playback.internalChannels);
- pDevice->playback.internalPeriods = /*pConfig->periods;*/attr.maxlength / attr.tlength;
+ pDevice->playback.internalPeriods = attr.maxlength / attr.tlength;
+ pDevice->playback.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) / pDevice->playback.internalPeriods;
#ifdef MA_DEBUG_OUTPUT
- printf("[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalBufferSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalBufferSizeInFrames);
+ printf("[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames);
#endif
/* Name. */
@@ -16447,17 +18290,17 @@ on_error0:
}
-void ma_pulse_operation_complete_callback(ma_pa_stream* pStream, int success, void* pUserData)
+static void ma_pulse_operation_complete_callback(ma_pa_stream* pStream, int success, void* pUserData)
{
ma_bool32* pIsSuccessful = (ma_bool32*)pUserData;
- ma_assert(pIsSuccessful != NULL);
+ MA_ASSERT(pIsSuccessful != NULL);
*pIsSuccessful = (ma_bool32)success;
(void)pStream; /* Unused. */
}
-ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type deviceType, int cork)
+static ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type deviceType, int cork)
{
ma_context* pContext = pDevice->pContext;
ma_bool32 wasSuccessful;
@@ -16473,7 +18316,7 @@ ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type devic
wasSuccessful = MA_FALSE;
pStream = (ma_pa_stream*)((deviceType == ma_device_type_capture) ? pDevice->pulse.pStreamCapture : pDevice->pulse.pStreamPlayback);
- ma_assert(pStream != NULL);
+ MA_ASSERT(pStream != NULL);
pOP = ((ma_pa_stream_cork_proc)pContext->pulse.pa_stream_cork)(pStream, cork, ma_pulse_operation_complete_callback, &wasSuccessful);
if (pOP == NULL) {
@@ -16498,13 +18341,13 @@ ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type devic
return MA_SUCCESS;
}
-ma_result ma_device_stop__pulse(ma_device* pDevice)
+static ma_result ma_device_stop__pulse(ma_device* pDevice)
{
ma_result result;
ma_bool32 wasSuccessful;
ma_pa_operation* pOP;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 1);
@@ -16530,13 +18373,13 @@ ma_result ma_device_stop__pulse(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_uint32 totalFramesWritten;
- ma_assert(pDevice != NULL);
- ma_assert(pPCMFrames != NULL);
- ma_assert(frameCount > 0);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pPCMFrames != NULL);
+ MA_ASSERT(frameCount > 0);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
@@ -16556,7 +18399,7 @@ ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_
void* pDst = (ma_uint8*)pDevice->pulse.pMappedBufferPlayback + (mappedBufferFramesConsumed * bpf);
const void* pSrc = (const ma_uint8*)pPCMFrames + (totalFramesWritten * bpf);
ma_uint32 framesToCopy = ma_min(pDevice->pulse.mappedBufferFramesRemainingPlayback, (frameCount - totalFramesWritten));
- ma_copy_memory(pDst, pSrc, framesToCopy * bpf);
+ MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf);
pDevice->pulse.mappedBufferFramesRemainingPlayback -= framesToCopy;
totalFramesWritten += framesToCopy;
@@ -16579,7 +18422,7 @@ ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_
pDevice->pulse.mappedBufferFramesCapacityPlayback = 0;
}
- ma_assert(totalFramesWritten <= frameCount);
+ MA_ASSERT(totalFramesWritten <= frameCount);
if (totalFramesWritten == frameCount) {
break;
}
@@ -16595,7 +18438,6 @@ ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_
writableSizeInBytes = ((ma_pa_stream_writable_size_proc)pDevice->pContext->pulse.pa_stream_writable_size)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (writableSizeInBytes != (size_t)-1) {
- /*size_t periodSizeInBytes = (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods) * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);*/
if (writableSizeInBytes > 0) {
/* Data is avaialable. */
size_t bytesToMap = writableSizeInBytes;
@@ -16630,13 +18472,13 @@ ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_
return MA_SUCCESS;
}
-ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_uint32 totalFramesRead;
- ma_assert(pDevice != NULL);
- ma_assert(pPCMFrames != NULL);
- ma_assert(frameCount > 0);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(pPCMFrames != NULL);
+ MA_ASSERT(frameCount > 0);
if (pFramesRead != NULL) {
*pFramesRead = 0;
@@ -16648,8 +18490,11 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
return MA_DEVICE_NOT_STARTED;
}
- /* If a buffer is mapped we need to write to that first. Once it's consumed we reset the event and unmap it. */
- if (pDevice->pulse.pMappedBufferCapture != NULL && pDevice->pulse.mappedBufferFramesRemainingCapture > 0) {
+ /*
+ If a buffer is mapped we need to read from that first. Once it's consumed we need to drop it. Note that pDevice->pulse.pMappedBufferCapture can be null in which
+ case it could be a hole. In this case we just write zeros into the output buffer.
+ */
+ if (pDevice->pulse.mappedBufferFramesRemainingCapture > 0) {
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 mappedBufferFramesConsumed = pDevice->pulse.mappedBufferFramesCapacityCapture - pDevice->pulse.mappedBufferFramesRemainingCapture;
@@ -16662,9 +18507,12 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
*/
if (pDevice->pulse.pMappedBufferCapture != NULL) {
const void* pSrc = (const ma_uint8*)pDevice->pulse.pMappedBufferCapture + (mappedBufferFramesConsumed * bpf);
- ma_copy_memory(pDst, pSrc, framesToCopy * bpf);
+ MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf);
} else {
- ma_zero_memory(pDst, framesToCopy * bpf);
+ MA_ZERO_MEMORY(pDst, framesToCopy * bpf);
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: Filling hole with silence.\n");
+ #endif
}
pDevice->pulse.mappedBufferFramesRemainingCapture -= framesToCopy;
@@ -16676,7 +18524,13 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
mapping another chunk. If this fails we need to wait for data to become available.
*/
if (pDevice->pulse.mappedBufferFramesCapacityCapture > 0 && pDevice->pulse.mappedBufferFramesRemainingCapture == 0) {
- int error = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
+ int error;
+
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_drop()\n");
+ #endif
+
+ error = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (error != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to drop fragment.", ma_result_from_pulse(error));
}
@@ -16686,14 +18540,15 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
pDevice->pulse.mappedBufferFramesCapacityCapture = 0;
}
- ma_assert(totalFramesRead <= frameCount);
+ MA_ASSERT(totalFramesRead <= frameCount);
if (totalFramesRead == frameCount) {
break;
}
/* Getting here means we need to map a new buffer. If we don't have enough data we wait for more. */
for (;;) {
- size_t readableSizeInBytes;
+ int error;
+ size_t bytesMapped;
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
break;
@@ -16701,38 +18556,45 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
/* If the device has been corked, don't try to continue. */
if (((ma_pa_stream_is_corked_proc)pDevice->pContext->pulse.pa_stream_is_corked)((ma_pa_stream*)pDevice->pulse.pStreamCapture)) {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: Corked.\n");
+ #endif
break;
}
- readableSizeInBytes = ((ma_pa_stream_readable_size_proc)pDevice->pContext->pulse.pa_stream_readable_size)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
- if (readableSizeInBytes != (size_t)-1) {
- /*size_t periodSizeInBytes = (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods) * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);*/
- if (readableSizeInBytes > 0) {
- /* Data is avaialable. */
- size_t bytesMapped = (size_t)-1;
- int error = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &pDevice->pulse.pMappedBufferCapture, &bytesMapped);
- if (error < 0) {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to peek capture buffer.", ma_result_from_pulse(error));
- }
+ MA_ASSERT(pDevice->pulse.pMappedBufferCapture == NULL); /* <-- We're about to map a buffer which means we shouldn't have an existing mapping. */
- if (pDevice->pulse.pMappedBufferCapture == NULL && bytesMapped == 0) {
- /* Nothing available. This shouldn't happen because we checked earlier with pa_stream_readable_size(). I'm going to throw an error in this case. */
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Nothing available after peeking capture buffer.", MA_ERROR);
- }
+ error = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &pDevice->pulse.pMappedBufferCapture, &bytesMapped);
+ if (error < 0) {
+ return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to peek capture buffer.", ma_result_from_pulse(error));
+ }
- pDevice->pulse.mappedBufferFramesCapacityCapture = bytesMapped / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- pDevice->pulse.mappedBufferFramesRemainingCapture = pDevice->pulse.mappedBufferFramesCapacityCapture;
+ if (bytesMapped > 0) {
+ pDevice->pulse.mappedBufferFramesCapacityCapture = bytesMapped / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ pDevice->pulse.mappedBufferFramesRemainingCapture = pDevice->pulse.mappedBufferFramesCapacityCapture;
- break;
- } else {
- /* No data available. Need to wait for more. */
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: Mapped. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture);
+ #endif
+
+ if (pDevice->pulse.pMappedBufferCapture == NULL) {
+ /* It's a hole. */
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_peek(). Hole.\n");
+ #endif
+ }
+
+ break;
+ } else {
+ if (pDevice->pulse.pMappedBufferCapture == NULL) {
+ /* Nothing available yet. Need to wait for more. */
/*
I have had reports of a deadlock in this part of the code. I have reproduced this when using the "Built-in Audio Analogue Stereo" device without
an actual microphone connected. I'm experimenting here by not blocking in pa_mainloop_iterate() and instead sleep for a bit when there are no
dispatches.
*/
- int error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 0, NULL);
+ error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 0, NULL);
if (error < 0) {
return ma_result_from_pulse(error);
}
@@ -16742,10 +18604,13 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
ma_sleep(1);
}
- continue;
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[PulseAudio] ma_device_read__pulse: No data available. Waiting. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture);
+ #endif
+ } else {
+ /* Getting here means we mapped 0 bytes, but have a non-NULL buffer. I don't think this should ever happen. */
+ MA_ASSERT(MA_FALSE);
}
- } else {
- return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to query the stream's readable size.", MA_ERROR);
}
}
}
@@ -16757,12 +18622,12 @@ ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32
return MA_SUCCESS;
}
-ma_result ma_device_main_loop__pulse(ma_device* pDevice)
+static ma_result ma_device_main_loop__pulse(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/* The stream needs to be uncorked first. We do this at the top for both capture and playback for PulseAudio. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
@@ -16785,85 +18650,96 @@ ma_result ma_device_main_loop__pulse(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__pulse(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__pulse(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__pulse(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__pulse(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__pulse()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -16887,9 +18763,9 @@ ma_result ma_device_main_loop__pulse(ma_device* pDevice)
case ma_device_type_playback:
{
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -16924,15 +18800,15 @@ ma_result ma_device_main_loop__pulse(ma_device* pDevice)
}
-ma_result ma_context_uninit__pulse(ma_context* pContext)
+static ma_result ma_context_uninit__pulse(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_pulseaudio);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_pulseaudio);
- ma_free(pContext->pulse.pServerName);
+ ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
pContext->pulse.pServerName = NULL;
- ma_free(pContext->pulse.pApplicationName);
+ ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
pContext->pulse.pApplicationName = NULL;
#ifndef MA_NO_RUNTIME_LINKING
@@ -16942,7 +18818,7 @@ ma_result ma_context_uninit__pulse(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libpulseNames[] = {
@@ -17110,10 +18986,10 @@ ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* p
pContext->onDeviceMainLoop = ma_device_main_loop__pulse;
if (pConfig->pulse.pApplicationName) {
- pContext->pulse.pApplicationName = ma_copy_string(pConfig->pulse.pApplicationName);
+ pContext->pulse.pApplicationName = ma_copy_string(pConfig->pulse.pApplicationName, &pContext->allocationCallbacks);
}
if (pConfig->pulse.pServerName) {
- pContext->pulse.pServerName = ma_copy_string(pConfig->pulse.pServerName);
+ pContext->pulse.pServerName = ma_copy_string(pConfig->pulse.pServerName, &pContext->allocationCallbacks);
}
pContext->pulse.tryAutoSpawn = pConfig->pulse.tryAutoSpawn;
@@ -17129,8 +19005,8 @@ ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* p
pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
if (pMainLoop == NULL) {
- ma_free(pContext->pulse.pServerName);
- ma_free(pContext->pulse.pApplicationName);
+ ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
+ ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
@@ -17139,8 +19015,8 @@ ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* p
pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop);
if (pAPI == NULL) {
- ma_free(pContext->pulse.pServerName);
- ma_free(pContext->pulse.pApplicationName);
+ ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
+ ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
@@ -17150,8 +19026,8 @@ ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* p
pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName);
if (pPulseContext == NULL) {
- ma_free(pContext->pulse.pServerName);
- ma_free(pContext->pulse.pApplicationName);
+ ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
+ ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
@@ -17161,8 +19037,8 @@ ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* p
error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, 0, NULL);
if (error != MA_PA_OK) {
- ma_free(pContext->pulse.pServerName);
- ma_free(pContext->pulse.pApplicationName);
+ ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
+ ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
@@ -17238,15 +19114,15 @@ typedef const char* (* ma_jack_port_name_proc) (const ma_jac
typedef void* (* ma_jack_port_get_buffer_proc) (ma_jack_port_t* port, ma_jack_nframes_t nframes);
typedef void (* ma_jack_free_proc) (void* ptr);
-ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_client_t** ppClient)
+static ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_client_t** ppClient)
{
size_t maxClientNameSize;
char clientName[256];
ma_jack_status_t status;
ma_jack_client_t* pClient;
- ma_assert(pContext != NULL);
- ma_assert(ppClient != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppClient != NULL);
if (ppClient) {
*ppClient = NULL;
@@ -17267,27 +19143,27 @@ ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_client_t**
return MA_SUCCESS;
}
-ma_bool32 ma_context_is_device_id_equal__jack(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__jack(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->jack == pID1->jack;
}
-ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
@@ -17295,7 +19171,7 @@ ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devic
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
@@ -17303,13 +19179,13 @@ ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devic
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_jack_client_t* pClient;
ma_result result;
const char** ppPorts;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* No exclusive mode with the JACK backend. */
if (shareMode == ma_share_mode_exclusive) {
@@ -17343,7 +19219,7 @@ ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type
pDeviceInfo->minChannels = 0;
pDeviceInfo->maxChannels = 0;
- ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pClient, NULL, NULL, ma_JackPortIsPhysical | ((deviceType == ma_device_type_playback) ? ma_JackPortIsInput : ma_JackPortIsOutput));
+ ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ((deviceType == ma_device_type_playback) ? ma_JackPortIsInput : ma_JackPortIsOutput));
if (ppPorts == NULL) {
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
@@ -17362,25 +19238,25 @@ ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type
}
-void ma_device_uninit__jack(ma_device* pDevice)
+static void ma_device_uninit__jack(ma_device* pDevice)
{
ma_context* pContext;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (pDevice->jack.pClient != NULL) {
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDevice->jack.pClient);
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- ma_free(pDevice->jack.pIntermediaryBufferCapture);
+ ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
- ma_free(pDevice->jack.pIntermediaryBufferPlayback);
+ ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
@@ -17388,54 +19264,60 @@ void ma_device_uninit__jack(ma_device* pDevice)
}
}
-void ma_device__jack_shutdown_callback(void* pUserData)
+static void ma_device__jack_shutdown_callback(void* pUserData)
{
/* JACK died. Stop the device. */
ma_device* pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_device_stop(pDevice);
}
-int ma_device__jack_buffer_size_callback(ma_jack_nframes_t frameCount, void* pUserData)
+static int ma_device__jack_buffer_size_callback(ma_jack_nframes_t frameCount, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- float* pNewBuffer = (float*)ma_realloc(pDevice->jack.pIntermediaryBufferCapture, frameCount * (pDevice->capture.internalChannels * ma_get_bytes_per_sample(pDevice->capture.internalFormat)));
+ size_t newBufferSize = frameCount * (pDevice->capture.internalChannels * ma_get_bytes_per_sample(pDevice->capture.internalFormat));
+ float* pNewBuffer = (float*)ma__calloc_from_callbacks(newBufferSize, &pDevice->pContext->allocationCallbacks);
if (pNewBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
+ ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks);
+
pDevice->jack.pIntermediaryBufferCapture = pNewBuffer;
- pDevice->playback.internalBufferSizeInFrames = frameCount * pDevice->capture.internalPeriods;
+ pDevice->playback.internalPeriodSizeInFrames = frameCount;
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
- float* pNewBuffer = (float*)ma_realloc(pDevice->jack.pIntermediaryBufferPlayback, frameCount * (pDevice->playback.internalChannels * ma_get_bytes_per_sample(pDevice->playback.internalFormat)));
+ size_t newBufferSize = frameCount * (pDevice->playback.internalChannels * ma_get_bytes_per_sample(pDevice->playback.internalFormat));
+ float* pNewBuffer = (float*)ma__calloc_from_callbacks(newBufferSize, &pDevice->pContext->allocationCallbacks);
if (pNewBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
+ ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks);
+
pDevice->jack.pIntermediaryBufferPlayback = pNewBuffer;
- pDevice->playback.internalBufferSizeInFrames = frameCount * pDevice->playback.internalPeriods;
+ pDevice->playback.internalPeriodSizeInFrames = frameCount;
}
return 0;
}
-int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* pUserData)
+static int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* pUserData)
{
ma_device* pDevice;
ma_context* pContext;
ma_uint32 iChannel;
pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
/* Channels need to be interleaved. */
@@ -17486,15 +19368,15 @@ int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* pUserDa
return 0;
}
-ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_uint32 periods;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -17531,7 +19413,7 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
/* The buffer size in frames can change. */
periods = pConfig->periods;
- bufferSizeInFrames = ((ma_jack_get_buffer_size_proc)pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient) * periods;
+ periodSizeInFrames = ((ma_jack_get_buffer_size_proc)pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient);
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
const char** ppPorts;
@@ -17541,7 +19423,7 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
pDevice->capture.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient);
ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
- ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, NULL, ma_JackPortIsPhysical | ma_JackPortIsOutput);
+ ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput);
if (ppPorts == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
@@ -17563,10 +19445,10 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
- pDevice->capture.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = periods;
- pDevice->jack.pIntermediaryBufferCapture = (float*)ma_malloc((pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods) * (pDevice->capture.internalChannels * ma_get_bytes_per_sample(pDevice->capture.internalFormat)));
+ pDevice->jack.pIntermediaryBufferCapture = (float*)ma__calloc_from_callbacks(pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels), &pContext->allocationCallbacks);
if (pDevice->jack.pIntermediaryBufferCapture == NULL) {
ma_device_uninit__jack(pDevice);
return MA_OUT_OF_MEMORY;
@@ -17581,7 +19463,7 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
pDevice->playback.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient);
ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
- ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, NULL, ma_JackPortIsPhysical | ma_JackPortIsInput);
+ ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput);
if (ppPorts == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
@@ -17603,10 +19485,10 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
- pDevice->playback.internalBufferSizeInFrames = bufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = periods;
- pDevice->jack.pIntermediaryBufferPlayback = (float*)ma_malloc((pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods) * (pDevice->playback.internalChannels * ma_get_bytes_per_sample(pDevice->playback.internalFormat)));
+ pDevice->jack.pIntermediaryBufferPlayback = (float*)ma__calloc_from_callbacks(pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels), &pContext->allocationCallbacks);
if (pDevice->jack.pIntermediaryBufferPlayback == NULL) {
ma_device_uninit__jack(pDevice);
return MA_OUT_OF_MEMORY;
@@ -17614,8 +19496,8 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
}
if (pDevice->type == ma_device_type_duplex) {
- ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalBufferSizeInFrames);
- result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->jack.duplexRB);
+ ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods);
+ result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->jack.duplexRB);
if (result != MA_SUCCESS) {
ma_device_uninit__jack(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to initialize ring buffer.", result);
@@ -17627,7 +19509,7 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->jack.duplexRB, &marginSizeInFrames, &pMarginData);
{
- ma_zero_memory(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
+ MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->jack.duplexRB, marginSizeInFrames, pMarginData);
}
@@ -17637,7 +19519,7 @@ ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pCo
}
-ma_result ma_device_start__jack(ma_device* pDevice)
+static ma_result ma_device_start__jack(ma_device* pDevice)
{
ma_context* pContext = pDevice->pContext;
int resultJACK;
@@ -17649,7 +19531,7 @@ ma_result ma_device_start__jack(ma_device* pDevice)
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, NULL, ma_JackPortIsPhysical | ma_JackPortIsOutput);
+ const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput);
if (ppServerPorts == NULL) {
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports.", MA_ERROR);
@@ -17671,7 +19553,7 @@ ma_result ma_device_start__jack(ma_device* pDevice)
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
- const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, NULL, ma_JackPortIsPhysical | ma_JackPortIsInput);
+ const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput);
if (ppServerPorts == NULL) {
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports.", MA_ERROR);
@@ -17695,7 +19577,7 @@ ma_result ma_device_start__jack(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__jack(ma_device* pDevice)
+static ma_result ma_device_stop__jack(ma_device* pDevice)
{
ma_context* pContext = pDevice->pContext;
ma_stop_proc onStop;
@@ -17713,12 +19595,12 @@ ma_result ma_device_stop__jack(ma_device* pDevice)
}
-ma_result ma_context_uninit__jack(ma_context* pContext)
+static ma_result ma_context_uninit__jack(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_jack);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_jack);
- ma_free(pContext->jack.pClientName);
+ ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks);
pContext->jack.pClientName = NULL;
#ifndef MA_NO_RUNTIME_LINKING
@@ -17728,7 +19610,7 @@ ma_result ma_context_uninit__jack(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libjackNames[] = {
@@ -17820,7 +19702,7 @@ ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pC
pContext->onDeviceStop = ma_device_stop__jack;
if (pConfig->jack.pClientName != NULL) {
- pContext->jack.pClientName = ma_copy_string(pConfig->jack.pClientName);
+ pContext->jack.pClientName = ma_copy_string(pConfig->jack.pClientName, &pContext->allocationCallbacks);
}
pContext->jack.tryStartServer = pConfig->jack.tryStartServer;
@@ -17832,7 +19714,7 @@ ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pC
ma_jack_client_t* pDummyClient;
ma_result result = ma_context_open_client__jack(pContext, &pDummyClient);
if (result != MA_SUCCESS) {
- ma_free(pContext->jack.pClientName);
+ ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->jack.jackSO);
#endif
@@ -17858,6 +19740,12 @@ Core Audio Backend
#if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1
#define MA_APPLE_MOBILE
+ #if defined(TARGET_OS_TV) && TARGET_OS_TV == 1
+ #define MA_APPLE_TV
+ #endif
+ #if defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1
+ #define MA_APPLE_WATCH
+ #endif
#else
#define MA_APPLE_DESKTOP
#endif
@@ -17900,7 +19788,7 @@ typedef OSStatus (* ma_AudioUnitRender_proc)(AudioUnit inUnit, AudioUnitRenderAc
#define MA_COREAUDIO_OUTPUT_BUS 0
#define MA_COREAUDIO_INPUT_BUS 1
-ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit);
+static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit);
/*
Core Audio
@@ -17935,7 +19823,7 @@ size, allocate a block of memory of that size and then call AudioObjectGetProper
AudioDeviceID's so just do "dataSize/sizeof(AudioDeviceID)" to know the device count.
*/
-ma_result ma_result_from_OSStatus(OSStatus status)
+static ma_result ma_result_from_OSStatus(OSStatus status)
{
switch (status)
{
@@ -17958,7 +19846,7 @@ ma_result ma_result_from_OSStatus(OSStatus status)
}
#if 0
-ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit)
+static ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit)
{
switch (bit)
{
@@ -17985,7 +19873,7 @@ ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit)
}
#endif
-ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
+static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
{
switch (label)
{
@@ -18079,10 +19967,10 @@ ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
}
}
-ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut)
+static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut)
{
- ma_assert(pDescription != NULL);
- ma_assert(pFormatOut != NULL);
+ MA_ASSERT(pDescription != NULL);
+ MA_ASSERT(pFormatOut != NULL);
*pFormatOut = ma_format_unknown; /* Safety. */
@@ -18144,9 +20032,9 @@ ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescr
return MA_FORMAT_NOT_SUPPORTED;
}
-ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_assert(pChannelLayout != NULL);
+ MA_ASSERT(pChannelLayout != NULL);
if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) {
UInt32 iChannel;
@@ -18223,16 +20111,16 @@ ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChanne
#if defined(MA_APPLE_DESKTOP)
-ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDeviceCount, AudioObjectID** ppDeviceObjectIDs) /* NOTE: Free the returned buffer with ma_free(). */
+static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDeviceCount, AudioObjectID** ppDeviceObjectIDs) /* NOTE: Free the returned buffer with ma_free(). */
{
AudioObjectPropertyAddress propAddressDevices;
UInt32 deviceObjectsDataSize;
OSStatus status;
AudioObjectID* pDeviceObjectIDs;
- ma_assert(pContext != NULL);
- ma_assert(pDeviceCount != NULL);
- ma_assert(ppDeviceObjectIDs != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDeviceCount != NULL);
+ MA_ASSERT(ppDeviceObjectIDs != NULL);
/* Safety. */
*pDeviceCount = 0;
@@ -18247,31 +20135,30 @@ ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDev
return ma_result_from_OSStatus(status);
}
- pDeviceObjectIDs = (AudioObjectID*)ma_malloc(deviceObjectsDataSize);
+ pDeviceObjectIDs = (AudioObjectID*)ma_malloc(deviceObjectsDataSize, &pContext->allocationCallbacks);
if (pDeviceObjectIDs == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize, pDeviceObjectIDs);
if (status != noErr) {
- ma_free(pDeviceObjectIDs);
+ ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
*pDeviceCount = deviceObjectsDataSize / sizeof(AudioObjectID);
*ppDeviceObjectIDs = pDeviceObjectIDs;
- (void)pContext; /* Unused. */
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, AudioObjectID objectID, CFStringRef* pUID)
+static ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, AudioObjectID objectID, CFStringRef* pUID)
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
propAddress.mSelector = kAudioDevicePropertyDeviceUID;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
@@ -18286,12 +20173,12 @@ ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, AudioObjec
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
+static ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
{
CFStringRef uid;
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
result = ma_get_AudioObject_uid_as_CFStringRef(pContext, objectID, &uid);
if (result != MA_SUCCESS) {
@@ -18306,14 +20193,14 @@ ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID objectID, s
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
+static ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
{
AudioObjectPropertyAddress propAddress;
CFStringRef deviceName = NULL;
UInt32 dataSize;
OSStatus status;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
propAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
@@ -18333,7 +20220,7 @@ ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID objectID,
return MA_SUCCESS;
}
-ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID deviceObjectID, AudioObjectPropertyScope scope)
+static ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID deviceObjectID, AudioObjectPropertyScope scope)
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
@@ -18341,7 +20228,7 @@ ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID
AudioBufferList* pBufferList;
ma_bool32 isSupported;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* To know whether or not a device is an input device we need ot look at the stream configuration. If it has an output channel it's a playback device. */
propAddress.mSelector = kAudioDevicePropertyStreamConfiguration;
@@ -18353,14 +20240,14 @@ ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID
return MA_FALSE;
}
- pBufferList = (AudioBufferList*)ma_malloc(dataSize);
+ pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(dataSize, &pContext->allocationCallbacks);
if (pBufferList == NULL) {
return MA_FALSE; /* Out of memory. */
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pBufferList);
if (status != noErr) {
- ma_free(pBufferList);
+ ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks);
return MA_FALSE;
}
@@ -18369,31 +20256,31 @@ ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID
isSupported = MA_TRUE;
}
- ma_free(pBufferList);
+ ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks);
return isSupported;
}
-ma_bool32 ma_does_AudioObject_support_playback(ma_context* pContext, AudioObjectID deviceObjectID)
+static ma_bool32 ma_does_AudioObject_support_playback(ma_context* pContext, AudioObjectID deviceObjectID)
{
return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeOutput);
}
-ma_bool32 ma_does_AudioObject_support_capture(ma_context* pContext, AudioObjectID deviceObjectID)
+static ma_bool32 ma_does_AudioObject_support_capture(ma_context* pContext, AudioObjectID deviceObjectID)
{
return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeInput);
}
-ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pDescriptionCount, AudioStreamRangedDescription** ppDescriptions) /* NOTE: Free the returned pointer with ma_free(). */
+static ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pDescriptionCount, AudioStreamRangedDescription** ppDescriptions) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioStreamRangedDescription* pDescriptions;
- ma_assert(pContext != NULL);
- ma_assert(pDescriptionCount != NULL);
- ma_assert(ppDescriptions != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDescriptionCount != NULL);
+ MA_ASSERT(ppDescriptions != NULL);
/*
TODO: Experiment with kAudioStreamPropertyAvailablePhysicalFormats instead of (or in addition to) kAudioStreamPropertyAvailableVirtualFormats. My
@@ -18408,14 +20295,14 @@ ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObje
return ma_result_from_OSStatus(status);
}
- pDescriptions = (AudioStreamRangedDescription*)ma_malloc(dataSize);
+ pDescriptions = (AudioStreamRangedDescription*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pDescriptions == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pDescriptions);
if (status != noErr) {
- ma_free(pDescriptions);
+ ma_free(pDescriptions, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
@@ -18425,15 +20312,15 @@ ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObje
}
-ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, AudioChannelLayout** ppChannelLayout) /* NOTE: Free the returned pointer with ma_free(). */
+static ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, AudioChannelLayout** ppChannelLayout) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioChannelLayout* pChannelLayout;
- ma_assert(pContext != NULL);
- ma_assert(ppChannelLayout != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(ppChannelLayout != NULL);
*ppChannelLayout = NULL; /* Safety. */
@@ -18446,14 +20333,14 @@ ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID
return ma_result_from_OSStatus(status);
}
- pChannelLayout = (AudioChannelLayout*)ma_malloc(dataSize);
+ pChannelLayout = (AudioChannelLayout*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pChannelLayout == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pChannelLayout);
if (status != noErr) {
- ma_free(pChannelLayout);
+ ma_free(pChannelLayout, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
@@ -18461,13 +20348,13 @@ ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pChannelCount)
+static ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pChannelCount)
{
AudioChannelLayout* pChannelLayout;
ma_result result;
- ma_assert(pContext != NULL);
- ma_assert(pChannelCount != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pChannelCount != NULL);
*pChannelCount = 0; /* Safety. */
@@ -18484,16 +20371,17 @@ ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObjectID d
*pChannelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag);
}
- ma_free(pChannelLayout);
+ ma_free(pChannelLayout, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
+#if 0
+static ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
{
AudioChannelLayout* pChannelLayout;
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout);
if (result != MA_SUCCESS) {
@@ -18502,24 +20390,25 @@ ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID dev
result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap);
if (result != MA_SUCCESS) {
- ma_free(pChannelLayout);
+ ma_free(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
- ma_free(pChannelLayout);
+ ma_free(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
+#endif
-ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pSampleRateRangesCount, AudioValueRange** ppSampleRateRanges) /* NOTE: Free the returned pointer with ma_free(). */
+static ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pSampleRateRangesCount, AudioValueRange** ppSampleRateRanges) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioValueRange* pSampleRateRanges;
- ma_assert(pContext != NULL);
- ma_assert(pSampleRateRangesCount != NULL);
- ma_assert(ppSampleRateRanges != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pSampleRateRangesCount != NULL);
+ MA_ASSERT(ppSampleRateRanges != NULL);
/* Safety. */
*pSampleRateRangesCount = 0;
@@ -18534,14 +20423,14 @@ ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID de
return ma_result_from_OSStatus(status);
}
- pSampleRateRanges = (AudioValueRange*)ma_malloc(dataSize);
+ pSampleRateRanges = (AudioValueRange*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pSampleRateRanges == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pSampleRateRanges);
if (status != noErr) {
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
@@ -18550,14 +20439,15 @@ ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID de
return MA_SUCCESS;
}
-ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 sampleRateIn, ma_uint32* pSampleRateOut)
+#if 0
+static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 sampleRateIn, ma_uint32* pSampleRateOut)
{
UInt32 sampleRateRangeCount;
AudioValueRange* pSampleRateRanges;
ma_result result;
- ma_assert(pContext != NULL);
- ma_assert(pSampleRateOut != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pSampleRateOut != NULL);
*pSampleRateOut = 0; /* Safety. */
@@ -18567,7 +20457,7 @@ ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, Audio
}
if (sampleRateRangeCount == 0) {
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_ERROR; /* Should never hit this case should we? */
}
@@ -18581,7 +20471,7 @@ ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, Audio
AudioValueRange caSampleRate = pSampleRateRanges[iCASampleRate];
if (caSampleRate.mMinimum <= malSampleRate && caSampleRate.mMaximum >= malSampleRate) {
*pSampleRateOut = malSampleRate;
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
@@ -18591,10 +20481,10 @@ ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, Audio
If we get here it means none of miniaudio's standard sample rates matched any of the supported sample rates from the device. In this
case we just fall back to the first one reported by Core Audio.
*/
- ma_assert(sampleRateRangeCount > 0);
+ MA_ASSERT(sampleRateRangeCount > 0);
*pSampleRateOut = pSampleRateRanges[0].mMinimum;
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
} else {
/* Find the closest match to this sample rate. */
@@ -18604,7 +20494,7 @@ ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, Audio
for (iRange = 0; iRange < sampleRateRangeCount; ++iRange) {
if (pSampleRateRanges[iRange].mMinimum <= sampleRateIn && pSampleRateRanges[iRange].mMaximum >= sampleRateIn) {
*pSampleRateOut = sampleRateIn;
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
} else {
UInt32 absoluteDifference;
@@ -18621,28 +20511,28 @@ ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, Audio
}
}
- ma_assert(iCurrentClosestRange != (UInt32)-1);
+ MA_ASSERT(iCurrentClosestRange != (UInt32)-1);
*pSampleRateOut = pSampleRateRanges[iCurrentClosestRange].mMinimum;
- ma_free(pSampleRateRanges);
+ ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
/* Should never get here, but it would mean we weren't able to find any suitable sample rates. */
- /*ma_free(pSampleRateRanges);*/
+ /*ma_free(pSampleRateRanges, &pContext->allocationCallbacks);*/
/*return MA_ERROR;*/
}
+#endif
-
-ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 bufferSizeInFramesIn, ma_uint32* pBufferSizeInFramesOut)
+static ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 bufferSizeInFramesIn, ma_uint32* pBufferSizeInFramesOut)
{
AudioObjectPropertyAddress propAddress;
AudioValueRange bufferSizeRange;
UInt32 dataSize;
OSStatus status;
- ma_assert(pContext != NULL);
- ma_assert(pBufferSizeInFramesOut != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pBufferSizeInFramesOut != NULL);
*pBufferSizeInFramesOut = 0; /* Safety. */
@@ -18668,7 +20558,7 @@ ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pContext,
return MA_SUCCESS;
}
-ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pBufferSizeInOut)
+static ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pPeriodSizeInOut)
{
ma_result result;
ma_uint32 chosenBufferSizeInFrames;
@@ -18676,9 +20566,9 @@ ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioOb
UInt32 dataSize;
OSStatus status;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
- result = ma_get_AudioObject_closest_buffer_size_in_frames(pContext, deviceObjectID, deviceType, *pBufferSizeInOut, &chosenBufferSizeInFrames);
+ result = ma_get_AudioObject_closest_buffer_size_in_frames(pContext, deviceObjectID, deviceType, *pPeriodSizeInOut, &chosenBufferSizeInFrames);
if (result != MA_SUCCESS) {
return result;
}
@@ -18691,21 +20581,21 @@ ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioOb
((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(chosenBufferSizeInFrames), &chosenBufferSizeInFrames);
/* Get the actual size of the buffer. */
- dataSize = sizeof(*pBufferSizeInOut);
+ dataSize = sizeof(*pPeriodSizeInOut);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &chosenBufferSizeInFrames);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
- *pBufferSizeInOut = chosenBufferSizeInFrames;
+ *pPeriodSizeInOut = chosenBufferSizeInFrames;
return MA_SUCCESS;
}
-ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, AudioObjectID* pDeviceObjectID)
+static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, AudioObjectID* pDeviceObjectID)
{
- ma_assert(pContext != NULL);
- ma_assert(pDeviceObjectID != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pDeviceObjectID != NULL);
/* Safety. */
*pDeviceObjectID = 0;
@@ -18755,7 +20645,7 @@ ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType,
if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) {
if (strcmp(uid, pDeviceID->coreaudio) == 0) {
*pDeviceObjectID = deviceObjectID;
- ma_free(pDeviceObjectIDs);
+ ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
@@ -18763,14 +20653,14 @@ ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType,
if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) {
if (strcmp(uid, pDeviceID->coreaudio) == 0) {
*pDeviceObjectID = deviceObjectID;
- ma_free(pDeviceObjectIDs);
+ ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
}
}
- ma_free(pDeviceObjectIDs);
+ ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
}
/* If we get here it means we couldn't find the device. */
@@ -18778,7 +20668,7 @@ ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType,
}
-ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_bool32 usingDefaultFormat, ma_bool32 usingDefaultChannels, ma_bool32 usingDefaultSampleRate, AudioStreamBasicDescription* pFormat)
+static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_bool32 usingDefaultFormat, ma_bool32 usingDefaultChannels, ma_bool32 usingDefaultSampleRate, AudioStreamBasicDescription* pFormat)
{
UInt32 deviceFormatDescriptionCount;
AudioStreamRangedDescription* pDeviceFormatDescriptions;
@@ -18837,7 +20727,7 @@ ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID dev
If we get here it means we don't have an exact match to what the client is asking for. We'll need to find the closest one. The next
loop will check for formats that have the same sample rate to what we're asking for. If there is, we prefer that one in all cases.
*/
- ma_zero_object(&bestDeviceFormatSoFar);
+ MA_ZERO_OBJECT(&bestDeviceFormatSoFar);
hasSupportedFormat = MA_FALSE;
for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) {
@@ -18851,7 +20741,7 @@ ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID dev
}
if (!hasSupportedFormat) {
- ma_free(pDeviceFormatDescriptions);
+ ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks);
return MA_FORMAT_NOT_SUPPORTED;
}
@@ -18974,12 +20864,12 @@ ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID dev
*pFormat = bestDeviceFormatSoFar;
- ma_free(pDeviceFormatDescriptions);
+ ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
#endif
-ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
{
AudioUnitScope deviceScope;
AudioUnitElement deviceBus;
@@ -18988,7 +20878,7 @@ ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit
AudioChannelLayout* pChannelLayout;
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (deviceType == ma_device_type_playback) {
deviceScope = kAudioUnitScope_Output;
@@ -19003,38 +20893,38 @@ ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit
return ma_result_from_OSStatus(status);
}
- pChannelLayout = (AudioChannelLayout*)ma_malloc(channelLayoutSize);
+ pChannelLayout = (AudioChannelLayout*)ma__malloc_from_callbacks(channelLayoutSize, &pContext->allocationCallbacks);
if (pChannelLayout == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, pChannelLayout, &channelLayoutSize);
if (status != noErr) {
- ma_free(pChannelLayout);
+ ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap);
if (result != MA_SUCCESS) {
- ma_free(pChannelLayout);
+ ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
- ma_free(pChannelLayout);
+ ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
-ma_bool32 ma_context_is_device_id_equal__coreaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__coreaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return strcmp(pID0->coreaudio, pID1->coreaudio) == 0;
}
-ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
#if defined(MA_APPLE_DESKTOP)
UInt32 deviceCount;
@@ -19051,7 +20941,7 @@ ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_
AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice];
ma_device_info info;
- ma_zero_object(&info);
+ MA_ZERO_OBJECT(&info);
if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(info.id.coreaudio), info.id.coreaudio) != MA_SUCCESS) {
continue;
}
@@ -19071,18 +20961,18 @@ ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_
}
}
- ma_free(pDeviceObjectIDs);
+ ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
#else
/* Only supporting default devices on non-Desktop platforms. */
ma_device_info info;
- ma_zero_object(&info);
+ MA_ZERO_OBJECT(&info);
ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
if (!callback(pContext, ma_device_type_playback, &info, pUserData)) {
return MA_SUCCESS;
}
- ma_zero_object(&info);
+ MA_ZERO_OBJECT(&info);
ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
if (!callback(pContext, ma_device_type_capture, &info, pUserData)) {
return MA_SUCCESS;
@@ -19092,11 +20982,11 @@ ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* No exclusive mode with the Core Audio backend for now. */
if (shareMode == ma_share_mode_exclusive) {
@@ -19144,7 +21034,7 @@ ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_
continue;
}
- ma_assert(format != ma_format_unknown);
+ MA_ASSERT(format != ma_format_unknown);
/* Make sure the format isn't already in the output list. */
for (iOutputFormat = 0; iOutputFormat < pDeviceInfo->formatCount; ++iOutputFormat) {
@@ -19159,7 +21049,7 @@ ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_
}
}
- ma_free(pStreamDescriptions);
+ ma_free(pStreamDescriptions, &pContext->allocationCallbacks);
/* Channels. */
@@ -19258,7 +21148,7 @@ ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_
*/
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
- ma_assert(pAudioSession != NULL);
+ MA_ASSERT(pAudioSession != NULL);
pDeviceInfo->minSampleRate = (ma_uint32)pAudioSession.sampleRate;
pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate;
@@ -19271,12 +21161,12 @@ ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_
}
-OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pBufferList)
+static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pBufferList)
{
ma_device* pDevice = (ma_device*)pUserData;
ma_stream_layout layout;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
#if defined(MA_DEBUG_OUTPUT)
printf("INFO: Output Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", busNumber, frameCount, pBufferList->mNumberBuffers);
@@ -19311,7 +21201,7 @@ OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pA
not interleaved, in which case we can't handle right now since miniaudio does not yet support non-interleaved streams. We just
output silence here.
*/
- ma_zero_memory(pBufferList->mBuffers[iBuffer].mData, pBufferList->mBuffers[iBuffer].mDataByteSize);
+ MA_ZERO_MEMORY(pBufferList->mBuffers[iBuffer].mData, pBufferList->mBuffers[iBuffer].mDataByteSize);
#if defined(MA_DEBUG_OUTPUT)
printf(" WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pBufferList->mBuffers[iBuffer].mNumberChannels, pBufferList->mBuffers[iBuffer].mDataByteSize);
@@ -19320,33 +21210,41 @@ OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pA
}
} else {
/* This is the deinterleaved case. We need to update each buffer in groups of internalChannels. This assumes each buffer is the same size. */
- ma_uint8 tempBuffer[4096];
- UInt32 iBuffer;
- for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; iBuffer += pDevice->playback.internalChannels) {
- ma_uint32 frameCountPerBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_sample(pDevice->playback.internalFormat);
- ma_uint32 framesRemaining = frameCountPerBuffer;
+
+ /*
+ For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something
+ very strange has happened and we're not going to support it.
+ */
+ if ((pBufferList->mNumberBuffers % pDevice->playback.internalChannels) == 0) {
+ ma_uint8 tempBuffer[4096];
+ UInt32 iBuffer;
+
+ for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; iBuffer += pDevice->playback.internalChannels) {
+ ma_uint32 frameCountPerBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_sample(pDevice->playback.internalFormat);
+ ma_uint32 framesRemaining = frameCountPerBuffer;
- while (framesRemaining > 0) {
- void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
- ma_uint32 iChannel;
- ma_uint32 framesToRead = sizeof(tempBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- if (framesToRead > framesRemaining) {
- framesToRead = framesRemaining;
- }
-
- if (pDevice->type == ma_device_type_duplex) {
- ma_device__handle_duplex_callback_playback(pDevice, framesToRead, tempBuffer, &pDevice->coreaudio.duplexRB);
- } else {
- ma_device__read_frames_from_client(pDevice, framesToRead, tempBuffer);
- }
-
- for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) {
- ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pBufferList->mBuffers[iBuffer].mData, (frameCountPerBuffer - framesRemaining) * ma_get_bytes_per_sample(pDevice->playback.internalFormat));
+ while (framesRemaining > 0) {
+ void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
+ ma_uint32 iChannel;
+ ma_uint32 framesToRead = sizeof(tempBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ if (framesToRead > framesRemaining) {
+ framesToRead = framesRemaining;
+ }
+
+ if (pDevice->type == ma_device_type_duplex) {
+ ma_device__handle_duplex_callback_playback(pDevice, framesToRead, tempBuffer, &pDevice->coreaudio.duplexRB);
+ } else {
+ ma_device__read_frames_from_client(pDevice, framesToRead, tempBuffer);
+ }
+
+ for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) {
+ ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pBufferList->mBuffers[iBuffer+iChannel].mData, (frameCountPerBuffer - framesRemaining) * ma_get_bytes_per_sample(pDevice->playback.internalFormat));
+ }
+
+ ma_deinterleave_pcm_frames(pDevice->playback.internalFormat, pDevice->playback.internalChannels, framesToRead, tempBuffer, ppDeinterleavedBuffers);
+
+ framesRemaining -= framesToRead;
}
-
- ma_deinterleave_pcm_frames(pDevice->playback.internalFormat, pDevice->playback.internalChannels, framesToRead, tempBuffer, ppDeinterleavedBuffers);
-
- framesRemaining -= framesToRead;
}
}
}
@@ -19358,17 +21256,17 @@ OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pA
return noErr;
}
-OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pUnusedBufferList)
+static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pUnusedBufferList)
{
ma_device* pDevice = (ma_device*)pUserData;
AudioBufferList* pRenderedBufferList;
ma_stream_layout layout;
OSStatus status;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
pRenderedBufferList = (AudioBufferList*)pDevice->coreaudio.pAudioBufferList;
- ma_assert(pRenderedBufferList);
+ MA_ASSERT(pRenderedBufferList);
/* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */
layout = ma_stream_layout_interleaved;
@@ -19408,7 +21306,7 @@ OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pAc
ma_uint8 silentBuffer[4096];
ma_uint32 framesRemaining;
- ma_zero_memory(silentBuffer, sizeof(silentBuffer));
+ MA_ZERO_MEMORY(silentBuffer, sizeof(silentBuffer));
framesRemaining = frameCount;
while (framesRemaining > 0) {
@@ -19433,31 +21331,38 @@ OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pAc
}
} else {
/* This is the deinterleaved case. We need to interleave the audio data before sending it to the client. This assumes each buffer is the same size. */
- ma_uint8 tempBuffer[4096];
- UInt32 iBuffer;
- for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; iBuffer += pDevice->capture.internalChannels) {
- ma_uint32 framesRemaining = frameCount;
- while (framesRemaining > 0) {
- void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
- ma_uint32 iChannel;
- ma_uint32 framesToSend = sizeof(tempBuffer) / ma_get_bytes_per_sample(pDevice->capture.internalFormat);
- if (framesToSend > framesRemaining) {
- framesToSend = framesRemaining;
- }
-
- for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) {
- ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pRenderedBufferList->mBuffers[iBuffer].mData, (frameCount - framesRemaining) * ma_get_bytes_per_sample(pDevice->capture.internalFormat));
- }
-
- ma_interleave_pcm_frames(pDevice->capture.internalFormat, pDevice->capture.internalChannels, framesToSend, (const void**)ppDeinterleavedBuffers, tempBuffer);
+
+ /*
+ For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something
+ very strange has happened and we're not going to support it.
+ */
+ if ((pRenderedBufferList->mNumberBuffers % pDevice->capture.internalChannels) == 0) {
+ ma_uint8 tempBuffer[4096];
+ UInt32 iBuffer;
+ for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; iBuffer += pDevice->capture.internalChannels) {
+ ma_uint32 framesRemaining = frameCount;
+ while (framesRemaining > 0) {
+ void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
+ ma_uint32 iChannel;
+ ma_uint32 framesToSend = sizeof(tempBuffer) / ma_get_bytes_per_sample(pDevice->capture.internalFormat);
+ if (framesToSend > framesRemaining) {
+ framesToSend = framesRemaining;
+ }
+
+ for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) {
+ ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pRenderedBufferList->mBuffers[iBuffer+iChannel].mData, (frameCount - framesRemaining) * ma_get_bytes_per_sample(pDevice->capture.internalFormat));
+ }
+
+ ma_interleave_pcm_frames(pDevice->capture.internalFormat, pDevice->capture.internalChannels, framesToSend, (const void**)ppDeinterleavedBuffers, tempBuffer);
- if (pDevice->type == ma_device_type_duplex) {
- ma_device__handle_duplex_callback_capture(pDevice, framesToSend, tempBuffer, &pDevice->coreaudio.duplexRB);
- } else {
- ma_device__send_frames_to_client(pDevice, framesToSend, tempBuffer);
- }
+ if (pDevice->type == ma_device_type_duplex) {
+ ma_device__handle_duplex_callback_capture(pDevice, framesToSend, tempBuffer, &pDevice->coreaudio.duplexRB);
+ } else {
+ ma_device__send_frames_to_client(pDevice, framesToSend, tempBuffer);
+ }
- framesRemaining -= framesToSend;
+ framesRemaining -= framesToSend;
+ }
}
}
}
@@ -19471,10 +21376,10 @@ OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pAc
return noErr;
}
-void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, AudioUnitPropertyID propertyID, AudioUnitScope scope, AudioUnitElement element)
+static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, AudioUnitPropertyID propertyID, AudioUnitScope scope, AudioUnitElement element)
{
ma_device* pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/*
There's been a report of a deadlock here when triggered by ma_device_uninit(). It looks like
@@ -19549,7 +21454,7 @@ static ma_device** g_ppTrackedDevices_CoreAudio = NULL;
static ma_uint32 g_TrackedDeviceCap_CoreAudio = 0;
static ma_uint32 g_TrackedDeviceCount_CoreAudio = 0;
-OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 addressCount, const AudioObjectPropertyAddress* pAddresses, void* pUserData)
+static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 addressCount, const AudioObjectPropertyAddress* pAddresses, void* pUserData)
{
ma_device_type deviceType;
@@ -19621,7 +21526,7 @@ OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 add
static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (ma_atomic_increment_32(&g_DeviceTrackingInitCounter_CoreAudio) == 1) {
AudioObjectPropertyAddress propAddress;
@@ -19642,7 +21547,7 @@ static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContex
static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
if (ma_atomic_decrement_32(&g_DeviceTrackingInitCounter_CoreAudio) == 0) {
AudioObjectPropertyAddress propAddress;
@@ -19656,8 +21561,8 @@ static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pCont
((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
/* At this point there should be no tracked devices. If so there's an error somewhere. */
- ma_assert(g_ppTrackedDevices_CoreAudio == NULL);
- ma_assert(g_TrackedDeviceCount_CoreAudio == 0);
+ MA_ASSERT(g_ppTrackedDevices_CoreAudio == NULL);
+ MA_ASSERT(g_TrackedDeviceCount_CoreAudio == 0);
ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio);
}
@@ -19669,7 +21574,7 @@ static ma_result ma_device__track__coreaudio(ma_device* pDevice)
{
ma_result result;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
result = ma_context__init_device_tracking__coreaudio(pDevice->pContext);
if (result != MA_SUCCESS) {
@@ -19680,15 +21585,17 @@ static ma_result ma_device__track__coreaudio(ma_device* pDevice)
{
/* Allocate memory if required. */
if (g_TrackedDeviceCap_CoreAudio <= g_TrackedDeviceCount_CoreAudio) {
+ ma_uint32 oldCap;
ma_uint32 newCap;
ma_device** ppNewDevices;
+ oldCap = g_TrackedDeviceCap_CoreAudio;
newCap = g_TrackedDeviceCap_CoreAudio * 2;
if (newCap == 0) {
newCap = 1;
}
- ppNewDevices = (ma_device**)ma_realloc(g_ppTrackedDevices_CoreAudio, sizeof(*g_ppTrackedDevices_CoreAudio) * newCap);
+ ppNewDevices = (ma_device**)ma__realloc_from_callbacks(g_ppTrackedDevices_CoreAudio, sizeof(*g_ppTrackedDevices_CoreAudio)*newCap, sizeof(*g_ppTrackedDevices_CoreAudio)*oldCap, &pDevice->pContext->allocationCallbacks);
if (ppNewDevices == NULL) {
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
return MA_OUT_OF_MEMORY;
@@ -19710,7 +21617,7 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
{
ma_result result;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
{
@@ -19727,7 +21634,7 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
/* If there's nothing else in the list we need to free memory. */
if (g_TrackedDeviceCount_CoreAudio == 0) {
- ma_free(g_ppTrackedDevices_CoreAudio);
+ ma__free_from_callbacks(g_ppTrackedDevices_CoreAudio, &pDevice->pContext->allocationCallbacks);
g_ppTrackedDevices_CoreAudio = NULL;
g_TrackedDeviceCap_CoreAudio = 0;
}
@@ -19747,10 +21654,109 @@ static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
}
#endif
-void ma_device_uninit__coreaudio(ma_device* pDevice)
+#if defined(MA_APPLE_MOBILE)
+@interface ma_router_change_handler:NSObject {
+ ma_device* m_pDevice;
+}
+@end
+
+@implementation ma_router_change_handler
+-(id)init:(ma_device*)pDevice
+{
+ self = [super init];
+ m_pDevice = pDevice;
+
+ [[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handle_route_change:) name:AVAudioSessionRouteChangeNotification object:[AVAudioSession sharedInstance]];
+
+ return self;
+}
+
+-(void)dealloc
+{
+ [self remove_handler];
+}
+
+-(void)remove_handler
+{
+ [[NSNotificationCenter defaultCenter] removeObserver:self name:@"AVAudioSessionRouteChangeNotification" object:nil];
+}
+
+-(void)handle_route_change:(NSNotification*)pNotification
+{
+ AVAudioSession* pSession = [AVAudioSession sharedInstance];
+
+ NSInteger reason = [[[pNotification userInfo] objectForKey:AVAudioSessionRouteChangeReasonKey] integerValue];
+ switch (reason)
+ {
+ case AVAudioSessionRouteChangeReasonOldDeviceUnavailable:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOldDeviceUnavailable\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonNewDeviceAvailable:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNewDeviceAvailable\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonWakeFromSleep:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonWakeFromSleep\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonOverride:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOverride\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonCategoryChange:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonCategoryChange\n");
+ #endif
+ } break;
+
+ case AVAudioSessionRouteChangeReasonUnknown:
+ default:
+ {
+ #if defined(MA_DEBUG_OUTPUT)
+ printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonUnknown\n");
+ #endif
+ } break;
+ }
+
+ m_pDevice->sampleRate = (ma_uint32)pSession.sampleRate;
+
+ if (m_pDevice->type == ma_device_type_capture || m_pDevice->type == ma_device_type_duplex) {
+ m_pDevice->capture.channels = (ma_uint32)pSession.inputNumberOfChannels;
+ ma_device__post_init_setup(m_pDevice, ma_device_type_capture);
+ }
+ if (m_pDevice->type == ma_device_type_playback || m_pDevice->type == ma_device_type_duplex) {
+ m_pDevice->playback.channels = (ma_uint32)pSession.outputNumberOfChannels;
+ ma_device__post_init_setup(m_pDevice, ma_device_type_playback);
+ }
+}
+@end
+#endif
+
+static void ma_device_uninit__coreaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
- ma_assert(ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED);
+ MA_ASSERT(pDevice != NULL);
+ MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED);
#if defined(MA_APPLE_DESKTOP)
/*
@@ -19759,6 +21765,12 @@ void ma_device_uninit__coreaudio(ma_device* pDevice)
*/
ma_device__untrack__coreaudio(pDevice);
#endif
+#if defined(MA_APPLE_MOBILE)
+ if (pDevice->coreaudio.pRouteChangeHandler != NULL) {
+ ma_router_change_handler* pRouteChangeHandler = (__bridge_transfer ma_router_change_handler*)pDevice->coreaudio.pRouteChangeHandler;
+ [pRouteChangeHandler remove_handler];
+ }
+#endif
if (pDevice->coreaudio.audioUnitCapture != NULL) {
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
@@ -19768,7 +21780,7 @@ void ma_device_uninit__coreaudio(ma_device* pDevice)
}
if (pDevice->coreaudio.pAudioBufferList) {
- ma_free(pDevice->coreaudio.pAudioBufferList);
+ ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
@@ -19783,8 +21795,8 @@ typedef struct
ma_uint32 channelsIn;
ma_uint32 sampleRateIn;
ma_channel channelMapIn[MA_MAX_CHANNELS];
- ma_uint32 bufferSizeInFramesIn;
- ma_uint32 bufferSizeInMillisecondsIn;
+ ma_uint32 periodSizeInFramesIn;
+ ma_uint32 periodSizeInMillisecondsIn;
ma_uint32 periodsIn;
ma_bool32 usingDefaultFormat;
ma_bool32 usingDefaultChannels;
@@ -19804,18 +21816,18 @@ typedef struct
ma_uint32 channelsOut;
ma_uint32 sampleRateOut;
ma_channel channelMapOut[MA_MAX_CHANNELS];
- ma_uint32 bufferSizeInFramesOut;
+ ma_uint32 periodSizeInFramesOut;
ma_uint32 periodsOut;
char deviceName[256];
} ma_device_init_internal_data__coreaudio;
-ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__coreaudio* pData, void* pDevice_DoNotReference) /* <-- pDevice is typed as void* intentionally so as to avoid accidentally referencing it. */
+static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__coreaudio* pData, void* pDevice_DoNotReference) /* <-- pDevice is typed as void* intentionally so as to avoid accidentally referencing it. */
{
ma_result result;
OSStatus status;
UInt32 enableIOFlag;
AudioStreamBasicDescription bestFormat;
- ma_uint32 actualBufferSizeInFrames;
+ ma_uint32 actualPeriodSizeInFrames;
AURenderCallbackStruct callbackInfo;
#if defined(MA_APPLE_DESKTOP)
AudioObjectID deviceObjectID;
@@ -19826,8 +21838,8 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
return MA_INVALID_ARGS;
}
- ma_assert(pContext != NULL);
- ma_assert(deviceType == ma_device_type_playback || deviceType == ma_device_type_capture);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(deviceType == ma_device_type_playback || deviceType == ma_device_type_capture);
#if defined(MA_APPLE_DESKTOP)
pData->deviceObjectID = 0;
@@ -19953,10 +21965,21 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
*/
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
- ma_assert(pAudioSession != NULL);
+ MA_ASSERT(pAudioSession != NULL);
[pAudioSession setPreferredSampleRate:(double)pData->sampleRateIn error:nil];
bestFormat.mSampleRate = pAudioSession.sampleRate;
+
+ /*
+ I've had a report that the channel count returned by AudioUnitGetProperty above is inconsistent with
+ AVAudioSession outputNumberOfChannels. I'm going to try using the AVAudioSession values instead.
