diff options
author | Luca Sas <sas.luca.alex@gmail.com> | 2020-03-06 17:48:44 +0000 |
---|---|---|
committer | Luca Sas <sas.luca.alex@gmail.com> | 2020-03-06 17:48:44 +0000 |
commit | 581538a8b371c0a9003dc0f1bf081222b8c4fdd9 (patch) | |
tree | f5759a699424211d4a66e24365a596072818ab33 /libs/raylib/src/rmem.h | |
download | gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.tar.gz gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.tar.bz2 gamejam-slgj-2024-581538a8b371c0a9003dc0f1bf081222b8c4fdd9.zip |
Setup the project
Diffstat (limited to 'libs/raylib/src/rmem.h')
-rw-r--r-- | libs/raylib/src/rmem.h | 774 |
1 files changed, 774 insertions, 0 deletions
diff --git a/libs/raylib/src/rmem.h b/libs/raylib/src/rmem.h new file mode 100644 index 0000000..9c7d0a7 --- /dev/null +++ b/libs/raylib/src/rmem.h @@ -0,0 +1,774 @@ +/********************************************************************************************** +* +* rmem - raylib memory pool and objects pool +* +* A quick, efficient, and minimal free list and stack-based allocator +* +* PURPOSE: +* - A quicker, efficient memory allocator alternative to 'malloc' and friends. +* - Reduce the possibilities of memory leaks for beginner developers using Raylib. +* - Being able to flexibly range check memory if necessary. +* +* CONFIGURATION: +* +* #define RMEM_IMPLEMENTATION +* Generates the implementation of the library into the included file. +* If not defined, the library is in header only mode and can be included in other headers +* or source files without problems. But only ONE file should hold the implementation. +* +* +* LICENSE: zlib/libpng +* +* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5) +* +* This software is provided "as-is", without any express or implied warranty. In no event +* will the authors be held liable for any damages arising from the use of this software. +* +* Permission is granted to anyone to use this software for any purpose, including commercial +* applications, and to alter it and redistribute it freely, subject to the following restrictions: +* +* 1. The origin of this software must not be misrepresented; you must not claim that you +* wrote the original software. If you use this software in a product, an acknowledgment +* in the product documentation would be appreciated but is not required. +* +* 2. Altered source versions must be plainly marked as such, and must not be misrepresented +* as being the original software. +* +* 3. This notice may not be removed or altered from any source distribution. +* +**********************************************************************************************/ + +#ifndef RMEM_H +#define RMEM_H + +#include <inttypes.h> +#include <stdbool.h> + +//---------------------------------------------------------------------------------- +// Defines and Macros +//---------------------------------------------------------------------------------- +#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) + #define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll) +#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) + #define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll) +#else + #define RMEMAPI // We are building or using library as a static library (or Linux shared library) +#endif + +//---------------------------------------------------------------------------------- +// Types and Structures Definition +//---------------------------------------------------------------------------------- + +// Memory Pool +typedef struct MemNode MemNode; +struct MemNode { + size_t size; + MemNode *next, *prev; +}; + +typedef struct AllocList { + MemNode *head, *tail; + size_t len, maxNodes; + bool autoDefrag : 1; +} AllocList; + +typedef struct Stack { + uint8_t *mem, *base; + size_t size; +} Stack; + +#define MEMPOOL_BUCKET_SIZE 8 +#define MEMPOOL_BUCKET_BITS 3 + +typedef struct MemPool { + AllocList freeList; + Stack stack; + MemNode *buckets[MEMPOOL_BUCKET_SIZE]; +} MemPool; + +// Object Pool +typedef struct ObjPool { + Stack stack; + size_t objSize, freeBlocks; +} ObjPool; + + +// Double-Ended Stack aka Deque +typedef struct BiStack { + uint8_t *mem, *front, *back; + size_t size; +} BiStack; + +#if defined(__cplusplus) +extern "C" { // Prevents name mangling of functions +#endif + +//------------------------------------------------------------------------------------ +// Functions Declaration - Memory Pool +//------------------------------------------------------------------------------------ +RMEMAPI MemPool CreateMemPool(size_t bytes); +RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes); +RMEMAPI void DestroyMemPool(MemPool *mempool); + +RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes); +RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes); +RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr); +RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref); +RMEMAPI void MemPoolReset(MemPool *mempool); +RMEMAPI bool MemPoolDefrag(MemPool *mempool); + +RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool); +RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool); + +//------------------------------------------------------------------------------------ +// Functions Declaration - Object Pool +//------------------------------------------------------------------------------------ +RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len); +RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len); +RMEMAPI void DestroyObjPool(ObjPool *objpool); + +RMEMAPI void *