+ */
+ if (deviceType == ma_device_type_playback) {
+ bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.outputNumberOfChannels;
+ }
+ if (deviceType == ma_device_type_capture) {
+ bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.inputNumberOfChannels;
+ }
}
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat));
@@ -20009,23 +22032,22 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
/* Buffer size. Not allowing this to be configurable on iOS. */
- actualBufferSizeInFrames = pData->bufferSizeInFramesIn;
+ actualPeriodSizeInFrames = pData->periodSizeInFramesIn;
#if defined(MA_APPLE_DESKTOP)
- if (actualBufferSizeInFrames == 0) {
- actualBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->bufferSizeInMillisecondsIn, pData->sampleRateOut);
+ if (actualPeriodSizeInFrames == 0) {
+ actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, pData->sampleRateOut);
}
- actualBufferSizeInFrames = actualBufferSizeInFrames / pData->periodsOut;
- result = ma_set_AudioObject_buffer_size_in_frames(pContext, deviceObjectID, deviceType, &actualBufferSizeInFrames);
+ result = ma_set_AudioObject_buffer_size_in_frames(pContext, deviceObjectID, deviceType, &actualPeriodSizeInFrames);
if (result != MA_SUCCESS) {
return result;
}
- pData->bufferSizeInFramesOut = actualBufferSizeInFrames * pData->periodsOut;
+ pData->periodSizeInFramesOut = actualPeriodSizeInFrames;
#else
- actualBufferSizeInFrames = 4096;
- pData->bufferSizeInFramesOut = actualBufferSizeInFrames;
+ actualPeriodSizeInFrames = 2048;
+ pData->periodSizeInFramesOut = actualPeriodSizeInFrames;
#endif
@@ -20047,7 +22069,7 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
return ma_result_from_OSStatus(status);
}*/
- status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualBufferSizeInFrames, sizeof(actualBufferSizeInFrames));
+ status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, sizeof(actualPeriodSizeInFrames));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
@@ -20064,14 +22086,14 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
if (isInterleaved) {
/* Interleaved case. This is the simple case because we just have one buffer. */
allocationSize += sizeof(AudioBuffer) * 1;
- allocationSize += actualBufferSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
+ allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
} else {
/* Non-interleaved case. This is the more complex case because there's more than one buffer. */
allocationSize += sizeof(AudioBuffer) * pData->channelsOut;
- allocationSize += actualBufferSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * pData->channelsOut;
+ allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * pData->channelsOut;
}
- pBufferList = (AudioBufferList*)ma_malloc(allocationSize);
+ pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(allocationSize, &pContext->allocationCallbacks);
if (pBufferList == NULL) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return MA_OUT_OF_MEMORY;
@@ -20080,15 +22102,15 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
if (isInterleaved) {
pBufferList->mNumberBuffers = 1;
pBufferList->mBuffers[0].mNumberChannels = pData->channelsOut;
- pBufferList->mBuffers[0].mDataByteSize = actualBufferSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
- pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList);
+ pBufferList->mBuffers[0].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
+ pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList);
} else {
ma_uint32 iBuffer;
pBufferList->mNumberBuffers = pData->channelsOut;
for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) {
pBufferList->mBuffers[iBuffer].mNumberChannels = 1;
- pBufferList->mBuffers[iBuffer].mDataByteSize = actualBufferSizeInFrames * ma_get_bytes_per_sample(pData->formatOut);
- pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * pData->channelsOut)) + (actualBufferSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * iBuffer);
+ pBufferList->mBuffers[iBuffer].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut);
+ pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * pData->channelsOut)) + (actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * iBuffer);
}
}
@@ -20125,7 +22147,7 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
/* Initialize the audio unit. */
status = ((ma_AudioUnitInitialize_proc)pContext->coreaudio.AudioUnitInitialize)(pData->audioUnit);
if (status != noErr) {
- ma_free(pData->pAudioBufferList);
+ ma__free_from_callbacks(pData->pAudioBufferList, &pContext->allocationCallbacks);
pData->pAudioBufferList = NULL;
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
@@ -20145,7 +22167,7 @@ ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_typ
return result;
}
-ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit)
+static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit)
{
ma_device_init_internal_data__coreaudio data;
ma_result result;
@@ -20159,7 +22181,7 @@ ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_typ
data.formatIn = pDevice->capture.format;
data.channelsIn = pDevice->capture.channels;
data.sampleRateIn = pDevice->sampleRate;
- ma_copy_memory(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
@@ -20172,13 +22194,13 @@ ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_typ
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
}
if (pDevice->coreaudio.pAudioBufferList) {
- ma_free(pDevice->coreaudio.pAudioBufferList);
+ ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
} else if (deviceType == ma_device_type_playback) {
data.formatIn = pDevice->playback.format;
data.channelsIn = pDevice->playback.channels;
data.sampleRateIn = pDevice->sampleRate;
- ma_copy_memory(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
@@ -20191,8 +22213,8 @@ ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_typ
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
}
}
- data.bufferSizeInFramesIn = pDevice->coreaudio.originalBufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pDevice->coreaudio.originalBufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pDevice->coreaudio.originalPeriodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pDevice->coreaudio.originalPeriodSizeInMilliseconds;
data.periodsIn = pDevice->coreaudio.originalPeriods;
/* Need at least 3 periods for duplex. */
@@ -20207,28 +22229,28 @@ ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_typ
if (deviceType == ma_device_type_capture) {
#if defined(MA_APPLE_DESKTOP)
- pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID;
+ pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID;
#endif
- pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit;
- pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList;
+ pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit;
+ pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList;
- pDevice->capture.internalFormat = data.formatOut;
- pDevice->capture.internalChannels = data.channelsOut;
- pDevice->capture.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->capture.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
- pDevice->capture.internalPeriods = data.periodsOut;
+ pDevice->capture.internalFormat = data.formatOut;
+ pDevice->capture.internalChannels = data.channelsOut;
+ pDevice->capture.internalSampleRate = data.sampleRateOut;
+ MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
+ pDevice->capture.internalPeriods = data.periodsOut;
} else if (deviceType == ma_device_type_playback) {
#if defined(MA_APPLE_DESKTOP)
- pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID;
+ pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID;
#endif
- pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit;
+ pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit;
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->playback.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
}
@@ -20236,13 +22258,13 @@ ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_typ
}
-ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -20260,14 +22282,14 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
data.formatIn = pConfig->capture.format;
data.channelsIn = pConfig->capture.channels;
data.sampleRateIn = pConfig->sampleRate;
- ma_copy_memory(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
data.shareMode = pConfig->capture.shareMode;
- data.bufferSizeInFramesIn = pConfig->bufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pConfig->bufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.registerStopEvent = MA_TRUE;
@@ -20291,8 +22313,8 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->capture.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
#if defined(MA_APPLE_DESKTOP)
@@ -20312,7 +22334,7 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
data.formatIn = pConfig->playback.format;
data.channelsIn = pConfig->playback.channels;
data.sampleRateIn = pConfig->sampleRate;
- ma_copy_memory(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
+ MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
@@ -20321,12 +22343,12 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
/* In full-duplex mode we want the playback buffer to be the same size as the capture buffer. */
if (pConfig->deviceType == ma_device_type_duplex) {
- data.bufferSizeInFramesIn = pDevice->capture.internalBufferSizeInFrames;
+ data.periodSizeInFramesIn = pDevice->capture.internalPeriodSizeInFrames;
data.periodsIn = pDevice->capture.internalPeriods;
data.registerStopEvent = MA_FALSE;
} else {
- data.bufferSizeInFramesIn = pConfig->bufferSizeInFrames;
- data.bufferSizeInMillisecondsIn = pConfig->bufferSizeInMilliseconds;
+ data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
+ data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.registerStopEvent = MA_TRUE;
}
@@ -20336,7 +22358,7 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
if (pConfig->deviceType == ma_device_type_duplex) {
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (pDevice->coreaudio.pAudioBufferList) {
- ma_free(pDevice->coreaudio.pAudioBufferList);
+ ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
}
return result;
@@ -20351,8 +22373,8 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
- ma_copy_memory(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
- pDevice->playback.internalBufferSizeInFrames = data.bufferSizeInFramesOut;
+ MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
+ pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
#if defined(MA_APPLE_DESKTOP)
@@ -20366,8 +22388,8 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
#endif
}
- pDevice->coreaudio.originalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- pDevice->coreaudio.originalBufferSizeInMilliseconds = pConfig->bufferSizeInMilliseconds;
+ pDevice->coreaudio.originalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ pDevice->coreaudio.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
pDevice->coreaudio.originalPeriods = pConfig->periods;
/*
@@ -20378,8 +22400,8 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
/* Need a ring buffer for duplex mode. */
if (pConfig->deviceType == ma_device_type_duplex) {
- ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalBufferSizeInFrames);
- ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->coreaudio.duplexRB);
+ ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods);
+ ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->coreaudio.duplexRB);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[Core Audio] Failed to initialize ring buffer.", result);
}
@@ -20390,19 +22412,27 @@ ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config
void* pBufferData;
ma_pcm_rb_acquire_write(&pDevice->coreaudio.duplexRB, &bufferSizeInFrames, &pBufferData);
{
- ma_zero_memory(pBufferData, bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
+ MA_ZERO_MEMORY(pBufferData, bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->coreaudio.duplexRB, bufferSizeInFrames, pBufferData);
}
}
+ /*
+ We need to detect when a route has changed so we can update the data conversion pipeline accordingly. This is done
+ differently on non-Desktop Apple platforms.
+ */
+#if defined(MA_APPLE_MOBILE)
+ pDevice->coreaudio.pRouteChangeHandler = (__bridge_retained void*)[[ma_router_change_handler alloc] init:pDevice];
+#endif
+
return MA_SUCCESS;
}
-ma_result ma_device_start__coreaudio(ma_device* pDevice)
+static ma_result ma_device_start__coreaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
@@ -20424,10 +22454,12 @@ ma_result ma_device_start__coreaudio(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__coreaudio(ma_device* pDevice)
+static ma_result ma_device_stop__coreaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
-
+ MA_ASSERT(pDevice != NULL);
+
+ /* It's not clear from the documentation whether or not AudioOutputUnitStop() actually drains the device or not. */
+
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (status != noErr) {
@@ -20448,10 +22480,10 @@ ma_result ma_device_stop__coreaudio(ma_device* pDevice)
}
-ma_result ma_context_uninit__coreaudio(ma_context* pContext)
+static ma_result ma_context_uninit__coreaudio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_coreaudio);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_coreaudio);
#if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
@@ -20463,23 +22495,63 @@ ma_result ma_context_uninit__coreaudio(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_context* pContext)
+#if defined(MA_APPLE_MOBILE)
+static AVAudioSessionCategory ma_to_AVAudioSessionCategory(ma_ios_session_category category)
{
- ma_assert(pContext != NULL);
+ /* The "default" and "none" categories are treated different and should not be used as an input into this function. */
+ MA_ASSERT(category != ma_ios_session_category_default);
+ MA_ASSERT(category != ma_ios_session_category_none);
- (void)pConfig;
+ switch (category) {
+ case ma_ios_session_category_ambient: return AVAudioSessionCategoryAmbient;
+ case ma_ios_session_category_solo_ambient: return AVAudioSessionCategorySoloAmbient;
+ case ma_ios_session_category_playback: return AVAudioSessionCategoryPlayback;
+ case ma_ios_session_category_record: return AVAudioSessionCategoryRecord;
+ case ma_ios_session_category_play_and_record: return AVAudioSessionCategoryPlayAndRecord;
+ case ma_ios_session_category_multi_route: return AVAudioSessionCategoryMultiRoute;
+ case ma_ios_session_category_none: return AVAudioSessionCategoryAmbient;
+ case ma_ios_session_category_default: return AVAudioSessionCategoryAmbient;
+ default: return AVAudioSessionCategoryAmbient;
+ }
+}
+#endif
+
+static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_context* pContext)
+{
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pContext != NULL);
#if defined(MA_APPLE_MOBILE)
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
- ma_assert(pAudioSession != NULL);
+ AVAudioSessionCategoryOptions options = pConfig->coreaudio.sessionCategoryOptions;
- [pAudioSession setCategory: AVAudioSessionCategoryPlayAndRecord error:nil];
-
- /* By default we want miniaudio to use the speakers instead of the receiver. In the future this may be customizable. */
- ma_bool32 useSpeakers = MA_TRUE;
- if (useSpeakers) {
- [pAudioSession overrideOutputAudioPort:AVAudioSessionPortOverrideSpeaker error:nil];
+ MA_ASSERT(pAudioSession != NULL);
+
+ if (pConfig->coreaudio.sessionCategory == ma_ios_session_category_default) {
+ /*
+ I'm going to use trial and error to determine our default session category. First we'll try PlayAndRecord. If that fails
+ we'll try Playback and if that fails we'll try record. If all of these fail we'll just not set the category.
+ */
+ #if !defined(MA_APPLE_TV) && !defined(MA_APPLE_WATCH)
+ options |= AVAudioSessionCategoryOptionDefaultToSpeaker;
+ #endif
+
+ if ([pAudioSession setCategory: AVAudioSessionCategoryPlayAndRecord withOptions:options error:nil]) {
+ /* Using PlayAndRecord */
+ } else if ([pAudioSession setCategory: AVAudioSessionCategoryPlayback withOptions:options error:nil]) {
+ /* Using Playback */
+ } else if ([pAudioSession setCategory: AVAudioSessionCategoryRecord withOptions:options error:nil]) {
+ /* Using Record */
+ } else {
+ /* Leave as default? */
+ }
+ } else {
+ if (pConfig->coreaudio.sessionCategory != ma_ios_session_category_none) {
+ if (![pAudioSession setCategory: ma_to_AVAudioSessionCategory(pConfig->coreaudio.sessionCategory) withOptions:options error:nil]) {
+ return MA_INVALID_OPERATION; /* Failed to set session category. */
+ }
+ }
}
}
#endif
@@ -20490,8 +22562,8 @@ ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_contex
return MA_API_NOT_FOUND;
}
- pContext->coreaudio.CFStringGetCString = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFStringGetCString");
- pContext->coreaudio.CFRelease = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFRelease");
+ pContext->coreaudio.CFStringGetCString = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFStringGetCString");
+ pContext->coreaudio.CFRelease = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFRelease");
pContext->coreaudio.hCoreAudio = ma_dlopen(pContext, "CoreAudio.framework/CoreAudio");
@@ -20698,7 +22770,19 @@ typedef int (* ma_sio_start_proc) (struct ma_sio_hdl*);
typedef int (* ma_sio_stop_proc) (struct ma_sio_hdl*);
typedef int (* ma_sio_initpar_proc)(struct ma_sio_par*);
-ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int bps, unsigned int sig, unsigned int le, unsigned int msb)
+static ma_uint32 ma_get_standard_sample_rate_priority_index__sndio(ma_uint32 sampleRate) /* Lower = higher priority */
+{
+ ma_uint32 i;
+ for (i = 0; i < ma_countof(g_maStandardSampleRatePriorities); ++i) {
+ if (g_maStandardSampleRatePriorities[i] == sampleRate) {
+ return i;
+ }
+ }
+
+ return (ma_uint32)-1;
+}
+
+static ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int bps, unsigned int sig, unsigned int le, unsigned int msb)
{
/* We only support native-endian right now. */
if ((ma_is_little_endian() && le == 0) || (ma_is_big_endian() && le == 1)) {
@@ -20724,12 +22808,12 @@ ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int bps, uns
return ma_format_unknown;
}
-ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps)
+static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps)
{
ma_format bestFormat;
unsigned int iConfig;
- ma_assert(caps != NULL);
+ MA_ASSERT(caps != NULL);
bestFormat = ma_format_unknown;
for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) {
@@ -20769,13 +22853,13 @@ ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps)
return ma_format_unknown;
}
-ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat)
+static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat)
{
ma_uint32 maxChannels;
unsigned int iConfig;
- ma_assert(caps != NULL);
- ma_assert(requiredFormat != ma_format_unknown);
+ MA_ASSERT(caps != NULL);
+ MA_ASSERT(requiredFormat != ma_format_unknown);
/* Just pick whatever configuration has the most channels. */
maxChannels = 0;
@@ -20836,16 +22920,16 @@ ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_
return maxChannels;
}
-ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat, ma_uint32 requiredChannels)
+static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat, ma_uint32 requiredChannels)
{
ma_uint32 firstSampleRate;
ma_uint32 bestSampleRate;
unsigned int iConfig;
- ma_assert(caps != NULL);
- ma_assert(requiredFormat != ma_format_unknown);
- ma_assert(requiredChannels > 0);
- ma_assert(requiredChannels <= MA_MAX_CHANNELS);
+ MA_ASSERT(caps != NULL);
+ MA_ASSERT(requiredFormat != ma_format_unknown);
+ MA_ASSERT(requiredChannels > 0);
+ MA_ASSERT(requiredChannels <= MA_MAX_CHANNELS);
firstSampleRate = 0; /* <-- If the device does not support a standard rate we'll fall back to the first one that's found. */
bestSampleRate = 0;
@@ -20912,12 +22996,12 @@ ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps,
}
/* Disregard this rate if it's not a standard one. */
- ratePriority = ma_get_standard_sample_rate_priority_index(rate);
+ ratePriority = ma_get_standard_sample_rate_priority_index__sndio(rate);
if (ratePriority == (ma_uint32)-1) {
continue;
}
- if (ma_get_standard_sample_rate_priority_index(bestSampleRate) > ratePriority) { /* Lower = better. */
+ if (ma_get_standard_sample_rate_priority_index__sndio(bestSampleRate) > ratePriority) { /* Lower = better. */
bestSampleRate = rate;
}
}
@@ -20934,23 +23018,23 @@ ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps,
}
-ma_bool32 ma_context_is_device_id_equal__sndio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__sndio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->sndio, pID1->sndio) == 0;
}
-ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 isTerminating = MA_FALSE;
struct ma_sio_hdl* handle;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* sndio doesn't seem to have a good device enumeration API, so I'm therefore only enumerating over default devices for now. */
@@ -20960,7 +23044,7 @@ ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devi
if (handle != NULL) {
/* Supports playback. */
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), MA_SIO_DEVANY);
ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME);
@@ -20976,7 +23060,7 @@ ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devi
if (handle != NULL) {
/* Supports capture. */
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), "default");
ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME);
@@ -20989,14 +23073,14 @@ ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devi
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
char devid[256];
struct ma_sio_hdl* handle;
struct ma_sio_cap caps;
unsigned int iConfig;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)shareMode;
/* We need to open the device before we can get information about it. */
@@ -21110,9 +23194,9 @@ ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_device_type
return MA_SUCCESS;
}
-void ma_device_uninit__sndio(ma_device* pDevice)
+static void ma_device_uninit__sndio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)pDevice->sndio.handleCapture);
@@ -21123,7 +23207,7 @@ void ma_device_uninit__sndio(ma_device* pDevice)
}
}
-ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
+static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
const char* pDeviceName;
ma_ptr handle;
@@ -21137,13 +23221,13 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(deviceType != ma_device_type_duplex);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(deviceType != ma_device_type_duplex);
+ MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture) {
openFlags = MA_SIO_REC;
@@ -21252,12 +23336,12 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
par.rate = sampleRate;
- internalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (internalBufferSizeInFrames == 0) {
- internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, par.rate);
+ internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ if (internalPeriodSizeInFrames == 0) {
+ internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, par.rate);
}
- par.round = internalBufferSizeInFrames / pConfig->periods;
+ par.round = internalPeriodSizeInFrames;
par.appbufsz = par.round * pConfig->periods;
if (((ma_sio_setpar_proc)pContext->sndio.sio_setpar)((struct ma_sio_hdl*)handle, &par) == 0) {
@@ -21273,7 +23357,7 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
internalChannels = (deviceType == ma_device_type_capture) ? par.rchan : par.pchan;
internalSampleRate = par.rate;
internalPeriods = par.appbufsz / par.round;
- internalBufferSizeInFrames = par.appbufsz;
+ internalPeriodSizeInFrames = par.round;
if (deviceType == ma_device_type_capture) {
pDevice->sndio.handleCapture = handle;
@@ -21281,7 +23365,7 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sndio, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
- pDevice->capture.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->sndio.handlePlayback = handle;
@@ -21289,7 +23373,7 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sndio, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
- pDevice->playback.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
@@ -21298,7 +23382,7 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
printf(" Format: %s\n", ma_get_format_name(internalFormat));
printf(" Channels: %d\n", internalChannels);
printf(" Sample Rate: %d\n", internalSampleRate);
- printf(" Buffer Size: %d\n", internalBufferSizeInFrames);
+ printf(" Period Size: %d\n", internalPeriodSizeInFrames);
printf(" Periods: %d\n", internalPeriods);
printf(" appbufsz: %d\n", par.appbufsz);
printf(" round: %d\n", par.round);
@@ -21307,11 +23391,11 @@ ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_con
return MA_SUCCESS;
}
-ma_result ma_device_init__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->sndio);
+ MA_ZERO_OBJECT(&pDevice->sndio);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -21334,9 +23418,19 @@ ma_result ma_device_init__sndio(ma_context* pContext, const ma_device_config* pC
return MA_SUCCESS;
}
-ma_result ma_device_stop__sndio(ma_device* pDevice)
+static ma_result ma_device_stop__sndio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
+
+ /*
+ From the documentation:
+
+ The sio_stop() function puts the audio subsystem in the same state as before sio_start() is called. It stops recording, drains the play buffer and then
+ stops playback. If samples to play are queued but playback hasn't started yet then playback is forced immediately; playback will actually stop once the
+ buffer is drained. In no case are samples in the play buffer discarded.
+
+ Therefore, sio_stop() performs all of the necessary draining for us.
+ */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_stop_proc)pDevice->pContext->sndio.sio_stop)((struct ma_sio_hdl*)pDevice->sndio.handleCapture);
@@ -21349,7 +23443,7 @@ ma_result ma_device_stop__sndio(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int result;
@@ -21369,7 +23463,7 @@ ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFrames, ma_
return MA_SUCCESS;
}
-ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int result;
@@ -21389,7 +23483,7 @@ ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_uint32
return MA_SUCCESS;
}
-ma_result ma_device_main_loop__sndio(ma_device* pDevice)
+static ma_result ma_device_main_loop__sndio(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
@@ -21408,77 +23502,88 @@ ma_result ma_device_main_loop__sndio(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__sndio(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__sndio(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__sndio(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__sndio(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__sndio()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
@@ -21487,7 +23592,7 @@ ma_result ma_device_main_loop__sndio(ma_device* pDevice)
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -21514,7 +23619,7 @@ ma_result ma_device_main_loop__sndio(ma_device* pDevice)
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -21549,16 +23654,16 @@ ma_result ma_device_main_loop__sndio(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__sndio(ma_context* pContext)
+static ma_result ma_context_uninit__sndio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_sndio);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_sndio);
(void)pContext;
return MA_SUCCESS;
}
-ma_result ma_context_init__sndio(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__sndio(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libsndioNames[] = {
@@ -21638,30 +23743,30 @@ audio(4) Backend
#endif
#endif
-void ma_construct_device_id__audio4(char* id, size_t idSize, const char* base, int deviceIndex)
+static void ma_construct_device_id__audio4(char* id, size_t idSize, const char* base, int deviceIndex)
{
size_t baseLen;
- ma_assert(id != NULL);
- ma_assert(idSize > 0);
- ma_assert(deviceIndex >= 0);
+ MA_ASSERT(id != NULL);
+ MA_ASSERT(idSize > 0);
+ MA_ASSERT(deviceIndex >= 0);
baseLen = strlen(base);
- ma_assert(idSize > baseLen);
+ MA_ASSERT(idSize > baseLen);
ma_strcpy_s(id, idSize, base);
ma_itoa_s(deviceIndex, id+baseLen, idSize-baseLen, 10);
}
-ma_result ma_extract_device_index_from_id__audio4(const char* id, const char* base, int* pIndexOut)
+static ma_result ma_extract_device_index_from_id__audio4(const char* id, const char* base, int* pIndexOut)
{
size_t idLen;
size_t baseLen;
const char* deviceIndexStr;
- ma_assert(id != NULL);
- ma_assert(base != NULL);
- ma_assert(pIndexOut != NULL);
+ MA_ASSERT(id != NULL);
+ MA_ASSERT(base != NULL);
+ MA_ASSERT(pIndexOut != NULL);
idLen = strlen(id);
baseLen = strlen(base);
@@ -21685,18 +23790,18 @@ ma_result ma_extract_device_index_from_id__audio4(const char* id, const char* ba
return MA_SUCCESS;
}
-ma_bool32 ma_context_is_device_id_equal__audio4(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__audio4(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->audio4, pID1->audio4) == 0;
}
#if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */
-ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int precision)
+static ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int precision)
{
if (precision == 8 && (encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR_LE || encoding == AUDIO_ENCODING_ULINEAR_BE)) {
return ma_format_u8;
@@ -21723,11 +23828,11 @@ ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int pr
return ma_format_unknown; /* Encoding not supported. */
}
-void ma_encoding_from_format__audio4(ma_format format, unsigned int* pEncoding, unsigned int* pPrecision)
+static void ma_encoding_from_format__audio4(ma_format format, unsigned int* pEncoding, unsigned int* pPrecision)
{
- ma_assert(format != ma_format_unknown);
- ma_assert(pEncoding != NULL);
- ma_assert(pPrecision != NULL);
+ MA_ASSERT(format != ma_format_unknown);
+ MA_ASSERT(pEncoding != NULL);
+ MA_ASSERT(pPrecision != NULL);
switch (format)
{
@@ -21759,12 +23864,12 @@ void ma_encoding_from_format__audio4(ma_format format, unsigned int* pEncoding,
}
}
-ma_format ma_format_from_prinfo__audio4(struct audio_prinfo* prinfo)
+static ma_format ma_format_from_prinfo__audio4(struct audio_prinfo* prinfo)
{
return ma_format_from_encoding__audio4(prinfo->encoding, prinfo->precision);
}
#else
-ma_format ma_format_from_swpar__audio4(struct audio_swpar* par)
+static ma_format ma_format_from_swpar__audio4(struct audio_swpar* par)
{
if (par->bits == 8 && par->bps == 1 && par->sig == 0) {
return ma_format_u8;
@@ -21784,7 +23889,7 @@ ma_format ma_format_from_swpar__audio4(struct audio_swpar* par)
}
#endif
-ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_device_type deviceType, int fd, ma_device_info* pInfoOut)
+static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_device_type deviceType, int fd, ma_device_info* pInfoOut)
{
audio_device_t fdDevice;
#if !defined(MA_AUDIO4_USE_NEW_API)
@@ -21795,9 +23900,9 @@ ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_de
ma_format format;
#endif
- ma_assert(pContext != NULL);
- ma_assert(fd >= 0);
- ma_assert(pInfoOut != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(fd >= 0);
+ MA_ASSERT(pInfoOut != NULL);
(void)pContext;
(void)deviceType;
@@ -21815,7 +23920,7 @@ ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_de
audio_encoding_t encoding;
ma_format format;
- ma_zero_object(&encoding);
+ MA_ZERO_OBJECT(&encoding);
encoding.index = counter;
if (ioctl(fd, AUDIO_GETENC, &encoding) < 0) {
break;
@@ -21870,14 +23975,14 @@ ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_de
return MA_SUCCESS;
}
-ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
const int maxDevices = 64;
char devpath[256];
int iDevice;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/*
Every device will be named "/dev/audioN", with a "/dev/audioctlN" equivalent. We use the "/dev/audioctlN"
@@ -21903,7 +24008,7 @@ ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_dev
if (fd >= 0) {
/* Supports playback. */
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice);
if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_playback, fd, &deviceInfo) == MA_SUCCESS) {
isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
@@ -21919,7 +24024,7 @@ ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_dev
if (fd >= 0) {
/* Supports capture. */
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice);
if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_capture, fd, &deviceInfo) == MA_SUCCESS) {
isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
@@ -21937,14 +24042,14 @@ ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_dev
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
int fd = -1;
int deviceIndex = -1;
char ctlid[256];
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)shareMode;
/*
@@ -21981,9 +24086,9 @@ ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_device_typ
return result;
}
-void ma_device_uninit__audio4(ma_device* pDevice)
+static void ma_device_uninit__audio4(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
close(pDevice->audio4.fdCapture);
@@ -21994,7 +24099,7 @@ void ma_device_uninit__audio4(ma_device* pDevice)
}
}
-ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
+static ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
const char* pDefaultDeviceNames[] = {
"/dev/audio",
@@ -22010,13 +24115,13 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(deviceType != ma_device_type_duplex);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(deviceType != ma_device_type_duplex);
+ MA_ASSERT(pDevice != NULL);
(void)pContext;
@@ -22089,16 +24194,16 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
/* Buffer. */
{
- ma_uint32 internalBufferSizeInBytes;
+ ma_uint32 internalPeriodSizeInBytes;
- internalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (internalBufferSizeInFrames == 0) {
- internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, internalSampleRate);
+ internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ if (internalPeriodSizeInFrames == 0) {
+ internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate);
}
- internalBufferSizeInBytes = internalBufferSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
- if (internalBufferSizeInBytes < 16) {
- internalBufferSizeInBytes = 16;
+ internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
+ if (internalPeriodSizeInBytes < 16) {
+ internalPeriodSizeInBytes = 16;
}
internalPeriods = pConfig->periods;
@@ -22106,18 +24211,18 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
internalPeriods = 2;
}
- /* What miniaudio calls a fragment, audio4 calls a block. */
+ /* What miniaudio calls a period, audio4 calls a block. */
AUDIO_INITINFO(&fdInfo);
fdInfo.hiwat = internalPeriods;
fdInfo.lowat = internalPeriods-1;
- fdInfo.blocksize = internalBufferSizeInBytes / internalPeriods;
+ fdInfo.blocksize = internalPeriodSizeInBytes;
if (ioctl(fd, AUDIO_SETINFO, &fdInfo) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set internal buffer size. AUDIO_SETINFO failed.", MA_FORMAT_NOT_SUPPORTED);
}
internalPeriods = fdInfo.hiwat;
- internalBufferSizeInFrames = (fdInfo.blocksize * fdInfo.hiwat) / ma_get_bytes_per_frame(internalFormat, internalChannels);
+ internalPeriodSizeInFrames = fdInfo.blocksize / ma_get_bytes_per_frame(internalFormat, internalChannels);
}
#else
/* We need to retrieve the format of the device so we can know the channel count and sample rate. Then we can calculate the buffer size. */
@@ -22137,21 +24242,21 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
/* Buffer. */
{
- ma_uint32 internalBufferSizeInBytes;
+ ma_uint32 internalPeriodSizeInBytes;
- internalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (internalBufferSizeInFrames == 0) {
- internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, internalSampleRate);
+ internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ if (internalPeriodSizeInFrames == 0) {
+ internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate);
}
- /* What miniaudio calls a fragment, audio4 calls a block. */
- internalBufferSizeInBytes = internalBufferSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
- if (internalBufferSizeInBytes < 16) {
- internalBufferSizeInBytes = 16;
+ /* What miniaudio calls a period, audio4 calls a block. */
+ internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
+ if (internalPeriodSizeInBytes < 16) {
+ internalPeriodSizeInBytes = 16;
}
fdPar.nblks = pConfig->periods;
- fdPar.round = internalBufferSizeInBytes / fdPar.nblks;
+ fdPar.round = internalPeriodSizeInBytes;
if (ioctl(fd, AUDIO_SETPAR, &fdPar) < 0) {
close(fd);
@@ -22168,7 +24273,7 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
internalChannels = (deviceType == ma_device_type_capture) ? fdPar.rchan : fdPar.pchan;
internalSampleRate = fdPar.rate;
internalPeriods = fdPar.nblks;
- internalBufferSizeInFrames = (fdPar.nblks * fdPar.round) / ma_get_bytes_per_frame(internalFormat, internalChannels);
+ internalPeriodSizeInFrames = fdPar.round / ma_get_bytes_per_frame(internalFormat, internalChannels);
#endif
if (internalFormat == ma_format_unknown) {
@@ -22182,7 +24287,7 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, internalChannels, pDevice->capture.internalChannelMap);
- pDevice->capture.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->audio4.fdPlayback = fd;
@@ -22190,18 +24295,18 @@ ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, internalChannels, pDevice->playback.internalChannelMap);
- pDevice->playback.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
return MA_SUCCESS;
}
-ma_result ma_device_init__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->audio4);
+ MA_ZERO_OBJECT(&pDevice->audio4);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -22246,9 +24351,9 @@ ma_result ma_device_init__audio4(ma_context* pContext, const ma_device_config* p
}
#if 0
-ma_result ma_device_start__audio4(ma_device* pDevice)
+static ma_result ma_device_start__audio4(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->audio4.fdCapture == -1) {
@@ -22266,7 +24371,7 @@ ma_result ma_device_start__audio4(ma_device* pDevice)
}
#endif
-ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd)
+static ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd)
{
if (fd == -1) {
return MA_INVALID_ARGS;
@@ -22285,19 +24390,29 @@ ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd)
return MA_SUCCESS;
}
-ma_result ma_device_stop__audio4(ma_device* pDevice)
+static ma_result ma_device_stop__audio4(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
- ma_result result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdCapture);
+ ma_result result;
+
+ result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdCapture);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
- ma_result result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdPlayback);
+ ma_result result;
+
+ /* Drain the device first. If this fails we'll just need to flush without draining. Unfortunately draining isn't available on newer version of OpenBSD. */
+ #if !defined(MA_AUDIO4_USE_NEW_API)
+ ioctl(pDevice->audio4.fdPlayback, AUDIO_DRAIN, 0);
+ #endif
+
+ /* Here is where the device is stopped immediately. */
+ result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdPlayback);
if (result != MA_SUCCESS) {
return result;
}
@@ -22306,7 +24421,7 @@ ma_result ma_device_stop__audio4(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int result;
@@ -22326,7 +24441,7 @@ ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFrames, ma
return MA_SUCCESS;
}
-ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int result;
@@ -22346,7 +24461,7 @@ ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma_uint32
return MA_SUCCESS;
}
-ma_result ma_device_main_loop__audio4(ma_device* pDevice)
+static ma_result ma_device_main_loop__audio4(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
@@ -22359,77 +24474,88 @@ ma_result ma_device_main_loop__audio4(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__audio4(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__audio4(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
+ }
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__audio4(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__audio4(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__audio4()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
@@ -22438,7 +24564,7 @@ ma_result ma_device_main_loop__audio4(ma_device* pDevice)
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -22465,7 +24591,7 @@ ma_result ma_device_main_loop__audio4(ma_device* pDevice)
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -22500,18 +24626,18 @@ ma_result ma_device_main_loop__audio4(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__audio4(ma_context* pContext)
+static ma_result ma_context_uninit__audio4(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_audio4);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_audio4);
(void)pContext;
return MA_SUCCESS;
}
-ma_result ma_context_init__audio4(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__audio4(const ma_context_config* pConfig, ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -22545,7 +24671,7 @@ OSS Backend
#define SNDCTL_DSP_HALT SNDCTL_DSP_RESET
#endif
-int ma_open_temp_device__oss()
+static int ma_open_temp_device__oss()
{
/* The OSS sample code uses "/dev/mixer" as the device for getting system properties so I'm going to do the same. */
int fd = open("/dev/mixer", O_RDONLY, 0);
@@ -22556,13 +24682,13 @@ int ma_open_temp_device__oss()
return -1;
}
-ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, int* pfd)
+static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, int* pfd)
{
const char* deviceName;
int flags;
- ma_assert(pContext != NULL);
- ma_assert(pfd != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pfd != NULL);
(void)pContext;
*pfd = -1;
@@ -22590,24 +24716,24 @@ ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_type devic
return MA_SUCCESS;
}
-ma_bool32 ma_context_is_device_id_equal__oss(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__oss(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->oss, pID1->oss) == 0;
}
-ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
int fd;
oss_sysinfo si;
int result;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
fd = ma_open_temp_device__oss();
if (fd == -1) {
@@ -22626,7 +24752,7 @@ ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_device
ma_device_info deviceInfo;
ma_bool32 isTerminating = MA_FALSE;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
/* ID */
ma_strncpy_s(deviceInfo.id.oss, sizeof(deviceInfo.id.oss), ai.devnode, (size_t)-1);
@@ -22665,14 +24791,14 @@ ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_device
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_bool32 foundDevice;
int fdTemp;
oss_sysinfo si;
int result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)shareMode;
/* Handle the default device a little differently. */
@@ -22766,9 +24892,9 @@ ma_result ma_context_get_device_info__oss(ma_context* pContext, ma_device_type d
return MA_SUCCESS;
}
-void ma_device_uninit__oss(ma_device* pDevice)
+static void ma_device_uninit__oss(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
close(pDevice->oss.fdCapture);
@@ -22779,7 +24905,7 @@ void ma_device_uninit__oss(ma_device* pDevice)
}
}
-int ma_format_to_oss(ma_format format)
+static int ma_format_to_oss(ma_format format)
{
int ossFormat = AFMT_U8;
switch (format) {
@@ -22794,7 +24920,7 @@ int ma_format_to_oss(ma_format format)
return ossFormat;
}
-ma_format ma_format_from_oss(int ossFormat)
+static ma_format ma_format_from_oss(int ossFormat)
{
if (ossFormat == AFMT_U8) {
return ma_format_u8;
@@ -22817,7 +24943,7 @@ ma_format ma_format_from_oss(int ossFormat)
return ma_format_unknown;
}
-ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
+static ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
ma_result result;
int ossResult;
@@ -22829,10 +24955,10 @@ ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* p
int ossSampleRate;
int ossFragment;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(deviceType != ma_device_type_duplex);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(deviceType != ma_device_type_duplex);
+ MA_ASSERT(pDevice != NULL);
(void)pContext;
@@ -22893,23 +25019,23 @@ ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* p
value.
*/
{
- ma_uint32 fragmentSizeInBytes;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
+ ma_uint32 periodSizeInBytes;
ma_uint32 ossFragmentSizePower;
- bufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (bufferSizeInFrames == 0) {
- bufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, (ma_uint32)ossSampleRate);
+ periodSizeInFrames = pConfig->periodSizeInFrames;
+ if (periodSizeInFrames == 0) {
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, (ma_uint32)ossSampleRate);
}
- fragmentSizeInBytes = ma_round_to_power_of_2((bufferSizeInFrames / pConfig->periods) * ma_get_bytes_per_frame(ma_format_from_oss(ossFormat), ossChannels));
- if (fragmentSizeInBytes < 16) {
- fragmentSizeInBytes = 16;
+ periodSizeInBytes = ma_round_to_power_of_2(periodSizeInFrames * ma_get_bytes_per_frame(ma_format_from_oss(ossFormat), ossChannels));
+ if (periodSizeInBytes < 16) {
+ periodSizeInBytes = 16;
}
ossFragmentSizePower = 4;
- fragmentSizeInBytes >>= 4;
- while (fragmentSizeInBytes >>= 1) {
+ periodSizeInBytes >>= 4;
+ while (periodSizeInBytes >>= 1) {
ossFragmentSizePower += 1;
}
@@ -22929,7 +25055,7 @@ ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* p
pDevice->capture.internalSampleRate = ossSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalPeriods = (ma_uint32)(ossFragment >> 16);
- pDevice->capture.internalBufferSizeInFrames = (((ma_uint32)(1 << (ossFragment & 0xFFFF))) * pDevice->capture.internalPeriods) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ pDevice->capture.internalPeriodSizeInFrames = (ma_uint32)(1 << (ossFragment & 0xFFFF)) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
if (pDevice->capture.internalFormat == ma_format_unknown) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] The device's internal format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
@@ -22941,7 +25067,7 @@ ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* p
pDevice->playback.internalSampleRate = ossSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalPeriods = (ma_uint32)(ossFragment >> 16);
- pDevice->playback.internalBufferSizeInFrames = (((ma_uint32)(1 << (ossFragment & 0xFFFF))) * pDevice->playback.internalPeriods) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ pDevice->playback.internalPeriodSizeInFrames = (ma_uint32)(1 << (ossFragment & 0xFFFF)) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
if (pDevice->playback.internalFormat == ma_format_unknown) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] The device's internal format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
@@ -22951,13 +25077,13 @@ ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* p
return MA_SUCCESS;
}
-ma_result ma_device_init__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_zero_object(&pDevice->oss);
+ MA_ZERO_OBJECT(&pDevice->oss);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -22980,9 +25106,9 @@ ma_result ma_device_init__oss(ma_context* pContext, const ma_device_config* pCon
return MA_SUCCESS;
}
-ma_result ma_device_stop__oss(ma_device* pDevice)
+static ma_result ma_device_stop__oss(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
/*
We want to use SNDCTL_DSP_HALT. From the documentation:
@@ -23014,7 +25140,7 @@ ma_result ma_device_stop__oss(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
+static ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int resultOSS;
@@ -23034,7 +25160,7 @@ ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames, ma_ui
return MA_SUCCESS;
}
-ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
+static ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int resultOSS;
@@ -23054,7 +25180,7 @@ ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_uint32 fr
return MA_SUCCESS;
}
-ma_result ma_device_main_loop__oss(ma_device* pDevice)
+static ma_result ma_device_main_loop__oss(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
@@ -23067,86 +25193,97 @@ ma_result ma_device_main_loop__oss(ma_device* pDevice)
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
- ma_uint8 capturedDeviceData[8192];
- ma_uint8 playbackDeviceData[8192];
- ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
-
- ma_uint32 totalFramesProcessed = 0;
- ma_uint32 periodSizeInFrames = ma_min(pDevice->capture.internalBufferSizeInFrames/pDevice->capture.internalPeriods, pDevice->playback.internalBufferSizeInFrames/pDevice->playback.internalPeriods);
+ ma_uint32 totalCapturedDeviceFramesProcessed = 0;
+ ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
- while (totalFramesProcessed < periodSizeInFrames) {
- ma_uint32 framesRemaining = periodSizeInFrames - totalFramesProcessed;
- ma_uint32 framesProcessed;
- ma_uint32 framesToProcess = framesRemaining;
- if (framesToProcess > capturedDeviceDataCapInFrames) {
- framesToProcess = capturedDeviceDataCapInFrames;
+ while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
+ ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ ma_uint32 capturedDeviceFramesRemaining;
+ ma_uint32 capturedDeviceFramesProcessed;
+ ma_uint32 capturedDeviceFramesToProcess;
+ ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
+ if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
+ capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
- result = ma_device_read__oss(pDevice, capturedDeviceData, framesToProcess, &framesProcessed);
+ result = ma_device_read__oss(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- pDevice->capture._dspFrameCount = framesToProcess;
- pDevice->capture._dspFrames = capturedDeviceData;
+ capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
+ capturedDeviceFramesProcessed = 0;
for (;;) {
- ma_uint8 capturedData[8192];
- ma_uint8 playbackData[8192];
- ma_uint32 capturedDataCapInFrames = sizeof(capturedData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
- ma_uint32 playbackDataCapInFrames = sizeof(playbackData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
-
- ma_uint32 capturedFramesToTryProcessing = ma_min(capturedDataCapInFrames, playbackDataCapInFrames);
- ma_uint32 capturedFramesToProcess = (ma_uint32)ma_pcm_converter_read(&pDevice->capture.converter, capturedData, capturedFramesToTryProcessing);
- if (capturedFramesToProcess == 0) {
- break; /* Don't fire the data callback with zero frames. */
+ ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
+ ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
+ ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
+ ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
+ ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
+
+ /* Convert capture data from device format to client format. */
+ result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ /*
+ If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
+ which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
+ */
+ if (capturedClientFramesToProcessThisIteration == 0) {
+ break;
}
- ma_device__on_data(pDevice, playbackData, capturedData, capturedFramesToProcess);
+ ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
+
+ capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
+ capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
- /* At this point the playbackData buffer should be holding data that needs to be written to the device. */
- pDevice->playback._dspFrameCount = capturedFramesToProcess;
- pDevice->playback._dspFrames = playbackData;
+ /* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
- ma_uint32 playbackDeviceFramesCount = (ma_uint32)ma_pcm_converter_read(&pDevice->playback.converter, playbackDeviceData, playbackDeviceDataCapInFrames);
- if (playbackDeviceFramesCount == 0) {
+ ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
+ ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
+ result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
+ if (result != MA_SUCCESS) {
break;
}
- result = ma_device_write__oss(pDevice, playbackDeviceData, playbackDeviceFramesCount, NULL);
+ result = ma_device_write__oss(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
- if (playbackDeviceFramesCount < playbackDeviceDataCapInFrames) {
+ capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
+ if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
- if (capturedFramesToProcess < capturedFramesToTryProcessing) {
- break;
- }
-
- /* In case an error happened from ma_device_write2__alsa()... */
+ /* In case an error happened from ma_device_write__oss()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
- totalFramesProcessed += framesProcessed;
+ totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
@@ -23171,9 +25308,9 @@ ma_result ma_device_main_loop__oss(ma_device* pDevice)
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
- ma_uint8 intermediaryBuffer[8192];
+ ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- ma_uint32 periodSizeInFrames = pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods;
+ ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
@@ -23208,22 +25345,22 @@ ma_result ma_device_main_loop__oss(ma_device* pDevice)
return result;
}
-ma_result ma_context_uninit__oss(ma_context* pContext)
+static ma_result ma_context_uninit__oss(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_oss);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_oss);
(void)pContext;
return MA_SUCCESS;
}
-ma_result ma_context_init__oss(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__oss(const ma_context_config* pConfig, ma_context* pContext)
{
int fd;
int ossVersion;
int result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -23322,7 +25459,8 @@ typedef int32_t ma_aaudio_data_callback_result_t;
typedef struct ma_AAudioStreamBuilder_t* ma_AAudioStreamBuilder;
typedef struct ma_AAudioStream_t* ma_AAudioStream;
-typedef ma_aaudio_data_callback_result_t (*ma_AAudioStream_dataCallback)(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t numFrames);
+typedef ma_aaudio_data_callback_result_t (* ma_AAudioStream_dataCallback) (ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t numFrames);
+typedef void (* ma_AAudioStream_errorCallback)(ma_AAudioStream *pStream, void *pUserData, ma_aaudio_result_t error);
typedef ma_aaudio_result_t (* MA_PFN_AAudio_createStreamBuilder) (ma_AAudioStreamBuilder** ppBuilder);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_delete) (ma_AAudioStreamBuilder* pBuilder);
@@ -23335,6 +25473,7 @@ typedef void (* MA_PFN_AAudioStreamBuilder_setSampleRate)
typedef void (* MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)(ma_AAudioStreamBuilder* pBuilder, int32_t numFrames);
typedef void (* MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback) (ma_AAudioStreamBuilder* pBuilder, int32_t numFrames);
typedef void (* MA_PFN_AAudioStreamBuilder_setDataCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_dataCallback callback, void* pUserData);
+typedef void (* MA_PFN_AAudioStreamBuilder_setErrorCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_errorCallback callback, void* pUserData);
typedef void (* MA_PFN_AAudioStreamBuilder_setPerformanceMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_performance_mode_t mode);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_openStream) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream** ppStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_close) (ma_AAudioStream* pStream);
@@ -23349,7 +25488,7 @@ typedef int32_t (* MA_PFN_AAudioStream_getFramesPerBurst)
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStart) (ma_AAudioStream* pStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStop) (ma_AAudioStream* pStream);
-ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA)
+static ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA)
{
switch (resultAA)
{
@@ -23360,10 +25499,32 @@ ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA)
return MA_ERROR;
}
-ma_aaudio_data_callback_result_t ma_stream_data_callback_capture__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
+static void ma_stream_error_callback__aaudio(ma_AAudioStream* pStream, void* pUserData, ma_aaudio_result_t error)
{
ma_device* pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
+
+ (void)error;
+
+#if defined(MA_DEBUG_OUTPUT)
+ printf("[AAudio] ERROR CALLBACK: error=%d, AAudioStream_getState()=%d\n", error, ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream));
+#endif
+
+ /*
+ From the documentation for AAudio, when a device is disconnected all we can do is stop it. However, we cannot stop it from the callback - we need
+ to do it from another thread. Therefore we are going to use an event thread for the AAudio backend to do this cleanly and safely.
+ */
+ if (((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream) == MA_AAUDIO_STREAM_STATE_DISCONNECTED) {
+#if defined(MA_DEBUG_OUTPUT)
+ printf("[AAudio] Device Disconnected.\n");
+#endif
+ }
+}
+
+static ma_aaudio_data_callback_result_t ma_stream_data_callback_capture__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
+{
+ ma_device* pDevice = (ma_device*)pUserData;
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, frameCount, pAudioData, &pDevice->aaudio.duplexRB);
@@ -23375,10 +25536,10 @@ ma_aaudio_data_callback_result_t ma_stream_data_callback_capture__aaudio(ma_AAud
return MA_AAUDIO_CALLBACK_RESULT_CONTINUE;
}
-ma_aaudio_data_callback_result_t ma_stream_data_callback_playback__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
+static ma_aaudio_data_callback_result_t ma_stream_data_callback_playback__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
{
ma_device* pDevice = (ma_device*)pUserData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, frameCount, pAudioData, &pDevice->aaudio.duplexRB);
@@ -23390,12 +25551,12 @@ ma_aaudio_data_callback_result_t ma_stream_data_callback_playback__aaudio(ma_AAu
return MA_AAUDIO_CALLBACK_RESULT_CONTINUE;
}
-ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, const ma_device_config* pConfig, const ma_device* pDevice, ma_AAudioStream** ppStream)
+static ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, const ma_device_config* pConfig, const ma_device* pDevice, ma_AAudioStream** ppStream)
{
ma_AAudioStreamBuilder* pBuilder;
ma_aaudio_result_t resultAA;
- ma_assert(deviceType != ma_device_type_duplex); /* This function should not be called for a full-duplex device type. */
+ MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should not be called for a full-duplex device type. */
*ppStream = NULL;
@@ -23434,13 +25595,12 @@ ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType
}
}
- bufferCapacityInFrames = pConfig->bufferSizeInFrames;
+ bufferCapacityInFrames = pConfig->periodSizeInFrames * pConfig->periods;
if (bufferCapacityInFrames == 0) {
- bufferCapacityInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, pConfig->sampleRate);
+ bufferCapacityInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate) * pConfig->periods;
}
- bufferCapacityInFrames = (bufferCapacityInFrames / pConfig->periods) * pConfig->periods; /* <-- Make sure the buffer capacity is an even multiple of a period. */
- ((MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames)(pBuilder, bufferCapacityInFrames);
+ ((MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames)(pBuilder, bufferCapacityInFrames);
((MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback)pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback)(pBuilder, bufferCapacityInFrames / pConfig->periods);
if (deviceType == ma_device_type_capture) {
@@ -23453,6 +25613,8 @@ ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType
((MA_PFN_AAudioStreamBuilder_setPerformanceMode)pContext->aaudio.AAudioStreamBuilder_setPerformanceMode)(pBuilder, (pConfig->performanceProfile == ma_performance_profile_low_latency) ? MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY : MA_AAUDIO_PERFORMANCE_MODE_NONE);
}
+ ((MA_PFN_AAudioStreamBuilder_setErrorCallback)pContext->aaudio.AAudioStreamBuilder_setErrorCallback)(pBuilder, ma_stream_error_callback__aaudio, (void*)pDevice);
+
resultAA = ((MA_PFN_AAudioStreamBuilder_openStream)pContext->aaudio.AAudioStreamBuilder_openStream)(pBuilder, ppStream);
if (resultAA != MA_AAUDIO_OK) {
*ppStream = NULL;
@@ -23464,12 +25626,12 @@ ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType
return MA_SUCCESS;
}
-ma_result ma_close_stream__aaudio(ma_context* pContext, ma_AAudioStream* pStream)
+static ma_result ma_close_stream__aaudio(ma_context* pContext, ma_AAudioStream* pStream)
{
return ma_result_from_aaudio(((MA_PFN_AAudioStream_close)pContext->aaudio.AAudioStream_close)(pStream));
}
-ma_bool32 ma_has_default_device__aaudio(ma_context* pContext, ma_device_type deviceType)
+static ma_bool32 ma_has_default_device__aaudio(ma_context* pContext, ma_device_type deviceType)
{
/* The only way to know this is to try creating a stream. */
ma_AAudioStream* pStream;
@@ -23482,7 +25644,7 @@ ma_bool32 ma_has_default_device__aaudio(ma_context* pContext, ma_device_type dev
return MA_TRUE;
}
-ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_aaudio_stream_state_t oldState, ma_aaudio_stream_state_t newState)
+static ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_aaudio_stream_state_t oldState, ma_aaudio_stream_state_t newState)
{
ma_aaudio_stream_state_t actualNewState;
ma_aaudio_result_t resultAA = ((MA_PFN_AAudioStream_waitForStateChange)pContext->aaudio.AAudioStream_waitForStateChange)(pStream, oldState, &actualNewState, 5000000000); /* 5 second timeout. */
@@ -23498,29 +25660,29 @@ ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContext, ma_A
}
-ma_bool32 ma_context_is_device_id_equal__aaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__aaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->aaudio == pID1->aaudio;
}
-ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* Unfortunately AAudio does not have an enumeration API. Therefore I'm only going to report default devices, but only if it can instantiate a stream. */
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED;
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
@@ -23532,7 +25694,7 @@ ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_dev
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED;
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
@@ -23544,12 +25706,12 @@ ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_dev
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_AAudioStream* pStream;
ma_result result;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* No exclusive mode with AAudio. */
if (shareMode == ma_share_mode_exclusive) {
@@ -23595,9 +25757,9 @@ ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_device_typ
}
-void ma_device_uninit__aaudio(ma_device* pDevice)
+static void ma_device_uninit__aaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
@@ -23614,11 +25776,11 @@ void ma_device_uninit__aaudio(ma_device* pDevice)
}
}
-ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
@@ -23632,7 +25794,8 @@ ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* p
/* We first need to try opening the stream. */
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
- int32_t framesPerPeriod;
+ int32_t bufferCapacityInFrames;
+ int32_t framesPerDataCallback;
result = ma_open_stream__aaudio(pContext, ma_device_type_capture, pConfig->capture.pDeviceID, pConfig->capture.shareMode, pConfig, pDevice, (ma_AAudioStream**)&pDevice->aaudio.pStreamCapture);
if (result != MA_SUCCESS) {
@@ -23643,18 +25806,22 @@ ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* p
pDevice->capture.internalChannels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
pDevice->capture.internalSampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); /* <-- Cannot find info on channel order, so assuming a default. */
- pDevice->capture.internalBufferSizeInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
- framesPerPeriod = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
- if (framesPerPeriod > 0) {
- pDevice->capture.internalPeriods = pDevice->capture.internalBufferSizeInFrames / framesPerPeriod;
+ bufferCapacityInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
+ framesPerDataCallback = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
+
+ if (framesPerDataCallback > 0) {
+ pDevice->capture.internalPeriodSizeInFrames = framesPerDataCallback;
+ pDevice->capture.internalPeriods = bufferCapacityInFrames / framesPerDataCallback;
} else {
- pDevice->capture.internalPeriods = 1;
+ pDevice->capture.internalPeriodSizeInFrames = bufferCapacityInFrames;
+ pDevice->capture.internalPeriods = 1;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
- int32_t framesPerPeriod;
+ int32_t bufferCapacityInFrames;
+ int32_t framesPerDataCallback;
result = ma_open_stream__aaudio(pContext, ma_device_type_playback, pConfig->playback.pDeviceID, pConfig->playback.shareMode, pConfig, pDevice, (ma_AAudioStream**)&pDevice->aaudio.pStreamPlayback);
if (result != MA_SUCCESS) {
@@ -23665,19 +25832,22 @@ ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* p
pDevice->playback.internalChannels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
pDevice->playback.internalSampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); /* <-- Cannot find info on channel order, so assuming a default. */
- pDevice->playback.internalBufferSizeInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
- framesPerPeriod = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
- if (framesPerPeriod > 0) {
- pDevice->playback.internalPeriods = pDevice->playback.internalBufferSizeInFrames / framesPerPeriod;
+ bufferCapacityInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
+ framesPerDataCallback = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
+
+ if (framesPerDataCallback > 0) {
+ pDevice->playback.internalPeriodSizeInFrames = framesPerDataCallback;
+ pDevice->playback.internalPeriods = bufferCapacityInFrames / framesPerDataCallback;
} else {
- pDevice->playback.internalPeriods = 1;
+ pDevice->playback.internalPeriodSizeInFrames = bufferCapacityInFrames;
+ pDevice->playback.internalPeriods = 1;
}
}
if (pConfig->deviceType == ma_device_type_duplex) {
- ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalBufferSizeInFrames);
- ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->aaudio.duplexRB);
+ ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * pDevice->capture.internalPeriods;
+ ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->aaudio.duplexRB);
if (result != MA_SUCCESS) {
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
@@ -23694,7 +25864,7 @@ ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* p
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->aaudio.duplexRB, &marginSizeInFrames, &pMarginData);
{
- ma_zero_memory(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
+ MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->aaudio.duplexRB, marginSizeInFrames, pMarginData);
}
@@ -23703,12 +25873,12 @@ ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* p
return MA_SUCCESS;
}
-ma_result ma_device_start_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
+static ma_result ma_device_start_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
{
ma_aaudio_result_t resultAA;
ma_aaudio_stream_state_t currentState;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
resultAA = ((MA_PFN_AAudioStream_requestStart)pDevice->pContext->aaudio.AAudioStream_requestStart)(pStream);
if (resultAA != MA_AAUDIO_OK) {
@@ -23735,12 +25905,20 @@ ma_result ma_device_start_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pS
return MA_SUCCESS;
}
-ma_result ma_device_stop_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
+static ma_result ma_device_stop_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
{
ma_aaudio_result_t resultAA;
ma_aaudio_stream_state_t currentState;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
+
+ /*
+ From the AAudio documentation:
+
+ The stream will stop after all of the data currently buffered has been played.
+
+ This maps with miniaudio's requirement that device's be drained which means we don't need to implement any draining logic.
+ */
resultAA = ((MA_PFN_AAudioStream_requestStop)pDevice->pContext->aaudio.AAudioStream_requestStop)(pStream);
if (resultAA != MA_AAUDIO_OK) {
@@ -23765,9 +25943,9 @@ ma_result ma_device_stop_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pSt
return MA_SUCCESS;
}
-ma_result ma_device_start__aaudio(ma_device* pDevice)
+static ma_result ma_device_start__aaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_start_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
@@ -23789,11 +25967,11 @@ ma_result ma_device_start__aaudio(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__aaudio(ma_device* pDevice)
+static ma_result ma_device_stop__aaudio(ma_device* pDevice)
{
ma_stop_proc onStop;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
@@ -23818,10 +25996,10 @@ ma_result ma_device_stop__aaudio(ma_device* pDevice)
}
-ma_result ma_context_uninit__aaudio(ma_context* pContext)
+static ma_result ma_context_uninit__aaudio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_aaudio);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_aaudio);
ma_dlclose(pContext, pContext->aaudio.hAAudio);
pContext->aaudio.hAAudio = NULL;
@@ -23829,7 +26007,7 @@ ma_result ma_context_uninit__aaudio(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_context* pContext)
{
const char* libNames[] = {
"libaaudio.so"
@@ -23858,6 +26036,7 @@ ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_context*
pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setBufferCapacityInFrames");
pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setFramesPerDataCallback");
pContext->aaudio.AAudioStreamBuilder_setDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDataCallback");
+ pContext->aaudio.AAudioStreamBuilder_setErrorCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setErrorCallback");
pContext->aaudio.AAudioStreamBuilder_setPerformanceMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setPerformanceMode");
pContext->aaudio.AAudioStreamBuilder_openStream = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_openStream");
pContext->aaudio.AAudioStream_close = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_close");
@@ -23917,7 +26096,7 @@ ma_uint32 g_maOpenSLInitCounter = 0;
#endif
/* Converts an individual OpenSL-style channel identifier (SL_SPEAKER_FRONT_LEFT, etc.) to miniaudio. */
-ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id)
+static ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id)
{
switch (id)
{
@@ -23944,7 +26123,7 @@ ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id)
}
/* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to OpenSL-style. */
-SLuint32 ma_channel_id_to_opensl(ma_uint8 id)
+static SLuint32 ma_channel_id_to_opensl(ma_uint8 id)
{
switch (id)
{
@@ -23972,7 +26151,7 @@ SLuint32 ma_channel_id_to_opensl(ma_uint8 id)
}
/* Converts a channel mapping to an OpenSL-style channel mask. */
-SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
+static SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
{
SLuint32 channelMask = 0;
ma_uint32 iChannel;
@@ -23984,7 +26163,7 @@ SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel channelMap[MA_M
}
/* Converts an OpenSL-style channel mask to a miniaudio channel map. */
-void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+static void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channels == 1 && channelMask == 0) {
channelMap[0] = MA_CHANNEL_MONO;
@@ -24010,7 +26189,7 @@ void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 chan
}
}
-SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec)
+static SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec)
{
if (samplesPerSec <= SL_SAMPLINGRATE_8) {
return SL_SAMPLINGRATE_8;
@@ -24060,24 +26239,24 @@ SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec)
}
-ma_bool32 ma_context_is_device_id_equal__opensl(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__opensl(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->opensl == pID1->opensl;
}
-ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to enumerate devices. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to enumerate devices. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
@@ -24109,7 +26288,7 @@ ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_dev
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.opensl = pDeviceIDs[iDevice];
SLAudioOutputDescriptor desc;
@@ -24135,7 +26314,7 @@ ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_dev
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.opensl = pDeviceIDs[iDevice];
SLAudioInputDescriptor desc;
@@ -24163,7 +26342,7 @@ return_default_device:;
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
@@ -24171,7 +26350,7 @@ return_default_device:;
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
@@ -24179,11 +26358,11 @@ return_default_device:;
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to get device info. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to get device info. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
@@ -24272,14 +26451,14 @@ return_detailed_info:
#ifdef MA_ANDROID
/*void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, SLuint32 eventFlags, const void* pBuffer, SLuint32 bufferSize, SLuint32 dataUsed, void* pContext)*/
-void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
+static void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
size_t periodSizeInBytes;
ma_uint8* pBuffer;
SLresult resultSL;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
(void)pBufferQueue;
@@ -24294,13 +26473,18 @@ void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueue
return;
}
- periodSizeInBytes = (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods) * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ /* Don't do anything if the device is being drained. */
+ if (pDevice->opensl.isDrainingCapture) {
+ return;
+ }
+
+ periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
pBuffer = pDevice->opensl.pBufferCapture + (pDevice->opensl.currentBufferIndexCapture * periodSizeInBytes);
if (pDevice->type == ma_device_type_duplex) {
- ma_device__handle_duplex_callback_capture(pDevice, (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods), pBuffer, &pDevice->opensl.duplexRB);
+ ma_device__handle_duplex_callback_capture(pDevice, pDevice->capture.internalPeriodSizeInFrames, pBuffer, &pDevice->opensl.duplexRB);
} else {
- ma_device__send_frames_to_client(pDevice, (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods), pBuffer);
+ ma_device__send_frames_to_client(pDevice, pDevice->capture.internalPeriodSizeInFrames, pBuffer);
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pBuffer, periodSizeInBytes);
@@ -24311,14 +26495,14 @@ void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueue
pDevice->opensl.currentBufferIndexCapture = (pDevice->opensl.currentBufferIndexCapture + 1) % pDevice->capture.internalPeriods;
}
-void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
+static void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
size_t periodSizeInBytes;
ma_uint8* pBuffer;
SLresult resultSL;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
(void)pBufferQueue;
@@ -24327,13 +26511,18 @@ void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueu
return;
}
- periodSizeInBytes = (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods) * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ /* Don't do anything if the device is being drained. */
+ if (pDevice->opensl.isDrainingPlayback) {
+ return;
+ }
+
+ periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
pBuffer = pDevice->opensl.pBufferPlayback + (pDevice->opensl.currentBufferIndexPlayback * periodSizeInBytes);
if (pDevice->type == ma_device_type_duplex) {
- ma_device__handle_duplex_callback_playback(pDevice, (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods), pBuffer, &pDevice->opensl.duplexRB);
+ ma_device__handle_duplex_callback_playback(pDevice, pDevice->playback.internalPeriodSizeInFrames, pBuffer, &pDevice->opensl.duplexRB);
} else {
- ma_device__read_frames_from_client(pDevice, (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods), pBuffer);
+ ma_device__read_frames_from_client(pDevice, pDevice->playback.internalPeriodSizeInFrames, pBuffer);
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pBuffer, periodSizeInBytes);
@@ -24345,11 +26534,11 @@ void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueu
}
#endif
-void ma_device_uninit__opensl(ma_device* pDevice)
+static void ma_device_uninit__opensl(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before uninitializing the device. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before uninitializing the device. */
if (g_maOpenSLInitCounter == 0) {
return;
}
@@ -24359,7 +26548,7 @@ void ma_device_uninit__opensl(ma_device* pDevice)
MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Destroy((SLObjectItf)pDevice->opensl.pAudioRecorderObj);
}
- ma_free(pDevice->opensl.pBufferCapture);
+ ma__free_from_callbacks(pDevice->opensl.pBufferCapture, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
@@ -24370,7 +26559,7 @@ void ma_device_uninit__opensl(ma_device* pDevice)
MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Destroy((SLObjectItf)pDevice->opensl.pOutputMixObj);
}
- ma_free(pDevice->opensl.pBufferPlayback);
+ ma__free_from_callbacks(pDevice->opensl.pBufferPlayback, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
@@ -24384,7 +26573,7 @@ typedef SLAndroidDataFormat_PCM_EX ma_SLDataFormat_PCM;
typedef SLDataFormat_PCM ma_SLDataFormat_PCM;
#endif
-ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* channelMap, ma_SLDataFormat_PCM* pDataFormat)
+static ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* channelMap, ma_SLDataFormat_PCM* pDataFormat)
{
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
if (format == ma_format_f32) {
@@ -24416,7 +26605,7 @@ ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels,
#if __ANDROID_API__ >= 21
if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) {
/* It's floating point. */
- ma_assert(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
+ MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
if (pDataFormat->bitsPerSample > 32) {
pDataFormat->bitsPerSample = 32;
}
@@ -24440,12 +26629,12 @@ ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels,
return MA_SUCCESS;
}
-ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap)
+static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap)
{
ma_bool32 isFloatingPoint = MA_FALSE;
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) {
- ma_assert(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
+ MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
isFloatingPoint = MA_TRUE;
}
#endif
@@ -24472,12 +26661,12 @@ ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataForm
return MA_SUCCESS;
}
-ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
#ifdef MA_ANDROID
SLDataLocator_AndroidSimpleBufferQueue queue;
SLresult resultSL;
- ma_uint32 bufferSizeInFrames;
+ ma_uint32 periodSizeInFrames;
size_t bufferSizeInBytes;
const SLInterfaceID itfIDs1[] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE};
const SLboolean itfIDsRequired1[] = {SL_BOOLEAN_TRUE};
@@ -24485,7 +26674,7 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
(void)pContext;
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to initialize a new device. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to initialize a new device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
@@ -24507,8 +26696,8 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
}
/* Now we can start initializing the device properly. */
- ma_assert(pDevice != NULL);
- ma_zero_object(&pDevice->opensl);
+ MA_ASSERT(pDevice != NULL);
+ MA_ZERO_OBJECT(&pDevice->opensl);
queue.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
queue.numBuffers = pConfig->periods;
@@ -24574,16 +26763,16 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->capture.internalFormat, &pDevice->capture.internalChannels, &pDevice->capture.internalSampleRate, pDevice->capture.internalChannelMap);
/* Buffer. */
- bufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (bufferSizeInFrames == 0) {
- bufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, pDevice->capture.internalSampleRate);
+ periodSizeInFrames = pConfig->periodSizeInFrames;
+ if (periodSizeInFrames == 0) {
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pDevice->capture.internalSampleRate);
}
pDevice->capture.internalPeriods = pConfig->periods;
- pDevice->capture.internalBufferSizeInFrames = (bufferSizeInFrames / pDevice->capture.internalPeriods) * pDevice->capture.internalPeriods;
+ pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->opensl.currentBufferIndexCapture = 0;
- bufferSizeInBytes = pDevice->capture.internalBufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
- pDevice->opensl.pBufferCapture = (ma_uint8*)ma_malloc(bufferSizeInBytes);
+ bufferSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) * pDevice->capture.internalPeriods;
+ pDevice->opensl.pBufferCapture = (ma_uint8*)ma__calloc_from_callbacks(bufferSizeInBytes, &pContext->allocationCallbacks);
if (pDevice->opensl.pBufferCapture == NULL) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer.", MA_OUT_OF_MEMORY);
@@ -24671,16 +26860,16 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->playback.internalFormat, &pDevice->playback.internalChannels, &pDevice->playback.internalSampleRate, pDevice->playback.internalChannelMap);
/* Buffer. */
- bufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (bufferSizeInFrames == 0) {
- bufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, pDevice->playback.internalSampleRate);
+ periodSizeInFrames = pConfig->periodSizeInFrames;
+ if (periodSizeInFrames == 0) {
+ periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
}
pDevice->playback.internalPeriods = pConfig->periods;
- pDevice->playback.internalBufferSizeInFrames = (bufferSizeInFrames / pDevice->playback.internalPeriods) * pDevice->playback.internalPeriods;
+ pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->opensl.currentBufferIndexPlayback = 0;
- bufferSizeInBytes = pDevice->playback.internalBufferSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
- pDevice->opensl.pBufferPlayback = (ma_uint8*)ma_malloc(bufferSizeInBytes);
+ bufferSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) * pDevice->playback.internalPeriods;
+ pDevice->opensl.pBufferPlayback = (ma_uint8*)ma__calloc_from_callbacks(bufferSizeInBytes, &pContext->allocationCallbacks);
if (pDevice->opensl.pBufferPlayback == NULL) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer.", MA_OUT_OF_MEMORY);
@@ -24689,8 +26878,8 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
}
if (pConfig->deviceType == ma_device_type_duplex) {
- ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalBufferSizeInFrames);
- ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->opensl.duplexRB);
+ ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * pDevice->capture.internalPeriods;
+ ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->opensl.duplexRB);
if (result != MA_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to initialize ring buffer.", result);
@@ -24702,7 +26891,7 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->opensl.duplexRB, &marginSizeInFrames, &pMarginData);
{
- ma_zero_memory(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
+ MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->opensl.duplexRB, marginSizeInFrames, pMarginData);
}
@@ -24714,15 +26903,15 @@ ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* p
#endif
}
-ma_result ma_device_start__opensl(ma_device* pDevice)
+static ma_result ma_device_start__opensl(ma_device* pDevice)
{
SLresult resultSL;
size_t periodSizeInBytes;
ma_uint32 iPeriod;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to start the device. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to start the device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
@@ -24733,7 +26922,7 @@ ma_result ma_device_start__opensl(ma_device* pDevice)
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal capture device.", MA_FAILED_TO_START_BACKEND_DEVICE);
}
- periodSizeInBytes = (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods) * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
+ periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pDevice->opensl.pBufferCapture + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
@@ -24751,12 +26940,12 @@ ma_result ma_device_start__opensl(ma_device* pDevice)
/* In playback mode (no duplex) we need to load some initial buffers. In duplex mode we need to enqueu silent buffers. */
if (pDevice->type == ma_device_type_duplex) {
- MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, pDevice->playback.internalBufferSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
+ MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
} else {
- ma_device__read_frames_from_client(pDevice, pDevice->playback.internalBufferSizeInFrames, pDevice->opensl.pBufferPlayback);
+ ma_device__read_frames_from_client(pDevice, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods, pDevice->opensl.pBufferPlayback);
}
- periodSizeInBytes = (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods) * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
+ periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) {
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pDevice->opensl.pBufferPlayback + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
@@ -24769,21 +26958,55 @@ ma_result ma_device_start__opensl(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__opensl(ma_device* pDevice)
+static ma_result ma_device_drain__opensl(ma_device* pDevice, ma_device_type deviceType)
+{
+ SLAndroidSimpleBufferQueueItf pBufferQueue;
+
+ MA_ASSERT(deviceType == ma_device_type_capture || deviceType == ma_device_type_playback);
+
+ if (pDevice->type == ma_device_type_capture) {
+ pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture;
+ pDevice->opensl.isDrainingCapture = MA_TRUE;
+ } else {
+ pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback;
+ pDevice->opensl.isDrainingPlayback = MA_TRUE;
+ }
+
+ for (;;) {
+ SLAndroidSimpleBufferQueueState state;
+
+ MA_OPENSL_BUFFERQUEUE(pBufferQueue)->GetState(pBufferQueue, &state);
+ if (state.count == 0) {
+ break;
+ }
+
+ ma_sleep(10);
+ }
+
+ if (pDevice->type == ma_device_type_capture) {
+ pDevice->opensl.isDrainingCapture = MA_FALSE;
+ } else {
+ pDevice->opensl.isDrainingPlayback = MA_FALSE;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_device_stop__opensl(ma_device* pDevice)
{
SLresult resultSL;
ma_stop_proc onStop;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
- ma_assert(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before stopping/uninitializing the device. */
+ MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before stopping/uninitializing the device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
- /* TODO: Wait until all buffers have been processed. Hint: Maybe SLAndroidSimpleBufferQueue::GetState() could be used in a loop? */
-
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
+ ma_device_drain__opensl(pDevice, ma_device_type_capture);
+
resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal capture device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
@@ -24793,6 +27016,8 @@ ma_result ma_device_stop__opensl(ma_device* pDevice)
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
+ ma_device_drain__opensl(pDevice, ma_device_type_playback);
+
resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal playback device.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
@@ -24811,10 +27036,10 @@ ma_result ma_device_stop__opensl(ma_device* pDevice)
}
-ma_result ma_context_uninit__opensl(ma_context* pContext)
+static ma_result ma_context_uninit__opensl(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_opensl);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_opensl);
(void)pContext;
/* Uninit global data. */
@@ -24827,9 +27052,9 @@ ma_result ma_context_uninit__opensl(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_context* pContext)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
(void)pConfig;
@@ -24875,7 +27100,7 @@ Web Audio Backend
#ifdef MA_HAS_WEBAUDIO
#include <emscripten/emscripten.h>
-ma_bool32 ma_is_capture_supported__webaudio()
+static ma_bool32 ma_is_capture_supported__webaudio()
{
return EM_ASM_INT({
return (navigator.mediaDevices !== undefined && navigator.mediaDevices.getUserMedia !== undefined);
@@ -24906,29 +27131,29 @@ EMSCRIPTEN_KEEPALIVE void ma_device_process_pcm_frames_playback__webaudio(ma_dev
}
#endif
-ma_bool32 ma_context_is_device_id_equal__webaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
+static ma_bool32 ma_context_is_device_id_equal__webaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
- ma_assert(pContext != NULL);
- ma_assert(pID0 != NULL);
- ma_assert(pID1 != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pID0 != NULL);
+ MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->webaudio, pID1->webaudio) == 0;
}
-ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
+static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
- ma_assert(pContext != NULL);
- ma_assert(callback != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(callback != NULL);
/* Only supporting default devices for now. */
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
@@ -24937,7 +27162,7 @@ ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_d
if (cbResult) {
if (ma_is_capture_supported__webaudio()) {
ma_device_info deviceInfo;
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
@@ -24946,9 +27171,9 @@ ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_d
return MA_SUCCESS;
}
-ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
+static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* No exclusive mode with Web Audio. */
if (shareMode == ma_share_mode_exclusive) {
@@ -24960,7 +27185,7 @@ ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_t
}
- ma_zero_memory(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio));
+ MA_ZERO_MEMORY(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio));
/* Only supporting default devices for now. */
if (deviceType == ma_device_type_playback) {
@@ -25000,9 +27225,9 @@ ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_t
}
-void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_type deviceType, int deviceIndex)
+static void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_type deviceType, int deviceIndex)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
EM_ASM({
var device = miniaudio.get_device_by_index($0);
@@ -25038,9 +27263,9 @@ void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_type devi
}, deviceIndex, deviceType);
}
-void ma_device_uninit__webaudio(ma_device* pDevice)
+static void ma_device_uninit__webaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture);
@@ -25055,33 +27280,33 @@ void ma_device_uninit__webaudio(ma_device* pDevice)
}
}
-ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
+static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
int deviceIndex;
- ma_uint32 internalBufferSizeInFrames;
+ ma_uint32 internalPeriodSizeInFrames;
- ma_assert(pContext != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(deviceType != ma_device_type_duplex);
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(deviceType != ma_device_type_duplex);
+ MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) {
return MA_NO_DEVICE;
}
/* Try calculating an appropriate buffer size. */
- internalBufferSizeInFrames = pConfig->bufferSizeInFrames;
- if (internalBufferSizeInFrames == 0) {
- internalBufferSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->bufferSizeInMilliseconds, pConfig->sampleRate);
+ internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
+ if (internalPeriodSizeInFrames == 0) {
+ internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate);
}
/* The size of the buffer must be a power of 2 and between 256 and 16384. */
- if (internalBufferSizeInFrames < 256) {
- internalBufferSizeInFrames = 256;
- } else if (internalBufferSizeInFrames > 16384) {
- internalBufferSizeInFrames = 16384;
+ if (internalPeriodSizeInFrames < 256) {
+ internalPeriodSizeInFrames = 256;
+ } else if (internalPeriodSizeInFrames > 16384) {
+ internalPeriodSizeInFrames = 16384;
} else {
- internalBufferSizeInFrames = ma_next_power_of_2(internalBufferSizeInFrames);
+ internalPeriodSizeInFrames = ma_next_power_of_2(internalPeriodSizeInFrames);
}
/* We create the device on the JavaScript side and reference it using an index. We use this to make it possible to reference the device between JavaScript and C. */
@@ -25236,7 +27461,7 @@ ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device
}
return miniaudio.track_device(device);
- }, (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels, pConfig->sampleRate, internalBufferSizeInFrames, deviceType == ma_device_type_capture, pDevice);
+ }, (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels, pConfig->sampleRate, internalPeriodSizeInFrames, deviceType == ma_device_type_capture, pDevice);
if (deviceIndex < 0) {
return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
@@ -25248,7 +27473,7 @@ ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device
pDevice->capture.internalChannels = pConfig->capture.channels;
ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex);
- pDevice->capture.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = 1;
} else {
pDevice->webaudio.indexPlayback = deviceIndex;
@@ -25256,14 +27481,14 @@ ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device
pDevice->playback.internalChannels = pConfig->playback.channels;
ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex);
- pDevice->playback.internalBufferSizeInFrames = internalBufferSizeInFrames;
+ pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = 1;
}
return MA_SUCCESS;
}
-ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
+static ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
@@ -25296,12 +27521,12 @@ ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config*
/*
We need a ring buffer for moving data from the capture device to the playback device. The capture callback is the producer
- and the playback callback is the consumer. The buffer needs to be large enough to hold internalBufferSizeInFrames based on
+ and the playback callback is the consumer. The buffer needs to be large enough to hold internalPeriodSizeInFrames based on
the external sample rate.
*/
if (pConfig->deviceType == ma_device_type_duplex) {
- ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_src(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalBufferSizeInFrames) * 2;
- result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->webaudio.duplexRB);
+ ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * 2;
+ result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->webaudio.duplexRB);
if (result != MA_SUCCESS) {
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture);
@@ -25318,7 +27543,7 @@ ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config*
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->webaudio.duplexRB, &marginSizeInFrames, &pMarginData);
{
- ma_zero_memory(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
+ MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->webaudio.duplexRB, marginSizeInFrames, pMarginData);
}
@@ -25327,9 +27552,9 @@ ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config*
return MA_SUCCESS;
}
-ma_result ma_device_start__webaudio(ma_device* pDevice)
+static ma_result ma_device_start__webaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
EM_ASM({
@@ -25346,9 +27571,19 @@ ma_result ma_device_start__webaudio(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_device_stop__webaudio(ma_device* pDevice)
+static ma_result ma_device_stop__webaudio(ma_device* pDevice)
{
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
+
+ /*
+ From the WebAudio API documentation for AudioContext.suspend():
+
+ Suspends the progression of AudioContext's currentTime, allows any current context processing blocks that are already processed to be played to the
+ destination, and then allows the system to release its claim on audio hardware.
+
+ I read this to mean that "any current context processing blocks" are processed by suspend() - i.e. They they are drained. We therefore shouldn't need to
+ do any kind of explicit draining.
+ */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
EM_ASM({
@@ -25370,10 +27605,10 @@ ma_result ma_device_stop__webaudio(ma_device* pDevice)
return MA_SUCCESS;
}
-ma_result ma_context_uninit__webaudio(ma_context* pContext)
+static ma_result ma_context_uninit__webaudio(ma_context* pContext)
{
- ma_assert(pContext != NULL);
- ma_assert(pContext->backend == ma_backend_webaudio);
+ MA_ASSERT(pContext != NULL);
+ MA_ASSERT(pContext->backend == ma_backend_webaudio);
/* Nothing needs to be done here. */
(void)pContext;
@@ -25381,11 +27616,11 @@ ma_result ma_context_uninit__webaudio(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_context* pContext)
+static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_context* pContext)
{
int resultFromJS;
- ma_assert(pContext != NULL);
+ MA_ASSERT(pContext != NULL);
/* Here is where our global JavaScript object is initialized. */
resultFromJS = EM_ASM_INT({
@@ -25464,7 +27699,7 @@ ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_context
-ma_bool32 ma__is_channel_map_valid(const ma_channel* channelMap, ma_uint32 channels)
+static ma_bool32 ma__is_channel_map_valid(const ma_channel* channelMap, ma_uint32 channels)
{
/* A blank channel map should be allowed, in which case it should use an appropriate default which will depend on context. */
if (channelMap[0] != MA_CHANNEL_NONE) {
@@ -25489,9 +27724,11 @@ ma_bool32 ma__is_channel_map_valid(const ma_channel* channelMap, ma_uint32 chann
}
-void ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType)
+static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType)
{
- ma_assert(pDevice != NULL);
+ ma_result result;
+
+ MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex) {
if (pDevice->capture.usingDefaultFormat) {
@@ -25535,53 +27772,57 @@ void ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType)
/* PCM converters. */
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) {
- /* Converting from internal device format to public format. */
- ma_pcm_converter_config converterConfig = ma_pcm_converter_config_init_new();
- converterConfig.neverConsumeEndOfInput = MA_TRUE;
- converterConfig.pUserData = pDevice;
- converterConfig.formatIn = pDevice->capture.internalFormat;
- converterConfig.channelsIn = pDevice->capture.internalChannels;
- converterConfig.sampleRateIn = pDevice->capture.internalSampleRate;
+ /* Converting from internal device format to client format. */
+ ma_data_converter_config converterConfig = ma_data_converter_config_init_default();
+ converterConfig.formatIn = pDevice->capture.internalFormat;
+ converterConfig.channelsIn = pDevice->capture.internalChannels;
+ converterConfig.sampleRateIn = pDevice->capture.internalSampleRate;
ma_channel_map_copy(converterConfig.channelMapIn, pDevice->capture.internalChannelMap, pDevice->capture.internalChannels);
- converterConfig.formatOut = pDevice->capture.format;
- converterConfig.channelsOut = pDevice->capture.channels;
- converterConfig.sampleRateOut = pDevice->sampleRate;
+ converterConfig.formatOut = pDevice->capture.format;
+ converterConfig.channelsOut = pDevice->capture.channels;
+ converterConfig.sampleRateOut = pDevice->sampleRate;
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->capture.channelMap, pDevice->capture.channels);
- converterConfig.onRead = ma_device__pcm_converter__on_read_from_buffer_capture;
- ma_pcm_converter_init(&converterConfig, &pDevice->capture.converter);
+ converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
+ converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
+ converterConfig.resampling.linear.lpfCount = pDevice->resampling.linear.lpfCount;
+ converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
+
+ result = ma_data_converter_init(&converterConfig, &pDevice->capture.converter);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
}
if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) {
- /* Converting from public format to device format. */
- ma_pcm_converter_config converterConfig = ma_pcm_converter_config_init_new();
- converterConfig.neverConsumeEndOfInput = MA_TRUE;
- converterConfig.pUserData = pDevice;
- converterConfig.formatIn = pDevice->playback.format;
- converterConfig.channelsIn = pDevice->playback.channels;
- converterConfig.sampleRateIn = pDevice->sampleRate;
+ /* Converting from client format to device format. */
+ ma_data_converter_config converterConfig = ma_data_converter_config_init_default();
+ converterConfig.formatIn = pDevice->playback.format;
+ converterConfig.channelsIn = pDevice->playback.channels;
+ converterConfig.sampleRateIn = pDevice->sampleRate;
ma_channel_map_copy(converterConfig.channelMapIn, pDevice->playback.channelMap, pDevice->playback.channels);
- converterConfig.formatOut = pDevice->playback.internalFormat;
- converterConfig.channelsOut = pDevice->playback.internalChannels;
- converterConfig.sampleRateOut = pDevice->playback.internalSampleRate;
+ converterConfig.formatOut = pDevice->playback.internalFormat;
+ converterConfig.channelsOut = pDevice->playback.internalChannels;
+ converterConfig.sampleRateOut = pDevice->playback.internalSampleRate;
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->playback.internalChannelMap, pDevice->playback.internalChannels);
- if (deviceType == ma_device_type_playback) {
- if (pDevice->type == ma_device_type_playback) {
- converterConfig.onRead = ma_device__on_read_from_client;
- } else {
- converterConfig.onRead = ma_device__pcm_converter__on_read_from_buffer_playback;
- }
- } else {
- converterConfig.onRead = ma_device__pcm_converter__on_read_from_buffer_playback;
+ converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
+ converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
+ converterConfig.resampling.linear.lpfCount = pDevice->resampling.linear.lpfCount;
+ converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
+
+ result = ma_data_converter_init(&converterConfig, &pDevice->playback.converter);
+ if (result != MA_SUCCESS) {
+ return result;
}
- ma_pcm_converter_init(&converterConfig, &pDevice->playback.converter);
}
+
+ return MA_SUCCESS;
}
-ma_thread_result MA_THREADCALL ma_worker_thread(void* pData)
+static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData)
{
ma_device* pDevice = (ma_device*)pData;
- ma_assert(pDevice != NULL);
+ MA_ASSERT(pDevice != NULL);
#ifdef MA_WIN32
ma_CoInitializeEx(pDevice->pContext, NULL, MA_COINIT_VALUE);
@@ -25615,7 +27856,7 @@ ma_thread_result MA_THREADCALL ma_worker_thread(void* pData)
be started will be waiting on an event (pDevice->startEvent) which means we need to make sure we signal the event
in both the success and error case. It's important that the state of the device is set _before_ signaling the event.
*/
- ma_assert(ma_device__get_state(pDevice) == MA_STATE_STARTING);
+ MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTING);
/* Make sure the state is set appropriately. */
ma_device__set_state(pDevice, MA_STATE_STARTED);
@@ -25667,7 +27908,7 @@ ma_thread_result MA_THREADCALL ma_worker_thread(void* pData)
/* Helper for determining whether or not the given device is initialized. */
-ma_bool32 ma_device__is_initialized(ma_device* pDevice)
+static ma_bool32 ma_device__is_initialized(ma_device* pDevice)
{
if (pDevice == NULL) {
return MA_FALSE;
@@ -25678,7 +27919,7 @@ ma_bool32 ma_device__is_initialized(ma_device* pDevice)
#ifdef MA_WIN32
-ma_result ma_context_uninit_backend_apis__win32(ma_context* pContext)
+static ma_result ma_context_uninit_backend_apis__win32(ma_context* pContext)
{
ma_CoUninitialize(pContext);
ma_dlclose(pContext, pContext->win32.hUser32DLL);
@@ -25688,7 +27929,7 @@ ma_result ma_context_uninit_backend_apis__win32(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init_backend_apis__win32(ma_context* pContext)
+static ma_result ma_context_init_backend_apis__win32(ma_context* pContext)
{
#ifdef MA_WIN32_DESKTOP
/* Ole32.dll */
@@ -25730,7 +27971,7 @@ ma_result ma_context_init_backend_apis__win32(ma_context* pContext)
return MA_SUCCESS;
}
#else
-ma_result ma_context_uninit_backend_apis__nix(ma_context* pContext)
+static ma_result ma_context_uninit_backend_apis__nix(ma_context* pContext)
{
#if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING)
ma_dlclose(pContext, pContext->posix.pthreadSO);
@@ -25741,7 +27982,7 @@ ma_result ma_context_uninit_backend_apis__nix(ma_context* pContext)
return MA_SUCCESS;
}
-ma_result ma_context_init_backend_apis__nix(ma_context* pContext)
+static ma_result ma_context_init_backend_apis__nix(ma_context* pContext)
{
/* pthread */
#if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING)
@@ -25802,7 +28043,7 @@ ma_result ma_context_init_backend_apis__nix(ma_context* pContext)
}
#endif
-ma_result ma_context_init_backend_apis(ma_context* pContext)
+static ma_result ma_context_init_backend_apis(ma_context* pContext)
{
ma_result result;
#ifdef MA_WIN32
@@ -25814,7 +28055,7 @@ ma_result ma_context_init_backend_apis(ma_context* pContext)
return result;
}
-ma_result ma_context_uninit_backend_apis(ma_context* pContext)
+static ma_result ma_context_uninit_backend_apis(ma_context* pContext)
{
ma_result result;
#ifdef MA_WIN32
@@ -25827,11 +28068,20 @@ ma_result ma_context_uninit_backend_apis(ma_context* pContext)
}
-ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext)
+static ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext)
{
return pContext->isBackendAsynchronous;
}
+
+ma_context_config ma_context_config_init()
+{
+ ma_context_config config;
+ MA_ZERO_OBJECT(&config);
+
+ return config;
+}
+
ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext)
{
ma_result result;
@@ -25845,7 +28095,7 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
return MA_INVALID_ARGS;
}
- ma_zero_object(pContext);
+ MA_ZERO_OBJECT(pContext);
/* Always make sure the config is set first to ensure properties are available as soon as possible. */
if (pConfig != NULL) {
@@ -25854,9 +28104,14 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
config = ma_context_config_init();
}
- pContext->logCallback = config.logCallback;
+ pContext->logCallback = config.logCallback;
pContext->threadPriority = config.threadPriority;
- pContext->pUserData = config.pUserData;
+ pContext->pUserData = config.pUserData;
+
+ result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &config.allocationCallbacks);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
/* Backend APIs need to be initialized first. This is where external libraries will be loaded and linked. */
result = ma_context_init_backend_apis(pContext);
@@ -25875,7 +28130,7 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
backendsToIterateCount = ma_countof(defaultBackends);
}
- ma_assert(pBackendsToIterate != NULL);
+ MA_ASSERT(pBackendsToIterate != NULL);
for (iBackend = 0; iBackend < backendsToIterateCount; ++iBackend) {
ma_backend backend = pBackendsToIterate[iBackend];
@@ -25995,7 +28250,7 @@ ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, c
}
/* If we get here it means an error occurred. */
- ma_zero_object(pContext); /* Safety. */
+ MA_ZERO_OBJECT(pContext); /* Safety. */
return MA_NO_BACKEND;
}
@@ -26009,7 +28264,7 @@ ma_result ma_context_uninit(ma_context* pContext)
ma_mutex_uninit(&pContext->deviceEnumLock);
ma_mutex_uninit(&pContext->deviceInfoLock);
- ma_free(pContext->pDeviceInfos);
+ ma__free_from_callbacks(pContext->pDeviceInfos, &pContext->allocationCallbacks);
ma_context_uninit_backend_apis(pContext);
return MA_SUCCESS;
@@ -26034,7 +28289,7 @@ ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_cal
}
-ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData)
+static ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData)
{
/*
We need to insert the device info into our main internal buffer. Where it goes depends on the device type. If it's a capture device
@@ -26049,8 +28304,9 @@ ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_device_
const ma_uint32 totalDeviceInfoCount = pContext->playbackDeviceInfoCount + pContext->captureDeviceInfoCount;
if (pContext->deviceInfoCapacity >= totalDeviceInfoCount) {
- ma_uint32 newCapacity = totalDeviceInfoCount + bufferExpansionCount;
- ma_device_info* pNewInfos = (ma_device_info*)ma_realloc(pContext->pDeviceInfos, sizeof(*pContext->pDeviceInfos)*newCapacity);
+ ma_uint32 oldCapacity = pContext->deviceInfoCapacity;
+ ma_uint32 newCapacity = oldCapacity + bufferExpansionCount;
+ ma_device_info* pNewInfos = (ma_device_info*)ma__realloc_from_callbacks(pContext->pDeviceInfos, sizeof(*pContext->pDeviceInfos)*newCapacity, sizeof(*pContext->pDeviceInfos)*oldCapacity, &pContext->allocationCallbacks);
if (pNewInfos == NULL) {
return MA_FALSE; /* Out of memory. */
}
@@ -26137,11 +28393,11 @@ ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type device
return MA_INVALID_ARGS;
}
- ma_zero_object(&deviceInfo);
+ MA_ZERO_OBJECT(&deviceInfo);
/* Help the backend out by copying over the device ID if we have one. */
if (pDeviceID != NULL) {
- ma_copy_memory(&deviceInfo.id, pDeviceID, sizeof(*pDeviceID));
+ MA_COPY_MEMORY(&deviceInfo.id, pDeviceID, sizeof(*pDeviceID));
}
/* The backend may have an optimized device info retrieval function. If so, try that first. */
@@ -26177,6 +28433,20 @@ ma_bool32 ma_context_is_loopback_supported(ma_context* pContext)
}
+ma_device_config ma_device_config_init(ma_device_type deviceType)
+{
+ ma_device_config config;
+ MA_ZERO_OBJECT(&config);
+ config.deviceType = deviceType;
+
+ /* Resampling defaults. We must never use the Speex backend by default because it uses licensed third party code. */
+ config.resampling.algorithm = ma_resample_algorithm_linear;
+ config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
+ config.resampling.speex.quality = 3;
+
+ return config;
+}
+
ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
@@ -26219,7 +28489,7 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
}
- ma_zero_object(pDevice);
+ MA_ZERO_OBJECT(pDevice);
pDevice->pContext = pContext;
/* Set the user data and log callback ASAP to ensure it is available for the entire initialization process. */
@@ -26271,12 +28541,6 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
}
- /* Default buffer size. */
- if (config.bufferSizeInMilliseconds == 0 && config.bufferSizeInFrames == 0) {
- config.bufferSizeInMilliseconds = (config.performanceProfile == ma_performance_profile_low_latency) ? MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY : MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE;
- pDevice->usingDefaultBufferSize = MA_TRUE;
- }
-
/* Default periods. */
if (config.periods == 0) {
config.periods = MA_DEFAULT_PERIODS;
@@ -26291,9 +28555,19 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
config.periods = 3;
}
+ /* Default buffer size. */
+ if (config.periodSizeInMilliseconds == 0 && config.periodSizeInFrames == 0) {
+ config.periodSizeInMilliseconds = (config.performanceProfile == ma_performance_profile_low_latency) ? MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY : MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE;
+ pDevice->usingDefaultBufferSize = MA_TRUE;
+ }
+
+
pDevice->type = config.deviceType;
pDevice->sampleRate = config.sampleRate;
+ pDevice->resampling.algorithm = config.resampling.algorithm;
+ pDevice->resampling.linear.lpfCount = config.resampling.linear.lpfCount;
+ pDevice->resampling.speex.quality = config.resampling.speex.quality;
pDevice->capture.shareMode = config.capture.shareMode;
pDevice->capture.format = config.capture.format;
@@ -26348,7 +28622,7 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
result = pContext->onDeviceInit(pContext, &config, pDevice);
if (result != MA_SUCCESS) {
- return MA_NO_BACKEND; /* The error message will have been posted with ma_post_error() by the source of the error so don't bother calling it here. */
+ return result;
}
ma_device__post_init_setup(pDevice, pConfig->deviceType);
@@ -26393,33 +28667,31 @@ ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig,
printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat));
printf(" Channels: %d -> %d\n", pDevice->capture.channels, pDevice->capture.internalChannels);
printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->capture.internalSampleRate);
- printf(" Buffer Size: %d/%d (%d)\n", pDevice->capture.internalBufferSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalBufferSizeInFrames / pDevice->capture.internalPeriods));
+ printf(" Buffer Size: %d*%d (%d)\n", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods));
printf(" Conversion:\n");
- printf(" Pre Format Conversion: %s\n", pDevice->capture.converter.isPreFormatConversionRequired ? "YES" : "NO");
- printf(" Post Format Conversion: %s\n", pDevice->capture.converter.isPostFormatConversionRequired ? "YES" : "NO");
- printf(" Channel Routing: %s\n", pDevice->capture.converter.isChannelRoutingRequired ? "YES" : "NO");
- printf(" SRC: %s\n", pDevice->capture.converter.isSRCRequired ? "YES" : "NO");
- printf(" Channel Routing at Start: %s\n", pDevice->capture.converter.isChannelRoutingAtStart ? "YES" : "NO");
- printf(" Passthrough: %s\n", pDevice->capture.converter.isPassthrough ? "YES" : "NO");
+ printf(" Pre Format Conversion: %s\n", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO");
+ printf(" Post Format Conversion: %s\n", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO");
+ printf(" Channel Routing: %s\n", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO");
+ printf(" Resampling: %s\n", pDevice->capture.converter.hasResampler ? "YES" : "NO");
+ printf(" Passthrough: %s\n", pDevice->capture.converter.isPassthrough ? "YES" : "NO");
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
printf(" %s (%s)\n", pDevice->playback.name, "Playback");
printf(" Format: %s -> %s\n", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat));
printf(" Channels: %d -> %d\n", pDevice->playback.channels, pDevice->playback.internalChannels);
printf(" Sample Rate: %d -> %d\n", pDevice->sampleRate, pDevice->playback.internalSampleRate);
- printf(" Buffer Size: %d/%d (%d)\n", pDevice->playback.internalBufferSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalBufferSizeInFrames / pDevice->playback.internalPeriods));
+ printf(" Buffer Size: %d*%d (%d)\n", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods));
printf(" Conversion:\n");
- printf(" Pre Format Conversion: %s\n", pDevice->playback.converter.isPreFormatConversionRequired ? "YES" : "NO");
- printf(" Post Format Conversion: %s\n", pDevice->playback.converter.isPostFormatConversionRequired ? "YES" : "NO");
- printf(" Channel Routing: %s\n", pDevice->playback.converter.isChannelRoutingRequired ? "YES" : "NO");
- printf(" SRC: %s\n", pDevice->playback.converter.isSRCRequired ? "YES" : "NO");
- printf(" Channel Routing at Start: %s\n", pDevice->playback.converter.isChannelRoutingAtStart ? "YES" : "NO");
- printf(" Passthrough: %s\n", pDevice->playback.converter.isPassthrough ? "YES" : "NO");
+ printf(" Pre Format Conversion: %s\n", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO");
+ printf(" Post Format Conversion: %s\n", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO");
+ printf(" Channel Routing: %s\n", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO");
+ printf(" Resampling: %s\n", pDevice->playback.converter.hasResampler ? "YES" : "NO");
+ printf(" Passthrough: %s\n", pDevice->playback.converter.isPassthrough ? "YES" : "NO");
}
#endif
- ma_assert(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
+ MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
return MA_SUCCESS;
}
@@ -26431,12 +28703,23 @@ ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount,
ma_uint32 iBackend;
ma_backend* pBackendsToIterate;
ma_uint32 backendsToIterateCount;
+ ma_allocation_callbacks allocationCallbacks;
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
- pContext = (ma_context*)ma_malloc(sizeof(*pContext));
+ if (pContextConfig != NULL) {
+ result = ma_allocation_callbacks_init_copy(&allocationCallbacks, &pContextConfig->allocationCallbacks);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+ } else {
+ allocationCallbacks = ma_allocation_callbacks_init_default();
+ }
+
+
+ pContext = (ma_context*)ma__malloc_from_callbacks(sizeof(*pContext), &allocationCallbacks);
if (pContext == NULL) {
return MA_OUT_OF_MEMORY;
}
@@ -26467,7 +28750,7 @@ ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount,
}
if (result != MA_SUCCESS) {
- ma_free(pContext);
+ ma__free_from_callbacks(pContext, &allocationCallbacks);
return result;
}
@@ -26503,20 +28786,13 @@ void ma_device_uninit(ma_device* pDevice)
ma_mutex_uninit(&pDevice->lock);
if (pDevice->isOwnerOfContext) {
- ma_context_uninit(pDevice->pContext);
- ma_free(pDevice->pContext);
- }
+ ma_allocation_callbacks allocationCallbacks = pDevice->pContext->allocationCallbacks;
- ma_zero_object(pDevice);
-}
-
-void ma_device_set_stop_callback(ma_device* pDevice, ma_stop_proc proc)
-{
- if (pDevice == NULL) {
- return;
+ ma_context_uninit(pDevice->pContext);
+ ma__free_from_callbacks(pDevice->pContext, &allocationCallbacks);
}
- ma_atomic_exchange_ptr(&pDevice->onStop, proc);
+ MA_ZERO_OBJECT(pDevice);
}
ma_result ma_device_start(ma_device* pDevice)
@@ -26539,7 +28815,7 @@ ma_result ma_device_start(ma_device* pDevice)
ma_mutex_lock(&pDevice->lock);
{
/* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a stopped or paused state. */
- ma_assert(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
+ MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
ma_device__set_state(pDevice, MA_STATE_STARTING);
@@ -26589,7 +28865,7 @@ ma_result ma_device_stop(ma_device* pDevice)
ma_mutex_lock(&pDevice->lock);
{
/* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a started or paused state. */
- ma_assert(ma_device__get_state(pDevice) == MA_STATE_STARTED);
+ MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTED);
ma_device__set_state(pDevice, MA_STATE_STOPPING);
@@ -26646,7 +28922,12 @@ ma_result ma_device_set_master_volume(ma_device* pDevice, float volume)
ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume)
{
- if (pDevice == NULL || pVolume == NULL) {
+ if (pVolume == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pDevice == NULL) {
+ *pVolume = 0;
return MA_INVALID_ARGS;
}
@@ -26675,6 +28956,7 @@ ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
result = ma_device_get_master_volume(pDevice, &factor);
if (result != MA_SUCCESS) {
+ *pGainDB = 0;
return result;
}
@@ -26682,739 +28964,3313 @@ ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
return MA_SUCCESS;
}
+#endif /* MA_NO_DEVICE_IO */
-ma_context_config ma_context_config_init()
+/**************************************************************************************************************************************************************
+
+Biquad Filter
+
+**************************************************************************************************************************************************************/
+#ifndef MA_BIQUAD_FIXED_POINT_SHIFT
+#define MA_BIQUAD_FIXED_POINT_SHIFT 14
+#endif
+
+static ma_int32 ma_biquad_float_to_fp(double x)
{
- ma_context_config config;
- ma_zero_object(&config);
+ return (ma_int32)(x * (1 << MA_BIQUAD_FIXED_POINT_SHIFT));
+}
+
+ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2)
+{
+ ma_biquad_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.b0 = b0;
+ config.b1 = b1;
+ config.b2 = b2;
+ config.a0 = a0;
+ config.a1 = a1;
+ config.a2 = a2;
return config;
}
-ma_device_config ma_device_config_init(ma_device_type deviceType)
+ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ)
{
- ma_device_config config;
- ma_zero_object(&config);
- config.deviceType = deviceType;
+ if (pBQ == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pBQ);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_reinit(pConfig, pBQ);
+}
+
+ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ)
+{
+ if (pBQ == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConfig->a0 == 0) {
+ return MA_INVALID_ARGS; /* Division by zero. */
+ }
+
+ /* Only supporting f32 and s16. */
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* The format cannot be changed after initialization. */
+ if (pBQ->format != ma_format_unknown && pBQ->format != pConfig->format) {
+ return MA_INVALID_OPERATION;
+ }
+
+ /* The channel count cannot be changed after initialization. */
+ if (pBQ->channels != 0 && pBQ->channels != pConfig->channels) {
+ return MA_INVALID_OPERATION;
+ }
+
+
+ pBQ->format = pConfig->format;
+ pBQ->channels = pConfig->channels;
+
+ /* Normalize. */
+ if (pConfig->format == ma_format_f32) {
+ pBQ->b0.f32 = (float)(pConfig->b0 / pConfig->a0);
+ pBQ->b1.f32 = (float)(pConfig->b1 / pConfig->a0);
+ pBQ->b2.f32 = (float)(pConfig->b2 / pConfig->a0);
+ pBQ->a1.f32 = (float)(pConfig->a1 / pConfig->a0);
+ pBQ->a2.f32 = (float)(pConfig->a2 / pConfig->a0);
+ } else {
+ pBQ->b0.s32 = ma_biquad_float_to_fp(pConfig->b0 / pConfig->a0);
+ pBQ->b1.s32 = ma_biquad_float_to_fp(pConfig->b1 / pConfig->a0);
+ pBQ->b2.s32 = ma_biquad_float_to_fp(pConfig->b2 / pConfig->a0);
+ pBQ->a1.s32 = ma_biquad_float_to_fp(pConfig->a1 / pConfig->a0);
+ pBQ->a2.s32 = ma_biquad_float_to_fp(pConfig->a2 / pConfig->a0);
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(ma_biquad* pBQ, float* pY, const float* pX)
+{
+ ma_uint32 c;
+ const float b0 = pBQ->b0.f32;
+ const float b1 = pBQ->b1.f32;
+ const float b2 = pBQ->b2.f32;
+ const float a1 = pBQ->a1.f32;
+ const float a2 = pBQ->a2.f32;
+
+ for (c = 0; c < pBQ->channels; c += 1) {
+ float r1 = pBQ->r1[c].f32;
+ float r2 = pBQ->r2[c].f32;
+ float x = pX[c];
+ float y;
+
+ y = b0*x + r1;
+ r1 = b1*x - a1*y + r2;
+ r2 = b2*x - a2*y;
+
+ pY[c] = y;
+ pBQ->r1[c].f32 = r1;
+ pBQ->r2[c].f32 = r2;
+ }
+}
+
+static MA_INLINE void ma_biquad_process_pcm_frame_f32(ma_biquad* pBQ, float* pY, const float* pX)
+{
+ ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX);
+}
+
+static MA_INLINE void ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX)
+{
+ ma_uint32 c;
+ const ma_int32 b0 = pBQ->b0.s32;
+ const ma_int32 b1 = pBQ->b1.s32;
+ const ma_int32 b2 = pBQ->b2.s32;
+ const ma_int32 a1 = pBQ->a1.s32;
+ const ma_int32 a2 = pBQ->a2.s32;
+
+ for (c = 0; c < pBQ->channels; c += 1) {
+ ma_int32 r1 = pBQ->r1[c].s32;
+ ma_int32 r2 = pBQ->r2[c].s32;
+ ma_int32 x = pX[c];
+ ma_int32 y;
+
+ y = (b0*x + r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
+ r1 = (b1*x - a1*y + r2);
+ r2 = (b2*x - a2*y);
+
+ pY[c] = (ma_int16)ma_clamp(y, -32768, 32767);
+ pBQ->r1[c].s32 = r1;
+ pBQ->r2[c].s32 = r2;
+ }
+}
+
+static MA_INLINE void ma_biquad_process_pcm_frame_s16(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX)
+{
+ ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX);
+}
+
+ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint32 n;
+
+ if (pBQ == NULL || pFramesOut == NULL || pFramesIn == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
+
+ if (pBQ->format == ma_format_f32) {
+ /* */ float* pY = ( float*)pFramesOut;
+ const float* pX = (const float*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX);
+ pY += pBQ->channels;
+ pX += pBQ->channels;
+ }
+ } else if (pBQ->format == ma_format_s16) {
+ /* */ ma_int16* pY = ( ma_int16*)pFramesOut;
+ const ma_int16* pX = (const ma_int16*)pFramesIn;
+
+ for (n = 0; n < frameCount; n += 1) {
+ ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX);
+ pY += pBQ->channels;
+ pX += pBQ->channels;
+ }
+ } else {
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ)
+{
+ if (pBQ == NULL) {
+ return 0;
+ }
+
+ return 2;
+}
+
+
+/**************************************************************************************************************************************************************
+
+Low-Pass Filter
+
+**************************************************************************************************************************************************************/
+ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+{
+ ma_lpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
return config;
}
-#endif /* MA_NO_DEVICE_IO */
+static MA_INLINE ma_biquad_config ma_lpf__get_biquad_config(const ma_lpf_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double q;
+ double w;
+ double s;
+ double c;
+ double a;
+
+ MA_ASSERT(pConfig != NULL);
-void ma_get_standard_channel_map_microsoft(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+ q = 0.707107;
+ w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ a = s / (2*q);
+
+ bqConfig.b0 = (1 - c) / 2;
+ bqConfig.b1 = 1 - c;
+ bqConfig.b2 = (1 - c) / 2;
+ bqConfig.a0 = 1 + a;
+ bqConfig.a1 = -2 * c;
+ bqConfig.a2 = 1 - a;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
{
- /* Based off the speaker configurations mentioned here: https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-ksaudio_channel_config */
- switch (channels)
- {
- case 1:
- {
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ ma_result result;
+ ma_biquad_config bqConfig;
- case 2:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- } break;
+ if (pLPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
- case 3: /* Not defined, but best guess. */
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ MA_ZERO_OBJECT(pLPF);
- case 4:
- {
-#ifndef MA_USE_QUAD_MICROSOFT_CHANNEL_MAP
- /* Surround. Using the Surround profile has the advantage of the 3rd channel (MA_CHANNEL_FRONT_CENTER) mapping nicely with higher channel counts. */
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_BACK_CENTER;
-#else
- /* Quad. */
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
-#endif
- } break;
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
- case 5: /* Not defined, but best guess. */
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_BACK_LEFT;
- channelMap[4] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ bqConfig = ma_lpf__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pLPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
- case 6:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_SIDE_LEFT;
- channelMap[5] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+ return MA_SUCCESS;
+}
- case 7: /* Not defined, but best guess. */
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_BACK_CENTER;
- channelMap[5] = MA_CHANNEL_SIDE_LEFT;
- channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
- case 8:
- default:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_BACK_LEFT;
- channelMap[5] = MA_CHANNEL_BACK_RIGHT;
- channelMap[6] = MA_CHANNEL_SIDE_LEFT;
- channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+ if (pLPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
}
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+ bqConfig = ma_lpf__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pLPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+static MA_INLINE void ma_lpf_process_pcm_frame_s16(ma_lpf* pLPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_s16(&pLPF->bq, pFrameOut, pFrameIn);
+}
+
+static MA_INLINE void ma_lpf_process_pcm_frame_f32(ma_lpf* pLPF, float* pFrameOut, const float* pFrameIn)
+{
+ ma_biquad_process_pcm_frame_f32(&pLPF->bq, pFrameOut, pFrameIn);
+}
+
+ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pLPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pLPF->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF)
+{
+ if (pLPF == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pLPF->bq);
+}
+
+
+/**************************************************************************************************************************************************************
+
+High-Pass Filtering
+
+**************************************************************************************************************************************************************/
+ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+{
+ ma_hpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+
+ return config;
+}
+
+static MA_INLINE ma_biquad_config ma_hpf__get_biquad_config(const ma_hpf_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double q;
+ double w;
+ double s;
+ double c;
+ double a;
+
+ MA_ASSERT(pConfig != NULL);
+
+ q = 0.707107;
+ w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ a = s / (2*q);
+
+ bqConfig.b0 = (1 + c) / 2;
+ bqConfig.b1 = -(1 + c);
+ bqConfig.b2 = (1 + c) / 2;
+ bqConfig.a0 = 1 + a;
+ bqConfig.a1 = -2 * c;
+ bqConfig.a2 = 1 - a;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pHPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pHPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_hpf__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pHPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pHPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_hpf__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pHPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pHPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pHPF->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
+{
+ if (pHPF == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pHPF->bq);
+}
+
+
+/**************************************************************************************************************************************************************
+
+Band-Pass Filtering
+
+**************************************************************************************************************************************************************/
+ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
+{
+ ma_bpf_config config;
+
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRate = sampleRate;
+ config.cutoffFrequency = cutoffFrequency;
+
+ return config;
+}
+
+
+static MA_INLINE ma_biquad_config ma_bpf__get_biquad_config(const ma_bpf_config* pConfig)
+{
+ ma_biquad_config bqConfig;
+ double q;
+ double w;
+ double s;
+ double c;
+ double a;
+
+ MA_ASSERT(pConfig != NULL);
+
+ q = 0.707107;
+ w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
+ s = ma_sin(w);
+ c = ma_cos(w);
+ a = s / (2*q);
+
+ bqConfig.b0 = q * a;
+ bqConfig.b1 = 0;
+ bqConfig.b2 = -q * a;
+ bqConfig.a0 = 1 + a;
+ bqConfig.a1 = -2 * c;
+ bqConfig.a2 = 1 - a;
+
+ bqConfig.format = pConfig->format;
+ bqConfig.channels = pConfig->channels;
+
+ return bqConfig;
+}
+
+ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pBPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pBPF);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_bpf__get_biquad_config(pConfig);
+ result = ma_biquad_init(&bqConfig, &pBPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
+{
+ ma_result result;
+ ma_biquad_config bqConfig;
+
+ if (pBPF == NULL || pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ bqConfig = ma_bpf__get_biquad_config(pConfig);
+ result = ma_biquad_reinit(&bqConfig, &pBPF->bq);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pBPF == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ return ma_biquad_process_pcm_frames(&pBPF->bq, pFramesOut, pFramesIn, frameCount);
+}
+
+ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF)
+{
+ if (pBPF == NULL) {
+ return 0;
+ }
+
+ return ma_biquad_get_latency(&pBPF->bq);
+}
+
+
+
+/**************************************************************************************************************************************************************
+
+Resampling
+
+**************************************************************************************************************************************************************/
+ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+{
+ ma_linear_resampler_config config;
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRateIn = sampleRateIn;
+ config.sampleRateOut = sampleRateOut;
+ config.lpfCount = 1;
+ config.lpfNyquistFactor = 1;
+
+ return config;
+}
+
+static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_bool32 isResamplerAlreadyInitialized)
+{
+ ma_uint32 gcf;
+
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (sampleRateIn == 0 || sampleRateOut == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* Simplify the sample rate. */
+ gcf = ma_gcf_u32(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut);
+ pResampler->config.sampleRateIn /= gcf;
+ pResampler->config.sampleRateOut /= gcf;
+
+ if (pResampler->config.lpfCount > 0) {
+ ma_result result;
+ ma_uint32 iFilter;
+ ma_uint32 lpfSampleRate;
+ double lpfCutoffFrequency;
+ ma_lpf_config lpfConfig;
+
+ if (pResampler->config.lpfCount > MA_MAX_RESAMPLER_LPF_FILTERS) {
+ return MA_INVALID_ARGS;
+ }
+
+ lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut));
+ lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor);
+
+ lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency);
+
+ /*
+ If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames
+ getting cleared. Instead we re-initialize the filter which will maintain any cached frames.
+ */
+ result = MA_SUCCESS;
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ if (isResamplerAlreadyInitialized) {
+ result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf[iFilter]);
+ } else {
+ result = ma_lpf_init(&lpfConfig, &pResampler->lpf[iFilter]);
+ }
+
+ if (result != MA_SUCCESS) {
+ break;
+ }
+ }
+
+ if (result != MA_SUCCESS) {
+ return result; /* Failed to initialize the low-pass filter. */
}
}
+
+ pResampler->inAdvanceInt = pResampler->config.sampleRateIn / pResampler->config.sampleRateOut;
+ pResampler->inAdvanceFrac = pResampler->config.sampleRateIn % pResampler->config.sampleRateOut;
+
+ /* Make sure the fractional part is less than the output sample rate. */
+ pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut;
+ pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut;
+
+ return MA_SUCCESS;
}
-void ma_get_standard_channel_map_alsa(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler)
{
- switch (channels)
- {
- case 1:
- {
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ ma_result result;
- case 2:
- {
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ MA_ZERO_OBJECT(pResampler);
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
- case 5:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ pResampler->config = *pConfig;
- case 6:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- } break;
+ /* Setting the rate will set up the filter and time advances for us. */
+ result = ma_linear_resampler_set_rate_internal(pResampler, pConfig->sampleRateIn, pConfig->sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_FALSE);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
- case 7:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- channelMap[6] = MA_CHANNEL_BACK_CENTER;
- } break;
+ pResampler->inTimeInt = 1; /* Set this to one to force an input sample to always be loaded for the first output frame. */
+ pResampler->inTimeFrac = 0;
- case 8:
- default:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- channelMap[6] = MA_CHANNEL_SIDE_LEFT;
- channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+ return MA_SUCCESS;
+}
+
+void ma_linear_resampler_uninit(ma_linear_resampler* pResampler)
+{
+ if (pResampler == NULL) {
+ return;
}
+}
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+static MA_INLINE ma_int16 ma_linear_resampler_mix_s16(ma_int16 x, ma_int16 y, ma_int32 a, const ma_int32 shift)
+{
+ ma_int32 b;
+ ma_int32 c;
+ ma_int32 r;
+
+ MA_ASSERT(a <= (1<<shift));
+
+ b = x * ((1<<shift) - a);
+ c = y * a;
+ r = b + c;
+
+ return (ma_int16)(r >> shift);
+}
+
+static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResampler, ma_int16* pFrameOut)
+{
+ ma_uint32 c;
+ ma_uint32 a;
+ const ma_uint32 shift = 12;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameOut != NULL);
+
+ a = (pResampler->inTimeFrac << shift) / pResampler->config.sampleRateOut;
+
+ for (c = 0; c < pResampler->config.channels; c += 1) {
+ ma_int16 s = ma_linear_resampler_mix_s16(pResampler->x0.s16[c], pResampler->x1.s16[c], a, shift);
+ pFrameOut[c] = s;
+ }
+}
+
+
+static void ma_linear_resampler_interpolate_frame_f32(ma_linear_resampler* pResampler, float* pFrameOut)
+{
+ ma_uint32 c;
+ float a;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameOut != NULL);
+
+ a = (float)pResampler->inTimeFrac / pResampler->config.sampleRateOut;
+
+ for (c = 0; c < pResampler->config.channels; c += 1) {
+ float s = ma_mix_f32_fast(pResampler->x0.f32[c], pResampler->x1.f32[c], a);
+ pFrameOut[c] = s;
+ }
+}
+
+static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ const ma_int16* pFramesInS16;
+ /* */ ma_int16* pFramesOutS16;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameCountIn != NULL);
+ MA_ASSERT(pFrameCountOut != NULL);
+
+ pFramesInS16 = (const ma_int16*)pFramesIn;
+ pFramesOutS16 = ( ma_int16*)pFramesOut;
+ frameCountIn = *pFrameCountIn;
+ frameCountOut = *pFrameCountOut;
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ for (;;) {
+ if (framesProcessedOut >= frameCountOut) {
+ break;
+ }
+
+ /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
+ while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ ma_uint32 iFilter;
+ ma_uint32 iChannel;
+
+ if (pFramesInS16 != NULL) {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
+ pResampler->x1.s16[iChannel] = pFramesInS16[iChannel];
+ }
+ pFramesInS16 += pResampler->config.channels;
+ } else {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
+ pResampler->x1.s16[iChannel] = 0;
+ }
+ }
+
+ /* Filter. */
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ ma_lpf_process_pcm_frame_s16(&pResampler->lpf[iFilter], pResampler->x1.s16, pResampler->x1.s16);
+ }
+
+ frameCountIn -= 1;
+ framesProcessedIn += 1;
+ pResampler->inTimeInt -= 1;
+ }
+
+ if (pResampler->inTimeInt > 0) {
+ break; /* Ran out of input data. */
+ }
+
+ /* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */
+ if (pFramesOutS16 != NULL) {
+ MA_ASSERT(pResampler->inTimeInt == 0);
+ ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16);
+
+ pFramesOutS16 += pResampler->config.channels;
+ }
+
+ framesProcessedOut += 1;
+
+ /* Advance time forward. */
+ pResampler->inTimeInt += pResampler->inAdvanceInt;
+ pResampler->inTimeFrac += pResampler->inAdvanceFrac;
+ if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
+ pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
+ pResampler->inTimeInt += 1;
}
}
+
+ *pFrameCountIn = framesProcessedIn;
+ *pFrameCountOut = framesProcessedOut;
+
+ return MA_SUCCESS;
}
-void ma_get_standard_channel_map_rfc3551(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
- switch (channels)
+ const ma_int16* pFramesInS16;
+ /* */ ma_int16* pFramesOutS16;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameCountIn != NULL);
+ MA_ASSERT(pFrameCountOut != NULL);
+
+ pFramesInS16 = (const ma_int16*)pFramesIn;
+ pFramesOutS16 = ( ma_int16*)pFramesOut;
+ frameCountIn = *pFrameCountIn;
+ frameCountOut = *pFrameCountOut;
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ for (;;) {
+ ma_uint32 iFilter;
+
+ if (framesProcessedOut >= frameCountOut) {
+ break;
+ }
+
+ /* Before interpolating we need to load the buffers. */
+ while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ ma_uint32 iChannel;
+
+ if (pFramesInS16 != NULL) {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
+ pResampler->x1.s16[iChannel] = pFramesInS16[iChannel];
+ }
+ pFramesInS16 += pResampler->config.channels;
+ } else {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
+ pResampler->x1.s16[iChannel] = 0;
+ }
+ }
+
+ frameCountIn -= 1;
+ framesProcessedIn += 1;
+ pResampler->inTimeInt -= 1;
+ }
+
+ if (pResampler->inTimeInt > 0) {
+ break; /* Ran out of input data. */
+ }
+
+ /* Getting here means the frames have been loaded and we can generate the next output frame. */
+ if (pFramesOutS16 != NULL) {
+ MA_ASSERT(pResampler->inTimeInt == 0);
+ ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16);
+
+ /* Filter. */
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ ma_lpf_process_pcm_frame_s16(&pResampler->lpf[iFilter], pFramesOutS16, pFramesOutS16);
+ }
+
+ pFramesOutS16 += pResampler->config.channels;
+ }
+
+ framesProcessedOut += 1;
+
+ /* Advance time forward. */
+ pResampler->inTimeInt += pResampler->inAdvanceInt;
+ pResampler->inTimeFrac += pResampler->inAdvanceFrac;
+ if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
+ pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
+ pResampler->inTimeInt += 1;
+ }
+ }
+
+ *pFrameCountIn = framesProcessedIn;
+ *pFrameCountOut = framesProcessedOut;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_linear_resampler_process_pcm_frames_s16(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ MA_ASSERT(pResampler != NULL);
+
+ if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) {
+ return ma_linear_resampler_process_pcm_frames_s16_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ return ma_linear_resampler_process_pcm_frames_s16_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+}
+
+
+static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ const float* pFramesInF32;
+ /* */ float* pFramesOutF32;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameCountIn != NULL);
+ MA_ASSERT(pFrameCountOut != NULL);
+
+ pFramesInF32 = (const float*)pFramesIn;
+ pFramesOutF32 = ( float*)pFramesOut;
+ frameCountIn = *pFrameCountIn;
+ frameCountOut = *pFrameCountOut;
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ for (;;) {
+ if (framesProcessedOut >= frameCountOut) {
+ break;
+ }
+
+ /* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
+ while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ ma_uint32 iFilter;
+ ma_uint32 iChannel;
+
+ if (pFramesInF32 != NULL) {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
+ pResampler->x1.f32[iChannel] = pFramesInF32[iChannel];
+ }
+ pFramesInF32 += pResampler->config.channels;
+ } else {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
+ pResampler->x1.f32[iChannel] = 0;
+ }
+ }
+
+ /* Filter. */
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ ma_lpf_process_pcm_frame_f32(&pResampler->lpf[iFilter], pResampler->x1.f32, pResampler->x1.f32);
+ }
+
+ frameCountIn -= 1;
+ framesProcessedIn += 1;
+ pResampler->inTimeInt -= 1;
+ }
+
+ if (pResampler->inTimeInt > 0) {
+ break; /* Ran out of input data. */
+ }
+
+ /* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */
+ if (pFramesOutF32 != NULL) {
+ MA_ASSERT(pResampler->inTimeInt == 0);
+ ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32);
+
+ pFramesOutF32 += pResampler->config.channels;
+ }
+
+ framesProcessedOut += 1;
+
+ /* Advance time forward. */
+ pResampler->inTimeInt += pResampler->inAdvanceInt;
+ pResampler->inTimeFrac += pResampler->inAdvanceFrac;
+ if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
+ pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
+ pResampler->inTimeInt += 1;
+ }
+ }
+
+ *pFrameCountIn = framesProcessedIn;
+ *pFrameCountOut = framesProcessedOut;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ const float* pFramesInF32;
+ /* */ float* pFramesOutF32;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFrameCountIn != NULL);
+ MA_ASSERT(pFrameCountOut != NULL);
+
+ pFramesInF32 = (const float*)pFramesIn;
+ pFramesOutF32 = ( float*)pFramesOut;
+ frameCountIn = *pFrameCountIn;
+ frameCountOut = *pFrameCountOut;
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ for (;;) {
+ ma_uint32 iFilter;
+
+ if (framesProcessedOut >= frameCountOut) {
+ break;
+ }
+
+ /* Before interpolating we need to load the buffers. */
+ while (pResampler->inTimeInt > 0 && frameCountIn > 0) {
+ ma_uint32 iChannel;
+
+ if (pFramesInF32 != NULL) {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
+ pResampler->x1.f32[iChannel] = pFramesInF32[iChannel];
+ }
+ pFramesInF32 += pResampler->config.channels;
+ } else {
+ for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
+ pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
+ pResampler->x1.f32[iChannel] = 0;
+ }
+ }
+
+ frameCountIn -= 1;
+ framesProcessedIn += 1;
+ pResampler->inTimeInt -= 1;
+ }
+
+ if (pResampler->inTimeInt > 0) {
+ break; /* Ran out of input data. */
+ }
+
+ /* Getting here means the frames have been loaded and we can generate the next output frame. */
+ if (pFramesOutF32 != NULL) {
+ MA_ASSERT(pResampler->inTimeInt == 0);
+ ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32);
+
+ /* Filter. */
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ ma_lpf_process_pcm_frame_f32(&pResampler->lpf[iFilter], pFramesOutF32, pFramesOutF32);
+ }
+
+ pFramesOutF32 += pResampler->config.channels;
+ }
+
+ framesProcessedOut += 1;
+
+ /* Advance time forward. */
+ pResampler->inTimeInt += pResampler->inAdvanceInt;
+ pResampler->inTimeFrac += pResampler->inAdvanceFrac;
+ if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
+ pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
+ pResampler->inTimeInt += 1;
+ }
+ }
+
+ *pFrameCountIn = framesProcessedIn;
+ *pFrameCountOut = framesProcessedOut;
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_linear_resampler_process_pcm_frames_f32(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ MA_ASSERT(pResampler != NULL);
+
+ if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) {
+ return ma_linear_resampler_process_pcm_frames_f32_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ return ma_linear_resampler_process_pcm_frames_f32_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+}
+
+
+ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* */ if (pResampler->config.format == ma_format_s16) {
+ return ma_linear_resampler_process_pcm_frames_s16(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else if (pResampler->config.format == ma_format_f32) {
+ return ma_linear_resampler_process_pcm_frames_f32(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* Should never get here. Getting here means the format is not supported and you didn't check the return value of ma_linear_resampler_init(). */
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS;
+ }
+}
+
+
+ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+{
+ return ma_linear_resampler_set_rate_internal(pResampler, sampleRateIn, sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_TRUE);
+}
+
+ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut)
+{
+ ma_uint32 n;
+ ma_uint32 d;
+
+ d = 1000000; /* We use up to 6 decimal places. */
+ n = (ma_uint32)(ratioInOut * d);
+
+ if (n == 0) {
+ return MA_INVALID_ARGS; /* Ratio too small. */
+ }
+
+ MA_ASSERT(n != 0);
+
+ return ma_linear_resampler_set_rate(pResampler, n, d);
+}
+
+
+ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount)
+{
+ ma_uint64 count;
+
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ if (outputFrameCount == 0) {
+ return 0;
+ }
+
+ /* Any whole input frames are consumed before the first output frame is generated. */
+ count = pResampler->inTimeInt;
+ outputFrameCount -= 1;
+
+ /* The rest of the output frames can be calculated in constant time. */
+ count += outputFrameCount * pResampler->inAdvanceInt;
+ count += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut;
+
+ return count;
+}
+
+ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount)
+{
+ ma_uint64 outputFrameCount;
+ ma_uint64 inTimeInt;
+ ma_uint64 inTimeFrac;
+
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ /* TODO: Try making this run in constant time. */
+
+ outputFrameCount = 0;
+ inTimeInt = pResampler->inTimeInt;
+ inTimeFrac = pResampler->inTimeFrac;
+
+ for (;;) {
+ while (inTimeInt > 0 && inputFrameCount > 0) {
+ inputFrameCount -= 1;
+ inTimeInt -= 1;
+ }
+
+ if (inTimeInt > 0) {
+ break;
+ }
+
+ outputFrameCount += 1;
+
+ /* Advance time forward. */
+ inTimeInt += pResampler->inAdvanceInt;
+ inTimeFrac += pResampler->inAdvanceFrac;
+ if (inTimeFrac >= pResampler->config.sampleRateOut) {
+ inTimeFrac -= pResampler->config.sampleRateOut;
+ inTimeInt += 1;
+ }
+ }
+
+ return outputFrameCount;
+}
+
+ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler)
+{
+ ma_uint32 latency;
+ ma_uint32 iFilter;
+
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ latency = 1;
+ for (iFilter = 0; iFilter < pResampler->config.lpfCount; iFilter += 1) {
+ latency += ma_lpf_get_latency(&pResampler->lpf[iFilter]);
+ }
+
+ return latency;
+}
+
+ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler)
+{
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ return ma_linear_resampler_get_input_latency(pResampler) * pResampler->config.sampleRateOut / pResampler->config.sampleRateIn;
+}
+
+
+#if defined(ma_speex_resampler_h)
+#define MA_HAS_SPEEX_RESAMPLER
+
+static ma_result ma_result_from_speex_err(int err)
+{
+ switch (err)
{
- case 1:
- {
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ case RESAMPLER_ERR_SUCCESS: return MA_SUCCESS;
+ case RESAMPLER_ERR_ALLOC_FAILED: return MA_OUT_OF_MEMORY;
+ case RESAMPLER_ERR_BAD_STATE: return MA_ERROR;
+ case RESAMPLER_ERR_INVALID_ARG: return MA_INVALID_ARGS;
+ case RESAMPLER_ERR_PTR_OVERLAP: return MA_INVALID_ARGS;
+ case RESAMPLER_ERR_OVERFLOW: return MA_ERROR;
+ default: return MA_ERROR;
+ }
+}
+#endif /* ma_speex_resampler_h */
- case 2:
- {
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm)
+{
+ ma_resampler_config config;
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channels = channels;
+ config.sampleRateIn = sampleRateIn;
+ config.sampleRateOut = sampleRateOut;
+ config.algorithm = algorithm;
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[3] = MA_CHANNEL_BACK_CENTER;
- } break;
+ /* Linear. */
+ config.linear.lpfCount = 1;
+ config.linear.lpfNyquistFactor = 1;
- case 5:
+ /* Speex. */
+ config.speex.quality = 3; /* Cannot leave this as 0 as that is actually a valid value for Speex resampling quality. */
+
+ return config;
+}
+
+ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler)
+{
+ ma_result result;
+
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pResampler);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
+ return MA_INVALID_ARGS;
+ }
+
+ pResampler->config = *pConfig;
+
+ switch (pConfig->algorithm)
+ {
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_BACK_LEFT;
- channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ ma_linear_resampler_config linearConfig;
+ linearConfig = ma_linear_resampler_config_init(pConfig->format, pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut);
+ linearConfig.lpfCount = pConfig->linear.lpfCount;
+ linearConfig.lpfNyquistFactor = pConfig->linear.lpfNyquistFactor;
+
+ result = ma_linear_resampler_init(&linearConfig, &pResampler->state.linear);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
} break;
- case 6:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_SIDE_LEFT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
- channelMap[5] = MA_CHANNEL_BACK_CENTER;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ int speexErr;
+ pResampler->state.speex.pSpeexResamplerState = speex_resampler_init(pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut, pConfig->speex.quality, &speexErr);
+ if (pResampler->state.speex.pSpeexResamplerState == NULL) {
+ return ma_result_from_speex_err(speexErr);
+ }
+ #else
+ /* Speex resampler not available. */
+ return MA_NO_BACKEND;
+ #endif
} break;
+
+ default: return MA_INVALID_ARGS;
}
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
+ return MA_SUCCESS;
+}
+
+void ma_resampler_uninit(ma_resampler* pResampler)
+{
+ if (pResampler == NULL) {
+ return;
+ }
+
+ if (pResampler->config.algorithm == ma_resample_algorithm_linear) {
+ ma_linear_resampler_uninit(&pResampler->state.linear);
+ }
+
+#if defined(MA_HAS_SPEEX_RESAMPLER)
+ if (pResampler->config.algorithm == ma_resample_algorithm_speex) {
+ speex_resampler_destroy((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
+ }
+#endif
+}
+
+static ma_result ma_resampler_process_pcm_frames__read__linear(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ return ma_linear_resampler_process_pcm_frames(&pResampler->state.linear, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+}
+
+#if defined(MA_HAS_SPEEX_RESAMPLER)
+static ma_result ma_resampler_process_pcm_frames__read__speex(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ int speexErr;
+ ma_uint64 frameCountOut;
+ ma_uint64 frameCountIn;
+ ma_uint64 framesProcessedOut;
+ ma_uint64 framesProcessedIn;
+ unsigned int framesPerIteration = UINT_MAX;
+
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFrameCountOut != NULL);
+ MA_ASSERT(pFrameCountIn != NULL);
+
+ /*
+ Reading from the Speex resampler requires a bit of dancing around for a few reasons. The first thing is that it's frame counts
+ are in unsigned int's whereas ours is in ma_uint64. We therefore need to run the conversion in a loop. The other, more complicated
+ problem, is that we need to keep track of the input time, similar to what we do with the linear resampler. The reason we need to
+ do this is for ma_resampler_get_required_input_frame_count() and ma_resampler_get_expected_output_frame_count().
+ */
+ frameCountOut = *pFrameCountOut;
+ frameCountIn = *pFrameCountIn;
+ framesProcessedOut = 0;
+ framesProcessedIn = 0;
+
+ while (framesProcessedOut < frameCountOut && framesProcessedIn < frameCountIn) {
+ unsigned int frameCountInThisIteration;
+ unsigned int frameCountOutThisIteration;
+ const void* pFramesInThisIteration;
+ void* pFramesOutThisIteration;
+
+ frameCountInThisIteration = framesPerIteration;
+ if ((ma_uint64)frameCountInThisIteration > (frameCountIn - framesProcessedIn)) {
+ frameCountInThisIteration = (unsigned int)(frameCountIn - framesProcessedIn);
}
+
+ frameCountOutThisIteration = framesPerIteration;
+ if ((ma_uint64)frameCountOutThisIteration > (frameCountOut - framesProcessedOut)) {
+ frameCountOutThisIteration = (unsigned int)(frameCountOut - framesProcessedOut);
+ }
+
+ pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels));
+ pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels));
+
+ if (pResampler->config.format == ma_format_f32) {
+ speexErr = speex_resampler_process_interleaved_float((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, (const float*)pFramesInThisIteration, &frameCountInThisIteration, (float*)pFramesOutThisIteration, &frameCountOutThisIteration);
+ } else if (pResampler->config.format == ma_format_s16) {
+ speexErr = speex_resampler_process_interleaved_int((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, (const spx_int16_t*)pFramesInThisIteration, &frameCountInThisIteration, (spx_int16_t*)pFramesOutThisIteration, &frameCountOutThisIteration);
+ } else {
+ /* Format not supported. Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_OPERATION;
+ }
+
+ if (speexErr != RESAMPLER_ERR_SUCCESS) {
+ return ma_result_from_speex_err(speexErr);
+ }
+
+ framesProcessedIn += frameCountInThisIteration;
+ framesProcessedOut += frameCountOutThisIteration;
}
+
+ *pFrameCountOut = framesProcessedOut;
+ *pFrameCountIn = framesProcessedIn;
+
+ return MA_SUCCESS;
}
+#endif
-void ma_get_standard_channel_map_flac(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_resampler_process_pcm_frames__read(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
- switch (channels)
+ MA_ASSERT(pResampler != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ /* pFramesOut is not NULL, which means we must have a capacity. */
+ if (pFrameCountOut == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ /* It doesn't make sense to not have any input frames to process. */
+ if (pFrameCountIn == NULL || pFramesIn == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ switch (pResampler->config.algorithm)
{
- case 1:
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ return ma_resampler_process_pcm_frames__read__linear(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
- case 2:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ return ma_resampler_process_pcm_frames__read__speex(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ #else
+ break;
+ #endif
+ }
+
+ default: break;
+ }
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS;
+}
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- } break;
- case 5:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_BACK_LEFT;
- channelMap[4] = MA_CHANNEL_BACK_RIGHT;
- } break;
+static ma_result ma_resampler_process_pcm_frames__seek__linear(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
+{
+ MA_ASSERT(pResampler != NULL);
- case 6:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_BACK_LEFT;
- channelMap[5] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ /* Seeking is supported natively by the linear resampler. */
+ return ma_linear_resampler_process_pcm_frames(&pResampler->state.linear, pFramesIn, pFrameCountIn, NULL, pFrameCountOut);
+}
- case 7:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_BACK_CENTER;
- channelMap[5] = MA_CHANNEL_SIDE_LEFT;
- channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+#if defined(MA_HAS_SPEEX_RESAMPLER)
+static ma_result ma_resampler_process_pcm_frames__seek__speex(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
+{
+ /* The generic seek method is implemented in on top of ma_resampler_process_pcm_frames__read() by just processing into a dummy buffer. */
+ float devnull[8192];
+ ma_uint64 totalOutputFramesToProcess;
+ ma_uint64 totalOutputFramesProcessed;
+ ma_uint64 totalInputFramesProcessed;
+ ma_uint32 bpf;
+ ma_result result;
- case 8:
- default:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- channelMap[3] = MA_CHANNEL_LFE;
- channelMap[4] = MA_CHANNEL_BACK_LEFT;
- channelMap[5] = MA_CHANNEL_BACK_RIGHT;
- channelMap[6] = MA_CHANNEL_SIDE_LEFT;
- channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
- } break;
+ MA_ASSERT(pResampler != NULL);
+
+ totalOutputFramesProcessed = 0;
+ totalInputFramesProcessed = 0;
+ bpf = ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels);
+
+ if (pFrameCountOut != NULL) {
+ /* Seek by output frames. */
+ totalOutputFramesToProcess = *pFrameCountOut;
+ } else {
+ /* Seek by input frames. */
+ MA_ASSERT(pFrameCountIn != NULL);
+ totalOutputFramesToProcess = ma_resampler_get_expected_output_frame_count(pResampler, *pFrameCountIn);
}
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+ if (pFramesIn != NULL) {
+ /* Process input data. */
+ MA_ASSERT(pFrameCountIn != NULL);
+ while (totalOutputFramesProcessed < totalOutputFramesToProcess && totalInputFramesProcessed < *pFrameCountIn) {
+ ma_uint64 inputFramesToProcessThisIteration = (*pFrameCountIn - totalInputFramesProcessed);
+ ma_uint64 outputFramesToProcessThisIteration = (totalOutputFramesToProcess - totalOutputFramesProcessed);
+ if (outputFramesToProcessThisIteration > sizeof(devnull) / bpf) {
+ outputFramesToProcessThisIteration = sizeof(devnull) / bpf;
+ }
+
+ result = ma_resampler_process_pcm_frames__read(pResampler, ma_offset_ptr(pFramesIn, totalInputFramesProcessed*bpf), &inputFramesToProcessThisIteration, ma_offset_ptr(devnull, totalOutputFramesProcessed*bpf), &outputFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ totalOutputFramesProcessed += outputFramesToProcessThisIteration;
+ totalInputFramesProcessed += inputFramesToProcessThisIteration;
}
+ } else {
+ /* Don't process input data - just update timing and filter state as if zeroes were passed in. */
+ while (totalOutputFramesProcessed < totalOutputFramesToProcess) {
+ ma_uint64 inputFramesToProcessThisIteration = 16384;
+ ma_uint64 outputFramesToProcessThisIteration = (totalOutputFramesToProcess - totalOutputFramesProcessed);
+ if (outputFramesToProcessThisIteration > sizeof(devnull) / bpf) {
+ outputFramesToProcessThisIteration = sizeof(devnull) / bpf;
+ }
+
+ result = ma_resampler_process_pcm_frames__read(pResampler, NULL, &inputFramesToProcessThisIteration, ma_offset_ptr(devnull, totalOutputFramesProcessed*bpf), &outputFramesToProcessThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ totalOutputFramesProcessed += outputFramesToProcessThisIteration;
+ totalInputFramesProcessed += inputFramesToProcessThisIteration;
+ }
+ }
+
+
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = totalInputFramesProcessed;
}
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = totalOutputFramesProcessed;
+ }
+
+ return MA_SUCCESS;
}
+#endif
-void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_resampler_process_pcm_frames__seek(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
{
- /* In Vorbis' type 0 channel mapping, the first two channels are not always the standard left/right - it will have the center speaker where the right usually goes. Why?! */
- switch (channels)
+ MA_ASSERT(pResampler != NULL);
+
+ switch (pResampler->config.algorithm)
{
- case 1:
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_MONO;
+ return ma_resampler_process_pcm_frames__seek__linear(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
} break;
- case 2:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ return ma_resampler_process_pcm_frames__seek__speex(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
+ #else
+ break;
+ #endif
+ };
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- } break;
+ default: break;
+ }
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ /* Should never hit this. */
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_ARGS;
+}
- case 5:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[3] = MA_CHANNEL_BACK_LEFT;
- channelMap[4] = MA_CHANNEL_BACK_RIGHT;
- } break;
- case 6:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[3] = MA_CHANNEL_BACK_LEFT;
- channelMap[4] = MA_CHANNEL_BACK_RIGHT;
- channelMap[5] = MA_CHANNEL_LFE;
- } break;
+ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
- case 7:
+ if (pFrameCountOut == NULL && pFrameCountIn == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pFramesOut != NULL) {
+ /* Reading. */
+ return ma_resampler_process_pcm_frames__read(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* Seeking. */
+ return ma_resampler_process_pcm_frames__seek(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
+ }
+}
+
+ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+{
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (sampleRateIn == 0 || sampleRateOut == 0) {
+ return MA_INVALID_ARGS;
+ }
+
+ pResampler->config.sampleRateIn = sampleRateIn;
+ pResampler->config.sampleRateOut = sampleRateOut;
+
+ switch (pResampler->config.algorithm)
+ {
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[3] = MA_CHANNEL_SIDE_LEFT;
- channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
- channelMap[5] = MA_CHANNEL_BACK_CENTER;
- channelMap[6] = MA_CHANNEL_LFE;
+ return ma_linear_resampler_set_rate(&pResampler->state.linear, sampleRateIn, sampleRateOut);
} break;
- case 8:
- default:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_CENTER;
- channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[3] = MA_CHANNEL_SIDE_LEFT;
- channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
- channelMap[5] = MA_CHANNEL_BACK_LEFT;
- channelMap[6] = MA_CHANNEL_BACK_RIGHT;
- channelMap[7] = MA_CHANNEL_LFE;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ return ma_result_from_speex_err(speex_resampler_set_rate((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, sampleRateIn, sampleRateOut));
+ #else
+ break;
+ #endif
+ };
+
+ default: break;
}
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return MA_INVALID_OPERATION;
+}
+
+ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
+{
+ if (pResampler == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pResampler->config.algorithm == ma_resample_algorithm_linear) {
+ return ma_linear_resampler_set_rate_ratio(&pResampler->state.linear, ratio);
+ } else {
+ /* Getting here means the backend does not have native support for setting the rate as a ratio so we just do it generically. */
+ ma_uint32 n;
+ ma_uint32 d;
+
+ d = 1000000; /* We use up to 6 decimal places. */
+ n = (ma_uint32)(ratio * d);
+
+ if (n == 0) {
+ return MA_INVALID_ARGS; /* Ratio too small. */
}
+
+ MA_ASSERT(n != 0);
+
+ return ma_resampler_set_rate(pResampler, n, d);
}
}
-void ma_get_standard_channel_map_sound4(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount)
{
- switch (channels)
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ if (outputFrameCount == 0) {
+ return 0;
+ }
+
+ switch (pResampler->config.algorithm)
{
- case 1:
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ return ma_linear_resampler_get_required_input_frame_count(&pResampler->state.linear, outputFrameCount);
+ }
- case 2:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ ma_uint64 count;
+ int speexErr = ma_speex_resampler_get_required_input_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, outputFrameCount, &count);
+ if (speexErr != RESAMPLER_ERR_SUCCESS) {
+ return 0;
+ }
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_CENTER;
- } break;
+ return count;
+ #else
+ break;
+ #endif
+ }
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ default: break;
+ }
- case 5:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
+}
- case 6:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- } break;
+ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount)
+{
+ if (pResampler == NULL) {
+ return 0; /* Invalid args. */
+ }
- case 7:
+ if (inputFrameCount == 0) {
+ return 0;
+ }
+
+ switch (pResampler->config.algorithm)
+ {
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_BACK_CENTER;
- channelMap[6] = MA_CHANNEL_LFE;
- } break;
+ return ma_linear_resampler_get_expected_output_frame_count(&pResampler->state.linear, inputFrameCount);
+ }
- case 8:
- default:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- channelMap[6] = MA_CHANNEL_SIDE_LEFT;
- channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
- } break;
- }
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ ma_uint64 count;
+ int speexErr = ma_speex_resampler_get_expected_output_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, inputFrameCount, &count);
+ if (speexErr != RESAMPLER_ERR_SUCCESS) {
+ return 0;
+ }
- /* Remainder. */
- if (channels > 8) {
- ma_uint32 iChannel;
- for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+ return count;
+ #else
+ break;
+ #endif
}
+
+ default: break;
}
+
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
}
-void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler)
{
- switch (channels)
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ switch (pResampler->config.algorithm)
{
- case 1:
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_MONO;
- } break;
+ return ma_linear_resampler_get_input_latency(&pResampler->state.linear);
+ }
- case 2:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_LEFT;
- channelMap[1] = MA_CHANNEL_RIGHT;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ return (ma_uint64)ma_speex_resampler_get_input_latency((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
+ #else
+ break;
+ #endif
+ }
- case 3:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ default: break;
+ }
- case 4:
- {
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- } break;
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
+}
- case 5:
+ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler)
+{
+ if (pResampler == NULL) {
+ return 0;
+ }
+
+ switch (pResampler->config.algorithm)
+ {
+ case ma_resample_algorithm_linear:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- } break;
+ return ma_linear_resampler_get_output_latency(&pResampler->state.linear);
+ }
- case 6:
- default:
+ case ma_resample_algorithm_speex:
{
- channelMap[0] = MA_CHANNEL_FRONT_LEFT;
- channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
- channelMap[2] = MA_CHANNEL_BACK_LEFT;
- channelMap[3] = MA_CHANNEL_BACK_RIGHT;
- channelMap[4] = MA_CHANNEL_FRONT_CENTER;
- channelMap[5] = MA_CHANNEL_LFE;
- } break;
+ #if defined(MA_HAS_SPEEX_RESAMPLER)
+ return (ma_uint64)ma_speex_resampler_get_output_latency((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
+ #else
+ break;
+ #endif
+ }
+
+ default: break;
}
- /* Remainder. */
- if (channels > 6) {
- ma_uint32 iChannel;
- for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
- channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
+ /* Should never get here. */
+ MA_ASSERT(MA_FALSE);
+ return 0;
+}
+
+/**************************************************************************************************************************************************************
+
+Channel Conversion
+
+**************************************************************************************************************************************************************/
+#ifndef MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
+#define MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT 12
+#endif
+
+#define MA_PLANE_LEFT 0
+#define MA_PLANE_RIGHT 1
+#define MA_PLANE_FRONT 2
+#define MA_PLANE_BACK 3
+#define MA_PLANE_BOTTOM 4
+#define MA_PLANE_TOP 5
+
+float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_NONE */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_MONO */
+ { 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT */
+ { 0.0f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT */
+ { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_CENTER */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_LFE */
+ { 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_LEFT */
+ { 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_RIGHT */
+ { 0.25f, 0.0f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT_CENTER */
+ { 0.0f, 0.25f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT_CENTER */
+ { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_CENTER */
+ { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_LEFT */
+ { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_RIGHT */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}, /* MA_CHANNEL_TOP_CENTER */
+ { 0.33f, 0.0f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_LEFT */
+ { 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_FRONT_CENTER */
+ { 0.0f, 0.33f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_RIGHT */
+ { 0.33f, 0.0f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_LEFT */
+ { 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_BACK_CENTER */
+ { 0.0f, 0.33f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_RIGHT */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_0 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_1 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_2 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_3 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_4 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_5 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_6 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_7 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_8 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_9 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_10 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_11 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_12 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_13 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_14 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_15 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_16 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_17 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_18 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_19 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_20 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_21 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_22 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_23 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_24 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_25 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_26 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_27 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_28 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_29 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_30 */
+ { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */
+};
+
+float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositionA, ma_channel channelPositionB)
+{
+ /*
+ Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to
+ the following output configuration:
+
+ - front/left
+ - side/left
+ - back/left
+
+ The front/left output is easy - it the same speaker position so it receives the full contribution of the front/left input. The amount
+ of contribution to apply to the side/left and back/left speakers, however, is a bit more complicated.
+
+ Imagine the front/left speaker as emitting audio from two planes - the front plane and the left plane. You can think of the front/left
+ speaker emitting half of it's total volume from the front, and the other half from the left. Since part of it's volume is being emitted
+ from the left side, and the side/left and back/left channels also emit audio from the left plane, one would expect that they would
+ receive some amount of contribution from front/left speaker. The amount of contribution depends on how many planes are shared between
+ the two speakers. Note that in the examples below I've added a top/front/left speaker as an example just to show how the math works
+ across 3 spatial dimensions.
+
+ The first thing to do is figure out how each speaker's volume is spread over each of plane:
+ - front/left: 2 planes (front and left) = 1/2 = half it's total volume on each plane
+ - side/left: 1 plane (left only) = 1/1 = entire volume from left plane
+ - back/left: 2 planes (back and left) = 1/2 = half it's total volume on each plane
+ - top/front/left: 3 planes (top, front and left) = 1/3 = one third it's total volume on each plane
+
+ The amount of volume each channel contributes to each of it's planes is what controls how much it is willing to given and take to other
+ channels on the same plane. The volume that is willing to the given by one channel is multiplied by the volume that is willing to be
+ taken by the other to produce the final contribution.
+ */
+
+ /* Contribution = Sum(Volume to Give * Volume to Take) */
+ float contribution =
+ g_maChannelPlaneRatios[channelPositionA][0] * g_maChannelPlaneRatios[channelPositionB][0] +
+ g_maChannelPlaneRatios[channelPositionA][1] * g_maChannelPlaneRatios[channelPositionB][1] +
+ g_maChannelPlaneRatios[channelPositionA][2] * g_maChannelPlaneRatios[channelPositionB][2] +
+ g_maChannelPlaneRatios[channelPositionA][3] * g_maChannelPlaneRatios[channelPositionB][3] +
+ g_maChannelPlaneRatios[channelPositionA][4] * g_maChannelPlaneRatios[channelPositionB][4] +
+ g_maChannelPlaneRatios[channelPositionA][5] * g_maChannelPlaneRatios[channelPositionB][5];
+
+ return contribution;
+}
+
+ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode)
+{
+ ma_channel_converter_config config;
+ MA_ZERO_OBJECT(&config);
+ config.format = format;
+ config.channelsIn = channelsIn;
+ config.channelsOut = channelsOut;
+ ma_channel_map_copy(config.channelMapIn, channelMapIn, channelsIn);
+ ma_channel_map_copy(config.channelMapOut, channelMapOut, channelsOut);
+ config.mixingMode = mixingMode;
+
+ return config;
+}
+
+static ma_int32 ma_channel_converter_float_to_fp(float x)
+{
+ return (ma_int32)(x * (1<<MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT));
+}
+
+static ma_bool32 ma_is_spatial_channel_position(ma_channel channelPosition)
+{
+ int i;
+
+ if (channelPosition == MA_CHANNEL_NONE || channelPosition == MA_CHANNEL_MONO || channelPosition == MA_CHANNEL_LFE) {
+ return MA_FALSE;
+ }
+
+ for (i = 0; i < 6; ++i) { /* Each side of a cube. */
+ if (g_maChannelPlaneRatios[channelPosition][i] != 0) {
+ return MA_TRUE;
}
}
+
+ return MA_FALSE;
}
-void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter)
{
- switch (standardChannelMap)
+ ma_uint32 iChannelIn;
+ ma_uint32 iChannelOut;
+
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ MA_ZERO_OBJECT(pConverter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (!ma_channel_map_valid(pConfig->channelsIn, pConfig->channelMapIn)) {
+ return MA_INVALID_ARGS; /* Invalid input channel map. */
+ }
+ if (!ma_channel_map_valid(pConfig->channelsOut, pConfig->channelMapOut)) {
+ return MA_INVALID_ARGS; /* Invalid output channel map. */
+ }
+
+ if (pConfig->format != ma_format_s16 && pConfig->format != ma_format_f32) {
+ return MA_INVALID_ARGS; /* Invalid format. */
+ }
+
+ pConverter->format = pConfig->format;
+ pConverter->channelsIn = pConfig->channelsIn;
+ pConverter->channelsOut = pConfig->channelsOut;
+ ma_channel_map_copy(pConverter->channelMapIn, pConfig->channelMapIn, pConfig->channelsIn);
+ ma_channel_map_copy(pConverter->channelMapOut, pConfig->channelMapOut, pConfig->channelsOut);
+ pConverter->mixingMode = pConfig->mixingMode;
+
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ if (pConverter->format == ma_format_s16) {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = pConfig->weights[iChannelIn][iChannelOut];
+ } else {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(pConfig->weights[iChannelIn][iChannelOut]);
+ }
+ }
+ }
+
+
+
+ /* If the input and output channels and channel maps are the same we should use a passthrough. */
+ if (pConverter->channelsIn == pConverter->channelsOut) {
+ if (ma_channel_map_equal(pConverter->channelsIn, pConverter->channelMapIn, pConverter->channelMapOut)) {
+ pConverter->isPassthrough = MA_TRUE;
+ }
+ if (ma_channel_map_blank(pConverter->channelsIn, pConverter->channelMapIn) || ma_channel_map_blank(pConverter->channelsOut, pConverter->channelMapOut)) {
+ pConverter->isPassthrough = MA_TRUE;
+ }
+ }
+
+
+ /*
+ We can use a simple case for expanding the mono channel. This will used when expanding a mono input into any output so long
+ as no LFE is present in the output.
+ */
+ if (!pConverter->isPassthrough) {
+ if (pConverter->channelsIn == 1 && pConverter->channelMapIn[0] == MA_CHANNEL_MONO) {
+ /* Optimal case if no LFE is in the output channel map. */
+ pConverter->isSimpleMonoExpansion = MA_TRUE;
+ if (ma_channel_map_contains_channel_position(pConverter->channelsOut, pConverter->channelMapOut, MA_CHANNEL_LFE)) {
+ pConverter->isSimpleMonoExpansion = MA_FALSE;
+ }
+ }
+ }
+
+ /* Another optimized case is stereo to mono. */
+ if (!pConverter->isPassthrough) {
+ if (pConverter->channelsOut == 1 && pConverter->channelMapOut[0] == MA_CHANNEL_MONO && pConverter->channelsIn == 2) {
+ /* Optimal case if no LFE is in the input channel map. */
+ pConverter->isStereoToMono = MA_TRUE;
+ if (ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->channelMapIn, MA_CHANNEL_LFE)) {
+ pConverter->isStereoToMono = MA_FALSE;
+ }
+ }
+ }
+
+
+ /*
+ Here is where we do a bit of pre-processing to know how each channel should be combined to make up the output. Rules:
+
+ 1) If it's a passthrough, do nothing - it's just a simple memcpy().
+ 2) If the channel counts are the same and every channel position in the input map is present in the output map, use a
+ simple shuffle. An example might be different 5.1 channel layouts.
+ 3) Otherwise channels are blended based on spatial locality.
+ */
+ if (!pConverter->isPassthrough) {
+ if (pConverter->channelsIn == pConverter->channelsOut) {
+ ma_bool32 areAllChannelPositionsPresent = MA_TRUE;
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_bool32 isInputChannelPositionInOutput = MA_FALSE;
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ if (pConverter->channelMapIn[iChannelIn] == pConverter->channelMapOut[iChannelOut]) {
+ isInputChannelPositionInOutput = MA_TRUE;
+ break;
+ }
+ }
+
+ if (!isInputChannelPositionInOutput) {
+ areAllChannelPositionsPresent = MA_FALSE;
+ break;
+ }
+ }
+
+ if (areAllChannelPositionsPresent) {
+ pConverter->isSimpleShuffle = MA_TRUE;
+
+ /*
+ All the router will be doing is rearranging channels which means all we need to do is use a shuffling table which is just
+ a mapping between the index of the input channel to the index of the output channel.
+ */
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ if (pConverter->channelMapIn[iChannelIn] == pConverter->channelMapOut[iChannelOut]) {
+ pConverter->shuffleTable[iChannelIn] = (ma_uint8)iChannelOut;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ /*
+ Here is where weights are calculated. Note that we calculate the weights at all times, even when using a passthrough and simple
+ shuffling. We use different algorithms for calculating weights depending on our mixing mode.
+
+ In simple mode we don't do any blending (except for converting between mono, which is done in a later step). Instead we just
+ map 1:1 matching channels. In this mode, if no channels in the input channel map correspond to anything in the output channel
+ map, nothing will be heard!
+ */
+
+ /* In all cases we need to make sure all channels that are present in both channel maps have a 1:1 mapping. */
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
+
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
+
+ if (channelPosIn == channelPosOut) {
+ if (pConverter->format == ma_format_s16) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
+ } else {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
+ }
+ }
+ }
+ }
+
+ /*
+ The mono channel is accumulated on all other channels, except LFE. Make sure in this loop we exclude output mono channels since
+ they were handled in the pass above.
+ */
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
+
+ if (channelPosIn == MA_CHANNEL_MONO) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
+
+ if (channelPosOut != MA_CHANNEL_NONE && channelPosOut != MA_CHANNEL_MONO && channelPosOut != MA_CHANNEL_LFE) {
+ if (pConverter->format == ma_format_s16) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
+ } else {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
+ }
+ }
+ }
+ }
+ }
+
+ /* The output mono channel is the average of all non-none, non-mono and non-lfe input channels. */
{
- case ma_standard_channel_map_alsa:
- {
- ma_get_standard_channel_map_alsa(channels, channelMap);
- } break;
+ ma_uint32 len = 0;
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
- case ma_standard_channel_map_rfc3551:
- {
- ma_get_standard_channel_map_rfc3551(channels, channelMap);
- } break;
+ if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
+ len += 1;
+ }
+ }
- case ma_standard_channel_map_flac:
- {
- ma_get_standard_channel_map_flac(channels, channelMap);
- } break;
+ if (len > 0) {
+ float monoWeight = 1.0f / len;
- case ma_standard_channel_map_vorbis:
- {
- ma_get_standard_channel_map_vorbis(channels, channelMap);
- } break;
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
- case ma_standard_channel_map_sound4:
- {
- ma_get_standard_channel_map_sound4(channels, channelMap);
- } break;
-
- case ma_standard_channel_map_sndio:
+ if (channelPosOut == MA_CHANNEL_MONO) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
+
+ if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
+ if (pConverter->format == ma_format_s16) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(monoWeight);
+ } else {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = monoWeight;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ /* Input and output channels that are not present on the other side need to be blended in based on spatial locality. */
+ switch (pConverter->mixingMode)
+ {
+ case ma_channel_mix_mode_rectangular:
{
- ma_get_standard_channel_map_sndio(channels, channelMap);
+ /* Unmapped input channels. */
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
+
+ if (ma_is_spatial_channel_position(channelPosIn)) {
+ if (!ma_channel_map_contains_channel_position(pConverter->channelsOut, pConverter->channelMapOut, channelPosIn)) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
+
+ if (ma_is_spatial_channel_position(channelPosOut)) {
+ float weight = 0;
+ if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) {
+ weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut);
+ }
+
+ /* Only apply the weight if we haven't already got some contribution from the respective channels. */
+ if (pConverter->format == ma_format_s16) {
+ if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight);
+ }
+ } else {
+ if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /* Unmapped output channels. */
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
+
+ if (ma_is_spatial_channel_position(channelPosOut)) {
+ if (!ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->channelMapIn, channelPosOut)) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
+
+ if (ma_is_spatial_channel_position(channelPosIn)) {
+ float weight = 0;
+ if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) {
+ weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut);
+ }
+
+ /* Only apply the weight if we haven't already got some contribution from the respective channels. */
+ if (pConverter->format == ma_format_s16) {
+ if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fp(weight);
+ }
+ } else {
+ if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
+ pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
} break;
- case ma_standard_channel_map_microsoft:
+ case ma_channel_mix_mode_custom_weights:
+ case ma_channel_mix_mode_simple:
default:
{
- ma_get_standard_channel_map_microsoft(channels, channelMap);
+ /* Fallthrough. */
} break;
}
+
+
+ return MA_SUCCESS;
}
-void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels)
+void ma_channel_converter_uninit(ma_channel_converter* pConverter)
{
- if (pOut != NULL && pIn != NULL && channels > 0) {
- ma_copy_memory(pOut, pIn, sizeof(*pOut) * channels);
+ if (pConverter == NULL) {
+ return;
}
}
-ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
+static ma_result ma_channel_converter_process_pcm_frames__passthrough(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
- if (channelMap == NULL) {
- return MA_FALSE;
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFramesIn != NULL);
+
+ ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
+ return MA_SUCCESS;
+}
+
+static ma_result ma_channel_converter_process_pcm_frames__simple_shuffle(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint32 iFrame;
+ ma_uint32 iChannelIn;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFramesIn != NULL);
+ MA_ASSERT(pConverter->channelsIn == pConverter->channelsOut);
+
+ if (pConverter->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn];
+ }
+ }
+ } else {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn];
+ }
+ }
}
- /* A channel count of 0 is invalid. */
- if (channels == 0) {
- return MA_FALSE;
+ return MA_SUCCESS;
+}
+
+static ma_result ma_channel_converter_process_pcm_frames__simple_mono_expansion(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint64 iFrame;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFramesIn != NULL);
+
+ if (pConverter->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ if (pConverter->channelsOut == 2) {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame];
+ pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame];
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
+ pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame];
+ }
+ }
+ }
+ } else {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ if (pConverter->channelsOut == 2) {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame];
+ pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame];
+ }
+ } else {
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
+ pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame];
+ }
+ }
+ }
}
- /* It does not make sense to have a mono channel when there is more than 1 channel. */
- if (channels > 1) {
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- if (channelMap[iChannel] == MA_CHANNEL_MONO) {
- return MA_FALSE;
+ return MA_SUCCESS;
+}
+
+static ma_result ma_channel_converter_process_pcm_frames__stereo_to_mono(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint64 iFrame;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFramesIn != NULL);
+ MA_ASSERT(pConverter->channelsIn == 2);
+ MA_ASSERT(pConverter->channelsOut == 1);
+
+ if (pConverter->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2);
+ }
+ } else {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; ++iFrame) {
+ pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f;
+ }
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_channel_converter_process_pcm_frames__weights(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ ma_uint32 iFrame;
+ ma_uint32 iChannelIn;
+ ma_uint32 iChannelOut;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pFramesIn != NULL);
+
+ /* This is the more complicated case. Each of the output channels is accumulated with 0 or more input channels. */
+
+ /* Clear. */
+ ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
+
+ /* Accumulate. */
+ if (pConverter->format == ma_format_s16) {
+ /* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
+ const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut];
+ s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
+
+ pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767);
+ }
+ }
+ }
+ } else {
+ /* */ float* pFramesOutF32 = ( float*)pFramesOut;
+ const float* pFramesInF32 = (const float*)pFramesIn;
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
+ for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
+ pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut];
+ }
}
}
}
+
+ return MA_SUCCESS;
+}
- return MA_TRUE;
+ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
+{
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pFramesOut == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pFramesIn == NULL) {
+ ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
+ return MA_SUCCESS;
+ }
+
+ if (pConverter->isPassthrough) {
+ return ma_channel_converter_process_pcm_frames__passthrough(pConverter, pFramesOut, pFramesIn, frameCount);
+ } else if (pConverter->isSimpleShuffle) {
+ return ma_channel_converter_process_pcm_frames__simple_shuffle(pConverter, pFramesOut, pFramesIn, frameCount);
+ } else if (pConverter->isSimpleMonoExpansion) {
+ return ma_channel_converter_process_pcm_frames__simple_mono_expansion(pConverter, pFramesOut, pFramesIn, frameCount);
+ } else if (pConverter->isStereoToMono) {
+ return ma_channel_converter_process_pcm_frames__stereo_to_mono(pConverter, pFramesOut, pFramesIn, frameCount);
+ } else {
+ return ma_channel_converter_process_pcm_frames__weights(pConverter, pFramesOut, pFramesIn, frameCount);
+ }
}
-ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS])
+
+/**************************************************************************************************************************************************************
+
+Data Conversion
+
+**************************************************************************************************************************************************************/
+ma_data_converter_config ma_data_converter_config_init_default()
{
- ma_uint32 iChannel;
+ ma_data_converter_config config;
+ MA_ZERO_OBJECT(&config);
- if (channelMapA == channelMapB) {
- return MA_FALSE;
+ config.ditherMode = ma_dither_mode_none;
+ config.resampling.algorithm = ma_resample_algorithm_linear;
+ config.resampling.allowDynamicSampleRate = MA_FALSE; /* Disable dynamic sample rates by default because dynamic rate adjustments should be quite rare and it allows an optimization for cases when the in and out sample rates are the same. */
+
+ /* Linear resampling defaults. */
+ config.resampling.linear.lpfCount = 1;
+ config.resampling.linear.lpfNyquistFactor = 1;
+
+ /* Speex resampling defaults. */
+ config.resampling.speex.quality = 3;
+
+ return config;
+}
+
+ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+{
+ ma_data_converter_config config = ma_data_converter_config_init_default();
+ config.formatIn = formatIn;
+ config.formatOut = formatOut;
+ config.channelsIn = channelsIn;
+ config.channelsOut = channelsOut;
+ config.sampleRateIn = sampleRateIn;
+ config.sampleRateOut = sampleRateOut;
+
+ return config;
+}
+
+ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter)
+{
+ ma_result result;
+ ma_format midFormat;
+
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
}
- if (channels == 0 || channels > MA_MAX_CHANNELS) {
- return MA_FALSE;
+ MA_ZERO_OBJECT(pConverter);
+
+ if (pConfig == NULL) {
+ return MA_INVALID_ARGS;
}
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- if (channelMapA[iChannel] != channelMapB[iChannel]) {
- return MA_FALSE;
+ pConverter->config = *pConfig;
+
+ /*
+ We want to avoid as much data conversion as possible. The channel converter and resampler both support s16 and f32 natively. We need to decide
+ on the format to use for this stage. We call this the mid format because it's used in the middle stage of the conversion pipeline. If the output
+ format is either s16 or f32 we use that one. If that is not the case it will do the same thing for the input format. If it's neither we just
+ use f32.
+ */
+ /* */ if (pConverter->config.formatOut == ma_format_s16 || pConverter->config.formatOut == ma_format_f32) {
+ midFormat = pConverter->config.formatOut;
+ } else if (pConverter->config.formatIn == ma_format_s16 || pConverter->config.formatIn == ma_format_f32) {
+ midFormat = pConverter->config.formatIn;
+ } else {
+ midFormat = ma_format_f32;
+ }
+
+ if (pConverter->config.formatIn != midFormat) {
+ pConverter->hasPreFormatConversion = MA_TRUE;
+ }
+ if (pConverter->config.formatOut != midFormat) {
+ pConverter->hasPostFormatConversion = MA_TRUE;
+ }
+
+
+ /* Channel converter. We always initialize this, but we check if it configures itself as a passthrough to determine whether or not it's needed. */
+ {
+ ma_uint32 iChannelIn;
+ ma_uint32 iChannelOut;
+ ma_channel_converter_config channelConverterConfig;
+
+ channelConverterConfig = ma_channel_converter_config_init(midFormat, pConverter->config.channelsIn, pConverter->config.channelMapIn, pConverter->config.channelsOut, pConverter->config.channelMapOut, pConverter->config.channelMixMode);
+
+ /* Channel weights. */
+ for (iChannelIn = 0; iChannelIn < pConverter->config.channelsIn; iChannelIn += 1) {
+ for (iChannelOut = 0; iChannelOut < pConverter->config.channelsOut; iChannelOut += 1) {
+ channelConverterConfig.weights[iChannelIn][iChannelOut] = pConverter->config.channelWeights[iChannelIn][iChannelOut];
+ }
+ }
+
+ result = ma_channel_converter_init(&channelConverterConfig, &pConverter->channelConverter);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ /* If the channel converter is not a passthrough we need to enable it. Otherwise we can skip it. */
+ if (pConverter->channelConverter.isPassthrough == MA_FALSE) {
+ pConverter->hasChannelConverter = MA_TRUE;
}
}
- return MA_TRUE;
+
+ /* Always enable dynamic sample rates if the input sample rate is different because we're always going to need a resampler in this case anyway. */
+ if (pConverter->config.resampling.allowDynamicSampleRate == MA_FALSE) {
+ pConverter->config.resampling.allowDynamicSampleRate = pConverter->config.sampleRateIn != pConverter->config.sampleRateOut;
+ }
+
+ /* Resampler. */
+ if (pConverter->config.resampling.allowDynamicSampleRate) {
+ ma_resampler_config resamplerConfig;
+ ma_uint32 resamplerChannels;
+
+ /* The resampler is the most expensive part of the conversion process, so we need to do it at the stage where the channel count is at it's lowest. */
+ if (pConverter->config.channelsIn < pConverter->config.channelsOut) {
+ resamplerChannels = pConverter->config.channelsIn;
+ } else {
+ resamplerChannels = pConverter->config.channelsOut;
+ }
+
+ resamplerConfig = ma_resampler_config_init(midFormat, resamplerChannels, pConverter->config.sampleRateIn, pConverter->config.sampleRateOut, pConverter->config.resampling.algorithm);
+ resamplerConfig.linear.lpfCount = pConverter->config.resampling.linear.lpfCount;
+ resamplerConfig.linear.lpfNyquistFactor = pConverter->config.resampling.linear.lpfNyquistFactor;
+ resamplerConfig.speex.quality = pConverter->config.resampling.speex.quality;
+
+ result = ma_resampler_init(&resamplerConfig, &pConverter->resampler);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ pConverter->hasResampler = MA_TRUE;
+ }
+
+ /* We can enable passthrough optimizations if applicable. Note that we'll only be able to do this if the sample rate is static. */
+ if (pConverter->hasPreFormatConversion == MA_FALSE &&
+ pConverter->hasPostFormatConversion == MA_FALSE &&
+ pConverter->hasChannelConverter == MA_FALSE &&
+ pConverter->hasResampler == MA_FALSE) {
+ pConverter->isPassthrough = MA_TRUE;
+ }
+
+ return MA_SUCCESS;
}
-ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
+void ma_data_converter_uninit(ma_data_converter* pConverter)
{
- ma_uint32 iChannel;
+ if (pConverter == NULL) {
+ return;
+ }
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- if (channelMap[iChannel] != MA_CHANNEL_NONE) {
- return MA_FALSE;
+ if (pConverter->hasResampler) {
+ ma_resampler_uninit(&pConverter->resampler);
+ }
+}
+
+static ma_result ma_data_converter_process_pcm_frames__passthrough(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 frameCount;
+
+ MA_ASSERT(pConverter != NULL);
+
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
+
+ frameCount = ma_min(frameCountIn, frameCountOut);
+
+ if (pFramesOut != NULL) {
+ if (pFramesIn != NULL) {
+ ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
+ } else {
+ ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
}
- return MA_TRUE;
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = frameCount;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = frameCount;
+ }
+
+ return MA_SUCCESS;
}
-ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition)
+static ma_result ma_data_converter_process_pcm_frames__format_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
- ma_uint32 iChannel;
- for (iChannel = 0; iChannel < channels; ++iChannel) {
- if (channelMap[iChannel] == channelPosition) {
- return MA_TRUE;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 frameCount;
+
+ MA_ASSERT(pConverter != NULL);
+
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
+
+ frameCount = ma_min(frameCountIn, frameCountOut);
+
+ if (pFramesOut != NULL) {
+ if (pFramesIn != NULL) {
+ ma_convert_pcm_frames_format(pFramesOut, pConverter->config.formatOut, pFramesIn, pConverter->config.formatIn, frameCount, pConverter->config.channelsIn, pConverter->config.ditherMode);
+ } else {
+ ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
}
- return MA_FALSE;
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = frameCount;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = frameCount;
+ }
+
+ return MA_SUCCESS;
}
+static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conversion(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ ma_result result = MA_SUCCESS;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+ MA_ASSERT(pConverter != NULL);
-/**************************************************************************************************************************************************************
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
-Format Conversion.
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
-**************************************************************************************************************************************************************/
-void ma_copy_memory_64(void* dst, const void* src, ma_uint64 sizeInBytes)
+ while (framesProcessedOut < frameCountOut) {
+ ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
+ const void* pFramesInThisIteration;
+ /* */ void* pFramesOutThisIteration;
+ ma_uint64 frameCountInThisIteration;
+ ma_uint64 frameCountOutThisIteration;
+
+ if (pFramesIn != NULL) {
+ pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
+ } else {
+ pFramesInThisIteration = NULL;
+ }
+
+ if (pFramesOut != NULL) {
+ pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
+ } else {
+ pFramesOutThisIteration = NULL;
+ }
+
+ /* Do a pre format conversion if necessary. */
+ if (pConverter->hasPreFormatConversion) {
+ ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
+
+ frameCountInThisIteration = (frameCountIn - framesProcessedIn);
+ if (frameCountInThisIteration > tempBufferInCap) {
+ frameCountInThisIteration = tempBufferInCap;
+ }
+
+ if (pConverter->hasPostFormatConversion) {
+ if (frameCountInThisIteration > tempBufferOutCap) {
+ frameCountInThisIteration = tempBufferOutCap;
+ }
+ }
+
+ if (pFramesInThisIteration != NULL) {
+ ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.config.format, pFramesInThisIteration, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
+ } else {
+ MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn));
+ }
+
+ frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
+
+ if (pConverter->hasPostFormatConversion) {
+ /* Both input and output conversion required. Output to the temp buffer. */
+ if (frameCountOutThisIteration > tempBufferOutCap) {
+ frameCountOutThisIteration = tempBufferOutCap;
+ }
+
+ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration);
+ } else {
+ /* Only pre-format required. Output straight to the output buffer. */
+ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pFramesOutThisIteration, &frameCountOutThisIteration);
+ }
+
+ if (result != MA_SUCCESS) {
+ break;
+ }
+ } else {
+ /* No pre-format required. Just read straight from the input buffer. */
+ MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE);
+
+ frameCountInThisIteration = (frameCountIn - framesProcessedIn);
+ frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
+ if (frameCountOutThisIteration > tempBufferOutCap) {
+ frameCountOutThisIteration = tempBufferOutCap;
+ }
+
+ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesInThisIteration, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+ }
+
+ /* If we are doing a post format conversion we need to do that now. */
+ if (pConverter->hasPostFormatConversion) {
+ if (pFramesOutThisIteration != NULL) {
+ ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->config.formatOut, pTempBufferOut, pConverter->resampler.config.format, frameCountOutThisIteration, pConverter->resampler.config.channels, pConverter->config.ditherMode);
+ }
+ }
+
+ framesProcessedIn += frameCountInThisIteration;
+ framesProcessedOut += frameCountOutThisIteration;
+
+ MA_ASSERT(framesProcessedIn <= frameCountIn);
+ MA_ASSERT(framesProcessedOut <= frameCountOut);
+
+ if (frameCountOutThisIteration == 0) {
+ break; /* Consumed all of our input data. */
+ }
+ }
+
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = framesProcessedIn;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = framesProcessedOut;
+ }
+
+ return result;
+}
+
+static ma_result ma_data_converter_process_pcm_frames__resample_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
-#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
- ma_copy_memory(dst, src, (size_t)sizeInBytes);
-#else
- while (sizeInBytes > 0) {
- ma_uint64 bytesToCopyNow = sizeInBytes;
- if (bytesToCopyNow > MA_SIZE_MAX) {
- bytesToCopyNow = MA_SIZE_MAX;
+ MA_ASSERT(pConverter != NULL);
+
+ if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) {
+ /* Neither pre- nor post-format required. This is simple case where only resampling is required. */
+ return ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* Format conversion required. */
+ return ma_data_converter_process_pcm_frames__resample_with_format_conversion(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+}
+
+static ma_result ma_data_converter_process_pcm_frames__channels_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ ma_result result;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 frameCount;
+
+ MA_ASSERT(pConverter != NULL);
+
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
+
+ frameCount = ma_min(frameCountIn, frameCountOut);
+
+ if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) {
+ /* No format conversion required. */
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOut, pFramesIn, frameCount);
+ if (result != MA_SUCCESS) {
+ return result;
}
+ } else {
+ /* Format conversion required. */
+ ma_uint64 framesProcessed = 0;
+
+ while (framesProcessed < frameCount) {
+ ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
+ const void* pFramesInThisIteration;
+ /* */ void* pFramesOutThisIteration;
+ ma_uint64 frameCountThisIteration;
+
+ if (pFramesIn != NULL) {
+ pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessed * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
+ } else {
+ pFramesInThisIteration = NULL;
+ }
- ma_copy_memory(dst, src, (size_t)bytesToCopyNow); /* Safe cast to size_t. */
+ if (pFramesOut != NULL) {
+ pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessed * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
+ } else {
+ pFramesOutThisIteration = NULL;
+ }
- sizeInBytes -= bytesToCopyNow;
- dst = ( void*)(( ma_uint8*)dst + bytesToCopyNow);
- src = (const void*)((const ma_uint8*)src + bytesToCopyNow);
+ /* Do a pre format conversion if necessary. */
+ if (pConverter->hasPreFormatConversion) {
+ ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
+ const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn);
+
+ frameCountThisIteration = (frameCount - framesProcessed);
+ if (frameCountThisIteration > tempBufferInCap) {
+ frameCountThisIteration = tempBufferInCap;
+ }
+
+ if (pConverter->hasPostFormatConversion) {
+ if (frameCountThisIteration > tempBufferOutCap) {
+ frameCountThisIteration = tempBufferOutCap;
+ }
+ }
+
+ if (pFramesInThisIteration != NULL) {
+ ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pFramesInThisIteration, pConverter->config.formatIn, frameCountThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
+ } else {
+ MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn));
+ }
+
+ if (pConverter->hasPostFormatConversion) {
+ /* Both input and output conversion required. Output to the temp buffer. */
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pTempBufferIn, frameCountThisIteration);
+ } else {
+ /* Only pre-format required. Output straight to the output buffer. */
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOutThisIteration, pTempBufferIn, frameCountThisIteration);
+ }
+
+ if (result != MA_SUCCESS) {
+ break;
+ }
+ } else {
+ /* No pre-format required. Just read straight from the input buffer. */
+ MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE);
+
+ frameCountThisIteration = (frameCount - framesProcessed);
+ if (frameCountThisIteration > tempBufferOutCap) {
+ frameCountThisIteration = tempBufferOutCap;
+ }
+
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pFramesInThisIteration, frameCountThisIteration);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+ }
+
+ /* If we are doing a post format conversion we need to do that now. */
+ if (pConverter->hasPostFormatConversion) {
+ if (pFramesOutThisIteration != NULL) {
+ ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->config.formatOut, pTempBufferOut, pConverter->channelConverter.format, frameCountThisIteration, pConverter->channelConverter.channelsOut, pConverter->config.ditherMode);
+ }
+ }
+
+ framesProcessed += frameCountThisIteration;
+ }
}
-#endif
+
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = frameCount;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = frameCount;
+ }
+
+ return MA_SUCCESS;
}
-void ma_zero_memory_64(void* dst, ma_uint64 sizeInBytes)
+static ma_result ma_data_converter_process_pcm_frames__resampling_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
-#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
- ma_zero_memory(dst, (size_t)sizeInBytes);
-#else
- while (sizeInBytes > 0) {
- ma_uint64 bytesToZeroNow = sizeInBytes;
- if (bytesToZeroNow > MA_SIZE_MAX) {
- bytesToZeroNow = MA_SIZE_MAX;
+ ma_result result;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+ ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */
+ ma_uint64 tempBufferInCap;
+ ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */
+ ma_uint64 tempBufferMidCap;
+ ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */
+ ma_uint64 tempBufferOutCap;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pConverter->resampler.config.format == pConverter->channelConverter.format);
+ MA_ASSERT(pConverter->resampler.config.channels == pConverter->channelConverter.channelsIn);
+ MA_ASSERT(pConverter->resampler.config.channels < pConverter->channelConverter.channelsOut);
+
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
+
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
+ tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
+ tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
+
+ while (framesProcessedOut < frameCountOut) {
+ ma_uint64 frameCountInThisIteration;
+ ma_uint64 frameCountOutThisIteration;
+ const void* pRunningFramesIn = NULL;
+ void* pRunningFramesOut = NULL;
+ const void* pResampleBufferIn;
+ void* pChannelsBufferOut;
+
+ if (pFramesIn != NULL) {
+ pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
+ }
+ if (pFramesOut != NULL) {
+ pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
- ma_zero_memory(dst, (size_t)bytesToZeroNow); /* Safe cast to size_t. */
+ /* Run input data through the resampler and output it to the temporary buffer. */
+ frameCountInThisIteration = (frameCountIn - framesProcessedIn);
- sizeInBytes -= bytesToZeroNow;
- dst = (void*)((ma_uint8*)dst + bytesToZeroNow);
+ if (pConverter->hasPreFormatConversion) {
+ if (frameCountInThisIteration > tempBufferInCap) {
+ frameCountInThisIteration = tempBufferInCap;
+ }
+ }
+
+ frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
+ if (frameCountOutThisIteration > tempBufferMidCap) {
+ frameCountOutThisIteration = tempBufferMidCap;
+ }
+
+ /* We can't read more frames than can fit in the output buffer. */
+ if (pConverter->hasPostFormatConversion) {
+ if (frameCountOutThisIteration > tempBufferOutCap) {
+ frameCountOutThisIteration = tempBufferOutCap;
+ }
+ }
+
+ /* We need to ensure we don't try to process too many input frames that we run out of room in the output buffer. If this happens we'll end up glitching. */
+ {
+ ma_uint64 requiredInputFrameCount = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration);
+ if (frameCountInThisIteration > requiredInputFrameCount) {
+ frameCountInThisIteration = requiredInputFrameCount;
+ }
+ }
+
+ if (pConverter->hasPreFormatConversion) {
+ if (pFramesIn != NULL) {
+ ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.config.format, pRunningFramesIn, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
+ pResampleBufferIn = pTempBufferIn;
+ } else {
+ pResampleBufferIn = NULL;
+ }
+ } else {
+ pResampleBufferIn = pRunningFramesIn;
+ }
+
+ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pResampleBufferIn, &frameCountInThisIteration, pTempBufferMid, &frameCountOutThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+
+ /*
+ The input data has been resampled so now we need to run it through the channel converter. The input data is always contained in pTempBufferMid. We only need to do
+ this part if we have an output buffer.
+ */
+ if (pFramesOut != NULL) {
+ if (pConverter->hasPostFormatConversion) {
+ pChannelsBufferOut = pTempBufferOut;
+ } else {
+ pChannelsBufferOut = pRunningFramesOut;
+ }
+
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pChannelsBufferOut, pTempBufferMid, frameCountOutThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ /* Finally we do post format conversion. */
+ if (pConverter->hasPostFormatConversion) {
+ ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->config.formatOut, pChannelsBufferOut, pConverter->channelConverter.format, frameCountOutThisIteration, pConverter->channelConverter.channelsOut, pConverter->config.ditherMode);
+ }
+ }
+
+
+ framesProcessedIn += frameCountInThisIteration;
+ framesProcessedOut += frameCountOutThisIteration;
+
+ MA_ASSERT(framesProcessedIn <= frameCountIn);
+ MA_ASSERT(framesProcessedOut <= frameCountOut);
+
+ if (frameCountOutThisIteration == 0) {
+ break; /* Consumed all of our input data. */
+ }
}
-#endif
+
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = framesProcessedIn;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = framesProcessedOut;
+ }
+
+ return MA_SUCCESS;
+}
+
+static ma_result ma_data_converter_process_pcm_frames__channels_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ ma_result result;
+ ma_uint64 frameCountIn;
+ ma_uint64 frameCountOut;
+ ma_uint64 framesProcessedIn;
+ ma_uint64 framesProcessedOut;
+ ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */
+ ma_uint64 tempBufferInCap;
+ ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */
+ ma_uint64 tempBufferMidCap;
+ ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */
+ ma_uint64 tempBufferOutCap;
+
+ MA_ASSERT(pConverter != NULL);
+ MA_ASSERT(pConverter->resampler.config.format == pConverter->channelConverter.format);
+ MA_ASSERT(pConverter->resampler.config.channels == pConverter->channelConverter.channelsOut);
+ MA_ASSERT(pConverter->resampler.config.channels < pConverter->channelConverter.channelsIn);
+
+ frameCountIn = 0;
+ if (pFrameCountIn != NULL) {
+ frameCountIn = *pFrameCountIn;
+ }
+
+ frameCountOut = 0;
+ if (pFrameCountOut != NULL) {
+ frameCountOut = *pFrameCountOut;
+ }
+
+ framesProcessedIn = 0;
+ framesProcessedOut = 0;
+
+ tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn);
+ tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
+ tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
+
+ while (framesProcessedOut < frameCountOut) {
+ ma_uint64 frameCountInThisIteration;
+ ma_uint64 frameCountOutThisIteration;
+ const void* pRunningFramesIn = NULL;
+ void* pRunningFramesOut = NULL;
+ const void* pChannelsBufferIn;
+ void* pResampleBufferOut;
+
+ if (pFramesIn != NULL) {
+ pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
+ }
+ if (pFramesOut != NULL) {
+ pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
+ }
+
+ /* Run input data through the channel converter and output it to the temporary buffer. */
+ frameCountInThisIteration = (frameCountIn - framesProcessedIn);
+
+ if (pConverter->hasPreFormatConversion) {
+ if (frameCountInThisIteration > tempBufferInCap) {
+ frameCountInThisIteration = tempBufferInCap;
+ }
+
+ if (pRunningFramesIn != NULL) {
+ ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pRunningFramesIn, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
+ pChannelsBufferIn = pTempBufferIn;
+ } else {
+ pChannelsBufferIn = NULL;
+ }
+ } else {
+ pChannelsBufferIn = pRunningFramesIn;
+ }
+
+ /*
+ We can't convert more frames than will fit in the output buffer. We shouldn't actually need to do this check because the channel count is always reduced
+ in this case which means we should always have capacity, but I'm leaving it here just for safety for future maintenance.
+ */
+ if (frameCountInThisIteration > tempBufferMidCap) {
+ frameCountInThisIteration = tempBufferMidCap;
+ }
+
+ /*
+ Make sure we don't read any more input frames than we need to fill the output frame count. If we do this we will end up in a situation where we lose some
+ input samples and will end up glitching.
+ */
+ frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
+ if (frameCountOutThisIteration > tempBufferMidCap) {
+ frameCountOutThisIteration = tempBufferMidCap;
+ }
+
+ if (pConverter->hasPostFormatConversion) {
+ ma_uint64 requiredInputFrameCount;
+
+ if (frameCountOutThisIteration > tempBufferOutCap) {
+ frameCountOutThisIteration = tempBufferOutCap;
+ }
+
+ requiredInputFrameCount = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration);
+ if (frameCountInThisIteration > requiredInputFrameCount) {
+ frameCountInThisIteration = requiredInputFrameCount;
+ }
+ }
+
+ result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferMid, pChannelsBufferIn, frameCountInThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+
+ /* At this point we have converted the channels to the output channel count which we now need to resample. */
+ if (pConverter->hasPostFormatConversion) {
+ pResampleBufferOut = pTempBufferOut;
+ } else {
+ pResampleBufferOut = pRunningFramesOut;
+ }
+
+ result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferMid, &frameCountInThisIteration, pResampleBufferOut, &frameCountOutThisIteration);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ /* Finally we can do the post format conversion. */
+ if (pConverter->hasPostFormatConversion) {
+ if (pRunningFramesOut != NULL) {
+ ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->config.formatOut, pResampleBufferOut, pConverter->resampler.config.format, frameCountOutThisIteration, pConverter->config.channelsOut, pConverter->config.ditherMode);
+ }
+ }
+
+ framesProcessedIn += frameCountInThisIteration;
+ framesProcessedOut += frameCountOutThisIteration;
+
+ MA_ASSERT(framesProcessedIn <= frameCountIn);
+ MA_ASSERT(framesProcessedOut <= frameCountOut);
+
+ if (frameCountOutThisIteration == 0) {
+ break; /* Consumed all of our input data. */
+ }
+ }
+
+ if (pFrameCountIn != NULL) {
+ *pFrameCountIn = framesProcessedIn;
+ }
+ if (pFrameCountOut != NULL) {
+ *pFrameCountOut = framesProcessedOut;
+ }
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
+{
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConverter->isPassthrough) {
+ return ma_data_converter_process_pcm_frames__passthrough(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+
+ /*
+ Here is where the real work is done. Getting here means we're not using a passthrough and we need to move the data through each of the relevant stages. The order
+ of our stages depends on the input and output channel count. If the input channels is less than the output channels we want to do sample rate conversion first so
+ that it has less work (resampling is the most expensive part of format conversion).
+ */
+ if (pConverter->config.channelsIn < pConverter->config.channelsOut) {
+ /* Do resampling first, if necessary. */
+ MA_ASSERT(pConverter->hasChannelConverter == MA_TRUE);
+
+ if (pConverter->hasResampler) {
+ /* Resampling first. */
+ return ma_data_converter_process_pcm_frames__resampling_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* Resampling not required. */
+ return ma_data_converter_process_pcm_frames__channels_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+ } else {
+ /* Do channel conversion first, if necessary. */
+ if (pConverter->hasChannelConverter) {
+ if (pConverter->hasResampler) {
+ /* Channel routing first. */
+ return ma_data_converter_process_pcm_frames__channels_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* Resampling not required. */
+ return ma_data_converter_process_pcm_frames__channels_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+ } else {
+ /* Channel routing not required. */
+ if (pConverter->hasResampler) {
+ /* Resampling only. */
+ return ma_data_converter_process_pcm_frames__resample_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ } else {
+ /* No channel routing nor resampling required. Just format conversion. */
+ return ma_data_converter_process_pcm_frames__format_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
+ }
+ }
+ }
+}
+
+ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
+{
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConverter->hasResampler == MA_FALSE) {
+ return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */
+ }
+
+ return ma_resampler_set_rate(&pConverter->resampler, sampleRateIn, sampleRateOut);
+}
+
+ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut)
+{
+ if (pConverter == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ if (pConverter->hasResampler == MA_FALSE) {
+ return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */
+ }
+
+ return ma_resampler_set_rate_ratio(&pConverter->resampler, ratioInOut);
+}
+
+ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount)
+{
+ if (pConverter == NULL) {
+ return 0;
+ }
+
+ if (pConverter->hasResampler) {
+ return ma_resampler_get_required_input_frame_count(&pConverter->resampler, outputFrameCount);
+ } else {
+ return outputFrameCount; /* 1:1 */
+ }
+}
+
+ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount)
+{
+ if (pConverter == NULL) {
+ return 0;
+ }
+
+ if (pConverter->hasResampler) {
+ return ma_resampler_get_expected_output_frame_count(&pConverter->resampler, inputFrameCount);
+ } else {
+ return inputFrameCount; /* 1:1 */
+ }
+}
+
+ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter)
+{
+ if (pConverter == NULL) {
+ return 0;
+ }
+
+ if (pConverter->hasResampler) {
+ return ma_resampler_get_input_latency(&pConverter->resampler);
+ }
+
+ return 0; /* No latency without a resampler. */
+}
+
+ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter)
+{
+ if (pConverter == NULL) {
+ return 0;
+ }
+
+ if (pConverter->hasResampler) {
+ return ma_resampler_get_output_latency(&pConverter->resampler);
+ }
+
+ return 0; /* No latency without a resampler. */
}
+
+/**************************************************************************************************************************************************************
+
+Format Conversion
+
+**************************************************************************************************************************************************************/
+
/* u8 */
void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
@@ -27423,7 +32279,7 @@ void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode
}
-void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
@@ -27439,31 +32295,25 @@ void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma
(void)ditherMode;
}
-void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_u8_to_s16__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
@@ -27474,12 +32324,27 @@ void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
#else
- ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
@@ -27497,31 +32362,25 @@ void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma
(void)ditherMode;
}
-void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_u8_to_s24__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
@@ -27532,12 +32391,27 @@ void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
#else
- ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
@@ -27553,31 +32427,25 @@ void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma
(void)ditherMode;
}
-void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_u8_to_s32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
@@ -27588,12 +32456,27 @@ void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
@@ -27610,31 +32493,25 @@ void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma
(void)ditherMode;
}
-void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_u8_to_f32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
@@ -27645,13 +32522,28 @@ void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-
-void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8** src_u8 = (const ma_uint8**)src;
@@ -27664,8 +32556,8 @@ void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 fram
}
}
}
-
-void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+#else
+static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8** src_u8 = (const ma_uint8**)src;
@@ -27688,6 +32580,7 @@ void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 fram
}
}
}
+#endif
void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
@@ -27699,7 +32592,7 @@ void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_
}
-void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8** dst_u8 = (ma_uint8**)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
@@ -27713,7 +32606,7 @@ void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 fr
}
}
-void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
}
@@ -27729,7 +32622,7 @@ void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, m
/* s16 */
-void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
@@ -27762,31 +32655,25 @@ void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma
}
}
-void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s16_to_u8__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
@@ -27797,7 +32684,22 @@ void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
+ }
#endif
}
@@ -27809,7 +32711,7 @@ void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mo
}
-void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
@@ -27824,31 +32726,25 @@ void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode;
}
-void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s16_to_s24__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
@@ -27859,12 +32755,27 @@ void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
@@ -27877,31 +32788,25 @@ void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode;
}
-void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s16_to_s32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
@@ -27912,12 +32817,27 @@ void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
@@ -27929,7 +32849,7 @@ void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, m
#if 0
/* The accurate way. */
x = x + 32768.0f; /* -32768..32767 to 0..65535 */
- x = x * 0.00003051804379339284f; /* 0..65536 to 0..2 */
+ x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */
x = x - 1; /* 0..2 to -1..1 */
#else
/* The fast way. */
@@ -27942,31 +32862,25 @@ void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode;
}
-void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s16_to_f32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
@@ -27977,12 +32891,27 @@ void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_int16** src_s16 = (const ma_int16**)src;
@@ -27996,7 +32925,7 @@ void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 fra
}
}
-void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
}
@@ -28011,7 +32940,7 @@ void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma
}
-void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int16** dst_s16 = (ma_int16**)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
@@ -28025,7 +32954,7 @@ void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 f
}
}
-void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
}
@@ -28041,7 +32970,7 @@ void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount,
/* s24 */
-void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
@@ -28072,31 +33001,25 @@ void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma
}
}
-void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s24_to_u8__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
@@ -28107,12 +33030,27 @@ void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
@@ -28143,31 +33081,25 @@ void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, m
}
}
-void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s24_to_s16__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
@@ -28178,7 +33110,22 @@ void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
+ }
#endif
}
@@ -28191,7 +33138,7 @@ void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mo
}
-void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
@@ -28204,31 +33151,25 @@ void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode;
}
-void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s24_to_s32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
@@ -28239,12 +33180,27 @@ void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
@@ -28269,31 +33225,25 @@ void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode;
}
-void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s24_to_f32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
@@ -28304,12 +33254,27 @@ void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst8 = (ma_uint8*)dst;
const ma_uint8** src8 = (const ma_uint8**)src;
@@ -28325,7 +33290,7 @@ void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 fra
}
}
-void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
}
@@ -28340,7 +33305,7 @@ void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma
}
-void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8** dst8 = (ma_uint8**)dst;
const ma_uint8* src8 = (const ma_uint8*)src;
@@ -28356,7 +33321,7 @@ void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 f
}
}
-void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
}
@@ -28373,7 +33338,7 @@ void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount,
/* s32 */
-void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
@@ -28406,31 +33371,25 @@ void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma
}
}
-void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s32_to_u8__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
@@ -28441,12 +33400,27 @@ void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
@@ -28477,31 +33451,25 @@ void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, m
}
}
-void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s32_to_s16__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
@@ -28512,12 +33480,27 @@ void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
@@ -28533,31 +33516,25 @@ void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode; /* No dithering for s32 -> s24. */
}
-void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s32_to_s24__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
@@ -28568,7 +33545,22 @@ void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
+ }
#endif
}
@@ -28581,7 +33573,7 @@ void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
}
-void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
@@ -28604,31 +33596,25 @@ void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode; /* No dithering for s32 -> f32. */
}
-void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_s32_to_f32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
@@ -28639,12 +33625,27 @@ void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_int32** src_s32 = (const ma_int32**)src;
@@ -28658,7 +33659,7 @@ void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 fra
}
}
-void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
}
@@ -28673,7 +33674,7 @@ void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma
}
-void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int32** dst_s32 = (ma_int32**)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
@@ -28687,7 +33688,7 @@ void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 f
}
}
-void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
}
@@ -28703,7 +33704,7 @@ void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount,
/* f32 */
-void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
@@ -28728,31 +33729,25 @@ void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma
}
}
-void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_f32_to_u8__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
@@ -28763,12 +33758,27 @@ void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mod
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
#else
- ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-
-void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+#ifdef MA_USE_REFERENCE_CONVERSION_APIS
+static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
@@ -28800,8 +33810,8 @@ void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, m
dst_s16[i] = (ma_int16)x;
}
}
-
-void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+#else
+static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i4;
@@ -28864,9 +33874,10 @@ void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, m
dst_s16[i] = (ma_int16)x;
}
}
+#endif
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i8;
@@ -28960,7 +33971,7 @@ void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dit
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i16;
@@ -29081,15 +34092,8 @@ void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dit
}
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_f32_to_s16__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- /* TODO: Convert this from AVX to AVX-512. */
- ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i8;
@@ -29099,6 +34103,10 @@ void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dit
float ditherMin;
float ditherMax;
+ if (!ma_has_neon()) {
+ return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ }
+
/* Both the input and output buffers need to be aligned to 16 bytes. */
if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
@@ -29194,12 +34202,27 @@ void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode);
#else
- ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const float* src_f32 = (const float*)src;
@@ -29229,31 +34252,25 @@ void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode; /* No dithering for f32 -> s24. */
}
-void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_f32_to_s24__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
@@ -29264,12 +34281,27 @@ void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
#else
- ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
+ }
#endif
}
-void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const float* src_f32 = (const float*)src;
@@ -29295,31 +34327,25 @@ void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, m
(void)ditherMode; /* No dithering for f32 -> s32. */
}
-void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
-void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
-void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
-#if defined(MA_SUPPORT_AVX512)
-void ma_pcm_f32_to_s32__avx512(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
-{
- ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode);
-}
-#endif
#if defined(MA_SUPPORT_NEON)
-void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
+static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
@@ -29330,7 +34356,22 @@ void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
#else
- ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+ # if MA_PREFERRED_SIMD == MA_SIMD_AVX2
+ if (ma_has_avx2()) {
+ ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
+ if (ma_has_sse2()) {
+ ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode);
+ } else
+ #elif MA_PREFERRED_SIMD == MA_SIMD_NEON
+ if (ma_has_neon()) {
+ ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode);
+ } else
+ #endif
+ {
+ ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
+ }
#endif
}
@@ -29343,7 +34384,7 @@ void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mo
}
-void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
float* dst_f32 = (float*)dst;
const float** src_f32 = (const float**)src;
@@ -29357,7 +34398,7 @@ void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 fra
}
}
-void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
+static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
}
@@ -29372,7 +34413,7 @@ void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma
}
-void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
float** dst_f32 = (float**)dst;
const float* src_f32 = (const float*)src;
@@ -29386,7 +34427,7 @@ void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 f
}
}
-void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
+static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
}
@@ -29401,2524 +34442,6 @@ void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount,
}
-void ma_format_converter_init_callbacks__default(ma_format_converter* pConverter)
-{
- ma_assert(pConverter != NULL);
-
- switch (pConverter->config.formatIn)
- {
- case ma_format_u8:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_u8_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_f32;
- }
- } break;
-
- case ma_format_s16:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s16_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_f32;
- }
- } break;
-
- case ma_format_s24:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s24_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_f32;
- }
- } break;
-
- case ma_format_s32:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s32_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_f32;
- }
- } break;
-
- case ma_format_f32:
- default:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_f32_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_f32;
- }
- } break;
- }
-}
-
-#if defined(MA_SUPPORT_SSE2)
-void ma_format_converter_init_callbacks__sse2(ma_format_converter* pConverter)
-{
- ma_assert(pConverter != NULL);
-
- switch (pConverter->config.formatIn)
- {
- case ma_format_u8:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_u8_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s16__sse2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s24__sse2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s32__sse2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_f32__sse2;
- }
- } break;
-
- case ma_format_s16:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s16_to_u8__sse2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s24__sse2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s32__sse2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_f32__sse2;
- }
- } break;
-
- case ma_format_s24:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s24_to_u8__sse2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s16__sse2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s32__sse2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_f32__sse2;
- }
- } break;
-
- case ma_format_s32:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s32_to_u8__sse2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s16__sse2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s24__sse2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_f32__sse2;
- }
- } break;
-
- case ma_format_f32:
- default:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_f32_to_u8__sse2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s16__sse2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s24__sse2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s32__sse2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_f32;
- }
- } break;
- }
-}
-#endif
-
-#if defined(MA_SUPPORT_AVX2)
-void ma_format_converter_init_callbacks__avx2(ma_format_converter* pConverter)
-{
- ma_assert(pConverter != NULL);
-
- switch (pConverter->config.formatIn)
- {
- case ma_format_u8:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_u8_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s16__avx2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s24__avx2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s32__avx2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_f32__avx2;
- }
- } break;
-
- case ma_format_s16:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s16_to_u8__avx2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s24__avx2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s32__avx2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_f32__avx2;
- }
- } break;
-
- case ma_format_s24:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s24_to_u8__avx2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s16__avx2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s32__avx2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_f32__avx2;
- }
- } break;
-
- case ma_format_s32:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s32_to_u8__avx2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s16__avx2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s24__avx2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_f32__avx2;
- }
- } break;
-
- case ma_format_f32:
- default:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_f32_to_u8__avx2;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s16__avx2;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s24__avx2;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s32__avx2;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_f32;
- }
- } break;
- }
-}
-#endif
-
-#if defined(MA_SUPPORT_AVX512)
-void ma_format_converter_init_callbacks__avx512(ma_format_converter* pConverter)
-{
- ma_assert(pConverter != NULL);
-
- switch (pConverter->config.formatIn)
- {
- case ma_format_u8:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_u8_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s16__avx512;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s24__avx512;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s32__avx512;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_f32__avx512;
- }
- } break;
-
- case ma_format_s16:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s16_to_u8__avx512;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s24__avx512;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s32__avx512;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_f32__avx512;
- }
- } break;
-
- case ma_format_s24:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s24_to_u8__avx512;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s16__avx512;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s32__avx512;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_f32__avx512;
- }
- } break;
-
- case ma_format_s32:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s32_to_u8__avx512;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s16__avx512;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s24__avx512;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_f32__avx512;
- }
- } break;
-
- case ma_format_f32:
- default:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_f32_to_u8__avx512;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s16__avx512;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s24__avx512;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s32__avx512;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_f32;
- }
- } break;
- }
-}
-#endif
-
-#if defined(MA_SUPPORT_NEON)
-void ma_format_converter_init_callbacks__neon(ma_format_converter* pConverter)
-{
- ma_assert(pConverter != NULL);
-
- switch (pConverter->config.formatIn)
- {
- case ma_format_u8:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_u8_to_u8;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s16__neon;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s24__neon;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_s32__neon;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_u8_to_f32__neon;
- }
- } break;
-
- case ma_format_s16:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s16_to_u8__neon;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s16;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s24__neon;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_s32__neon;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s16_to_f32__neon;
- }
- } break;
-
- case ma_format_s24:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s24_to_u8__neon;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s16__neon;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s24;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_s32__neon;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s24_to_f32__neon;
- }
- } break;
-
- case ma_format_s32:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_s32_to_u8__neon;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s16__neon;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s24__neon;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_s32;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_s32_to_f32__neon;
- }
- } break;
-
- case ma_format_f32:
- default:
- {
- if (pConverter->config.formatOut == ma_format_u8) {
- pConverter->onConvertPCM = ma_pcm_f32_to_u8__neon;
- } else if (pConverter->config.formatOut == ma_format_s16) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s16__neon;
- } else if (pConverter->config.formatOut == ma_format_s24) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s24__neon;
- } else if (pConverter->config.formatOut == ma_format_s32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_s32__neon;
- } else if (pConverter->config.formatOut == ma_format_f32) {
- pConverter->onConvertPCM = ma_pcm_f32_to_f32;
- }
- } break;
- }
-}
-#endif
-
-ma_result ma_format_converter_init(const ma_format_converter_config* pConfig, ma_format_converter* pConverter)
-{
- if (pConverter == NULL) {
- return MA_INVALID_ARGS;
- }
- ma_zero_object(pConverter);
-
- if (pConfig == NULL) {
- return MA_INVALID_ARGS;
- }
-
- pConverter->config = *pConfig;
-
- /* SIMD */
- pConverter->useSSE2 = ma_has_sse2() && !pConfig->noSSE2;
- pConverter->useAVX2 = ma_has_avx2() && !pConfig->noAVX2;
- pConverter->useAVX512 = ma_has_avx512f() && !pConfig->noAVX512;
- pConverter->useNEON = ma_has_neon() && !pConfig->noNEON;
-
-#if defined(MA_SUPPORT_AVX512)
- if (pConverter->useAVX512) {
- ma_format_converter_init_callbacks__avx512(pConverter);
- } else
-#endif
-#if defined(MA_SUPPORT_AVX2)
- if (pConverter->useAVX2) {
- ma_format_converter_init_callbacks__avx2(pConverter);
- } else
-#endif
-#if defined(MA_SUPPORT_SSE2)
- if (pConverter->useSSE2) {
- ma_format_converter_init_callbacks__sse2(pConverter);
- } else
-#endif
-#if defined(MA_SUPPORT_NEON)
- if (pConverter->useNEON) {
- ma_format_converter_init_callbacks__neon(pConverter);
- } else
-#endif
- {
- ma_format_converter_init_callbacks__default(pConverter);
- }
-
- switch (pConfig->formatOut)
- {
- case ma_format_u8:
- {
- pConverter->onInterleavePCM = ma_pcm_interleave_u8;
- pConverter->onDeinterleavePCM = ma_pcm_deinterleave_u8;
- } break;
- case ma_format_s16:
- {
- pConverter->onInterleavePCM = ma_pcm_interleave_s16;
- pConverter->onDeinterleavePCM = ma_pcm_deinterleave_s16;
- } break;
- case ma_format_s24:
- {
- pConverter->onInterleavePCM = ma_pcm_interleave_s24;
- pConverter->onDeinterleavePCM = ma_pcm_deinterleave_s24;
- } break;
- case ma_format_s32:
- {
- pConverter->onInterleavePCM = ma_pcm_interleave_s32;
- pConverter->onDeinterleavePCM = ma_pcm_deinterleave_s32;
- } break;
- case ma_format_f32:
- default:
- {
- pConverter->onInterleavePCM = ma_pcm_interleave_f32;
- pConverter->onDeinterleavePCM = ma_pcm_deinterleave_f32;
- } break;
- }
-
- return MA_SUCCESS;
-}
-
-ma_uint64 ma_format_converter_read(ma_format_converter* pConverter, ma_uint64 frameCount, void* pFramesOut, void* pUserData)
-{
- ma_uint64 totalFramesRead;
- ma_uint32 sampleSizeIn;
- ma_uint32 sampleSizeOut;
- ma_uint32 frameSizeOut;
- ma_uint8* pNextFramesOut;
-
- if (pConverter == NULL || pFramesOut == NULL) {
- return 0;
- }
-
- totalFramesRead = 0;
- sampleSizeIn = ma_get_bytes_per_sample(pConverter->config.formatIn);
- sampleSizeOut = ma_get_bytes_per_sample(pConverter->config.formatOut);
- /*frameSizeIn = sampleSizeIn * pConverter->config.channels;*/
- frameSizeOut = sampleSizeOut * pConverter->config.channels;
- pNextFramesOut = (ma_uint8*)pFramesOut;
-
- if (pConverter->config.onRead != NULL) {
- /* Input data is interleaved. */
- if (pConverter->config.formatIn == pConverter->config.formatOut) {
- /* Pass through. */
- while (totalFramesRead < frameCount) {
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > 0xFFFFFFFF) {
- framesToReadRightNow = 0xFFFFFFFF;
- }
-
- framesJustRead = (ma_uint32)pConverter->config.onRead(pConverter, (ma_uint32)framesToReadRightNow, pNextFramesOut, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- totalFramesRead += framesJustRead;
- pNextFramesOut += framesJustRead * frameSizeOut;
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- } else {
- /* Conversion required. */
- ma_uint32 maxFramesToReadAtATime;
-
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 temp[MA_MAX_CHANNELS * MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES * 128];
- ma_assert(sizeof(temp) <= 0xFFFFFFFF);
-
- maxFramesToReadAtATime = sizeof(temp) / sampleSizeIn / pConverter->config.channels;
-
- while (totalFramesRead < frameCount) {
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > maxFramesToReadAtATime) {
- framesToReadRightNow = maxFramesToReadAtATime;
- }
-
- framesJustRead = (ma_uint32)pConverter->config.onRead(pConverter, (ma_uint32)framesToReadRightNow, temp, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- pConverter->onConvertPCM(pNextFramesOut, temp, framesJustRead*pConverter->config.channels, pConverter->config.ditherMode);
-
- totalFramesRead += framesJustRead;
- pNextFramesOut += framesJustRead * frameSizeOut;
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- }
- } else {
- /* Input data is deinterleaved. If a conversion is required we need to do an intermediary step. */
- void* ppTempSamplesOfOutFormat[MA_MAX_CHANNELS];
- size_t splitBufferSizeOut;
- ma_uint32 maxFramesToReadAtATime;
-
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 tempSamplesOfOutFormat[MA_MAX_CHANNELS * MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES * 128];
- ma_assert(sizeof(tempSamplesOfOutFormat) <= 0xFFFFFFFF);
-
- ma_split_buffer(tempSamplesOfOutFormat, sizeof(tempSamplesOfOutFormat), pConverter->config.channels, MA_SIMD_ALIGNMENT, (void**)&ppTempSamplesOfOutFormat, &splitBufferSizeOut);
-
- maxFramesToReadAtATime = (ma_uint32)(splitBufferSizeOut / sampleSizeIn);
-
- while (totalFramesRead < frameCount) {
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > maxFramesToReadAtATime) {
- framesToReadRightNow = maxFramesToReadAtATime;
- }
-
- if (pConverter->config.formatIn == pConverter->config.formatOut) {
- /* Only interleaving. */
- framesJustRead = (ma_uint32)pConverter->config.onReadDeinterleaved(pConverter, (ma_uint32)framesToReadRightNow, ppTempSamplesOfOutFormat, pUserData);
- if (framesJustRead == 0) {
- break;
- }
- } else {
- /* Interleaving + Conversion. Convert first, then interleave. */
- void* ppTempSamplesOfInFormat[MA_MAX_CHANNELS];
- size_t splitBufferSizeIn;
- ma_uint32 iChannel;
-
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 tempSamplesOfInFormat[MA_MAX_CHANNELS * MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES * 128];
-
- ma_split_buffer(tempSamplesOfInFormat, sizeof(tempSamplesOfInFormat), pConverter->config.channels, MA_SIMD_ALIGNMENT, (void**)&ppTempSamplesOfInFormat, &splitBufferSizeIn);
-
- if (framesToReadRightNow > (splitBufferSizeIn / sampleSizeIn)) {
- framesToReadRightNow = (splitBufferSizeIn / sampleSizeIn);
- }
-
- framesJustRead = (ma_uint32)pConverter->config.onReadDeinterleaved(pConverter, (ma_uint32)framesToReadRightNow, ppTempSamplesOfInFormat, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- for (iChannel = 0; iChannel < pConverter->config.channels; iChannel += 1) {
- pConverter->onConvertPCM(ppTempSamplesOfOutFormat[iChannel], ppTempSamplesOfInFormat[iChannel], framesJustRead, pConverter->config.ditherMode);
- }
- }
-
- pConverter->onInterleavePCM(pNextFramesOut, (const void**)ppTempSamplesOfOutFormat, framesJustRead, pConverter->config.channels);
-
- totalFramesRead += framesJustRead;
- pNextFramesOut += framesJustRead * frameSizeOut;
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- }
-
- return totalFramesRead;
-}
-
-ma_uint64 ma_format_converter_read_deinterleaved(ma_format_converter* pConverter, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- ma_uint64 totalFramesRead;
- ma_uint32 sampleSizeIn;
- ma_uint32 sampleSizeOut;
- ma_uint8* ppNextSamplesOut[MA_MAX_CHANNELS];
-
- if (pConverter == NULL || ppSamplesOut == NULL) {
- return 0;
- }
-
- totalFramesRead = 0;
- sampleSizeIn = ma_get_bytes_per_sample(pConverter->config.formatIn);
- sampleSizeOut = ma_get_bytes_per_sample(pConverter->config.formatOut);
-
- ma_copy_memory(ppNextSamplesOut, ppSamplesOut, sizeof(void*) * pConverter->config.channels);
-
- if (pConverter->config.onRead != NULL) {
- /* Input data is interleaved. */
- ma_uint32 maxFramesToReadAtATime;
-
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 tempSamplesOfOutFormat[MA_MAX_CHANNELS * MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES * 128];
- ma_assert(sizeof(tempSamplesOfOutFormat) <= 0xFFFFFFFF);
-
- maxFramesToReadAtATime = sizeof(tempSamplesOfOutFormat) / sampleSizeIn / pConverter->config.channels;
-
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > maxFramesToReadAtATime) {
- framesToReadRightNow = maxFramesToReadAtATime;
- }
-
- if (pConverter->config.formatIn == pConverter->config.formatOut) {
- /* Only de-interleaving. */
- framesJustRead = (ma_uint32)pConverter->config.onRead(pConverter, (ma_uint32)framesToReadRightNow, tempSamplesOfOutFormat, pUserData);
- if (framesJustRead == 0) {
- break;
- }
- } else {
- /* De-interleaving + Conversion. Convert first, then de-interleave. */
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 tempSamplesOfInFormat[sizeof(tempSamplesOfOutFormat)];
-
- framesJustRead = (ma_uint32)pConverter->config.onRead(pConverter, (ma_uint32)framesToReadRightNow, tempSamplesOfInFormat, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- pConverter->onConvertPCM(tempSamplesOfOutFormat, tempSamplesOfInFormat, framesJustRead * pConverter->config.channels, pConverter->config.ditherMode);
- }
-
- pConverter->onDeinterleavePCM((void**)ppNextSamplesOut, tempSamplesOfOutFormat, framesJustRead, pConverter->config.channels);
-
- totalFramesRead += framesJustRead;
- for (iChannel = 0; iChannel < pConverter->config.channels; ++iChannel) {
- ppNextSamplesOut[iChannel] += framesJustRead * sampleSizeOut;
- }
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- } else {
- /* Input data is deinterleaved. */
- if (pConverter->config.formatIn == pConverter->config.formatOut) {
- /* Pass through. */
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > 0xFFFFFFFF) {
- framesToReadRightNow = 0xFFFFFFFF;
- }
-
- framesJustRead = (ma_uint32)pConverter->config.onReadDeinterleaved(pConverter, (ma_uint32)framesToReadRightNow, (void**)ppNextSamplesOut, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- totalFramesRead += framesJustRead;
- for (iChannel = 0; iChannel < pConverter->config.channels; ++iChannel) {
- ppNextSamplesOut[iChannel] += framesJustRead * sampleSizeOut;
- }
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- } else {
- /* Conversion required. */
- void* ppTemp[MA_MAX_CHANNELS];
- size_t splitBufferSize;
- ma_uint32 maxFramesToReadAtATime;
-
- MA_ALIGN(MA_SIMD_ALIGNMENT) ma_uint8 temp[MA_MAX_CHANNELS][MA_MAX_PCM_SAMPLE_SIZE_IN_BYTES * 128];
- ma_assert(sizeof(temp) <= 0xFFFFFFFF);
-
- ma_split_buffer(temp, sizeof(temp), pConverter->config.channels, MA_SIMD_ALIGNMENT, (void**)&ppTemp, &splitBufferSize);
-
- maxFramesToReadAtATime = (ma_uint32)(splitBufferSize / sampleSizeIn);
-
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > maxFramesToReadAtATime) {
- framesToReadRightNow = maxFramesToReadAtATime;
- }
-
- framesJustRead = (ma_uint32)pConverter->config.onReadDeinterleaved(pConverter, (ma_uint32)framesToReadRightNow, ppTemp, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- for (iChannel = 0; iChannel < pConverter->config.channels; iChannel += 1) {
- pConverter->onConvertPCM(ppNextSamplesOut[iChannel], ppTemp[iChannel], framesJustRead, pConverter->config.ditherMode);
- ppNextSamplesOut[iChannel] += framesJustRead * sampleSizeOut;
- }
-
- totalFramesRead += framesJustRead;
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
- }
- }
-
- return totalFramesRead;
-}
-
-
-ma_format_converter_config ma_format_converter_config_init_new()
-{
- ma_format_converter_config config;
- ma_zero_object(&config);
-
- return config;
-}
-
-ma_format_converter_config ma_format_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channels, ma_format_converter_read_proc onRead, void* pUserData)
-{
- ma_format_converter_config config = ma_format_converter_config_init_new();
- config.formatIn = formatIn;
- config.formatOut = formatOut;
- config.channels = channels;
- config.onRead = onRead;
- config.onReadDeinterleaved = NULL;
- config.pUserData = pUserData;
-
- return config;
-}
-
-ma_format_converter_config ma_format_converter_config_init_deinterleaved(ma_format formatIn, ma_format formatOut, ma_uint32 channels, ma_format_converter_read_deinterleaved_proc onReadDeinterleaved, void* pUserData)
-{
- ma_format_converter_config config = ma_format_converter_config_init(formatIn, formatOut, channels, NULL, pUserData);
- config.onReadDeinterleaved = onReadDeinterleaved;
-
- return config;
-}
-
-
-
-/**************************************************************************************************************************************************************
-
-Channel Routing
-
-**************************************************************************************************************************************************************/
-
-/*
--X = Left, +X = Right
--Y = Bottom, +Y = Top
--Z = Front, +Z = Back
-*/
-typedef struct
-{
- float x;
- float y;
- float z;
-} ma_vec3;
-
-static MA_INLINE ma_vec3 ma_vec3f(float x, float y, float z)
-{
- ma_vec3 r;
- r.x = x;
- r.y = y;
- r.z = z;
-
- return r;
-}
-
-static MA_INLINE ma_vec3 ma_vec3_add(ma_vec3 a, ma_vec3 b)
-{
- return ma_vec3f(
- a.x + b.x,
- a.y + b.y,
- a.z + b.z
- );
-}
-
-static MA_INLINE ma_vec3 ma_vec3_sub(ma_vec3 a, ma_vec3 b)
-{
- return ma_vec3f(
- a.x - b.x,
- a.y - b.y,
- a.z - b.z
- );
-}
-
-static MA_INLINE ma_vec3 ma_vec3_mul(ma_vec3 a, ma_vec3 b)
-{
- return ma_vec3f(
- a.x * b.x,
- a.y * b.y,
- a.z * b.z
- );
-}
-
-static MA_INLINE ma_vec3 ma_vec3_div(ma_vec3 a, ma_vec3 b)
-{
- return ma_vec3f(
- a.x / b.x,
- a.y / b.y,
- a.z / b.z
- );
-}
-
-static MA_INLINE float ma_vec3_dot(ma_vec3 a, ma_vec3 b)
-{
- return a.x*b.x + a.y*b.y + a.z*b.z;
-}
-
-static MA_INLINE float ma_vec3_length2(ma_vec3 a)
-{
- return ma_vec3_dot(a, a);
-}
-
-static MA_INLINE float ma_vec3_length(ma_vec3 a)
-{
- return (float)sqrt(ma_vec3_length2(a));
-}
-
-static MA_INLINE ma_vec3 ma_vec3_normalize(ma_vec3 a)
-{
- float len = 1 / ma_vec3_length(a);
-
- ma_vec3 r;
- r.x = a.x * len;
- r.y = a.y * len;
- r.z = a.z * len;
-
- return r;
-}
-
-static MA_INLINE float ma_vec3_distance(ma_vec3 a, ma_vec3 b)
-{
- return ma_vec3_length(ma_vec3_sub(a, b));
-}
-
-
-#define MA_PLANE_LEFT 0
-#define MA_PLANE_RIGHT 1
-#define MA_PLANE_FRONT 2
-#define MA_PLANE_BACK 3
-#define MA_PLANE_BOTTOM 4
-#define MA_PLANE_TOP 5
-
-float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_NONE */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_MONO */
- { 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT */
- { 0.0f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT */
- { 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_CENTER */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_LFE */
- { 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_LEFT */
- { 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_RIGHT */
- { 0.25f, 0.0f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT_CENTER */
- { 0.0f, 0.25f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT_CENTER */
- { 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_CENTER */
- { 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_LEFT */
- { 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_RIGHT */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}, /* MA_CHANNEL_TOP_CENTER */
- { 0.33f, 0.0f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_LEFT */
- { 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_FRONT_CENTER */
- { 0.0f, 0.33f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_RIGHT */
- { 0.33f, 0.0f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_LEFT */
- { 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_BACK_CENTER */
- { 0.0f, 0.33f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_RIGHT */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_0 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_1 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_2 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_3 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_4 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_5 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_6 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_7 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_8 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_9 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_10 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_11 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_12 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_13 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_14 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_15 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_16 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_17 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_18 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_19 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_20 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_21 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_22 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_23 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_24 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_25 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_26 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_27 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_28 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_29 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_30 */
- { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */
-};
-
-float ma_calculate_channel_position_planar_weight(ma_channel channelPositionA, ma_channel channelPositionB)
-{
- /*
- Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to
- the following output configuration:
-
- - front/left
- - side/left
- - back/left
-
- The front/left output is easy - it the same speaker position so it receives the full contribution of the front/left input. The amount
- of contribution to apply to the side/left and back/left speakers, however, is a bit more complicated.
-
- Imagine the front/left speaker as emitting audio from two planes - the front plane and the left plane. You can think of the front/left
- speaker emitting half of it's total volume from the front, and the other half from the left. Since part of it's volume is being emitted
- from the left side, and the side/left and back/left channels also emit audio from the left plane, one would expect that they would
- receive some amount of contribution from front/left speaker. The amount of contribution depends on how many planes are shared between
- the two speakers. Note that in the examples below I've added a top/front/left speaker as an example just to show how the math works
- across 3 spatial dimensions.
-
- The first thing to do is figure out how each speaker's volume is spread over each of plane:
- - front/left: 2 planes (front and left) = 1/2 = half it's total volume on each plane
- - side/left: 1 plane (left only) = 1/1 = entire volume from left plane
- - back/left: 2 planes (back and left) = 1/2 = half it's total volume on each plane
- - top/front/left: 3 planes (top, front and left) = 1/3 = one third it's total volume on each plane
-
- The amount of volume each channel contributes to each of it's planes is what controls how much it is willing to given and take to other
- channels on the same plane. The volume that is willing to the given by one channel is multiplied by the volume that is willing to be
- taken by the other to produce the final contribution.
- */
-
- /* Contribution = Sum(Volume to Give * Volume to Take) */
- float contribution =
- g_maChannelPlaneRatios[channelPositionA][0] * g_maChannelPlaneRatios[channelPositionB][0] +
- g_maChannelPlaneRatios[channelPositionA][1] * g_maChannelPlaneRatios[channelPositionB][1] +
- g_maChannelPlaneRatios[channelPositionA][2] * g_maChannelPlaneRatios[channelPositionB][2] +
- g_maChannelPlaneRatios[channelPositionA][3] * g_maChannelPlaneRatios[channelPositionB][3] +
- g_maChannelPlaneRatios[channelPositionA][4] * g_maChannelPlaneRatios[channelPositionB][4] +
- g_maChannelPlaneRatios[channelPositionA][5] * g_maChannelPlaneRatios[channelPositionB][5];
-
- return contribution;
-}
-
-float ma_channel_router__calculate_input_channel_planar_weight(const ma_channel_router* pRouter, ma_channel channelPositionIn, ma_channel channelPositionOut)
-{
- ma_assert(pRouter != NULL);
- (void)pRouter;
-
- return ma_calculate_channel_position_planar_weight(channelPositionIn, channelPositionOut);
-}
-
-ma_bool32 ma_channel_router__is_spatial_channel_position(const ma_channel_router* pRouter, ma_channel channelPosition)
-{
- int i;
-
- ma_assert(pRouter != NULL);
- (void)pRouter;
-
- if (channelPosition == MA_CHANNEL_NONE || channelPosition == MA_CHANNEL_MONO || channelPosition == MA_CHANNEL_LFE) {
- return MA_FALSE;
- }
-
- for (i = 0; i < 6; ++i) {
- if (g_maChannelPlaneRatios[channelPosition][i] != 0) {
- return MA_TRUE;
- }
- }
-
- return MA_FALSE;
-}
-
-ma_result ma_channel_router_init(const ma_channel_router_config* pConfig, ma_channel_router* pRouter)
-{
- ma_uint32 iChannelIn;
- ma_uint32 iChannelOut;
-
- if (pRouter == NULL) {
- return MA_INVALID_ARGS;
- }
-
- ma_zero_object(pRouter);
-
- if (pConfig == NULL) {
- return MA_INVALID_ARGS;
- }
- if (pConfig->onReadDeinterleaved == NULL) {
- return MA_INVALID_ARGS;
- }
-
- if (!ma_channel_map_valid(pConfig->channelsIn, pConfig->channelMapIn)) {
- return MA_INVALID_ARGS; /* Invalid input channel map. */
- }
- if (!ma_channel_map_valid(pConfig->channelsOut, pConfig->channelMapOut)) {
- return MA_INVALID_ARGS; /* Invalid output channel map. */
- }
-
- pRouter->config = *pConfig;
-
- /* SIMD */
- pRouter->useSSE2 = ma_has_sse2() && !pConfig->noSSE2;
- pRouter->useAVX2 = ma_has_avx2() && !pConfig->noAVX2;
- pRouter->useAVX512 = ma_has_avx512f() && !pConfig->noAVX512;
- pRouter->useNEON = ma_has_neon() && !pConfig->noNEON;
-
- /* If the input and output channels and channel maps are the same we should use a passthrough. */
- if (pRouter->config.channelsIn == pRouter->config.channelsOut) {
- if (ma_channel_map_equal(pRouter->config.channelsIn, pRouter->config.channelMapIn, pRouter->config.channelMapOut)) {
- pRouter->isPassthrough = MA_TRUE;
- }
- if (ma_channel_map_blank(pRouter->config.channelsIn, pRouter->config.channelMapIn) || ma_channel_map_blank(pRouter->config.channelsOut, pRouter->config.channelMapOut)) {
- pRouter->isPassthrough = MA_TRUE;
- }
- }
-
- /*
- We can use a simple case for expanding the mono channel. This will when expanding a mono input into any output so long
- as no LFE is present in the output.
- */
- if (!pRouter->isPassthrough) {
- if (pRouter->config.channelsIn == 1 && pRouter->config.channelMapIn[0] == MA_CHANNEL_MONO) {
- /* Optimal case if no LFE is in the output channel map. */
- pRouter->isSimpleMonoExpansion = MA_TRUE;
- if (ma_channel_map_contains_channel_position(pRouter->config.channelsOut, pRouter->config.channelMapOut, MA_CHANNEL_LFE)) {
- pRouter->isSimpleMonoExpansion = MA_FALSE;
- }
- }
- }
-
- /* Another optimized case is stereo to mono. */
- if (!pRouter->isPassthrough) {
- if (pRouter->config.channelsOut == 1 && pRouter->config.channelMapOut[0] == MA_CHANNEL_MONO && pRouter->config.channelsIn == 2) {
- /* Optimal case if no LFE is in the input channel map. */
- pRouter->isStereoToMono = MA_TRUE;
- if (ma_channel_map_contains_channel_position(pRouter->config.channelsIn, pRouter->config.channelMapIn, MA_CHANNEL_LFE)) {
- pRouter->isStereoToMono = MA_FALSE;
- }
- }
- }
-
- /*
- Here is where we do a bit of pre-processing to know how each channel should be combined to make up the output. Rules:
-
- 1) If it's a passthrough, do nothing - it's just a simple memcpy().
- 2) If the channel counts are the same and every channel position in the input map is present in the output map, use a
- simple shuffle. An example might be different 5.1 channel layouts.
- 3) Otherwise channels are blended based on spatial locality.
- */
- if (!pRouter->isPassthrough) {
- if (pRouter->config.channelsIn == pRouter->config.channelsOut) {
- ma_bool32 areAllChannelPositionsPresent = MA_TRUE;
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_bool32 isInputChannelPositionInOutput = MA_FALSE;
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- if (pRouter->config.channelMapIn[iChannelIn] == pRouter->config.channelMapOut[iChannelOut]) {
- isInputChannelPositionInOutput = MA_TRUE;
- break;
- }
- }
-
- if (!isInputChannelPositionInOutput) {
- areAllChannelPositionsPresent = MA_FALSE;
- break;
- }
- }
-
- if (areAllChannelPositionsPresent) {
- pRouter->isSimpleShuffle = MA_TRUE;
-
- /*
- All the router will be doing is rearranging channels which means all we need to do is use a shuffling table which is just
- a mapping between the index of the input channel to the index of the output channel.
- */
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- if (pRouter->config.channelMapIn[iChannelIn] == pRouter->config.channelMapOut[iChannelOut]) {
- pRouter->shuffleTable[iChannelIn] = (ma_uint8)iChannelOut;
- break;
- }
- }
- }
- }
- }
- }
-
-
- /*
- Here is where weights are calculated. Note that we calculate the weights at all times, even when using a passthrough and simple
- shuffling. We use different algorithms for calculating weights depending on our mixing mode.
-
- In simple mode we don't do any blending (except for converting between mono, which is done in a later step). Instead we just
- map 1:1 matching channels. In this mode, if no channels in the input channel map correspond to anything in the output channel
- map, nothing will be heard!
- */
-
- /* In all cases we need to make sure all channels that are present in both channel maps have a 1:1 mapping. */
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_channel channelPosOut = pRouter->config.channelMapOut[iChannelOut];
-
- if (channelPosIn == channelPosOut) {
- pRouter->config.weights[iChannelIn][iChannelOut] = 1;
- }
- }
- }
-
- /*
- The mono channel is accumulated on all other channels, except LFE. Make sure in this loop we exclude output mono channels since
- they were handled in the pass above.
- */
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- if (channelPosIn == MA_CHANNEL_MONO) {
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_channel channelPosOut = pRouter->config.channelMapOut[iChannelOut];
-
- if (channelPosOut != MA_CHANNEL_NONE && channelPosOut != MA_CHANNEL_MONO && channelPosOut != MA_CHANNEL_LFE) {
- pRouter->config.weights[iChannelIn][iChannelOut] = 1;
- }
- }
- }
- }
-
- /* The output mono channel is the average of all non-none, non-mono and non-lfe input channels. */
- {
- ma_uint32 len = 0;
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
- len += 1;
- }
- }
-
- if (len > 0) {
- float monoWeight = 1.0f / len;
-
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_channel channelPosOut = pRouter->config.channelMapOut[iChannelOut];
-
- if (channelPosOut == MA_CHANNEL_MONO) {
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
- pRouter->config.weights[iChannelIn][iChannelOut] += monoWeight;
- }
- }
- }
- }
- }
- }
-
-
- /* Input and output channels that are not present on the other side need to be blended in based on spatial locality. */
- switch (pRouter->config.mixingMode)
- {
- case ma_channel_mix_mode_rectangular:
- {
- /* Unmapped input channels. */
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- if (ma_channel_router__is_spatial_channel_position(pRouter, channelPosIn)) {
- if (!ma_channel_map_contains_channel_position(pRouter->config.channelsOut, pRouter->config.channelMapOut, channelPosIn)) {
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_channel channelPosOut = pRouter->config.channelMapOut[iChannelOut];
-
- if (ma_channel_router__is_spatial_channel_position(pRouter, channelPosOut)) {
- float weight = 0;
- if (pRouter->config.mixingMode == ma_channel_mix_mode_planar_blend) {
- weight = ma_channel_router__calculate_input_channel_planar_weight(pRouter, channelPosIn, channelPosOut);
- }
-
- /* Only apply the weight if we haven't already got some contribution from the respective channels. */
- if (pRouter->config.weights[iChannelIn][iChannelOut] == 0) {
- pRouter->config.weights[iChannelIn][iChannelOut] = weight;
- }
- }
- }
- }
- }
- }
-
- /* Unmapped output channels. */
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_channel channelPosOut = pRouter->config.channelMapOut[iChannelOut];
-
- if (ma_channel_router__is_spatial_channel_position(pRouter, channelPosOut)) {
- if (!ma_channel_map_contains_channel_position(pRouter->config.channelsIn, pRouter->config.channelMapIn, channelPosOut)) {
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- ma_channel channelPosIn = pRouter->config.channelMapIn[iChannelIn];
-
- if (ma_channel_router__is_spatial_channel_position(pRouter, channelPosIn)) {
- float weight = 0;
- if (pRouter->config.mixingMode == ma_channel_mix_mode_planar_blend) {
- weight = ma_channel_router__calculate_input_channel_planar_weight(pRouter, channelPosIn, channelPosOut);
- }
-
- /* Only apply the weight if we haven't already got some contribution from the respective channels. */
- if (pRouter->config.weights[iChannelIn][iChannelOut] == 0) {
- pRouter->config.weights[iChannelIn][iChannelOut] = weight;
- }
- }
- }
- }
- }
- }
- } break;
-
- case ma_channel_mix_mode_custom_weights:
- case ma_channel_mix_mode_simple:
- default:
- {
- /* Fallthrough. */
- } break;
- }
-
- return MA_SUCCESS;
-}
-
-static MA_INLINE ma_bool32 ma_channel_router__can_use_sse2(ma_channel_router* pRouter, const float* pSamplesOut, const float* pSamplesIn)
-{
- return pRouter->useSSE2 && (((ma_uintptr)pSamplesOut & 15) == 0) && (((ma_uintptr)pSamplesIn & 15) == 0);
-}
-
-static MA_INLINE ma_bool32 ma_channel_router__can_use_avx2(ma_channel_router* pRouter, const float* pSamplesOut, const float* pSamplesIn)
-{
- return pRouter->useAVX2 && (((ma_uintptr)pSamplesOut & 31) == 0) && (((ma_uintptr)pSamplesIn & 31) == 0);
-}
-
-static MA_INLINE ma_bool32 ma_channel_router__can_use_avx512(ma_channel_router* pRouter, const float* pSamplesOut, const float* pSamplesIn)
-{
- return pRouter->useAVX512 && (((ma_uintptr)pSamplesOut & 63) == 0) && (((ma_uintptr)pSamplesIn & 63) == 0);
-}
-
-static MA_INLINE ma_bool32 ma_channel_router__can_use_neon(ma_channel_router* pRouter, const float* pSamplesOut, const float* pSamplesIn)
-{
- return pRouter->useNEON && (((ma_uintptr)pSamplesOut & 15) == 0) && (((ma_uintptr)pSamplesIn & 15) == 0);
-}
-
-void ma_channel_router__do_routing(ma_channel_router* pRouter, ma_uint64 frameCount, float** ppSamplesOut, const float** ppSamplesIn)
-{
- ma_uint32 iChannelIn;
- ma_uint32 iChannelOut;
-
- ma_assert(pRouter != NULL);
- ma_assert(pRouter->isPassthrough == MA_FALSE);
-
- if (pRouter->isSimpleShuffle) {
- /* A shuffle is just a re-arrangement of channels and does not require any arithmetic. */
- ma_assert(pRouter->config.channelsIn == pRouter->config.channelsOut);
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- iChannelOut = pRouter->shuffleTable[iChannelIn];
- ma_copy_memory_64(ppSamplesOut[iChannelOut], ppSamplesIn[iChannelIn], frameCount * sizeof(float));
- }
- } else if (pRouter->isSimpleMonoExpansion) {
- /* Simple case for expanding from mono. */
- if (pRouter->config.channelsOut == 2) {
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- ppSamplesOut[0][iFrame] = ppSamplesIn[0][iFrame];
- ppSamplesOut[1][iFrame] = ppSamplesIn[0][iFrame];
- }
- } else {
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- ppSamplesOut[iChannelOut][iFrame] = ppSamplesIn[0][iFrame];
- }
- }
- }
- } else if (pRouter->isStereoToMono) {
- ma_uint64 iFrame;
-
- /* Simple case for going from stereo to mono. */
- ma_assert(pRouter->config.channelsIn == 2);
- ma_assert(pRouter->config.channelsOut == 1);
-
- for (iFrame = 0; iFrame < frameCount; ++iFrame) {
- ppSamplesOut[0][iFrame] = (ppSamplesIn[0][iFrame] + ppSamplesIn[1][iFrame]) * 0.5f;
- }
- } else {
- /* This is the more complicated case. Each of the output channels is accumulated with 0 or more input channels. */
-
- /* Clear. */
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_zero_memory_64(ppSamplesOut[iChannelOut], frameCount * sizeof(float));
- }
-
- /* Accumulate. */
- for (iChannelIn = 0; iChannelIn < pRouter->config.channelsIn; ++iChannelIn) {
- for (iChannelOut = 0; iChannelOut < pRouter->config.channelsOut; ++iChannelOut) {
- ma_uint64 iFrame = 0;
-#if defined(MA_SUPPORT_NEON)
- if (ma_channel_router__can_use_neon(pRouter, ppSamplesOut[iChannelOut], ppSamplesIn[iChannelIn])) {
- float32x4_t weight = vmovq_n_f32(pRouter->config.weights[iChannelIn][iChannelOut]);
- ma_uint64 frameCount4 = frameCount/4;
- ma_uint64 iFrame4;
-
- for (iFrame4 = 0; iFrame4 < frameCount4; iFrame4 += 1) {
- float32x4_t* pO = (float32x4_t*)ppSamplesOut[iChannelOut] + iFrame4;
- float32x4_t* pI = (float32x4_t*)ppSamplesIn [iChannelIn ] + iFrame4;
- *pO = vaddq_f32(*pO, vmulq_f32(*pI, weight));
- }
-
- iFrame += frameCount4*4;
- }
- else
-#endif
-#if defined(MA_SUPPORT_AVX512)
- if (ma_channel_router__can_use_avx512(pRouter, ppSamplesOut[iChannelOut], ppSamplesIn[iChannelIn])) {
- __m512 weight = _mm512_set1_ps(pRouter->config.weights[iChannelIn][iChannelOut]);
- ma_uint64 frameCount16 = frameCount/16;
- ma_uint64 iFrame16;
-
- for (iFrame16 = 0; iFrame16 < frameCount16; iFrame16 += 1) {
- __m512* pO = (__m512*)ppSamplesOut[iChannelOut] + iFrame16;
- __m512* pI = (__m512*)ppSamplesIn [iChannelIn ] + iFrame16;
- *pO = _mm512_add_ps(*pO, _mm512_mul_ps(*pI, weight));
- }
-
- iFrame += frameCount16*16;
- }
- else
-#endif
-#if defined(MA_SUPPORT_AVX2)
- if (ma_channel_router__can_use_avx2(pRouter, ppSamplesOut[iChannelOut], ppSamplesIn[iChannelIn])) {
- __m256 weight = _mm256_set1_ps(pRouter->config.weights[iChannelIn][iChannelOut]);
- ma_uint64 frameCount8 = frameCount/8;
- ma_uint64 iFrame8;
-
- for (iFrame8 = 0; iFrame8 < frameCount8; iFrame8 += 1) {
- __m256* pO = (__m256*)ppSamplesOut[iChannelOut] + iFrame8;
- __m256* pI = (__m256*)ppSamplesIn [iChannelIn ] + iFrame8;
- *pO = _mm256_add_ps(*pO, _mm256_mul_ps(*pI, weight));
- }
-
- iFrame += frameCount8*8;
- }
- else
-#endif
-#if defined(MA_SUPPORT_SSE2)
- if (ma_channel_router__can_use_sse2(pRouter, ppSamplesOut[iChannelOut], ppSamplesIn[iChannelIn])) {
- __m128 weight = _mm_set1_ps(pRouter->config.weights[iChannelIn][iChannelOut]);
- ma_uint64 frameCount4 = frameCount/4;
- ma_uint64 iFrame4;
-
- for (iFrame4 = 0; iFrame4 < frameCount4; iFrame4 += 1) {
- __m128* pO = (__m128*)ppSamplesOut[iChannelOut] + iFrame4;
- __m128* pI = (__m128*)ppSamplesIn [iChannelIn ] + iFrame4;
- *pO = _mm_add_ps(*pO, _mm_mul_ps(*pI, weight));
- }
-
- iFrame += frameCount4*4;
- } else
-#endif
- { /* Reference. */
- float weight0 = pRouter->config.weights[iChannelIn][iChannelOut];
- float weight1 = pRouter->config.weights[iChannelIn][iChannelOut];
- float weight2 = pRouter->config.weights[iChannelIn][iChannelOut];
- float weight3 = pRouter->config.weights[iChannelIn][iChannelOut];
- ma_uint64 frameCount4 = frameCount/4;
- ma_uint64 iFrame4;
-
- for (iFrame4 = 0; iFrame4 < frameCount4; iFrame4 += 1) {
- ppSamplesOut[iChannelOut][iFrame+0] += ppSamplesIn[iChannelIn][iFrame+0] * weight0;
- ppSamplesOut[iChannelOut][iFrame+1] += ppSamplesIn[iChannelIn][iFrame+1] * weight1;
- ppSamplesOut[iChannelOut][iFrame+2] += ppSamplesIn[iChannelIn][iFrame+2] * weight2;
- ppSamplesOut[iChannelOut][iFrame+3] += ppSamplesIn[iChannelIn][iFrame+3] * weight3;
- iFrame += 4;
- }
- }
-
- /* Leftover. */
- for (; iFrame < frameCount; ++iFrame) {
- ppSamplesOut[iChannelOut][iFrame] += ppSamplesIn[iChannelIn][iFrame] * pRouter->config.weights[iChannelIn][iChannelOut];
- }
- }
- }
- }
-}
-
-ma_uint64 ma_channel_router_read_deinterleaved(ma_channel_router* pRouter, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- if (pRouter == NULL || ppSamplesOut == NULL) {
- return 0;
- }
-
- /* Fast path for a passthrough. */
- if (pRouter->isPassthrough) {
- if (frameCount <= 0xFFFFFFFF) {
- return (ma_uint32)pRouter->config.onReadDeinterleaved(pRouter, (ma_uint32)frameCount, ppSamplesOut, pUserData);
- } else {
- float* ppNextSamplesOut[MA_MAX_CHANNELS];
- ma_uint64 totalFramesRead;
-
- ma_copy_memory(ppNextSamplesOut, ppSamplesOut, sizeof(float*) * pRouter->config.channelsOut);
-
- totalFramesRead = 0;
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > 0xFFFFFFFF) {
- framesToReadRightNow = 0xFFFFFFFF;
- }
-
- framesJustRead = (ma_uint32)pRouter->config.onReadDeinterleaved(pRouter, (ma_uint32)framesToReadRightNow, (void**)ppNextSamplesOut, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- totalFramesRead += framesJustRead;
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
-
- for (iChannel = 0; iChannel < pRouter->config.channelsOut; ++iChannel) {
- ppNextSamplesOut[iChannel] += framesJustRead;
- }
- }
-
- return totalFramesRead;
- }
- }
-
- /* Slower path for a non-passthrough. */
- {
- float* ppNextSamplesOut[MA_MAX_CHANNELS];
- float* ppTemp[MA_MAX_CHANNELS];
- size_t maxBytesToReadPerFrameEachIteration;
- size_t maxFramesToReadEachIteration;
- ma_uint64 totalFramesRead;
- MA_ALIGN(MA_SIMD_ALIGNMENT) float temp[MA_MAX_CHANNELS * 256];
-
- ma_assert(sizeof(temp) <= 0xFFFFFFFF);
- ma_copy_memory(ppNextSamplesOut, ppSamplesOut, sizeof(float*) * pRouter->config.channelsOut);
-
-
- ma_split_buffer(temp, sizeof(temp), pRouter->config.channelsIn, MA_SIMD_ALIGNMENT, (void**)&ppTemp, &maxBytesToReadPerFrameEachIteration);
-
- maxFramesToReadEachIteration = maxBytesToReadPerFrameEachIteration/sizeof(float);
-
- totalFramesRead = 0;
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > maxFramesToReadEachIteration) {
- framesToReadRightNow = maxFramesToReadEachIteration;
- }
-
- framesJustRead = pRouter->config.onReadDeinterleaved(pRouter, (ma_uint32)framesToReadRightNow, (void**)ppTemp, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- ma_channel_router__do_routing(pRouter, framesJustRead, (float**)ppNextSamplesOut, (const float**)ppTemp); /* <-- Real work is done here. */
-
- totalFramesRead += framesJustRead;
- if (totalFramesRead < frameCount) {
- for (iChannel = 0; iChannel < pRouter->config.channelsIn; iChannel += 1) {
- ppNextSamplesOut[iChannel] += framesJustRead;
- }
- }
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
-
- return totalFramesRead;
- }
-}
-
-ma_channel_router_config ma_channel_router_config_init(ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode, ma_channel_router_read_deinterleaved_proc onRead, void* pUserData)
-{
- ma_channel_router_config config;
- ma_uint32 iChannel;
-
- ma_zero_object(&config);
-
- config.channelsIn = channelsIn;
- for (iChannel = 0; iChannel < channelsIn; ++iChannel) {
- config.channelMapIn[iChannel] = channelMapIn[iChannel];
- }
-
- config.channelsOut = channelsOut;
- for (iChannel = 0; iChannel < channelsOut; ++iChannel) {
- config.channelMapOut[iChannel] = channelMapOut[iChannel];
- }
-
- config.mixingMode = mixingMode;
- config.onReadDeinterleaved = onRead;
- config.pUserData = pUserData;
-
- return config;
-}
-
-
-
-/**************************************************************************************************************************************************************
-
-SRC
-
-**************************************************************************************************************************************************************/
-#define ma_floorf(x) ((float)floor((double)(x)))
-#define ma_sinf(x) ((float)sin((double)(x)))
-#define ma_cosf(x) ((float)cos((double)(x)))
-
-static MA_INLINE double ma_sinc(double x)
-{
- if (x != 0) {
- return sin(MA_PI_D*x) / (MA_PI_D*x);
- } else {
- return 1;
- }
-}
-
-#define ma_sincf(x) ((float)ma_sinc((double)(x)))
-
-
-ma_uint64 ma_src_read_deinterleaved__passthrough(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
-ma_uint64 ma_src_read_deinterleaved__linear(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
-ma_uint64 ma_src_read_deinterleaved__sinc(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData);
-
-void ma_src__build_sinc_table__sinc(ma_src* pSRC)
-{
- ma_uint32 i;
-
- ma_assert(pSRC != NULL);
-
- pSRC->sinc.table[0] = 1.0f;
- for (i = 1; i < ma_countof(pSRC->sinc.table); i += 1) {
- double x = i*MA_PI_D / MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION;
- pSRC->sinc.table[i] = (float)(sin(x)/x);
- }
-}
-
-void ma_src__build_sinc_table__rectangular(ma_src* pSRC)
-{
- /* This is the same as the base sinc table. */
- ma_src__build_sinc_table__sinc(pSRC);
-}
-
-void ma_src__build_sinc_table__hann(ma_src* pSRC)
-{
- ma_uint32 i;
-
- ma_src__build_sinc_table__sinc(pSRC);
-
- for (i = 0; i < ma_countof(pSRC->sinc.table); i += 1) {
- double x = pSRC->sinc.table[i];
- double N = MA_SRC_SINC_MAX_WINDOW_WIDTH*2;
- double n = ((double)(i) / MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION) + MA_SRC_SINC_MAX_WINDOW_WIDTH;
- double w = 0.5 * (1 - cos((2*MA_PI_D*n) / (N)));
-
- pSRC->sinc.table[i] = (float)(x * w);
- }
-}
-
-ma_result ma_src_init(const ma_src_config* pConfig, ma_src* pSRC)
-{
- if (pSRC == NULL) {
- return MA_INVALID_ARGS;
- }
-
- ma_zero_object(pSRC);
-
- if (pConfig == NULL || pConfig->onReadDeinterleaved == NULL) {
- return MA_INVALID_ARGS;
- }
- if (pConfig->channels == 0 || pConfig->channels > MA_MAX_CHANNELS) {
- return MA_INVALID_ARGS;
- }
-
- pSRC->config = *pConfig;
-
- /* SIMD */
- pSRC->useSSE2 = ma_has_sse2() && !pConfig->noSSE2;
- pSRC->useAVX2 = ma_has_avx2() && !pConfig->noAVX2;
- pSRC->useAVX512 = ma_has_avx512f() && !pConfig->noAVX512;
- pSRC->useNEON = ma_has_neon() && !pConfig->noNEON;
-
- if (pSRC->config.algorithm == ma_src_algorithm_sinc) {
- /* Make sure the window width within bounds. */
- if (pSRC->config.sinc.windowWidth == 0) {
- pSRC->config.sinc.windowWidth = MA_SRC_SINC_DEFAULT_WINDOW_WIDTH;
- }
- if (pSRC->config.sinc.windowWidth < MA_SRC_SINC_MIN_WINDOW_WIDTH) {
- pSRC->config.sinc.windowWidth = MA_SRC_SINC_MIN_WINDOW_WIDTH;
- }
- if (pSRC->config.sinc.windowWidth > MA_SRC_SINC_MAX_WINDOW_WIDTH) {
- pSRC->config.sinc.windowWidth = MA_SRC_SINC_MAX_WINDOW_WIDTH;
- }
-
- /* Set up the lookup table. */
- switch (pSRC->config.sinc.windowFunction) {
- case ma_src_sinc_window_function_hann: ma_src__build_sinc_table__hann(pSRC); break;
- case ma_src_sinc_window_function_rectangular: ma_src__build_sinc_table__rectangular(pSRC); break;
- default: return MA_INVALID_ARGS; /* <-- Hitting this means the window function is unknown to miniaudio. */
- }
- }
-
- return MA_SUCCESS;
-}
-
-ma_result ma_src_set_sample_rate(ma_src* pSRC, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
-{
- if (pSRC == NULL) {
- return MA_INVALID_ARGS;
- }
-
- /* Must have a sample rate of > 0. */
- if (sampleRateIn == 0 || sampleRateOut == 0) {
- return MA_INVALID_ARGS;
- }
-
- ma_atomic_exchange_32(&pSRC->config.sampleRateIn, sampleRateIn);
- ma_atomic_exchange_32(&pSRC->config.sampleRateOut, sampleRateOut);
-
- return MA_SUCCESS;
-}
-
-ma_uint64 ma_src_read_deinterleaved(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- ma_src_algorithm algorithm;
-
- if (pSRC == NULL || frameCount == 0 || ppSamplesOut == NULL) {
- return 0;
- }
-
- algorithm = pSRC->config.algorithm;
-
- /* Can use a function pointer for this. */
- switch (algorithm) {
- case ma_src_algorithm_none: return ma_src_read_deinterleaved__passthrough(pSRC, frameCount, ppSamplesOut, pUserData);
- case ma_src_algorithm_linear: return ma_src_read_deinterleaved__linear( pSRC, frameCount, ppSamplesOut, pUserData);
- case ma_src_algorithm_sinc: return ma_src_read_deinterleaved__sinc( pSRC, frameCount, ppSamplesOut, pUserData);
- default: break;
- }
-
- /* Should never get here. */
- return 0;
-}
-
-ma_uint64 ma_src_read_deinterleaved__passthrough(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- if (frameCount <= 0xFFFFFFFF) {
- return pSRC->config.onReadDeinterleaved(pSRC, (ma_uint32)frameCount, ppSamplesOut, pUserData);
- } else {
- ma_uint32 iChannel;
- ma_uint64 totalFramesRead;
- float* ppNextSamplesOut[MA_MAX_CHANNELS];
-
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ppNextSamplesOut[iChannel] = (float*)ppSamplesOut[iChannel];
- }
-
- totalFramesRead = 0;
- while (totalFramesRead < frameCount) {
- ma_uint32 framesJustRead;
- ma_uint64 framesRemaining = frameCount - totalFramesRead;
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > 0xFFFFFFFF) {
- framesToReadRightNow = 0xFFFFFFFF;
- }
-
- framesJustRead = (ma_uint32)pSRC->config.onReadDeinterleaved(pSRC, (ma_uint32)framesToReadRightNow, (void**)ppNextSamplesOut, pUserData);
- if (framesJustRead == 0) {
- break;
- }
-
- totalFramesRead += framesJustRead;
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ppNextSamplesOut[iChannel] += framesJustRead;
- }
-
- if (framesJustRead < framesToReadRightNow) {
- break;
- }
- }
-
- return totalFramesRead;
- }
-}
-
-ma_uint64 ma_src_read_deinterleaved__linear(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- float* ppNextSamplesOut[MA_MAX_CHANNELS];
- float factor;
- ma_uint32 maxFrameCountPerChunkIn;
- ma_uint64 totalFramesRead;
-
- ma_assert(pSRC != NULL);
- ma_assert(frameCount > 0);
- ma_assert(ppSamplesOut != NULL);
-
- ma_copy_memory(ppNextSamplesOut, ppSamplesOut, sizeof(void*) * pSRC->config.channels);
-
- factor = (float)pSRC->config.sampleRateIn / pSRC->config.sampleRateOut;
- maxFrameCountPerChunkIn = ma_countof(pSRC->linear.input[0]);
-
- totalFramesRead = 0;
- while (totalFramesRead < frameCount) {
- ma_uint32 iChannel;
- float tBeg;
- float tEnd;
- float tAvailable;
- float tNext;
- float* ppSamplesFromClient[MA_MAX_CHANNELS];
- ma_uint32 iNextFrame;
- ma_uint32 maxOutputFramesToRead;
- ma_uint32 maxOutputFramesToRead4;
- ma_uint32 framesToReadFromClient;
- ma_uint32 framesReadFromClient;
- ma_uint64 framesRemaining = frameCount - totalFramesRead;
- ma_uint64 framesToRead = framesRemaining;
- if (framesToRead > 16384) {
- framesToRead = 16384; /* <-- Keep this small because we're using 32-bit floats for calculating sample positions and I don't want to run out of precision with huge sample counts. */
- }
-
-
- /* Read Input Data */
- tBeg = pSRC->linear.timeIn;
- tEnd = tBeg + ((ma_int64)framesToRead*factor); /* Cast to int64 required for VC6. */
-
- framesToReadFromClient = (ma_uint32)(tEnd) + 1 + 1; /* +1 to make tEnd 1-based and +1 because we always need to an extra sample for interpolation. */
- if (framesToReadFromClient >= maxFrameCountPerChunkIn) {
- framesToReadFromClient = maxFrameCountPerChunkIn;
- }
-
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ppSamplesFromClient[iChannel] = pSRC->linear.input[iChannel] + pSRC->linear.leftoverFrames;
- }
-
- framesReadFromClient = 0;
- if (framesToReadFromClient > pSRC->linear.leftoverFrames) {
- framesReadFromClient = (ma_uint32)pSRC->config.onReadDeinterleaved(pSRC, (ma_uint32)framesToReadFromClient - pSRC->linear.leftoverFrames, (void**)ppSamplesFromClient, pUserData);
- }
-
- framesReadFromClient += pSRC->linear.leftoverFrames; /* <-- You can sort of think of it as though we've re-read the leftover samples from the client. */
- if (framesReadFromClient < 2) {
- break;
- }
-
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ppSamplesFromClient[iChannel] = pSRC->linear.input[iChannel];
- }
-
-
- /* Write Output Data */
-
- /*
- At this point we have a bunch of frames that the client has given to us for processing. From this we can determine the maximum number of output frames
- that can be processed from this input. We want to output as many samples as possible from our input data.
- */
- tAvailable = framesReadFromClient - tBeg - 1; /* Subtract 1 because the last input sample is needed for interpolation and cannot be included in the output sample count calculation. */
-
- maxOutputFramesToRead = (ma_uint32)(tAvailable / factor);
- if (maxOutputFramesToRead == 0) {
- maxOutputFramesToRead = 1;
- }
- if (maxOutputFramesToRead > framesToRead) {
- maxOutputFramesToRead = (ma_uint32)framesToRead;
- }
-
- /* Output frames are always read in groups of 4 because I'm planning on using this as a reference for some SIMD-y stuff later. */
- maxOutputFramesToRead4 = maxOutputFramesToRead/4;
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ma_uint32 iFrameOut;
- float t0 = pSRC->linear.timeIn + factor*0;
- float t1 = pSRC->linear.timeIn + factor*1;
- float t2 = pSRC->linear.timeIn + factor*2;
- float t3 = pSRC->linear.timeIn + factor*3;
- float t;
-
- for (iFrameOut = 0; iFrameOut < maxOutputFramesToRead4; iFrameOut += 1) {
- float iPrevSample0 = (float)floor(t0);
- float iPrevSample1 = (float)floor(t1);
- float iPrevSample2 = (float)floor(t2);
- float iPrevSample3 = (float)floor(t3);
-
- float iNextSample0 = iPrevSample0 + 1;
- float iNextSample1 = iPrevSample1 + 1;
- float iNextSample2 = iPrevSample2 + 1;
- float iNextSample3 = iPrevSample3 + 1;
-
- float alpha0 = t0 - iPrevSample0;
- float alpha1 = t1 - iPrevSample1;
- float alpha2 = t2 - iPrevSample2;
- float alpha3 = t3 - iPrevSample3;
-
- float prevSample0 = ppSamplesFromClient[iChannel][(ma_uint32)iPrevSample0];
- float prevSample1 = ppSamplesFromClient[iChannel][(ma_uint32)iPrevSample1];
- float prevSample2 = ppSamplesFromClient[iChannel][(ma_uint32)iPrevSample2];
- float prevSample3 = ppSamplesFromClient[iChannel][(ma_uint32)iPrevSample3];
-
- float nextSample0 = ppSamplesFromClient[iChannel][(ma_uint32)iNextSample0];
- float nextSample1 = ppSamplesFromClient[iChannel][(ma_uint32)iNextSample1];
- float nextSample2 = ppSamplesFromClient[iChannel][(ma_uint32)iNextSample2];
- float nextSample3 = ppSamplesFromClient[iChannel][(ma_uint32)iNextSample3];
-
- ppNextSamplesOut[iChannel][iFrameOut*4 + 0] = ma_mix_f32_fast(prevSample0, nextSample0, alpha0);
- ppNextSamplesOut[iChannel][iFrameOut*4 + 1] = ma_mix_f32_fast(prevSample1, nextSample1, alpha1);
- ppNextSamplesOut[iChannel][iFrameOut*4 + 2] = ma_mix_f32_fast(prevSample2, nextSample2, alpha2);
- ppNextSamplesOut[iChannel][iFrameOut*4 + 3] = ma_mix_f32_fast(prevSample3, nextSample3, alpha3);
-
- t0 += factor*4;
- t1 += factor*4;
- t2 += factor*4;
- t3 += factor*4;
- }
-
- t = pSRC->linear.timeIn + (factor*maxOutputFramesToRead4*4);
- for (iFrameOut = (maxOutputFramesToRead4*4); iFrameOut < maxOutputFramesToRead; iFrameOut += 1) {
- float iPrevSample = (float)floor(t);
- float iNextSample = iPrevSample + 1;
- float alpha = t - iPrevSample;
- float prevSample;
- float nextSample;
-
- ma_assert(iPrevSample < ma_countof(pSRC->linear.input[iChannel]));
- ma_assert(iNextSample < ma_countof(pSRC->linear.input[iChannel]));
-
- prevSample = ppSamplesFromClient[iChannel][(ma_uint32)iPrevSample];
- nextSample = ppSamplesFromClient[iChannel][(ma_uint32)iNextSample];
-
- ppNextSamplesOut[iChannel][iFrameOut] = ma_mix_f32_fast(prevSample, nextSample, alpha);
-
- t += factor;
- }
-
- ppNextSamplesOut[iChannel] += maxOutputFramesToRead;
- }
-
- totalFramesRead += maxOutputFramesToRead;
-
-
- /* Residual */
- tNext = pSRC->linear.timeIn + (maxOutputFramesToRead*factor);
-
- pSRC->linear.timeIn = tNext;
- ma_assert(tNext <= framesReadFromClient+1);
-
- iNextFrame = (ma_uint32)floor(tNext);
- pSRC->linear.leftoverFrames = framesReadFromClient - iNextFrame;
- pSRC->linear.timeIn = tNext - iNextFrame;
-
- for (iChannel = 0; iChannel < pSRC->config.channels; ++iChannel) {
- ma_uint32 iFrame;
- for (iFrame = 0; iFrame < pSRC->linear.leftoverFrames; ++iFrame) {
- float sample = ppSamplesFromClient[iChannel][framesReadFromClient-pSRC->linear.leftoverFrames + iFrame];
- ppSamplesFromClient[iChannel][iFrame] = sample;
- }
- }
-
-
- /* Exit the loop if we've found everything from the client. */
- if (framesReadFromClient < framesToReadFromClient) {
- break;
- }
- }
-
- return totalFramesRead;
-}
-
-
-ma_src_config ma_src_config_init_new()
-{
- ma_src_config config;
- ma_zero_object(&config);
-
- return config;
-}
-
-ma_src_config ma_src_config_init(ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_uint32 channels, ma_src_read_deinterleaved_proc onReadDeinterleaved, void* pUserData)
-{
- ma_src_config config = ma_src_config_init_new();
- config.sampleRateIn = sampleRateIn;
- config.sampleRateOut = sampleRateOut;
- config.channels = channels;
- config.onReadDeinterleaved = onReadDeinterleaved;
- config.pUserData = pUserData;
-
- return config;
-}
-
-
-/**************************************************************************************************************************************************************
-
-Sinc Sample Rate Conversion
-===========================
-
-The sinc SRC algorithm uses a windowed sinc to perform interpolation of samples. Currently, miniaudio's implementation supports rectangular and Hann window
-methods.
-
-Whenever an output sample is being computed, it looks at a sub-section of the input samples. I've called this sub-section in the code below the "window",
-which I realize is a bit ambigous with the mathematical "window", but it works for me when I need to conceptualize things in my head. The window is made up
-of two halves. The first half contains past input samples (initialized to zero), and the second half contains future input samples. As time moves forward
-and input samples are consumed, the window moves forward. The larger the window, the better the quality at the expense of slower processing. The window is
-limited the range [MA_SRC_SINC_MIN_WINDOW_WIDTH, MA_SRC_SINC_MAX_WINDOW_WIDTH] and defaults to MA_SRC_SINC_DEFAULT_WINDOW_WIDTH.
-
-Input samples are cached for efficiency (to prevent frequently requesting tiny numbers of samples from the client). When the window gets to the end of the
-cache, it's moved back to the start, and more samples are read from the client. If the client has no more data to give, the cache is filled with zeros and
-the last of the input samples will be consumed. Once the last of the input samples have been consumed, no more samples will be output.
-
-
-When reading output samples, we always first read whatever is already in the input cache. Only when the cache has been fully consumed do we read more data
-from the client.
-
-To access samples in the input buffer you do so relative to the window. When the window itself is at position 0, the first item in the buffer is accessed
-with "windowPos + windowWidth". Generally, to access any sample relative to the window you do "windowPos + windowWidth + sampleIndexRelativeToWindow".
-
-**************************************************************************************************************************************************************/
-
-/* Comment this to disable interpolation of table lookups. Less accurate, but faster. */
-#define MA_USE_SINC_TABLE_INTERPOLATION
-
-/* Retrieves a sample from the input buffer's window. Values >= 0 retrieve future samples. Negative values return past samples. */
-static MA_INLINE float ma_src_sinc__get_input_sample_from_window(const ma_src* pSRC, ma_uint32 channel, ma_uint32 windowPosInSamples, ma_int32 sampleIndex)
-{
- ma_assert(pSRC != NULL);
- ma_assert(channel < pSRC->config.channels);
- ma_assert(sampleIndex >= -(ma_int32)pSRC->config.sinc.windowWidth);
- ma_assert(sampleIndex < (ma_int32)pSRC->config.sinc.windowWidth);
-
- /* The window should always be contained within the input cache. */
- ma_assert(windowPosInSamples < ma_countof(pSRC->sinc.input[0]) - pSRC->config.sinc.windowWidth);
-
- return pSRC->sinc.input[channel][windowPosInSamples + pSRC->config.sinc.windowWidth + sampleIndex];
-}
-
-static MA_INLINE float ma_src_sinc__interpolation_factor(const ma_src* pSRC, float x)
-{
- float xabs;
- ma_int32 ixabs;
-
- ma_assert(pSRC != NULL);
-
- xabs = (float)fabs(x);
- xabs = xabs * MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION;
- ixabs = (ma_int32)xabs;
-
-#if defined(MA_USE_SINC_TABLE_INTERPOLATION)
- {
- float a = xabs - ixabs;
- return ma_mix_f32_fast(pSRC->sinc.table[ixabs], pSRC->sinc.table[ixabs+1], a);
- }
-#else
- return pSRC->sinc.table[ixabs];
-#endif
-}
-
-#if defined(MA_SUPPORT_SSE2)
-static MA_INLINE __m128 ma_fabsf_sse2(__m128 x)
-{
- return _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF)), x);
-}
-
-static MA_INLINE __m128 ma_truncf_sse2(__m128 x)
-{
- return _mm_cvtepi32_ps(_mm_cvttps_epi32(x));
-}
-
-static MA_INLINE __m128 ma_src_sinc__interpolation_factor__sse2(const ma_src* pSRC, __m128 x)
-{
- __m128 resolution128;
- __m128 xabs;
- __m128i ixabs;
- __m128 lo;
- __m128 hi;
- __m128 a;
- __m128 r;
- int* ixabsv;
-
- resolution128 = _mm_set1_ps(MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION);
- xabs = ma_fabsf_sse2(x);
- xabs = _mm_mul_ps(xabs, resolution128);
- ixabs = _mm_cvttps_epi32(xabs);
-
- ixabsv = (int*)&ixabs;
-
- lo = _mm_set_ps(
- pSRC->sinc.table[ixabsv[3]],
- pSRC->sinc.table[ixabsv[2]],
- pSRC->sinc.table[ixabsv[1]],
- pSRC->sinc.table[ixabsv[0]]
- );
-
- hi = _mm_set_ps(
- pSRC->sinc.table[ixabsv[3]+1],
- pSRC->sinc.table[ixabsv[2]+1],
- pSRC->sinc.table[ixabsv[1]+1],
- pSRC->sinc.table[ixabsv[0]+1]
- );
-
- a = _mm_sub_ps(xabs, _mm_cvtepi32_ps(ixabs));
- r = ma_mix_f32_fast__sse2(lo, hi, a);
-
- return r;
-}
-#endif
-
-#if defined(MA_SUPPORT_AVX2)
-static MA_INLINE __m256 ma_fabsf_avx2(__m256 x)
-{
- return _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x7FFFFFFF)), x);
-}
-
-#if 0
-static MA_INLINE __m256 ma_src_sinc__interpolation_factor__avx2(const ma_src* pSRC, __m256 x)
-{
- __m256 resolution256 = _mm256_set1_ps(MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION);
- __m256 xabs = ma_fabsf_avx2(x);
-
- xabs = _mm256_mul_ps(xabs, resolution256);
-
- __m256i ixabs = _mm256_cvttps_epi32(xabs);
- __m256 a = _mm256_sub_ps(xabs, _mm256_cvtepi32_ps(ixabs));
-
-
- int* ixabsv = (int*)&ixabs;
-
- __m256 lo = _mm256_set_ps(
- pSRC->sinc.table[ixabsv[7]],
- pSRC->sinc.table[ixabsv[6]],
- pSRC->sinc.table[ixabsv[5]],
- pSRC->sinc.table[ixabsv[4]],
- pSRC->sinc.table[ixabsv[3]],
- pSRC->sinc.table[ixabsv[2]],
- pSRC->sinc.table[ixabsv[1]],
- pSRC->sinc.table[ixabsv[0]]
- );
-
- __m256 hi = _mm256_set_ps(
- pSRC->sinc.table[ixabsv[7]+1],
- pSRC->sinc.table[ixabsv[6]+1],
- pSRC->sinc.table[ixabsv[5]+1],
- pSRC->sinc.table[ixabsv[4]+1],
- pSRC->sinc.table[ixabsv[3]+1],
- pSRC->sinc.table[ixabsv[2]+1],
- pSRC->sinc.table[ixabsv[1]+1],
- pSRC->sinc.table[ixabsv[0]+1]
- );
-
- __m256 r = ma_mix_f32_fast__avx2(lo, hi, a);
-
- return r;
-}
-#endif
-
-#endif
-
-#if defined(MA_SUPPORT_NEON)
-static MA_INLINE float32x4_t ma_fabsf_neon(float32x4_t x)
-{
- return vabdq_f32(vmovq_n_f32(0), x);
-}
-
-static MA_INLINE float32x4_t ma_src_sinc__interpolation_factor__neon(const ma_src* pSRC, float32x4_t x)
-{
- float32x4_t xabs;
- int32x4_t ixabs;
- float32x4_t a;
- float32x4_t r;
- int* ixabsv;
- float lo[4];
- float hi[4];
-
- xabs = ma_fabsf_neon(x);
- xabs = vmulq_n_f32(xabs, MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION);
- ixabs = vcvtq_s32_f32(xabs);
-
- ixabsv = (int*)&ixabs;
-
- lo[0] = pSRC->sinc.table[ixabsv[0]];
- lo[1] = pSRC->sinc.table[ixabsv[1]];
- lo[2] = pSRC->sinc.table[ixabsv[2]];
- lo[3] = pSRC->sinc.table[ixabsv[3]];
-
- hi[0] = pSRC->sinc.table[ixabsv[0]+1];
- hi[1] = pSRC->sinc.table[ixabsv[1]+1];
- hi[2] = pSRC->sinc.table[ixabsv[2]+1];
- hi[3] = pSRC->sinc.table[ixabsv[3]+1];
-
- a = vsubq_f32(xabs, vcvtq_f32_s32(ixabs));
- r = ma_mix_f32_fast__neon(vld1q_f32(lo), vld1q_f32(hi), a);
-
- return r;
-}
-#endif
-
-ma_uint64 ma_src_read_deinterleaved__sinc(ma_src* pSRC, ma_uint64 frameCount, void** ppSamplesOut, void* pUserData)
-{
- float factor;
- float inverseFactor;
- ma_int32 windowWidth;
- ma_int32 windowWidth2;
- ma_int32 windowWidthSIMD;
- ma_int32 windowWidthSIMD2;
- float* ppNextSamplesOut[MA_MAX_CHANNELS];
- float _windowSamplesUnaligned[MA_SRC_SINC_MAX_WINDOW_WIDTH*2 + MA_SIMD_ALIGNMENT];
- float* windowSamples;
- float _iWindowFUnaligned[MA_SRC_SINC_MAX_WINDOW_WIDTH*2 + MA_SIMD_ALIGNMENT];
- float* iWindowF;
- ma_int32 i;
- ma_uint64 totalOutputFramesRead;
-
- ma_assert(pSRC != NULL);
- ma_assert(frameCount > 0);
- ma_assert(ppSamplesOut != NULL);
-
- factor = (float)pSRC->config.sampleRateIn / pSRC->config.sampleRateOut;
- inverseFactor = 1/factor;
-
- windowWidth = (ma_int32)pSRC->config.sinc.windowWidth;
- windowWidth2 = windowWidth*2;
-
- /*
- There are cases where it's actually more efficient to increase the window width so that it's aligned with the respective
- SIMD pipeline being used.
- */
- windowWidthSIMD = windowWidth;
- if (pSRC->useNEON) {
- windowWidthSIMD = (windowWidthSIMD + 1) & ~(1);
- } else if (pSRC->useAVX512) {
- windowWidthSIMD = (windowWidthSIMD + 7) & ~(7);
- } else if (pSRC->useAVX2) {
- windowWidthSIMD = (windowWidthSIMD + 3) & ~(3);
- } else if (pSRC->useSSE2) {
- windowWidthSIMD = (windowWidthSIMD + 1) & ~(1);
- }
-
- windowWidthSIMD2 = windowWidthSIMD*2;
- (void)windowWidthSIMD2; /* <-- Silence a warning when SIMD is disabled. */
-
- ma_copy_memory(ppNextSamplesOut, ppSamplesOut, sizeof(void*) * pSRC->config.channels);
-
- windowSamples = (float*)(((ma_uintptr)_windowSamplesUnaligned + MA_SIMD_ALIGNMENT-1) & ~(MA_SIMD_ALIGNMENT-1));
- ma_zero_memory(windowSamples, MA_SRC_SINC_MAX_WINDOW_WIDTH*2 * sizeof(float));
-
- iWindowF = (float*)(((ma_uintptr)_iWindowFUnaligned + MA_SIMD_ALIGNMENT-1) & ~(MA_SIMD_ALIGNMENT-1));
- ma_zero_memory(iWindowF, MA_SRC_SINC_MAX_WINDOW_WIDTH*2 * sizeof(float));
-
- for (i = 0; i < windowWidth2; ++i) {
- iWindowF[i] = (float)(i - windowWidth);
- }
-
- totalOutputFramesRead = 0;
- while (totalOutputFramesRead < frameCount) {
- ma_uint32 maxInputSamplesAvailableInCache;
- float timeInBeg;
- float timeInEnd;
- ma_uint64 maxOutputFramesToRead;
- ma_uint64 outputFramesRemaining;
- ma_uint64 outputFramesToRead;
- ma_uint32 iChannel;
- ma_uint32 prevWindowPosInSamples;
- ma_uint32 availableOutputFrames;
-
- /*
- The maximum number of frames we can read this iteration depends on how many input samples we have available to us. This is the number
- of input samples between the end of the window and the end of the cache.
- */
- maxInputSamplesAvailableInCache = ma_countof(pSRC->sinc.input[0]) - (pSRC->config.sinc.windowWidth*2) - pSRC->sinc.windowPosInSamples;
- if (maxInputSamplesAvailableInCache > pSRC->sinc.inputFrameCount) {
- maxInputSamplesAvailableInCache = pSRC->sinc.inputFrameCount;
- }
-
- /* Never consume the tail end of the input data if requested. */
- if (pSRC->config.neverConsumeEndOfInput) {
- if (maxInputSamplesAvailableInCache >= pSRC->config.sinc.windowWidth) {
- maxInputSamplesAvailableInCache -= pSRC->config.sinc.windowWidth;
- } else {
- maxInputSamplesAvailableInCache = 0;
- }
- }
-
- timeInBeg = pSRC->sinc.timeIn;
- timeInEnd = (float)(pSRC->sinc.windowPosInSamples + maxInputSamplesAvailableInCache);
-
- ma_assert(timeInBeg >= 0);
- ma_assert(timeInBeg <= timeInEnd);
-
- maxOutputFramesToRead = (ma_uint64)(((timeInEnd - timeInBeg) * inverseFactor));
-
- outputFramesRemaining = frameCount - totalOutputFramesRead;
- outputFramesToRead = outputFramesRemaining;
- if (outputFramesToRead > maxOutputFramesToRead) {
- outputFramesToRead = maxOutputFramesToRead;
- }
-
- for (iChannel = 0; iChannel < pSRC->config.channels; iChannel += 1) {
- /* Do SRC. */
- float timeIn = timeInBeg;
- ma_uint32 iSample;
- for (iSample = 0; iSample < outputFramesToRead; iSample += 1) {
- float sampleOut = 0;
- float iTimeInF = ma_floorf(timeIn);
- ma_uint32 iTimeIn = (ma_uint32)iTimeInF;
- ma_int32 iWindow = 0;
- float tScalar;
-
- /* Pre-load the window samples into an aligned buffer to begin with. Need to put these into an aligned buffer to make SIMD easier. */
- windowSamples[0] = 0; /* <-- The first sample is always zero. */
- for (i = 1; i < windowWidth2; ++i) {
- windowSamples[i] = pSRC->sinc.input[iChannel][iTimeIn + i];
- }
-
-#if defined(MA_SUPPORT_AVX2) || defined(MA_SUPPORT_AVX512)
- if (pSRC->useAVX2 || pSRC->useAVX512) {
- __m256i ixabs[MA_SRC_SINC_MAX_WINDOW_WIDTH*2/8];
- __m256 a[MA_SRC_SINC_MAX_WINDOW_WIDTH*2/8];
- __m256 resolution256;
- __m256 t;
- __m256 r;
- ma_int32 windowWidth8;
- ma_int32 iWindow8;
-
- resolution256 = _mm256_set1_ps(MA_SRC_SINC_LOOKUP_TABLE_RESOLUTION);
-
- t = _mm256_set1_ps((timeIn - iTimeInF));
- r = _mm256_set1_ps(0);
-
- windowWidth8 = windowWidthSIMD2 >> 3;
- for (iWindow8 = 0; iWindow8 < windowWidth8; iWindow8 += 1) {
- __m256 w = *((__m256*)iWindowF + iWindow8);
-
- __m256 xabs = _mm256_sub_ps(t, w);
- xabs = ma_fabsf_avx2(xabs);
- xabs = _mm256_mul_ps(xabs, resolution256);
-
- ixabs[iWindow8] = _mm256_cvttps_epi32(xabs);
- a[iWindow8] = _mm256_sub_ps(xabs, _mm256_cvtepi32_ps(ixabs[iWindow8]));
- }
-
- for (iWindow8 = 0; iWindow8 < windowWidth8; iWindow8 += 1) {
- int* ixabsv = (int*)&ixabs[iWindow8];
-
- __m256 lo = _mm256_set_ps(
- pSRC->sinc.table[ixabsv[7]],
- pSRC->sinc.table[ixabsv[6]],
- pSRC->sinc.table[ixabsv[5]],
- pSRC->sinc.table[ixabsv[4]],
- pSRC->sinc.table[ixabsv[3]],
- pSRC->sinc.table[ixabsv[2]],
- pSRC->sinc.table[ixabsv[1]],
- pSRC->sinc.table[ixabsv[0]]
- );
-
- __m256 hi = _mm256_set_ps(
- pSRC->sinc.table[ixabsv[7]+1],
- pSRC->sinc.table[ixabsv[6]+1],
- pSRC->sinc.table[ixabsv[5]+1],
- pSRC->sinc.table[ixabsv[4]+1],
- pSRC->sinc.table[ixabsv[3]+1],
- pSRC->sinc.table[ixabsv[2]+1],
- pSRC->sinc.table[ixabsv[1]+1],
- pSRC->sinc.table[ixabsv[0]+1]
- );
-
- __m256 s = *((__m256*)windowSamples + iWindow8);
- r = _mm256_add_ps(r, _mm256_mul_ps(s, ma_mix_f32_fast__avx2(lo, hi, a[iWindow8])));
- }
-
- /* Horizontal add. */
- __m256 x = _mm256_hadd_ps(r, _mm256_permute2f128_ps(r, r, 1));
- x = _mm256_hadd_ps(x, x);
- x = _mm256_hadd_ps(x, x);
- sampleOut += _mm_cvtss_f32(_mm256_castps256_ps128(x));
-
- iWindow += windowWidth8 * 8;
- }
- else
-#endif
-#if defined(MA_SUPPORT_SSE2)
- if (pSRC->useSSE2) {
- __m128 t = _mm_set1_ps((timeIn - iTimeInF));
- __m128 r = _mm_set1_ps(0);
-
- ma_int32 windowWidth4 = windowWidthSIMD2 >> 2;
- ma_int32 iWindow4;
- for (iWindow4 = 0; iWindow4 < windowWidth4; iWindow4 += 1) {
- __m128* s = (__m128*)windowSamples + iWindow4;
- __m128* w = (__m128*)iWindowF + iWindow4;
-
- __m128 a = ma_src_sinc__interpolation_factor__sse2(pSRC, _mm_sub_ps(t, *w));
- r = _mm_add_ps(r, _mm_mul_ps(*s, a));
- }
-
- sampleOut += ((float*)(&r))[0];
- sampleOut += ((float*)(&r))[1];
- sampleOut += ((float*)(&r))[2];
- sampleOut += ((float*)(&r))[3];
-
- iWindow += windowWidth4 * 4;
- }
- else
-#endif
-#if defined(MA_SUPPORT_NEON)
- if (pSRC->useNEON) {
- float32x4_t t = vmovq_n_f32((timeIn - iTimeInF));
- float32x4_t r = vmovq_n_f32(0);
-
- ma_int32 windowWidth4 = windowWidthSIMD2 >> 2;
- ma_int32 iWindow4;
- for (iWindow4 = 0; iWindow4 < windowWidth4; iWindow4 += 1) {
- float32x4_t* s = (float32x4_t*)windowSamples + iWindow4;
- float32x4_t* w = (float32x4_t*)iWindowF + iWindow4;
-
- float32x4_t a = ma_src_sinc__interpolation_factor__neon(pSRC, vsubq_f32(t, *w));
- r = vaddq_f32(r, vmulq_f32(*s, a));
- }
-
- sampleOut += ((float*)(&r))[0];
- sampleOut += ((float*)(&r))[1];
- sampleOut += ((float*)(&r))[2];
- sampleOut += ((float*)(&r))[3];
-
- iWindow += windowWidth4 * 4;
- }
- else
-#endif
- {
- iWindow += 1; /* The first one is a dummy for SIMD alignment purposes. Skip it. */
- }
-
- /* Non-SIMD/Reference implementation. */
- tScalar = (timeIn - iTimeIn);
- for (; iWindow < windowWidth2; iWindow += 1) {
- float s = windowSamples[iWindow];
- float w = iWindowF[iWindow];
-
- float a = ma_src_sinc__interpolation_factor(pSRC, (tScalar - w));
- float r = s * a;
-
- sampleOut += r;
- }
-
- ppNextSamplesOut[iChannel][iSample] = (float)sampleOut;
-
- timeIn += factor;
- }
-
- ppNextSamplesOut[iChannel] += outputFramesToRead;
- }
-
- totalOutputFramesRead += outputFramesToRead;
-
- prevWindowPosInSamples = pSRC->sinc.windowPosInSamples;
-
- pSRC->sinc.timeIn += ((ma_int64)outputFramesToRead * factor); /* Cast to int64 required for VC6. */
- pSRC->sinc.windowPosInSamples = (ma_uint32)pSRC->sinc.timeIn;
- pSRC->sinc.inputFrameCount -= pSRC->sinc.windowPosInSamples - prevWindowPosInSamples;
-
- /* If the window has reached a point where we cannot read a whole output sample it needs to be moved back to the start. */
- availableOutputFrames = (ma_uint32)((timeInEnd - pSRC->sinc.timeIn) * inverseFactor);
-
- if (availableOutputFrames == 0) {
- size_t samplesToMove = ma_countof(pSRC->sinc.input[0]) - pSRC->sinc.windowPosInSamples;
-
- pSRC->sinc.timeIn -= ma_floorf(pSRC->sinc.timeIn);
- pSRC->sinc.windowPosInSamples = 0;
-
- /* Move everything from the end of the cache up to the front. */
- for (iChannel = 0; iChannel < pSRC->config.channels; iChannel += 1) {
- memmove(pSRC->sinc.input[iChannel], pSRC->sinc.input[iChannel] + ma_countof(pSRC->sinc.input[iChannel]) - samplesToMove, samplesToMove * sizeof(*pSRC->sinc.input[iChannel]));
- }
- }
-
- /* Read more data from the client if required. */
- if (pSRC->isEndOfInputLoaded) {
- pSRC->isEndOfInputLoaded = MA_FALSE;
- break;
- }
-
- /*
- Everything beyond this point is reloading. If we're at the end of the input data we do _not_ want to try reading any more in this function call. If the
- caller wants to keep trying, they can reload their internal data sources and call this function again. We should never be
- */
- ma_assert(pSRC->isEndOfInputLoaded == MA_FALSE);
-
- if (pSRC->sinc.inputFrameCount <= pSRC->config.sinc.windowWidth || availableOutputFrames == 0) {
- float* ppInputDst[MA_MAX_CHANNELS] = {0};
- ma_uint32 framesToReadFromClient;
- ma_uint32 framesReadFromClient;
- ma_uint32 leftoverFrames;
-
- for (iChannel = 0; iChannel < pSRC->config.channels; iChannel += 1) {
- ppInputDst[iChannel] = pSRC->sinc.input[iChannel] + pSRC->config.sinc.windowWidth + pSRC->sinc.inputFrameCount;
- }
-
- /* Now read data from the client. */
- framesToReadFromClient = ma_countof(pSRC->sinc.input[0]) - (pSRC->config.sinc.windowWidth + pSRC->sinc.inputFrameCount);
-
- framesReadFromClient = 0;
- if (framesToReadFromClient > 0) {
- framesReadFromClient = pSRC->config.onReadDeinterleaved(pSRC, framesToReadFromClient, (void**)ppInputDst, pUserData);
- }
-
- if (framesReadFromClient != framesToReadFromClient) {
- pSRC->isEndOfInputLoaded = MA_TRUE;
- } else {
- pSRC->isEndOfInputLoaded = MA_FALSE;
- }
-
- if (framesReadFromClient != 0) {
- pSRC->sinc.inputFrameCount += framesReadFromClient;
- } else {
- /* We couldn't get anything more from the client. If no more output samples can be computed from the available input samples we need to return. */
- if (pSRC->config.neverConsumeEndOfInput) {
- if ((pSRC->sinc.inputFrameCount * inverseFactor) <= pSRC->config.sinc.windowWidth) {
- break;
- }
- } else {
- if ((pSRC->sinc.inputFrameCount * inverseFactor) < 1) {
- break;
- }
- }
- }
-
- /* Anything left over in the cache must be set to zero. */
- leftoverFrames = ma_countof(pSRC->sinc.input[0]) - (pSRC->config.sinc.windowWidth + pSRC->sinc.inputFrameCount);
- if (leftoverFrames > 0) {
- for (iChannel = 0; iChannel < pSRC->config.channels; iChannel += 1) {
- ma_zero_memory(pSRC->sinc.input[iChannel] + pSRC->config.sinc.windowWidth + pSRC->sinc.inputFrameCount, leftoverFrames * sizeof(float));
- }
- }
- }
- }
-
- return totalOutputFramesRead;
-}
-
-
-
-/**************************************************************************************************************************************************************
-
-Format Conversion
-
-**************************************************************************************************************************************************************/
void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode)
{
if (formatOut == formatIn) {
@@ -31992,6 +34515,11 @@ void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format
}
}
+void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode)
+{
+ ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode);
+}
+
void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames)
{
if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) {
@@ -32090,610 +34618,719 @@ void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 fr
-typedef struct
-{
- ma_pcm_converter* pDSP;
- void* pUserDataForClient;
-} ma_pcm_converter_callback_data;
-
-ma_uint32 ma_pcm_converter__pre_format_converter_on_read(ma_format_converter* pConverter, ma_uint32 frameCount, void* pFramesOut, void* pUserData)
-{
- ma_pcm_converter_callback_data* pData;
- ma_pcm_converter* pDSP;
+/**************************************************************************************************************************************************************
- (void)pConverter;
+Channel Maps
- pData = (ma_pcm_converter_callback_data*)pUserData;
- ma_assert(pData != NULL);
+**************************************************************************************************************************************************************/
+static void ma_get_standard_channel_map_microsoft(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+{
+ /* Based off the speaker configurations mentioned here: https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-ksaudio_channel_config */
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- pDSP = pData->pDSP;
- ma_assert(pDSP != NULL);
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ } break;
- return pDSP->onRead(pDSP, pFramesOut, frameCount, pData->pUserDataForClient);
-}
+ case 3: /* Not defined, but best guess. */
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ } break;
-ma_uint32 ma_pcm_converter__post_format_converter_on_read(ma_format_converter* pConverter, ma_uint32 frameCount, void* pFramesOut, void* pUserData)
-{
- ma_pcm_converter_callback_data* pData;
- ma_pcm_converter* pDSP;
+ case 4:
+ {
+#ifndef MA_USE_QUAD_MICROSOFT_CHANNEL_MAP
+ /* Surround. Using the Surround profile has the advantage of the 3rd channel (MA_CHANNEL_FRONT_CENTER) mapping nicely with higher channel counts. */
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_BACK_CENTER;
+#else
+ /* Quad. */
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+#endif
+ } break;
- (void)pConverter;
+ case 5: /* Not defined, but best guess. */
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_BACK_LEFT;
+ channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- pData = (ma_pcm_converter_callback_data*)pUserData;
- ma_assert(pData != NULL);
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[5] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
- pDSP = pData->pDSP;
- ma_assert(pDSP != NULL);
+ case 7: /* Not defined, but best guess. */
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_BACK_CENTER;
+ channelMap[5] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
- /* When this version of this callback is used it means we're reading directly from the client. */
- ma_assert(pDSP->isPreFormatConversionRequired == MA_FALSE);
- ma_assert(pDSP->isChannelRoutingRequired == MA_FALSE);
- ma_assert(pDSP->isSRCRequired == MA_FALSE);
+ case 8:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_BACK_LEFT;
+ channelMap[5] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[6] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
+ }
- return pDSP->onRead(pDSP, pFramesOut, frameCount, pData->pUserDataForClient);
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
+ }
+ }
}
-ma_uint32 ma_pcm_converter__post_format_converter_on_read_deinterleaved(ma_format_converter* pConverter, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData)
+static void ma_get_standard_channel_map_alsa(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_pcm_converter_callback_data* pData;
- ma_pcm_converter* pDSP;
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- (void)pConverter;
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
- pData = (ma_pcm_converter_callback_data*)pUserData;
- ma_assert(pData != NULL);
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ } break;
- pDSP = pData->pDSP;
- ma_assert(pDSP != NULL);
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- if (!pDSP->isChannelRoutingAtStart) {
- return (ma_uint32)ma_channel_router_read_deinterleaved(&pDSP->channelRouter, frameCount, ppSamplesOut, pUserData);
- } else {
- if (pDSP->isSRCRequired) {
- return (ma_uint32)ma_src_read_deinterleaved(&pDSP->src, frameCount, ppSamplesOut, pUserData);
- } else {
- return (ma_uint32)ma_channel_router_read_deinterleaved(&pDSP->channelRouter, frameCount, ppSamplesOut, pUserData);
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ } break;
+
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ } break;
+
+ case 7:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ channelMap[6] = MA_CHANNEL_BACK_CENTER;
+ } break;
+
+ case 8:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ channelMap[6] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
+ }
+
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
-ma_uint32 ma_pcm_converter__src_on_read_deinterleaved(ma_src* pSRC, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData)
+static void ma_get_standard_channel_map_rfc3551(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_pcm_converter_callback_data* pData;
- ma_pcm_converter* pDSP;
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
+
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
- (void)pSRC;
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ } break;
- pData = (ma_pcm_converter_callback_data*)pUserData;
- ma_assert(pData != NULL);
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[3] = MA_CHANNEL_BACK_CENTER;
+ } break;
- pDSP = pData->pDSP;
- ma_assert(pDSP != NULL);
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_BACK_LEFT;
+ channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- /* If the channel routing stage is at the front we need to read from that. Otherwise we read from the pre format converter. */
- if (pDSP->isChannelRoutingAtStart) {
- return (ma_uint32)ma_channel_router_read_deinterleaved(&pDSP->channelRouter, frameCount, ppSamplesOut, pUserData);
- } else {
- return (ma_uint32)ma_format_converter_read_deinterleaved(&pDSP->formatConverterIn, frameCount, ppSamplesOut, pUserData);
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
+ channelMap[5] = MA_CHANNEL_BACK_CENTER;
+ } break;
+ }
+
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
+ }
}
}
-ma_uint32 ma_pcm_converter__channel_router_on_read_deinterleaved(ma_channel_router* pRouter, ma_uint32 frameCount, void** ppSamplesOut, void* pUserData)
+static void ma_get_standard_channel_map_flac(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_pcm_converter_callback_data* pData;
- ma_pcm_converter* pDSP;
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- (void)pRouter;
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
- pData = (ma_pcm_converter_callback_data*)pUserData;
- ma_assert(pData != NULL);
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ } break;
- pDSP = pData->pDSP;
- ma_assert(pDSP != NULL);
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- /* If the channel routing stage is at the front of the pipeline we read from the pre format converter. Otherwise we read from the sample rate converter. */
- if (pDSP->isChannelRoutingAtStart) {
- return (ma_uint32)ma_format_converter_read_deinterleaved(&pDSP->formatConverterIn, frameCount, ppSamplesOut, pUserData);
- } else {
- if (pDSP->isSRCRequired) {
- return (ma_uint32)ma_src_read_deinterleaved(&pDSP->src, frameCount, ppSamplesOut, pUserData);
- } else {
- return (ma_uint32)ma_format_converter_read_deinterleaved(&pDSP->formatConverterIn, frameCount, ppSamplesOut, pUserData);
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_BACK_LEFT;
+ channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ } break;
+
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_BACK_LEFT;
+ channelMap[5] = MA_CHANNEL_BACK_RIGHT;
+ } break;
+
+ case 7:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_BACK_CENTER;
+ channelMap[5] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
+
+ case 8:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[3] = MA_CHANNEL_LFE;
+ channelMap[4] = MA_CHANNEL_BACK_LEFT;
+ channelMap[5] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[6] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
+ }
+
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
-ma_result ma_pcm_converter_init(const ma_pcm_converter_config* pConfig, ma_pcm_converter* pDSP)
+static void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_result result;
+ /* In Vorbis' type 0 channel mapping, the first two channels are not always the standard left/right - it will have the center speaker where the right usually goes. Why?! */
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- if (pDSP == NULL) {
- return MA_INVALID_ARGS;
- }
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
- ma_zero_object(pDSP);
- pDSP->onRead = pConfig->onRead;
- pDSP->pUserData = pConfig->pUserData;
- pDSP->isDynamicSampleRateAllowed = pConfig->allowDynamicSampleRate;
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ } break;
- /*
- In general, this is the pipeline used for data conversion. Note that this can actually change which is explained later.
-
- Pre Format Conversion -> Sample Rate Conversion -> Channel Routing -> Post Format Conversion
-
- Pre Format Conversion
- ---------------------
- This is where the sample data is converted to a format that's usable by the later stages in the pipeline. Input data
- is converted to deinterleaved floating-point.
-
- Channel Routing
- ---------------
- Channel routing is where stereo is converted to 5.1, mono is converted to stereo, etc. This stage depends on the
- pre format conversion stage.
-
- Sample Rate Conversion
- ----------------------
- Sample rate conversion depends on the pre format conversion stage and as the name implies performs sample rate conversion.
-
- Post Format Conversion
- ----------------------
- This stage is where our deinterleaved floating-point data from the previous stages are converted to the requested output
- format.
-
-
- Optimizations
- -------------
- Sometimes the conversion pipeline is rearranged for efficiency. The first obvious optimization is to eliminate unnecessary
- stages in the pipeline. When no channel routing nor sample rate conversion is necessary, the entire pipeline is optimized
- down to just this:
-
- Post Format Conversion
-
- When sample rate conversion is not unnecessary:
-
- Pre Format Conversion -> Channel Routing -> Post Format Conversion
-
- When channel routing is unnecessary:
-
- Pre Format Conversion -> Sample Rate Conversion -> Post Format Conversion
-
- A slightly less obvious optimization is used depending on whether or not we are increasing or decreasing the number of
- channels. Because everything in the pipeline works on a per-channel basis, the efficiency of the pipeline is directly
- proportionate to the number of channels that need to be processed. Therefore, it's can be more efficient to move the
- channel conversion stage to an earlier or later stage. When the channel count is being reduced, we move the channel
- conversion stage to the start of the pipeline so that later stages can work on a smaller number of channels at a time.
- Otherwise, we move the channel conversion stage to the end of the pipeline. When reducing the channel count, the pipeline
- will look like this:
-
- Pre Format Conversion -> Channel Routing -> Sample Rate Conversion -> Post Format Conversion
-
- Notice how the Channel Routing and Sample Rate Conversion stages are swapped so that the SRC stage has less data to process.
- */
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- /* First we need to determine what's required and what's not. */
- if (pConfig->sampleRateIn != pConfig->sampleRateOut || pConfig->allowDynamicSampleRate) {
- pDSP->isSRCRequired = MA_TRUE;
- }
- if (pConfig->channelsIn != pConfig->channelsOut || !ma_channel_map_equal(pConfig->channelsIn, pConfig->channelMapIn, pConfig->channelMapOut)) {
- pDSP->isChannelRoutingRequired = MA_TRUE;
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[3] = MA_CHANNEL_BACK_LEFT;
+ channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ } break;
+
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[3] = MA_CHANNEL_BACK_LEFT;
+ channelMap[4] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[5] = MA_CHANNEL_LFE;
+ } break;
+
+ case 7:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[3] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
+ channelMap[5] = MA_CHANNEL_BACK_CENTER;
+ channelMap[6] = MA_CHANNEL_LFE;
+ } break;
+
+ case 8:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[3] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
+ channelMap[5] = MA_CHANNEL_BACK_LEFT;
+ channelMap[6] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[7] = MA_CHANNEL_LFE;
+ } break;
}
- /* If neither a sample rate conversion nor channel conversion is necessary we can skip the pre format conversion. */
- if (!pDSP->isSRCRequired && !pDSP->isChannelRoutingRequired) {
- /* We don't need a pre format conversion stage, but we may still need a post format conversion stage. */
- if (pConfig->formatIn != pConfig->formatOut) {
- pDSP->isPostFormatConversionRequired = MA_TRUE;
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
- } else {
- pDSP->isPreFormatConversionRequired = MA_TRUE;
- pDSP->isPostFormatConversionRequired = MA_TRUE;
}
+}
- /* Use a passthrough if none of the stages are being used. */
- if (!pDSP->isPreFormatConversionRequired && !pDSP->isPostFormatConversionRequired && !pDSP->isChannelRoutingRequired && !pDSP->isSRCRequired) {
- pDSP->isPassthrough = MA_TRUE;
- }
+static void ma_get_standard_channel_map_sound4(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+{
+ switch (channels)
+ {
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- /* Move the channel conversion stage to the start of the pipeline if we are reducing the channel count. */
- if (pConfig->channelsOut < pConfig->channelsIn) {
- pDSP->isChannelRoutingAtStart = MA_TRUE;
- }
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_CENTER;
+ } break;
- /*
- We always initialize every stage of the pipeline regardless of whether or not the stage is used because it simplifies
- a few things when it comes to dynamically changing properties post-initialization.
- */
- result = MA_SUCCESS;
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ } break;
- /* Pre format conversion. */
- {
- ma_format_converter_config preFormatConverterConfig = ma_format_converter_config_init(
- pConfig->formatIn,
- ma_format_f32,
- pConfig->channelsIn,
- ma_pcm_converter__pre_format_converter_on_read,
- pDSP
- );
- preFormatConverterConfig.ditherMode = pConfig->ditherMode;
- preFormatConverterConfig.noSSE2 = pConfig->noSSE2;
- preFormatConverterConfig.noAVX2 = pConfig->noAVX2;
- preFormatConverterConfig.noAVX512 = pConfig->noAVX512;
- preFormatConverterConfig.noNEON = pConfig->noNEON;
-
- result = ma_format_converter_init(&preFormatConverterConfig, &pDSP->formatConverterIn);
- if (result != MA_SUCCESS) {
- return result;
- }
- }
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ } break;
- /*
- Post format conversion. The exact configuration for this depends on whether or not we are reading data directly from the client
- or from an earlier stage in the pipeline.
- */
- {
- ma_format_converter_config postFormatConverterConfig = ma_format_converter_config_init_new();
- postFormatConverterConfig.formatIn = pConfig->formatIn;
- postFormatConverterConfig.formatOut = pConfig->formatOut;
- postFormatConverterConfig.channels = pConfig->channelsOut;
- postFormatConverterConfig.ditherMode = pConfig->ditherMode;
- postFormatConverterConfig.noSSE2 = pConfig->noSSE2;
- postFormatConverterConfig.noAVX2 = pConfig->noAVX2;
- postFormatConverterConfig.noAVX512 = pConfig->noAVX512;
- postFormatConverterConfig.noNEON = pConfig->noNEON;
- if (pDSP->isPreFormatConversionRequired) {
- postFormatConverterConfig.onReadDeinterleaved = ma_pcm_converter__post_format_converter_on_read_deinterleaved;
- postFormatConverterConfig.formatIn = ma_format_f32;
- } else {
- postFormatConverterConfig.onRead = ma_pcm_converter__post_format_converter_on_read;
- }
+ case 6:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ } break;
- result = ma_format_converter_init(&postFormatConverterConfig, &pDSP->formatConverterOut);
- if (result != MA_SUCCESS) {
- return result;
- }
+ case 7:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_BACK_CENTER;
+ channelMap[6] = MA_CHANNEL_LFE;
+ } break;
+
+ case 8:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ channelMap[6] = MA_CHANNEL_SIDE_LEFT;
+ channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
+ } break;
}
- /* SRC */
- {
- ma_src_config srcConfig = ma_src_config_init(
- pConfig->sampleRateIn,
- pConfig->sampleRateOut,
- ((pConfig->channelsIn < pConfig->channelsOut) ? pConfig->channelsIn : pConfig->channelsOut),
- ma_pcm_converter__src_on_read_deinterleaved,
- pDSP
- );
- srcConfig.algorithm = pConfig->srcAlgorithm;
- srcConfig.neverConsumeEndOfInput = pConfig->neverConsumeEndOfInput;
- srcConfig.noSSE2 = pConfig->noSSE2;
- srcConfig.noAVX2 = pConfig->noAVX2;
- srcConfig.noAVX512 = pConfig->noAVX512;
- srcConfig.noNEON = pConfig->noNEON;
- ma_copy_memory(&srcConfig.sinc, &pConfig->sinc, sizeof(pConfig->sinc));
-
- result = ma_src_init(&srcConfig, &pDSP->src);
- if (result != MA_SUCCESS) {
- return result;
+ /* Remainder. */
+ if (channels > 8) {
+ ma_uint32 iChannel;
+ for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
+}
- /* Channel conversion */
+static void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
+{
+ switch (channels)
{
- ma_channel_router_config routerConfig = ma_channel_router_config_init(
- pConfig->channelsIn,
- pConfig->channelMapIn,
- pConfig->channelsOut,
- pConfig->channelMapOut,
- pConfig->channelMixMode,
- ma_pcm_converter__channel_router_on_read_deinterleaved,
- pDSP);
- routerConfig.noSSE2 = pConfig->noSSE2;
- routerConfig.noAVX2 = pConfig->noAVX2;
- routerConfig.noAVX512 = pConfig->noAVX512;
- routerConfig.noNEON = pConfig->noNEON;
-
- result = ma_channel_router_init(&routerConfig, &pDSP->channelRouter);
- if (result != MA_SUCCESS) {
- return result;
- }
- }
+ case 1:
+ {
+ channelMap[0] = MA_CHANNEL_MONO;
+ } break;
- return MA_SUCCESS;
-}
+ case 2:
+ {
+ channelMap[0] = MA_CHANNEL_LEFT;
+ channelMap[1] = MA_CHANNEL_RIGHT;
+ } break;
+ case 3:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_FRONT_CENTER;
+ } break;
-ma_result ma_pcm_converter_refresh_sample_rate(ma_pcm_converter* pDSP)
-{
- /* The SRC stage will already have been initialized so we can just set it there. */
- ma_src_set_sample_rate(&pDSP->src, pDSP->src.config.sampleRateIn, pDSP->src.config.sampleRateOut);
- return MA_SUCCESS;
-}
+ case 4:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ } break;
-ma_result ma_pcm_converter_set_input_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateIn)
-{
- if (pDSP == NULL) {
- return MA_INVALID_ARGS;
- }
+ case 5:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ } break;
- /* Must have a sample rate of > 0. */
- if (sampleRateIn == 0) {
- return MA_INVALID_ARGS;
+ case 6:
+ default:
+ {
+ channelMap[0] = MA_CHANNEL_FRONT_LEFT;
+ channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
+ channelMap[2] = MA_CHANNEL_BACK_LEFT;
+ channelMap[3] = MA_CHANNEL_BACK_RIGHT;
+ channelMap[4] = MA_CHANNEL_FRONT_CENTER;
+ channelMap[5] = MA_CHANNEL_LFE;
+ } break;
}
- /* Must have been initialized with allowDynamicSampleRate. */
- if (!pDSP->isDynamicSampleRateAllowed) {
- return MA_INVALID_OPERATION;
+ /* Remainder. */
+ if (channels > 6) {
+ ma_uint32 iChannel;
+ for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
+ channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
+ }
}
-
- ma_atomic_exchange_32(&pDSP->src.config.sampleRateIn, sampleRateIn);
- return ma_pcm_converter_refresh_sample_rate(pDSP);
}
-ma_result ma_pcm_converter_set_output_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateOut)
+void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
- if (pDSP == NULL) {
- return MA_INVALID_ARGS;
- }
+ switch (standardChannelMap)
+ {
+ case ma_standard_channel_map_alsa:
+ {
+ ma_get_standard_channel_map_alsa(channels, channelMap);
+ } break;
- /* Must have a sample rate of > 0. */
- if (sampleRateOut == 0) {
- return MA_INVALID_ARGS;
- }
+ case ma_standard_channel_map_rfc3551:
+ {
+ ma_get_standard_channel_map_rfc3551(channels, channelMap);
+ } break;
- /* Must have been initialized with allowDynamicSampleRate. */
- if (!pDSP->isDynamicSampleRateAllowed) {
- return MA_INVALID_OPERATION;
- }
+ case ma_standard_channel_map_flac:
+ {
+ ma_get_standard_channel_map_flac(channels, channelMap);
+ } break;
- ma_atomic_exchange_32(&pDSP->src.config.sampleRateOut, sampleRateOut);
- return ma_pcm_converter_refresh_sample_rate(pDSP);
-}
+ case ma_standard_channel_map_vorbis:
+ {
+ ma_get_standard_channel_map_vorbis(channels, channelMap);
+ } break;
-ma_result ma_pcm_converter_set_sample_rate(ma_pcm_converter* pDSP, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
-{
- if (pDSP == NULL) {
- return MA_INVALID_ARGS;
- }
+ case ma_standard_channel_map_sound4:
+ {
+ ma_get_standard_channel_map_sound4(channels, channelMap);
+ } break;
+
+ case ma_standard_channel_map_sndio:
+ {
+ ma_get_standard_channel_map_sndio(channels, channelMap);
+ } break;
- /* Must have a sample rate of > 0. */
- if (sampleRateIn == 0 || sampleRateOut == 0) {
- return MA_INVALID_ARGS;
+ case ma_standard_channel_map_microsoft:
+ default:
+ {
+ ma_get_standard_channel_map_microsoft(channels, channelMap);
+ } break;
}
+}
- /* Must have been initialized with allowDynamicSampleRate. */
- if (!pDSP->isDynamicSampleRateAllowed) {
- return MA_INVALID_OPERATION;
+void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels)
+{
+ if (pOut != NULL && pIn != NULL && channels > 0) {
+ MA_COPY_MEMORY(pOut, pIn, sizeof(*pOut) * channels);
}
-
- ma_atomic_exchange_32(&pDSP->src.config.sampleRateIn, sampleRateIn);
- ma_atomic_exchange_32(&pDSP->src.config.sampleRateOut, sampleRateOut);
-
- return ma_pcm_converter_refresh_sample_rate(pDSP);
}
-ma_uint64 ma_pcm_converter_read(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint64 frameCount)
+ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_pcm_converter_callback_data data;
-
- if (pDSP == NULL || pFramesOut == NULL) {
- return 0;
+ if (channelMap == NULL) {
+ return MA_FALSE;
}
- /* Fast path. */
- if (pDSP->isPassthrough) {
- if (frameCount <= 0xFFFFFFFF) {
- return (ma_uint32)pDSP->onRead(pDSP, pFramesOut, (ma_uint32)frameCount, pDSP->pUserData);
- } else {
- ma_uint8* pNextFramesOut = (ma_uint8*)pFramesOut;
-
- ma_uint64 totalFramesRead = 0;
- while (totalFramesRead < frameCount) {
- ma_uint32 framesRead;
- ma_uint64 framesRemaining = (frameCount - totalFramesRead);
- ma_uint64 framesToReadRightNow = framesRemaining;
- if (framesToReadRightNow > 0xFFFFFFFF) {
- framesToReadRightNow = 0xFFFFFFFF;
- }
-
- framesRead = pDSP->onRead(pDSP, pNextFramesOut, (ma_uint32)framesToReadRightNow, pDSP->pUserData);
- if (framesRead == 0) {
- break;
- }
+ /* A channel count of 0 is invalid. */
+ if (channels == 0) {
+ return MA_FALSE;
+ }
- pNextFramesOut += framesRead * pDSP->channelRouter.config.channelsOut * ma_get_bytes_per_sample(pDSP->formatConverterOut.config.formatOut);
- totalFramesRead += framesRead;
+ /* It does not make sense to have a mono channel when there is more than 1 channel. */
+ if (channels > 1) {
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ if (channelMap[iChannel] == MA_CHANNEL_MONO) {
+ return MA_FALSE;
}
-
- return totalFramesRead;
}
}
- /* Slower path. The real work is done here. To do this all we need to do is read from the last stage in the pipeline. */
- ma_assert(pDSP->isPostFormatConversionRequired == MA_TRUE);
-
- data.pDSP = pDSP;
- data.pUserDataForClient = pDSP->pUserData;
- return ma_format_converter_read(&pDSP->formatConverterOut, frameCount, pFramesOut, &data);
+ return MA_TRUE;
}
-
-typedef struct
-{
- const void* pDataIn;
- ma_format formatIn;
- ma_uint32 channelsIn;
- ma_uint64 totalFrameCount;
- ma_uint64 iNextFrame;
- ma_bool32 isFeedingZeros; /* When set to true, feeds the DSP zero samples. */
-} ma_convert_frames__data;
-
-ma_uint32 ma_convert_frames__on_read(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS])
{
- ma_convert_frames__data* pData;
- ma_uint32 framesToRead;
- ma_uint64 framesRemaining;
- ma_uint32 frameSizeInBytes;
-
- (void)pDSP;
-
- pData = (ma_convert_frames__data*)pUserData;
- ma_assert(pData != NULL);
- ma_assert(pData->totalFrameCount >= pData->iNextFrame);
+ ma_uint32 iChannel;
- framesToRead = frameCount;
- framesRemaining = (pData->totalFrameCount - pData->iNextFrame);
- if (framesToRead > framesRemaining) {
- framesToRead = (ma_uint32)framesRemaining;
+ if (channelMapA == channelMapB) {
+ return MA_FALSE;
}
- frameSizeInBytes = ma_get_bytes_per_frame(pData->formatIn, pData->channelsIn);
+ if (channels == 0 || channels > MA_MAX_CHANNELS) {
+ return MA_FALSE;
+ }
- if (!pData->isFeedingZeros) {
- ma_copy_memory(pFramesOut, (const ma_uint8*)pData->pDataIn + (frameSizeInBytes * pData->iNextFrame), frameSizeInBytes * framesToRead);
- } else {
- ma_zero_memory(pFramesOut, frameSizeInBytes * framesToRead);
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ if (channelMapA[iChannel] != channelMapB[iChannel]) {
+ return MA_FALSE;
+ }
}
- pData->iNextFrame += framesToRead;
- return framesToRead;
+ return MA_TRUE;
}
-ma_pcm_converter_config ma_pcm_converter_config_init_new()
+ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
- ma_pcm_converter_config config;
- ma_zero_object(&config);
+ ma_uint32 iChannel;
- return config;
-}
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ if (channelMap[iChannel] != MA_CHANNEL_NONE) {
+ return MA_FALSE;
+ }
+ }
-ma_pcm_converter_config ma_pcm_converter_config_init(ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_pcm_converter_read_proc onRead, void* pUserData)
-{
- return ma_pcm_converter_config_init_ex(formatIn, channelsIn, sampleRateIn, NULL, formatOut, channelsOut, sampleRateOut, NULL, onRead, pUserData);
+ return MA_TRUE;
}
-ma_pcm_converter_config ma_pcm_converter_config_init_ex(ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_channel channelMapIn[MA_MAX_CHANNELS], ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_channel channelMapOut[MA_MAX_CHANNELS], ma_pcm_converter_read_proc onRead, void* pUserData)
+ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition)
{
- ma_pcm_converter_config config;
- ma_zero_object(&config);
- config.formatIn = formatIn;
- config.channelsIn = channelsIn;
- config.sampleRateIn = sampleRateIn;
- config.formatOut = formatOut;
- config.channelsOut = channelsOut;
- config.sampleRateOut = sampleRateOut;
- if (channelMapIn != NULL) {
- ma_copy_memory(config.channelMapIn, channelMapIn, sizeof(config.channelMapIn));
- }
- if (channelMapOut != NULL) {
- ma_copy_memory(config.channelMapOut, channelMapOut, sizeof(config.channelMapOut));
+ ma_uint32 iChannel;
+ for (iChannel = 0; iChannel < channels; ++iChannel) {
+ if (channelMap[iChannel] == channelPosition) {
+ return MA_TRUE;
+ }
}
- config.onRead = onRead;
- config.pUserData = pUserData;
- return config;
+ return MA_FALSE;
}
-ma_uint64 ma_convert_frames(void* pOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_uint64 frameCount)
+/**************************************************************************************************************************************************************
+
+Conversion Helpers
+
+**************************************************************************************************************************************************************/
+ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn)
{
- ma_channel channelMapOut[MA_MAX_CHANNELS];
- ma_channel channelMapIn[MA_MAX_CHANNELS];
+ ma_data_converter_config config;
- ma_get_standard_channel_map(ma_standard_channel_map_default, channelsOut, channelMapOut);
- ma_get_standard_channel_map(ma_standard_channel_map_default, channelsIn, channelMapIn);
+ config = ma_data_converter_config_init(formatIn, formatOut, channelsIn, channelsOut, sampleRateIn, sampleRateOut);
+ ma_get_standard_channel_map(ma_standard_channel_map_default, channelsOut, config.channelMapOut);
+ ma_get_standard_channel_map(ma_standard_channel_map_default, channelsIn, config.channelMapIn);
+ config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
- return ma_convert_frames_ex(pOut, formatOut, channelsOut, sampleRateOut, channelMapOut, pIn, formatIn, channelsIn, sampleRateIn, channelMapIn, frameCount);
+ return ma_convert_frames_ex(pOut, frameCountOut, pIn, frameCountIn, &config);
}
-ma_uint64 ma_convert_frames_ex(void* pOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, ma_channel channelMapOut[MA_MAX_CHANNELS], const void* pIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn, ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint64 frameCount)
+ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig)
{
- ma_uint64 frameCountOut;
- ma_convert_frames__data data;
- ma_pcm_converter_config converterConfig;
- ma_pcm_converter converter;
- ma_uint64 totalFramesRead;
+ ma_result result;
+ ma_data_converter converter;
- if (frameCount == 0) {
+ if (frameCountIn == 0 || pConfig == NULL) {
return 0;
}
- frameCountOut = ma_calculate_frame_count_after_src(sampleRateOut, sampleRateIn, frameCount);
- if (pOut == NULL) {
- return frameCountOut;
+ result = ma_data_converter_init(pConfig, &converter);
+ if (result != MA_SUCCESS) {
+ return 0; /* Failed to initialize the data converter. */
}
- data.pDataIn = pIn;
- data.formatIn = formatIn;
- data.channelsIn = channelsIn;
- data.totalFrameCount = frameCount;
- data.iNextFrame = 0;
- data.isFeedingZeros = MA_FALSE;
-
- ma_zero_object(&converterConfig);
-
- converterConfig.formatIn = formatIn;
- converterConfig.channelsIn = channelsIn;
- converterConfig.sampleRateIn = sampleRateIn;
- if (channelMapIn != NULL) {
- ma_channel_map_copy(converterConfig.channelMapIn, channelMapIn, channelsIn);
- } else {
- ma_get_standard_channel_map(ma_standard_channel_map_default, converterConfig.channelsIn, converterConfig.channelMapIn);
- }
-
- converterConfig.formatOut = formatOut;
- converterConfig.channelsOut = channelsOut;
- converterConfig.sampleRateOut = sampleRateOut;
- if (channelMapOut != NULL) {
- ma_channel_map_copy(converterConfig.channelMapOut, channelMapOut, channelsOut);
+ if (pOut == NULL) {
+ frameCountOut = ma_data_converter_get_expected_output_frame_count(&converter, frameCountIn);
} else {
- ma_get_standard_channel_map(ma_standard_channel_map_default, converterConfig.channelsOut, converterConfig.channelMapOut);
- }
-
- converterConfig.onRead = ma_convert_frames__on_read;
- converterConfig.pUserData = &data;
-
- if (ma_pcm_converter_init(&converterConfig, &converter) != MA_SUCCESS) {
- return 0;
- }
-
- /*
- Always output our computed frame count. There is a chance the sample rate conversion routine may not output the last sample
- due to precision issues with 32-bit floats, in which case we should feed the DSP zero samples so it can generate that last
- frame.
- */
- totalFramesRead = ma_pcm_converter_read(&converter, pOut, frameCountOut);
- if (totalFramesRead < frameCountOut) {
- ma_uint32 bpfOut = ma_get_bytes_per_frame(formatOut, channelsOut);
-
- data.isFeedingZeros = MA_TRUE;
- data.totalFrameCount = ((ma_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF; /* C89 does not support 64-bit constants so need to instead construct it like this. Annoying... */ /*data.totalFrameCount = 0xFFFFFFFFFFFFFFFF;*/
- data.pDataIn = NULL;
-
- while (totalFramesRead < frameCountOut) {
- ma_uint64 framesToRead;
- ma_uint64 framesJustRead;
-
- framesToRead = (frameCountOut - totalFramesRead);
- ma_assert(framesToRead > 0);
-
- framesJustRead = ma_pcm_converter_read(&converter, ma_offset_ptr(pOut, totalFramesRead * bpfOut), framesToRead);
- totalFramesRead += framesJustRead;
-
- if (framesJustRead < framesToRead) {
- break;
- }
- }
-
- /* At this point we should have output every sample, but just to be super duper sure, just fill the rest with zeros. */
- if (totalFramesRead < frameCountOut) {
- ma_zero_memory_64(ma_offset_ptr(pOut, totalFramesRead * bpfOut), ((frameCountOut - totalFramesRead) * bpfOut));
- totalFramesRead = frameCountOut;
+ result = ma_data_converter_process_pcm_frames(&converter, pIn, &frameCountIn, pOut, &frameCountOut);
+ if (result != MA_SUCCESS) {
+ frameCountOut = 0;
}
}
- ma_assert(totalFramesRead == frameCountOut);
- return totalFramesRead;
+ ma_data_converter_uninit(&converter);
+ return frameCountOut;
}
@@ -32714,13 +35351,13 @@ MA_INLINE ma_uint32 ma_rb__extract_offset_loop_flag(ma_uint32 encodedOffset)
MA_INLINE void* ma_rb__get_read_ptr(ma_rb* pRB)
{
- ma_assert(pRB != NULL);
+ MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedReadOffset));
}
MA_INLINE void* ma_rb__get_write_ptr(ma_rb* pRB)
{
- ma_assert(pRB != NULL);
+ MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedWriteOffset));
}
@@ -32731,16 +35368,17 @@ MA_INLINE ma_uint32 ma_rb__construct_offset(ma_uint32 offsetInBytes, ma_uint32 o
MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOffsetInBytes, ma_uint32* pOffsetLoopFlag)
{
- ma_assert(pOffsetInBytes != NULL);
- ma_assert(pOffsetLoopFlag != NULL);
+ MA_ASSERT(pOffsetInBytes != NULL);
+ MA_ASSERT(pOffsetLoopFlag != NULL);
*pOffsetInBytes = ma_rb__extract_offset_in_bytes(encodedOffset);
*pOffsetLoopFlag = ma_rb__extract_offset_loop_flag(encodedOffset);
}
-ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, ma_rb* pRB)
+ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
+ ma_result result;
const ma_uint32 maxSubBufferSize = 0x7FFFFFFF - (MA_SIMD_ALIGNMENT-1);
if (pRB == NULL) {
@@ -32756,7 +35394,13 @@ ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size
}
- ma_zero_object(pRB);
+ MA_ZERO_OBJECT(pRB);
+
+ result = ma_allocation_callbacks_init_copy(&pRB->allocationCallbacks, pAllocationCallbacks);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
pRB->subbufferSizeInBytes = (ma_uint32)subbufferSizeInBytes;
pRB->subbufferCount = (ma_uint32)subbufferCount;
@@ -32773,21 +35417,21 @@ ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size
pRB->subbufferStrideInBytes = (pRB->subbufferSizeInBytes + (MA_SIMD_ALIGNMENT-1)) & ~MA_SIMD_ALIGNMENT;
bufferSizeInBytes = (size_t)pRB->subbufferCount*pRB->subbufferStrideInBytes;
- pRB->pBuffer = ma_aligned_malloc(bufferSizeInBytes, MA_SIMD_ALIGNMENT);
+ pRB->pBuffer = ma_aligned_malloc(bufferSizeInBytes, MA_SIMD_ALIGNMENT, &pRB->allocationCallbacks);
if (pRB->pBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
- ma_zero_memory(pRB->pBuffer, bufferSizeInBytes);
+ MA_ZERO_MEMORY(pRB->pBuffer, bufferSizeInBytes);
pRB->ownsBuffer = MA_TRUE;
}
return MA_SUCCESS;
}
-ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, ma_rb* pRB)
+ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
- return ma_rb_init_ex(bufferSizeInBytes, 1, 0, pOptionalPreallocatedBuffer, pRB);
+ return ma_rb_init_ex(bufferSizeInBytes, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
void ma_rb_uninit(ma_rb* pRB)
@@ -32797,7 +35441,7 @@ void ma_rb_uninit(ma_rb* pRB)
}
if (pRB->ownsBuffer) {
- ma_aligned_free(pRB->pBuffer);
+ ma_aligned_free(pRB->pBuffer, &pRB->allocationCallbacks);
}
}
@@ -32934,7 +35578,7 @@ ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferO
/* Clear the buffer if desired. */
if (pRB->clearOnWriteAcquire) {
- ma_zero_memory(*ppBufferOut, *pSizeInBytes);
+ MA_ZERO_MEMORY(*ppBufferOut, *pSizeInBytes);
}
return MA_SUCCESS;
@@ -33161,12 +35805,12 @@ void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer)
static MA_INLINE ma_uint32 ma_pcm_rb_get_bpf(ma_pcm_rb* pRB)
{
- ma_assert(pRB != NULL);
+ MA_ASSERT(pRB != NULL);
return ma_get_bytes_per_frame(pRB->format, pRB->channels);
}
-ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, ma_pcm_rb* pRB)
+ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
ma_uint32 bpf;
ma_result result;
@@ -33175,14 +35819,14 @@ ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subb
return MA_INVALID_ARGS;
}
- ma_zero_object(pRB);
+ MA_ZERO_OBJECT(pRB);
bpf = ma_get_bytes_per_frame(format, channels);
if (bpf == 0) {
return MA_INVALID_ARGS;
}
- result = ma_rb_init_ex(subbufferSizeInFrames*bpf, subbufferCount, subbufferStrideInFrames*bpf, pOptionalPreallocatedBuffer, &pRB->rb);
+ result = ma_rb_init_ex(subbufferSizeInFrames*bpf, subbufferCount, subbufferStrideInFrames*bpf, pOptionalPreallocatedBuffer, pAllocationCallbacks, &pRB->rb);
if (result != MA_SUCCESS) {
return result;
}
@@ -33193,9 +35837,9 @@ ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subb
return MA_SUCCESS;
}
-ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, ma_pcm_rb* pRB)
+ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
- return ma_pcm_rb_init_ex(format, channels, bufferSizeInFrames, 1, 0, pOptionalPreallocatedBuffer, pRB);
+ return ma_pcm_rb_init_ex(format, channels, bufferSizeInFrames, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
void ma_pcm_rb_uninit(ma_pcm_rb* pRB)
@@ -33362,22 +36006,38 @@ void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void
Miscellaneous Helpers
**************************************************************************************************************************************************************/
-void* ma_malloc(size_t sz)
+void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
- return MA_MALLOC(sz);
+ if (pAllocationCallbacks != NULL) {
+ return ma__malloc_from_callbacks(sz, pAllocationCallbacks);
+ } else {
+ return ma__malloc_default(sz, NULL);
+ }
}
-void* ma_realloc(void* p, size_t sz)
+void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
- return MA_REALLOC(p, sz);
+ if (pAllocationCallbacks != NULL) {
+ if (pAllocationCallbacks->onRealloc != NULL) {
+ return pAllocationCallbacks->onRealloc(p, sz, pAllocationCallbacks->pUserData);
+ } else {
+ return NULL; /* This requires a native implementation of realloc(). */
+ }
+ } else {
+ return ma__realloc_default(p, sz, NULL);
+ }
}
-void ma_free(void* p)
+void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
- MA_FREE(p);
+ if (pAllocationCallbacks != NULL) {
+ ma__free_from_callbacks(p, pAllocationCallbacks);
+ } else {
+ ma__free_default(p, NULL);
+ }
}
-void* ma_aligned_malloc(size_t sz, size_t alignment)
+void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t extraBytes;
void* pUnaligned;
@@ -33389,7 +36049,7 @@ void* ma_aligned_malloc(size_t sz, size_t alignment)
extraBytes = alignment-1 + sizeof(void*);
- pUnaligned = ma_malloc(sz + extraBytes);
+ pUnaligned = ma_malloc(sz + extraBytes, pAllocationCallbacks);
if (pUnaligned == NULL) {
return NULL;
}
@@ -33400,9 +36060,9 @@ void* ma_aligned_malloc(size_t sz, size_t alignment)
return pAligned;
}
-void ma_aligned_free(void* p)
+void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
- ma_free(((void**)p)[-1]);
+ ma_free(((void**)p)[-1], pAllocationCallbacks);
}
const char* ma_get_format_name(ma_format format)
@@ -33449,12 +36109,12 @@ Decoding
**************************************************************************************************************************************************************/
#ifndef MA_NO_DECODING
-size_t ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRead;
- ma_assert(pDecoder != NULL);
- ma_assert(pBufferOut != NULL);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pBufferOut != NULL);
bytesRead = pDecoder->onRead(pDecoder, pBufferOut, bytesToRead);
pDecoder->readPointer += bytesRead;
@@ -33462,11 +36122,11 @@ size_t ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size_t byte
return bytesRead;
}
-ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
+static ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
{
ma_bool32 wasSuccessful;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
wasSuccessful = pDecoder->onSeek(pDecoder, byteOffset, origin);
if (wasSuccessful) {
@@ -33480,49 +36140,18 @@ ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_seek_or
return wasSuccessful;
}
-ma_bool32 ma_decoder_seek_bytes_64(ma_decoder* pDecoder, ma_uint64 byteOffset, ma_seek_origin origin)
-{
- ma_assert(pDecoder != NULL);
-
- if (origin == ma_seek_origin_start) {
- ma_uint64 bytesToSeekThisIteration = 0x7FFFFFFF;
- if (bytesToSeekThisIteration > byteOffset) {
- bytesToSeekThisIteration = byteOffset;
- }
-
- if (!ma_decoder_seek_bytes(pDecoder, (int)bytesToSeekThisIteration, ma_seek_origin_start)) {
- return MA_FALSE;
- }
-
- byteOffset -= bytesToSeekThisIteration;
- }
-
- /* Getting here means we need to seek relative to the current position. */
- while (byteOffset > 0) {
- ma_uint64 bytesToSeekThisIteration = 0x7FFFFFFF;
- if (bytesToSeekThisIteration > byteOffset) {
- bytesToSeekThisIteration = byteOffset;
- }
-
- if (!ma_decoder_seek_bytes(pDecoder, (int)bytesToSeekThisIteration, ma_seek_origin_current)) {
- return MA_FALSE;
- }
-
- byteOffset -= bytesToSeekThisIteration;
- }
-
- return MA_TRUE;
-}
-
ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate)
{
ma_decoder_config config;
- ma_zero_object(&config);
+ MA_ZERO_OBJECT(&config);
config.format = outputFormat;
config.channels = outputChannels;
config.sampleRate = outputSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_default, config.channels, config.channelMap);
+ config.resampling.algorithm = ma_resample_algorithm_linear;
+ config.resampling.linear.lpfCount = ma_min(MA_DEFAULT_RESAMPLER_LPF_FILTERS, MA_MAX_RESAMPLER_LPF_FILTERS);
+ config.resampling.speex.quality = 3;
return config;
}
@@ -33533,17 +36162,17 @@ ma_decoder_config ma_decoder_config_init_copy(const ma_decoder_config* pConfig)
if (pConfig != NULL) {
config = *pConfig;
} else {
- ma_zero_object(&config);
+ MA_ZERO_OBJECT(&config);
}
return config;
}
-ma_result ma_decoder__init_dsp(ma_decoder* pDecoder, const ma_decoder_config* pConfig, ma_pcm_converter_read_proc onRead)
+static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_decoder_config* pConfig)
{
- ma_pcm_converter_config dspConfig;
+ ma_data_converter_config converterConfig;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
/* Output format. */
if (pConfig->format == ma_format_unknown) {
@@ -33567,75 +36196,76 @@ ma_result ma_decoder__init_dsp(ma_decoder* pDecoder, const ma_decoder_config* pC
if (ma_channel_map_blank(pDecoder->outputChannels, pConfig->channelMap)) {
ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->outputChannels, pDecoder->outputChannelMap);
} else {
- ma_copy_memory(pDecoder->outputChannelMap, pConfig->channelMap, sizeof(pConfig->channelMap));
+ MA_COPY_MEMORY(pDecoder->outputChannelMap, pConfig->channelMap, sizeof(pConfig->channelMap));
}
+
+ converterConfig = ma_data_converter_config_init(
+ pDecoder->internalFormat, pDecoder->outputFormat,
+ pDecoder->internalChannels, pDecoder->outputChannels,
+ pDecoder->internalSampleRate, pDecoder->outputSampleRate
+ );
+ ma_channel_map_copy(converterConfig.channelMapIn, pDecoder->internalChannelMap, pDecoder->internalChannels);
+ ma_channel_map_copy(converterConfig.channelMapOut, pDecoder->outputChannelMap, pDecoder->outputChannels);
+ converterConfig.channelMixMode = pConfig->channelMixMode;
+ converterConfig.ditherMode = pConfig->ditherMode;
+ converterConfig.resampling.allowDynamicSampleRate = MA_FALSE; /* Never allow dynamic sample rate conversion. Setting this to true will disable passthrough optimizations. */
+ converterConfig.resampling.algorithm = pConfig->resampling.algorithm;
+ converterConfig.resampling.linear.lpfCount = pConfig->resampling.linear.lpfCount;
+ converterConfig.resampling.speex.quality = pConfig->resampling.speex.quality;
- /* DSP. */
- dspConfig = ma_pcm_converter_config_init_ex(
- pDecoder->internalFormat, pDecoder->internalChannels, pDecoder->internalSampleRate, pDecoder->internalChannelMap,
- pDecoder->outputFormat, pDecoder->outputChannels, pDecoder->outputSampleRate, pDecoder->outputChannelMap,
- onRead, pDecoder);
- dspConfig.channelMixMode = pConfig->channelMixMode;
- dspConfig.ditherMode = pConfig->ditherMode;
- dspConfig.srcAlgorithm = pConfig->srcAlgorithm;
- dspConfig.sinc = pConfig->src.sinc;
-
- return ma_pcm_converter_init(&dspConfig, &pDecoder->dsp);
+ return ma_data_converter_init(&converterConfig, &pDecoder->converter);
}
/* WAV */
#ifdef dr_wav_h
#define MA_HAS_WAV
-size_t ma_decoder_internal_on_read__wav(void* pUserData, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder_internal_on_read__wav(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
-drwav_bool32 ma_decoder_internal_on_seek__wav(void* pUserData, int offset, drwav_seek_origin origin)
+static drwav_bool32 ma_decoder_internal_on_seek__wav(void* pUserData, int offset, drwav_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drwav_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
-ma_uint32 ma_decoder_internal_on_read_pcm_frames__wav(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__wav(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
- ma_decoder* pDecoder;
drwav* pWav;
- (void)pDSP;
-
- pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
pWav = (drwav*)pDecoder->pInternalDecoder;
- ma_assert(pWav != NULL);
+ MA_ASSERT(pWav != NULL);
switch (pDecoder->internalFormat) {
- case ma_format_s16: return (ma_uint32)drwav_read_pcm_frames_s16(pWav, frameCount, (drwav_int16*)pFramesOut);
- case ma_format_s32: return (ma_uint32)drwav_read_pcm_frames_s32(pWav, frameCount, (drwav_int32*)pFramesOut);
- case ma_format_f32: return (ma_uint32)drwav_read_pcm_frames_f32(pWav, frameCount, (float*)pFramesOut);
+ case ma_format_s16: return drwav_read_pcm_frames_s16(pWav, frameCount, (drwav_int16*)pFramesOut);
+ case ma_format_s32: return drwav_read_pcm_frames_s32(pWav, frameCount, (drwav_int32*)pFramesOut);
+ case ma_format_f32: return drwav_read_pcm_frames_f32(pWav, frameCount, (float*)pFramesOut);
default: break;
}
/* Should never get here. If we do, it means the internal format was not set correctly at initialization time. */
- ma_assert(MA_FALSE);
+ MA_ASSERT(MA_FALSE);
return 0;
}
-ma_result ma_decoder_internal_on_seek_to_pcm_frame__wav(ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__wav(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drwav* pWav;
drwav_bool32 result;
pWav = (drwav*)pDecoder->pInternalDecoder;
- ma_assert(pWav != NULL);
+ MA_ASSERT(pWav != NULL);
result = drwav_seek_to_pcm_frame(pWav, frameIndex);
if (result) {
@@ -33645,42 +36275,48 @@ ma_result ma_decoder_internal_on_seek_to_pcm_frame__wav(ma_decoder* pDecoder, ma
}
}
-ma_result ma_decoder_internal_on_uninit__wav(ma_decoder* pDecoder)
+static ma_result ma_decoder_internal_on_uninit__wav(ma_decoder* pDecoder)
{
drwav_uninit((drwav*)pDecoder->pInternalDecoder);
- ma_free(pDecoder->pInternalDecoder);
+ ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
-ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__wav(ma_decoder* pDecoder)
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__wav(ma_decoder* pDecoder)
{
return ((drwav*)pDecoder->pInternalDecoder)->totalPCMFrameCount;
}
-ma_result ma_decoder_init_wav__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder_init_wav__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drwav* pWav;
- ma_result result;
+ drwav_allocation_callbacks allocationCallbacks;
- ma_assert(pConfig != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
- pWav = (drwav*)ma_malloc(sizeof(*pWav));
+ pWav = (drwav*)ma__malloc_from_callbacks(sizeof(*pWav), &pDecoder->allocationCallbacks);
if (pWav == NULL) {
return MA_OUT_OF_MEMORY;
}
+ allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
+ allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
+ allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
+ allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
+
/* Try opening the decoder first. */
- if (!drwav_init(pWav, ma_decoder_internal_on_read__wav, ma_decoder_internal_on_seek__wav, pDecoder, NULL)) {
- ma_free(pWav);
+ if (!drwav_init(pWav, ma_decoder_internal_on_read__wav, ma_decoder_internal_on_seek__wav, pDecoder, &allocationCallbacks)) {
+ ma__free_from_callbacks(pWav, &pDecoder->allocationCallbacks);
return MA_ERROR;
}
/* If we get here it means we successfully initialized the WAV decoder. We can now initialize the rest of the ma_decoder. */
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__wav;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__wav;
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__wav;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__wav;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__wav;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__wav;
- pDecoder->pInternalDecoder = pWav;
+ pDecoder->pInternalDecoder = pWav;
/* Try to be as optimal as possible for the internal format. If miniaudio does not support a format we will fall back to f32. */
pDecoder->internalFormat = ma_format_unknown;
@@ -33720,69 +36356,59 @@ ma_result ma_decoder_init_wav__internal(const ma_decoder_config* pConfig, ma_dec
pDecoder->internalSampleRate = pWav->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDecoder->internalChannels, pDecoder->internalChannelMap);
- result = ma_decoder__init_dsp(pDecoder, pConfig, ma_decoder_internal_on_read_pcm_frames__wav);
- if (result != MA_SUCCESS) {
- drwav_uninit(pWav);
- ma_free(pWav);
- return result;
- }
-
return MA_SUCCESS;
}
-#endif
+#endif /* dr_wav_h */
/* FLAC */
#ifdef dr_flac_h
#define MA_HAS_FLAC
-size_t ma_decoder_internal_on_read__flac(void* pUserData, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder_internal_on_read__flac(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
-drflac_bool32 ma_decoder_internal_on_seek__flac(void* pUserData, int offset, drflac_seek_origin origin)
+static drflac_bool32 ma_decoder_internal_on_seek__flac(void* pUserData, int offset, drflac_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drflac_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
-ma_uint32 ma_decoder_internal_on_read_pcm_frames__flac(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__flac(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
- ma_decoder* pDecoder;
drflac* pFlac;
- (void)pDSP;
-
- pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
pFlac = (drflac*)pDecoder->pInternalDecoder;
- ma_assert(pFlac != NULL);
+ MA_ASSERT(pFlac != NULL);
switch (pDecoder->internalFormat) {
- case ma_format_s16: return (ma_uint32)drflac_read_pcm_frames_s16(pFlac, frameCount, (drflac_int16*)pFramesOut);
- case ma_format_s32: return (ma_uint32)drflac_read_pcm_frames_s32(pFlac, frameCount, (drflac_int32*)pFramesOut);
- case ma_format_f32: return (ma_uint32)drflac_read_pcm_frames_f32(pFlac, frameCount, (float*)pFramesOut);
+ case ma_format_s16: return drflac_read_pcm_frames_s16(pFlac, frameCount, (drflac_int16*)pFramesOut);
+ case ma_format_s32: return drflac_read_pcm_frames_s32(pFlac, frameCount, (drflac_int32*)pFramesOut);
+ case ma_format_f32: return drflac_read_pcm_frames_f32(pFlac, frameCount, (float*)pFramesOut);
default: break;
}
/* Should never get here. If we do, it means the internal format was not set correctly at initialization time. */
- ma_assert(MA_FALSE);
+ MA_ASSERT(MA_FALSE);
return 0;
}
-ma_result ma_decoder_internal_on_seek_to_pcm_frame__flac(ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__flac(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drflac* pFlac;
drflac_bool32 result;
pFlac = (drflac*)pDecoder->pInternalDecoder;
- ma_assert(pFlac != NULL);
+ MA_ASSERT(pFlac != NULL);
result = drflac_seek_to_pcm_frame(pFlac, frameIndex);
if (result) {
@@ -33792,36 +36418,42 @@ ma_result ma_decoder_internal_on_seek_to_pcm_frame__flac(ma_decoder* pDecoder, m
}
}
-ma_result ma_decoder_internal_on_uninit__flac(ma_decoder* pDecoder)
+static ma_result ma_decoder_internal_on_uninit__flac(ma_decoder* pDecoder)
{
drflac_close((drflac*)pDecoder->pInternalDecoder);
return MA_SUCCESS;
}
-ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__flac(ma_decoder* pDecoder)
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__flac(ma_decoder* pDecoder)
{
return ((drflac*)pDecoder->pInternalDecoder)->totalPCMFrameCount;
}
-ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drflac* pFlac;
- ma_result result;
+ drflac_allocation_callbacks allocationCallbacks;
+
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
- ma_assert(pConfig != NULL);
- ma_assert(pDecoder != NULL);
+ allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
+ allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
+ allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
+ allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
/* Try opening the decoder first. */
- pFlac = drflac_open(ma_decoder_internal_on_read__flac, ma_decoder_internal_on_seek__flac, pDecoder, NULL);
+ pFlac = drflac_open(ma_decoder_internal_on_read__flac, ma_decoder_internal_on_seek__flac, pDecoder, &allocationCallbacks);
if (pFlac == NULL) {
return MA_ERROR;
}
/* If we get here it means we successfully initialized the FLAC decoder. We can now initialize the rest of the ma_decoder. */
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__flac;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__flac;
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__flac;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__flac;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__flac;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__flac;
- pDecoder->pInternalDecoder = pFlac;
+ pDecoder->pInternalDecoder = pFlac;
/*
dr_flac supports reading as s32, s16 and f32. Try to do a one-to-one mapping if possible, but fall back to s32 if not. s32 is the "native" FLAC format
@@ -33838,15 +36470,9 @@ ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig, ma_de
pDecoder->internalSampleRate = pFlac->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_flac, pDecoder->internalChannels, pDecoder->internalChannelMap);
- result = ma_decoder__init_dsp(pDecoder, pConfig, ma_decoder_internal_on_read_pcm_frames__flac);
- if (result != MA_SUCCESS) {
- drflac_close(pFlac);
- return result;
- }
-
return MA_SUCCESS;
}
-#endif
+#endif /* dr_flac_h */
/* Vorbis */
#ifdef STB_VORBIS_INCLUDE_STB_VORBIS_H
@@ -33866,13 +36492,13 @@ typedef struct
float** ppPacketData;
} ma_vorbis_decoder;
-ma_uint32 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, void* pFramesOut, ma_uint32 frameCount)
+static ma_uint64 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
float* pFramesOutF;
- ma_uint32 totalFramesRead;
+ ma_uint64 totalFramesRead;
- ma_assert(pVorbis != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pVorbis != NULL);
+ MA_ASSERT(pDecoder != NULL);
pFramesOutF = (float*)pFramesOut;
@@ -33886,17 +36512,17 @@ ma_uint32 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decod
pFramesOutF += 1;
}
- pVorbis->framesConsumed += 1;
+ pVorbis->framesConsumed += 1;
pVorbis->framesRemaining -= 1;
- frameCount -= 1;
- totalFramesRead += 1;
+ frameCount -= 1;
+ totalFramesRead += 1;
}
if (frameCount == 0) {
break;
}
- ma_assert(pVorbis->framesRemaining == 0);
+ MA_ASSERT(pVorbis->framesRemaining == 0);
/* We've run out of cached frames, so decode the next packet and continue iteration. */
do
@@ -33926,10 +36552,11 @@ ma_uint32 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decod
size_t bytesRead;
if (pVorbis->dataCapacity == pVorbis->dataSize) {
/* No room. Expand. */
+ size_t oldCap = pVorbis->dataCapacity;
size_t newCap = pVorbis->dataCapacity + MA_VORBIS_DATA_CHUNK_SIZE;
ma_uint8* pNewData;
- pNewData = (ma_uint8*)ma_realloc(pVorbis->pData, newCap);
+ pNewData = (ma_uint8*)ma__realloc_from_callbacks(pVorbis->pData, newCap, oldCap, &pDecoder->allocationCallbacks);
if (pNewData == NULL) {
return totalFramesRead; /* Out of memory. */
}
@@ -33952,12 +36579,12 @@ ma_uint32 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decod
return totalFramesRead;
}
-ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, ma_uint64 frameIndex)
{
float buffer[4096];
- ma_assert(pVorbis != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pVorbis != NULL);
+ MA_ASSERT(pDecoder != NULL);
/*
This is terribly inefficient because stb_vorbis does not have a good seeking solution with it's push API. Currently this just performs
@@ -33969,9 +36596,9 @@ ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_dec
}
stb_vorbis_flush_pushdata(pVorbis->pInternalVorbis);
- pVorbis->framesConsumed = 0;
+ pVorbis->framesConsumed = 0;
pVorbis->framesRemaining = 0;
- pVorbis->dataSize = 0;
+ pVorbis->dataSize = 0;
while (frameIndex > 0) {
ma_uint32 framesRead;
@@ -33980,7 +36607,7 @@ ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_dec
framesToRead = (ma_uint32)frameIndex;
}
- framesRead = ma_vorbis_decoder_read_pcm_frames(pVorbis, pDecoder, buffer, framesToRead);
+ framesRead = (ma_uint32)ma_vorbis_decoder_read_pcm_frames(pVorbis, pDecoder, buffer, framesToRead);
if (framesRead == 0) {
return MA_ERROR;
}
@@ -33992,53 +36619,49 @@ ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_dec
}
-ma_result ma_decoder_internal_on_seek_to_pcm_frame__vorbis(ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__vorbis(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
ma_vorbis_decoder* pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
- ma_assert(pVorbis != NULL);
+ MA_ASSERT(pVorbis != NULL);
return ma_vorbis_decoder_seek_to_pcm_frame(pVorbis, pDecoder, frameIndex);
}
-ma_result ma_decoder_internal_on_uninit__vorbis(ma_decoder* pDecoder)
+static ma_result ma_decoder_internal_on_uninit__vorbis(ma_decoder* pDecoder)
{
ma_vorbis_decoder* pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
- ma_assert(pVorbis != NULL);
+ MA_ASSERT(pVorbis != NULL);
stb_vorbis_close(pVorbis->pInternalVorbis);
- ma_free(pVorbis->pData);
- ma_free(pVorbis);
+ ma__free_from_callbacks(pVorbis->pData, &pDecoder->allocationCallbacks);
+ ma__free_from_callbacks(pVorbis, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
-ma_uint32 ma_decoder_internal_on_read_pcm_frames__vorbis(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__vorbis(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
- ma_decoder* pDecoder;
ma_vorbis_decoder* pVorbis;
- (void)pDSP;
-
- pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
- ma_assert(pDecoder->internalFormat == ma_format_f32);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
- ma_assert(pVorbis != NULL);
+ MA_ASSERT(pVorbis != NULL);
return ma_vorbis_decoder_read_pcm_frames(pVorbis, pDecoder, pFramesOut, frameCount);
}
-ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__vorbis(ma_decoder* pDecoder)
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__vorbis(ma_decoder* pDecoder)
{
/* No good way to do this with Vorbis. */
(void)pDecoder;
return 0;
}
-ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_result result;
stb_vorbis* pInternalVorbis = NULL;
size_t dataSize = 0;
size_t dataCapacity = 0;
@@ -34047,8 +36670,8 @@ ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_
size_t vorbisDataSize;
ma_vorbis_decoder* pVorbis;
- ma_assert(pConfig != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
/* We grow the buffer in chunks. */
do
@@ -34058,11 +36681,12 @@ ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_
size_t bytesRead;
int vorbisError = 0;
int consumedDataSize = 0;
+ size_t oldCapacity = dataCapacity;
dataCapacity += MA_VORBIS_DATA_CHUNK_SIZE;
- pNewData = (ma_uint8*)ma_realloc(pData, dataCapacity);
+ pNewData = (ma_uint8*)ma__realloc_from_callbacks(pData, dataCapacity, oldCapacity, &pDecoder->allocationCallbacks);
if (pNewData == NULL) {
- ma_free(pData);
+ ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
@@ -34109,91 +36733,81 @@ ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_
/* Don't allow more than MA_MAX_CHANNELS channels. */
if (vorbisInfo.channels > MA_MAX_CHANNELS) {
stb_vorbis_close(pInternalVorbis);
- ma_free(pData);
+ ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_ERROR; /* Too many channels. */
}
vorbisDataSize = sizeof(ma_vorbis_decoder) + sizeof(float)*vorbisInfo.max_frame_size;
- pVorbis = (ma_vorbis_decoder*)ma_malloc(vorbisDataSize);
+ pVorbis = (ma_vorbis_decoder*)ma__malloc_from_callbacks(vorbisDataSize, &pDecoder->allocationCallbacks);
if (pVorbis == NULL) {
stb_vorbis_close(pInternalVorbis);
- ma_free(pData);
+ ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
- ma_zero_memory(pVorbis, vorbisDataSize);
+ MA_ZERO_MEMORY(pVorbis, vorbisDataSize);
pVorbis->pInternalVorbis = pInternalVorbis;
pVorbis->pData = pData;
pVorbis->dataSize = dataSize;
pVorbis->dataCapacity = dataCapacity;
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__vorbis;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__vorbis;
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__vorbis;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__vorbis;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__vorbis;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__vorbis;
- pDecoder->pInternalDecoder = pVorbis;
+ pDecoder->pInternalDecoder = pVorbis;
/* The internal format is always f32. */
- pDecoder->internalFormat = ma_format_f32;
- pDecoder->internalChannels = vorbisInfo.channels;
+ pDecoder->internalFormat = ma_format_f32;
+ pDecoder->internalChannels = vorbisInfo.channels;
pDecoder->internalSampleRate = vorbisInfo.sample_rate;
ma_get_standard_channel_map(ma_standard_channel_map_vorbis, pDecoder->internalChannels, pDecoder->internalChannelMap);
- result = ma_decoder__init_dsp(pDecoder, pConfig, ma_decoder_internal_on_read_pcm_frames__vorbis);
- if (result != MA_SUCCESS) {
- stb_vorbis_close(pVorbis->pInternalVorbis);
- ma_free(pVorbis->pData);
- ma_free(pVorbis);
- return result;
- }
-
return MA_SUCCESS;
}
-#endif
+#endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */
/* MP3 */
#ifdef dr_mp3_h
#define MA_HAS_MP3
-size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
-drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin)
+static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
-ma_uint32 ma_decoder_internal_on_read_pcm_frames__mp3(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
- ma_decoder* pDecoder;
drmp3* pMP3;
- (void)pDSP;
-
- pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
- ma_assert(pDecoder->internalFormat == ma_format_f32);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+ MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
pMP3 = (drmp3*)pDecoder->pInternalDecoder;
- ma_assert(pMP3 != NULL);
+ MA_ASSERT(pMP3 != NULL);
- return (ma_uint32)drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut);
+ return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut);
}
-ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drmp3* pMP3;
drmp3_bool32 result;
pMP3 = (drmp3*)pDecoder->pInternalDecoder;
- ma_assert(pMP3 != NULL);
+ MA_ASSERT(pMP3 != NULL);
result = drmp3_seek_to_pcm_frame(pMP3, frameIndex);
if (result) {
@@ -34203,32 +36817,37 @@ ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma
}
}
-ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder)
+static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder)
{
drmp3_uninit((drmp3*)pDecoder->pInternalDecoder);
- ma_free(pDecoder->pInternalDecoder);
+ ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
-ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder)
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder)
{
return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder);
}
-ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drmp3* pMP3;
drmp3_config mp3Config;
- ma_result result;
+ drmp3_allocation_callbacks allocationCallbacks;
- ma_assert(pConfig != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
- pMP3 = (drmp3*)ma_malloc(sizeof(*pMP3));
+ pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks);
if (pMP3 == NULL) {
return MA_OUT_OF_MEMORY;
}
+ allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
+ allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
+ allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
+ allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
+
/*
Try opening the decoder first. MP3 can have variable sample rates (it's per frame/packet). We therefore need
to use some smarts to determine the most appropriate internal sample rate. These are the rules we're going
@@ -34240,59 +36859,74 @@ ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_dec
The internal channel count is always stereo, and the internal format is always f32.
*/
- ma_zero_object(&mp3Config);
+ MA_ZERO_OBJECT(&mp3Config);
mp3Config.outputChannels = 2;
mp3Config.outputSampleRate = (pConfig->sampleRate != 0) ? pConfig->sampleRate : 44100;
- if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &mp3Config, NULL)) {
- ma_free(pMP3);
+ if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &mp3Config, &allocationCallbacks)) {
+ ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks);
return MA_ERROR;
}
/* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3;
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3;
- pDecoder->pInternalDecoder = pMP3;
+ pDecoder->pInternalDecoder = pMP3;
/* Internal format. */
- pDecoder->internalFormat = ma_format_f32;
- pDecoder->internalChannels = pMP3->channels;
+ pDecoder->internalFormat = ma_format_f32;
+ pDecoder->internalChannels = pMP3->channels;
pDecoder->internalSampleRate = pMP3->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap);
- result = ma_decoder__init_dsp(pDecoder, pConfig, ma_decoder_internal_on_read_pcm_frames__mp3);
- if (result != MA_SUCCESS) {
- drmp3_uninit(pMP3);
- ma_free(pMP3);
- return result;
- }
-
return MA_SUCCESS;
}
-#endif
+#endif /* dr_mp3_h */
/* Raw */
-ma_uint32 ma_decoder_internal_on_read_pcm_frames__raw(ma_pcm_converter* pDSP, void* pFramesOut, ma_uint32 frameCount, void* pUserData)
+static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
- ma_decoder* pDecoder;
ma_uint32 bpf;
+ ma_uint64 totalFramesRead;
+ void* pRunningFramesOut;
- (void)pDSP;
- pDecoder = (ma_decoder*)pUserData;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
+ MA_ASSERT(pFramesOut != NULL);
/* For raw decoding we just read directly from the decoder's callbacks. */
bpf = ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
- return (ma_uint32)ma_decoder_read_bytes(pDecoder, pFramesOut, frameCount * bpf) / bpf;
+
+ totalFramesRead = 0;
+ pRunningFramesOut = pFramesOut;
+
+ while (totalFramesRead < frameCount) {
+ ma_uint64 framesReadThisIteration;
+ ma_uint64 framesToReadThisIteration = (frameCount - totalFramesRead);
+ if (framesToReadThisIteration > MA_SIZE_MAX) {
+ framesToReadThisIteration = MA_SIZE_MAX;
+ }
+
+ framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */
+
+ totalFramesRead += framesReadThisIteration;
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf);
+
+ if (framesReadThisIteration < framesToReadThisIteration) {
+ break; /* Done. */
+ }
+ }
+
+ return totalFramesRead;
}
-ma_result ma_decoder_internal_on_seek_to_pcm_frame__raw(ma_decoder* pDecoder, ma_uint64 frameIndex)
+static ma_result ma_decoder_internal_on_seek_to_pcm_frame__raw(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
ma_bool32 result = MA_FALSE;
ma_uint64 totalBytesToSeek;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
if (pDecoder->onSeek == NULL) {
return MA_ERROR;
@@ -34332,53 +36966,61 @@ ma_result ma_decoder_internal_on_seek_to_pcm_frame__raw(ma_decoder* pDecoder, ma
}
}
-ma_result ma_decoder_internal_on_uninit__raw(ma_decoder* pDecoder)
+static ma_result ma_decoder_internal_on_uninit__raw(ma_decoder* pDecoder)
{
(void)pDecoder;
return MA_SUCCESS;
}
-ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__raw(ma_decoder* pDecoder)
+static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__raw(ma_decoder* pDecoder)
{
(void)pDecoder;
return 0;
}
-ma_result ma_decoder_init_raw__internal(const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
+static ma_result ma_decoder_init_raw__internal(const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
- ma_result result;
-
- ma_assert(pConfigIn != NULL);
- ma_assert(pConfigOut != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pConfigIn != NULL);
+ MA_ASSERT(pConfigOut != NULL);
+ MA_ASSERT(pDecoder != NULL);
- pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__raw;
- pDecoder->onUninit = ma_decoder_internal_on_uninit__raw;
+ pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__raw;
+ pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__raw;
+ pDecoder->onUninit = ma_decoder_internal_on_uninit__raw;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__raw;
/* Internal format. */
- pDecoder->internalFormat = pConfigIn->format;
- pDecoder->internalChannels = pConfigIn->channels;
+ pDecoder->internalFormat = pConfigIn->format;
+ pDecoder->internalChannels = pConfigIn->channels;
pDecoder->internalSampleRate = pConfigIn->sampleRate;
ma_channel_map_copy(pDecoder->internalChannelMap, pConfigIn->channelMap, pConfigIn->channels);
- result = ma_decoder__init_dsp(pDecoder, pConfigOut, ma_decoder_internal_on_read_pcm_frames__raw);
- if (result != MA_SUCCESS) {
- return result;
- }
-
return MA_SUCCESS;
}
-ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder__init_allocation_callbacks(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ MA_ASSERT(pDecoder != NULL);
+
+ if (pConfig != NULL) {
+ return ma_allocation_callbacks_init_copy(&pDecoder->allocationCallbacks, &pConfig->allocationCallbacks);
+ } else {
+ pDecoder->allocationCallbacks = ma_allocation_callbacks_init_default();
+ return MA_SUCCESS;
+ }
+}
+
+static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
- ma_assert(pConfig != NULL);
+ ma_result result;
+
+ MA_ASSERT(pConfig != NULL);
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
- ma_zero_object(pDecoder);
+ MA_ZERO_OBJECT(pDecoder);
if (onRead == NULL || onSeek == NULL) {
return MA_INVALID_ARGS;
@@ -34388,10 +37030,26 @@ ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc
pDecoder->onSeek = onSeek;
pDecoder->pUserData = pUserData;
- (void)pConfig;
+ result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
return MA_SUCCESS;
}
+static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+{
+ ma_result result;
+
+ result = ma_decoder__init_data_converter(pDecoder, pConfig);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return result;
+}
+
ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_decoder_config config;
@@ -34405,10 +37063,15 @@ ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc
}
#ifdef MA_HAS_WAV
- return ma_decoder_init_wav__internal(&config, pDecoder);
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34424,10 +37087,15 @@ ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc
}
#ifdef MA_HAS_FLAC
- return ma_decoder_init_flac__internal(&config, pDecoder);
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34443,10 +37111,15 @@ ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_pr
}
#ifdef MA_HAS_VORBIS
- return ma_decoder_init_vorbis__internal(&config, pDecoder);
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34462,10 +37135,15 @@ ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc
}
#ifdef MA_HAS_MP3
- return ma_decoder_init_mp3__internal(&config, pDecoder);
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
@@ -34480,15 +37158,20 @@ ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc
return result;
}
- return ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
+ result = ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
-ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result = MA_NO_BACKEND;
- ma_assert(pConfig != NULL);
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pConfig != NULL);
+ MA_ASSERT(pDecoder != NULL);
/* Silence some warnings in the case that we don't have any decoder backends enabled. */
(void)onRead;
@@ -34536,7 +37219,7 @@ ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decoder_seek
return result;
}
- return result;
+ return ma_decoder__postinit(pConfig, pDecoder);
}
ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34555,11 +37238,11 @@ ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSe
}
-size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRemaining;
- ma_assert(pDecoder->memory.dataSize >= pDecoder->memory.currentReadPos);
+ MA_ASSERT(pDecoder->memory.dataSize >= pDecoder->memory.currentReadPos);
bytesRemaining = pDecoder->memory.dataSize - pDecoder->memory.currentReadPos;
if (bytesToRead > bytesRemaining) {
@@ -34567,14 +37250,14 @@ size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, size_t
}
if (bytesToRead > 0) {
- ma_copy_memory(pBufferOut, pDecoder->memory.pData + pDecoder->memory.currentReadPos, bytesToRead);
+ MA_COPY_MEMORY(pBufferOut, pDecoder->memory.pData + pDecoder->memory.currentReadPos, bytesToRead);
pDecoder->memory.currentReadPos += bytesToRead;
}
return bytesToRead;
}
-ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
+static ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
{
if (origin == ma_seek_origin_current) {
if (byteOffset > 0) {
@@ -34600,7 +37283,7 @@ ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset, ma_se
return MA_TRUE;
}
-ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result = ma_decoder__preinit(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, NULL, pConfig, pDecoder);
if (result != MA_SUCCESS) {
@@ -34647,10 +37330,15 @@ ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const m
}
#ifdef MA_HAS_WAV
- return ma_decoder_init_wav__internal(&config, pDecoder);
+ result = ma_decoder_init_wav__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34666,10 +37354,15 @@ ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const
}
#ifdef MA_HAS_FLAC
- return ma_decoder_init_flac__internal(&config, pDecoder);
+ result = ma_decoder_init_flac__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34685,10 +37378,15 @@ ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, cons
}
#ifdef MA_HAS_VORBIS
- return ma_decoder_init_vorbis__internal(&config, pDecoder);
+ result = ma_decoder_init_vorbis__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
@@ -34704,10 +37402,15 @@ ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const m
}
#ifdef MA_HAS_MP3
- return ma_decoder_init_mp3__internal(&config, pDecoder);
+ result = ma_decoder_init_mp3__internal(&config, pDecoder);
#else
- return MA_NO_BACKEND;
+ result = MA_NO_BACKEND;
#endif
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
@@ -34722,17 +37425,16 @@ ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const m
return result;
}
- return ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
+ result = ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+ return ma_decoder__postinit(&config, pDecoder);
}
#ifndef MA_NO_STDIO
-#include <stdio.h>
-#if !defined(_MSC_VER) && !defined(__DMC__)
-#include <strings.h> /* For strcasecmp(). */
-#include <wchar.h> /* For wcsrtombs() */
-#endif
-
-const char* ma_path_file_name(const char* path)
+static const char* ma_path_file_name(const char* path)
{
const char* fileName;
@@ -34759,7 +37461,7 @@ const char* ma_path_file_name(const char* path)
return fileName;
}
-const wchar_t* ma_path_file_name_w(const wchar_t* path)
+static const wchar_t* ma_path_file_name_w(const wchar_t* path)
{
const wchar_t* fileName;
@@ -34787,7 +37489,7 @@ const wchar_t* ma_path_file_name_w(const wchar_t* path)
}
-const char* ma_path_extension(const char* path)
+static const char* ma_path_extension(const char* path)
{
const char* extension;
const char* lastOccurance;
@@ -34812,7 +37514,7 @@ const char* ma_path_extension(const char* path)
return (lastOccurance != NULL) ? lastOccurance : extension;
}
-const wchar_t* ma_path_extension_w(const wchar_t* path)
+static const wchar_t* ma_path_extension_w(const wchar_t* path)
{
const wchar_t* extension;
const wchar_t* lastOccurance;
@@ -34838,7 +37540,7 @@ const wchar_t* ma_path_extension_w(const wchar_t* path)
}
-ma_bool32 ma_path_extension_equal(const char* path, const char* extension)
+static ma_bool32 ma_path_extension_equal(const char* path, const char* extension)
{
const char* ext1;
const char* ext2;
@@ -34857,7 +37559,7 @@ ma_bool32 ma_path_extension_equal(const char* path, const char* extension)
#endif
}
-ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extension)
+static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extension)
{
const wchar_t* ext1;
const wchar_t* ext2;
@@ -34884,8 +37586,8 @@ ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extensio
mbstate_t mbs1;
mbstate_t mbs2;
- ma_zero_object(&mbs1);
- ma_zero_object(&mbs2);
+ MA_ZERO_OBJECT(&mbs1);
+ MA_ZERO_OBJECT(&mbs2);
if (wcsrtombs(ext1MB, &pext1, sizeof(ext1MB), &mbs1) == (size_t)-1) {
return MA_FALSE;
@@ -34900,30 +37602,36 @@ ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extensio
}
-size_t ma_decoder__on_read_stdio(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
+static size_t ma_decoder__on_read_stdio(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
return fread(pBufferOut, 1, bytesToRead, (FILE*)pDecoder->pUserData);
}
-ma_bool32 ma_decoder__on_seek_stdio(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
+static ma_bool32 ma_decoder__on_seek_stdio(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
{
return fseek((FILE*)pDecoder->pUserData, byteOffset, (origin == ma_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
-ma_result ma_decoder__preinit_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+static ma_result ma_decoder__preinit_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
+ ma_result result;
FILE* pFile;
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
- ma_zero_object(pDecoder);
+ MA_ZERO_OBJECT(pDecoder);
if (pFilePath == NULL || pFilePath[0] == '\0') {
return MA_INVALID_ARGS;
}
+ result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
#if defined(_MSC_VER) && _MSC_VER >= 1400
if (fopen_s(&pFile, pFilePath, "rb") != 0) {
return MA_ERROR;
@@ -34938,25 +37646,47 @@ ma_result ma_decoder__preinit_file(const char* pFilePath, const ma_decoder_confi
/* We need to manually set the user data so the calls to ma_decoder__on_seek_stdio() succeed. */
pDecoder->pUserData = pFile;
- (void)pConfig;
return MA_SUCCESS;
}
-ma_result ma_decoder__preinit_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
+/*
+_wfopen() isn't always available in all compilation environments.
+
+ * Windows only.
+ * MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
+ * MinGW-64 (both 32- and 64-bit) seems to support it.
+ * MinGW wraps it in !defined(__STRICT_ANSI__).
+
+This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
+fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
+*/
+#if defined(_WIN32)
+ #if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
+ #define MA_HAS_WFOPEN
+ #endif
+#endif
+
+static ma_result ma_decoder__preinit_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
+ ma_result result;
FILE* pFile;
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
- ma_zero_object(pDecoder);
+ MA_ZERO_OBJECT(pDecoder);
if (pFilePath == NULL || pFilePath[0] == '\0') {
return MA_INVALID_ARGS;
}
-#if defined(_WIN32)
+ result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
+ if (result != MA_SUCCESS) {
+ return result;
+ }
+
+#if defined(MA_HAS_WFOPEN)
/* Use _wfopen() on Windows. */
#if defined(_MSC_VER) && _MSC_VER >= 1400
if (_wfopen_s(&pFile, pFilePath, L"rb") != 0) {
@@ -34981,24 +37711,24 @@ ma_result ma_decoder__preinit_file_w(const wchar_t* pFilePath, const ma_decoder_
char* pFilePathMB = NULL;
/* Get the length first. */
- ma_zero_object(&mbs);
+ MA_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return MA_ERROR;
}
- pFilePathMB = (char*)MA_MALLOC(lenMB + 1);
+ pFilePathMB = (char*)ma__malloc_from_callbacks(lenMB + 1, &pDecoder->allocationCallbacks);
if (pFilePathMB == NULL) {
return MA_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
- ma_zero_object(&mbs);
+ MA_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
pFile = fopen(pFilePathMB, "rb");
- MA_FREE(pFilePathMB);
+ ma__free_from_callbacks(pFilePathMB, &pDecoder->allocationCallbacks);
}
if (pFile == NULL) {
@@ -35175,7 +37905,7 @@ ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_
return ma_decoder_init_mp3(ma_decoder__on_read_stdio, ma_decoder__on_seek_stdio, pDecoder->pUserData, pConfig, pDecoder);
}
-#endif
+#endif /* MA_NO_STDIO */
ma_result ma_decoder_uninit(ma_decoder* pDecoder)
{
@@ -35194,6 +37924,8 @@ ma_result ma_decoder_uninit(ma_decoder* pDecoder)
}
#endif
+ ma_data_converter_uninit(&pDecoder->converter);
+
return MA_SUCCESS;
}
@@ -35204,7 +37936,12 @@ ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
}
if (pDecoder->onGetLengthInPCMFrames) {
- return pDecoder->onGetLengthInPCMFrames(pDecoder);
+ ma_uint64 nativeLengthInPCMFrames = pDecoder->onGetLengthInPCMFrames(pDecoder);
+ if (pDecoder->internalSampleRate == pDecoder->outputSampleRate) {
+ return nativeLengthInPCMFrames;
+ } else {
+ return ma_calculate_frame_count_after_resampling(pDecoder->outputSampleRate, pDecoder->internalSampleRate, nativeLengthInPCMFrames);
+ }
}
return 0;
@@ -35212,11 +37949,73 @@ ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
+ ma_result result;
+ ma_uint64 totalFramesReadOut;
+ ma_uint64 totalFramesReadIn;
+ void* pRunningFramesOut;
+
if (pDecoder == NULL) {
return 0;
}
- return ma_pcm_converter_read(&pDecoder->dsp, pFramesOut, frameCount);
+ if (pDecoder->onReadPCMFrames == NULL) {
+ return 0;
+ }
+
+ /* Fast path. */
+ if (pDecoder->converter.isPassthrough) {
+ return pDecoder->onReadPCMFrames(pDecoder, pFramesOut, frameCount);
+ }
+
+ /* Getting here means we need to do data conversion. */
+ totalFramesReadOut = 0;
+ totalFramesReadIn = 0;
+ pRunningFramesOut = pFramesOut;
+
+ while (totalFramesReadOut < frameCount) {
+ ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In internal format. */
+ ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
+ ma_uint64 framesToReadThisIterationIn;
+ ma_uint64 framesReadThisIterationIn;
+ ma_uint64 framesToReadThisIterationOut;
+ ma_uint64 framesReadThisIterationOut;
+ ma_uint64 requiredInputFrameCount;
+
+ framesToReadThisIterationOut = (frameCount - totalFramesReadOut);
+ framesToReadThisIterationIn = framesToReadThisIterationOut;
+ if (framesToReadThisIterationIn > intermediaryBufferCap) {
+ framesToReadThisIterationIn = intermediaryBufferCap;
+ }
+
+ requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDecoder->converter, framesToReadThisIterationOut);
+ if (framesToReadThisIterationIn > requiredInputFrameCount) {
+ framesToReadThisIterationIn = requiredInputFrameCount;
+ }
+
+ if (requiredInputFrameCount > 0) {
+ framesReadThisIterationIn = pDecoder->onReadPCMFrames(pDecoder, pIntermediaryBuffer, framesToReadThisIterationIn);
+ totalFramesReadIn += framesReadThisIterationIn;
+ }
+
+ /*
+ At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any
+ input frames, we still want to try processing frames because there may some output frames generated from cached input data.
+ */
+ framesReadThisIterationOut = framesToReadThisIterationOut;
+ result = ma_data_converter_process_pcm_frames(&pDecoder->converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut);
+ if (result != MA_SUCCESS) {
+ break;
+ }
+
+ totalFramesReadOut += framesReadThisIterationOut;
+ pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels));
+
+ if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) {
+ break; /* We're done. */
+ }
+ }
+
+ return totalFramesReadOut;
}
ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex)
@@ -35234,14 +38033,14 @@ ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameInde
}
-ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_config* pConfigOut, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
+static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_config* pConfigOut, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
ma_uint64 totalFrameCount;
ma_uint64 bpf;
ma_uint64 dataCapInFrames;
void* pPCMFramesOut;
- ma_assert(pDecoder != NULL);
+ MA_ASSERT(pDecoder != NULL);
totalFrameCount = 0;
bpf = ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels);
@@ -35256,20 +38055,21 @@ ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_co
/* Make room if there's not enough. */
if (totalFrameCount == dataCapInFrames) {
void* pNewPCMFramesOut;
+ ma_uint64 oldDataCapInFrames = dataCapInFrames;
ma_uint64 newDataCapInFrames = dataCapInFrames*2;
if (newDataCapInFrames == 0) {
newDataCapInFrames = 4096;
}
if ((newDataCapInFrames * bpf) > MA_SIZE_MAX) {
- ma_free(pPCMFramesOut);
+ ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
return MA_TOO_LARGE;
}
- pNewPCMFramesOut = (void*)ma_realloc(pPCMFramesOut, (size_t)(newDataCapInFrames * bpf));
+ pNewPCMFramesOut = (void*)ma__realloc_from_callbacks(pPCMFramesOut, (size_t)(newDataCapInFrames * bpf), (size_t)(oldDataCapInFrames * bpf), &pDecoder->allocationCallbacks);
if (pNewPCMFramesOut == NULL) {
- ma_free(pPCMFramesOut);
+ ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
@@ -35278,7 +38078,7 @@ ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_co
}
frameCountToTryReading = dataCapInFrames - totalFrameCount;
- ma_assert(frameCountToTryReading > 0);
+ MA_ASSERT(frameCountToTryReading > 0);
framesJustRead = ma_decoder_read_pcm_frames(pDecoder, (ma_uint8*)pPCMFramesOut + (totalFrameCount * bpf), frameCountToTryReading);
totalFrameCount += framesJustRead;
@@ -35299,7 +38099,7 @@ ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_co
if (ppPCMFramesOut != NULL) {
*ppPCMFramesOut = pPCMFramesOut;
} else {
- ma_free(pPCMFramesOut);
+ ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
}
if (pFrameCountOut != NULL) {
@@ -35376,68 +38176,215 @@ ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config
Generation
**************************************************************************************************************************************************************/
-ma_result ma_sine_wave_init(double amplitude, double periodsPerSecond, ma_uint32 sampleRate, ma_sine_wave* pSineWave)
+ma_result ma_waveform_init(ma_waveform_type type, double amplitude, double frequency, ma_uint32 sampleRate, ma_waveform* pWaveform)
{
- if (pSineWave == NULL) {
+ if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
- ma_zero_object(pSineWave);
- if (amplitude == 0 || periodsPerSecond == 0) {
+ MA_ZERO_OBJECT(pWaveform);
+
+ pWaveform->type = type;
+ pWaveform->amplitude = amplitude;
+ pWaveform->frequency = frequency;
+ pWaveform->deltaTime = 1.0 / sampleRate;
+ pWaveform->time = 0;
+
+ return MA_SUCCESS;
+}
+
+ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude)
+{
+ if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
- if (amplitude > 1) {
- amplitude = 1;
- }
- if (amplitude < -1) {
- amplitude = -1;
+ pWaveform->amplitude = amplitude;
+ return MA_SUCCESS;
+}
+
+ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency)
+{
+ if (pWaveform == NULL) {
+ return MA_INVALID_ARGS;
}
- pSineWave->amplitude = amplitude;
- pSineWave->periodsPerSecond = periodsPerSecond;
- pSineWave->delta = MA_TAU_D / sampleRate;
- pSineWave->time = 0;
+ pWaveform->frequency = frequency;
+ return MA_SUCCESS;
+}
+ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate)
+{
+ if (pWaveform == NULL) {
+ return MA_INVALID_ARGS;
+ }
+
+ pWaveform->deltaTime = 1.0 / sampleRate;
return MA_SUCCESS;
}
-ma_uint64 ma_sine_wave_read_f32(ma_sine_wave* pSineWave, ma_uint64 count, float* pSamples)
+static float ma_waveform_sine_f32(double time, double frequency, double amplitude)
+{
+ return (float)(ma_sin(MA_TAU_D * time * frequency) * amplitude);
+}
+
+static float ma_waveform_square_f32(double time, double frequency, double amplitude)
+{
+ double t = time * frequency;
+ double f = t - (ma_uint64)t;
+ double r;
+
+ if (f < 0.5) {
+ r = amplitude;
+ } else {
+ r = -amplitude;
+ }
+
+ return (float)r;
+}
+
+static float ma_waveform_triangle_f32(double time, double frequency, double amplitude)
+{
+ double t = time * frequency;
+ double f = t - (ma_uint64)t;
+ double r;
+
+ r = 2 * ma_abs(2 * (f - 0.5)) - 1;
+
+ return (float)(r * amplitude);
+}
+
+static float ma_waveform_sawtooth_f32(double time, double frequency, double amplitude)
{
- return ma_sine_wave_read_f32_ex(pSineWave, count, 1, ma_stream_layout_interleaved, &pSamples);
+ double t = time * frequency;
+ double f = t - (ma_uint64)t;
+ double r;
+
+ r = 2 * (f - 0.5);
+
+ return (float)(r * amplitude);
}
-ma_uint64 ma_sine_wave_read_f32_ex(ma_sine_wave* pSineWave, ma_uint64 frameCount, ma_uint32 channels, ma_stream_layout layout, float** ppFrames)
+static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
{
- if (pSineWave == NULL) {
+ ma_uint64 iFrame;
+ ma_uint64 iChannel;
+ ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
+ ma_uint32 bps = ma_get_bytes_per_sample(format);
+
+ MA_ASSERT(pWaveform != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
+ pWaveform->time += pWaveform->deltaTime;
+
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+}
+
+static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ ma_uint64 iFrame;
+ ma_uint64 iChannel;
+ ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
+ ma_uint32 bps = ma_get_bytes_per_sample(format);
+
+ MA_ASSERT(pWaveform != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_square_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
+ pWaveform->time += pWaveform->deltaTime;
+
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+}
+
+static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ ma_uint64 iFrame;
+ ma_uint64 iChannel;
+ ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
+ ma_uint32 bps = ma_get_bytes_per_sample(format);
+
+ MA_ASSERT(pWaveform != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
+ pWaveform->time += pWaveform->deltaTime;
+
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+}
+
+static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ ma_uint64 iFrame;
+ ma_uint64 iChannel;
+ ma_uint32 bpf = ma_get_bytes_per_frame(format, channels);
+ ma_uint32 bps = ma_get_bytes_per_sample(format);
+
+ MA_ASSERT(pWaveform != NULL);
+ MA_ASSERT(pFramesOut != NULL);
+
+ for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
+ float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->frequency, pWaveform->amplitude);
+ pWaveform->time += pWaveform->deltaTime;
+
+ for (iChannel = 0; iChannel < channels; iChannel += 1) {
+ ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), format, &s, ma_format_f32, 1, ma_dither_mode_none);
+ }
+ }
+}
+
+ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
+{
+ if (pWaveform == NULL) {
return 0;
}
- if (ppFrames != NULL) {
- ma_uint64 iFrame;
- for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
- ma_uint32 iChannel;
+ if (pFramesOut != NULL) {
+ switch (pWaveform->type)
+ {
+ case ma_waveform_type_sine:
+ {
+ ma_waveform_read_pcm_frames__sine(pWaveform, pFramesOut, frameCount, format, channels);
+ } break;
- float s = (float)(sin(pSineWave->time * pSineWave->periodsPerSecond) * pSineWave->amplitude);
- pSineWave->time += pSineWave->delta;
+ case ma_waveform_type_square:
+ {
+ ma_waveform_read_pcm_frames__square(pWaveform, pFramesOut, frameCount, format, channels);
+ } break;
- if (layout == ma_stream_layout_interleaved) {
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ppFrames[0][iFrame*channels + iChannel] = s;
- }
- } else {
- for (iChannel = 0; iChannel < channels; iChannel += 1) {
- ppFrames[iChannel][iFrame] = s;
- }
- }
+ case ma_waveform_type_triangle:
+ {
+ ma_waveform_read_pcm_frames__triangle(pWaveform, pFramesOut, frameCount, format, channels);
+ } break;
+
+ case ma_waveform_type_sawtooth:
+ {
+ ma_waveform_read_pcm_frames__sawtooth(pWaveform, pFramesOut, frameCount, format, channels);
+ } break;
+
+ default: return 0;
}
} else {
- pSineWave->time += pSineWave->delta * (ma_int64)frameCount; /* Cast to int64 required for VC6. */
+ pWaveform->time += pWaveform->deltaTime * (ma_int64)frameCount; /* Cast to int64 required for VC6. Won't affect anything in practice. */
}
return frameCount;
}
+
+/* End globally disabled warnings. */
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
@@ -35445,36 +38392,158 @@ ma_uint64 ma_sine_wave_read_f32_ex(ma_sine_wave* pSineWave, ma_uint64 frameCount
#endif /* MINIAUDIO_IMPLEMENTATION */
/*
-BACKEND IMPLEMENTATION GUIDELINES
-=================================
-Context
--------
-- Run-time linking if possible.
-- Set whether or not it's an asynchronous backend
+MAJOR CHANGES IN VERSION 0.9
+============================
+Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into
+detail about the major changes I would like to apologize. I know it's annoying dealing with breaking API changes, but I think
+it's best to get these changes out of the way now while the library is still relatively young and unknown.
-Device
-------
-- If a full-duplex device is requested and the backend does not support full duplex devices, have ma_device_init__[backend]()
- return MA_DEVICE_TYPE_NOT_SUPPORTED.
-- If exclusive mode is requested, but the backend does not support it, return MA_SHARE_MODE_NOT_SUPPORTED. If practical, try
- not to fall back to a different share mode - give the client exactly what they asked for. Some backends, such as ALSA, may
- not have a practical way to distinguish between the two.
-- If pDevice->usingDefault* is set, prefer the device's native value if the backend supports it. Otherwise use the relevant
- value from the config.
-- If the configs buffer size in frames is 0, set it based on the buffer size in milliseconds, keeping in mind to handle the
- case when the default sample rate is being used where practical.
-- Backends must set the following members of pDevice before returning successfully from ma_device_init__[backend]():
- - internalFormat
- - internalChannels
- - internalSampleRate
- - internalChannelMap
- - bufferSizeInFrames
- - periods
+There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in
+advance for this. You may want to hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for
+you, and you don't need full-duplex support, you can avoid upgrading (though you won't be getting future bug fixes).
+
+
+Rebranding to "miniaudio"
+-------------------------
+The decision was made to rename mini_al to miniaudio. Don't worry, it's the same project. The reason for this is simple:
+
+1) Having the word "audio" in the title makes it immediately clear that the library is related to audio; and
+2) I don't like the look of the underscore.
+
+This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's
+better to get this out of the road now rather than later. Also, since there are necessary API changes for full-duplex support
+I think it's better to just get the namespace change over and done with at the same time as the full-duplex changes. I'm hoping
+this will be the last of the major API changes. Fingers crossed!
+
+The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's
+your preference.
+
+
+Full-Duplex Support
+-------------------
+The major feature added to version 0.9 is full-duplex. This has necessitated a few API changes.
+
+1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted
+ to avoid a third callback just for full-duplex so the decision was made to break this API and unify the callbacks. Now,
+ there is just one callback which is the same for all three modes (playback, capture, duplex). The new callback looks like
+ the following:
+
+ void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
+
+ This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In
+ playback-only mode, pInput will be null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer
+ returned from the callback since it's not necessary for miniaudio anymore.
+
+2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client
+ to choose a different PCM format for the playback and capture sides. The old ma_device_config object simply did not allow
+ this and needed to change. With these changes you now specify the device ID, format, channels, channel map and share mode
+ on a per-playback and per-capture basis (see example below). The sample rate must be the same for playback and capture.
+
+ Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now,
+ the device ID, device type and callback user data are set in the config. ma_device_init() is now simplified down to taking
+ just the context, device config and a pointer to the device object being initialized. The rationale for this change is that
+ it just makes more sense to me that these are set as part of the config like everything else.
+
+ Example device initialization:
+
+ ma_device_config config = ma_device_config_init(ma_device_type_duplex); // Or ma_device_type_playback or ma_device_type_capture.
+ config.playback.pDeviceID = &myPlaybackDeviceID; // Or NULL for the default playback device.
+ config.playback.format = ma_format_f32;
+ config.playback.channels = 2;
+ config.capture.pDeviceID = &myCaptureDeviceID; // Or NULL for the default capture device.
+ config.capture.format = ma_format_s16;
+ config.capture.channels = 1;
+ config.sampleRate = 44100;
+ config.dataCallback = data_callback;
+ config.pUserData = &myUserData;
+
+ result = ma_device_init(&myContext, &config, &device);
+ if (result != MA_SUCCESS) {
+ ... handle error ...
+ }
+
+ Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has
+ been renamed to "stopCallback".
+
+This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample
+rate conversion is required for the playback device:
+ - Core Audio
+ - JACK
+ - AAudio
+ - OpenSL
+ - WebAudio
+
+In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such
+thorough testing. If you experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample
+program that reproduces the issue if possible).
+
+
+Other API Changes
+-----------------
+In addition to the above, the following API changes have been made:
+
+- The log callback is no longer passed to ma_context_config_init(). Instead you need to set it manually after initialization.
+- The onLogCallback member of ma_context_config has been renamed to "logCallback".
+- The log callback now takes a logLevel parameter. The new callback looks like: void log_callback(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
+ - You can use ma_log_level_to_string() to convert the logLevel to human readable text if you want to log it.
+- Some APIs have been renamed:
+ - mal_decoder_read() -> ma_decoder_read_pcm_frames()
+ - mal_decoder_seek_to_frame() -> ma_decoder_seek_to_pcm_frame()
+ - mal_sine_wave_read() -> ma_sine_wave_read_f32()
+ - mal_sine_wave_read_ex() -> ma_sine_wave_read_f32_ex()
+- Some APIs have been removed:
+ - mal_device_get_buffer_size_in_bytes()
+ - mal_device_set_recv_callback()
+ - mal_device_set_send_callback()
+ - mal_src_set_input_sample_rate()
+ - mal_src_set_output_sample_rate()
+- Error codes have been rearranged. If you're a binding maintainer you will need to update.
+- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection
+ and to make it easier to see the priority. If you're a binding maintainer you will need to update.
+- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with
+ some future planned high-level APIs.
+- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that
+ the pointer comes before the count. The rationale for this is to keep it consistent with things like memcpy().
+
+
+Miscellaneous Changes
+---------------------
+The following miscellaneous changes have also been made.
+
+- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the
+ record, this is one of the nicest audio APIs out there, just behind the BSD audio APIs).
+- The WebAudio backend has been added. This is based on ScriptProcessorNode. This removes the need for SDL.
+- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio
+ was not explicitly supported. These are no longer needed and have therefore been removed.
+- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an
+ exclusive mode device, or an error. The rationale for this change is to give the client more control over how to handle cases
+ when the desired shared mode is unavailable.
+- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb"
+ operates on PCM frames.
+- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but
+ removes the attribution requirement. The rationale for this is to support countries that don't recognize public domain.
*/
/*
REVISION HISTORY
================
+v0.xx.xx - 2020-xx-xx
+ - Fix potential crash when ma_device object's are not aligned to MA_SIMD_ALIGNMENT.
+
+v0.9.10 - 2020-01-15
+ - Fix compilation errors due to #if/#endif mismatches.
+ - WASAPI: Fix a bug where automatic stream routing is being performed for devices that are initialized with an explicit device ID.
+ - iOS: Fix a crash on device uninitialization.
+
+v0.9.9 - 2020-01-09
+ - Fix compilation errors with MinGW.
+ - Fix compilation errors when compiling on Apple platforms.
+ - WASAPI: Add support for disabling hardware offloading.
+ - WASAPI: Add support for disabling automatic stream routing.
+ - Core Audio: Fix bugs in the case where the internal device uses deinterleaved buffers.
+ - Core Audio: Add support for controlling the session category (AVAudioSessionCategory) and options (AVAudioSessionCategoryOptions).
+ - JACK: Fix bug where incorrect ports are connected.
+
v0.9.8 - 2019-10-07
- WASAPI: Fix a potential deadlock when starting a full-duplex device.
- WASAPI: Enable automatic resampling by default. Disable with config.wasapi.noAutoConvertSRC.
@@ -35864,7 +38933,7 @@ For more information, please refer to <http://unlicense.org/>
===============================================================================
ALTERNATIVE 2 - MIT No Attribution
===============================================================================
-Copyright 2019 David Reid
+Copyright 2020 David Reid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in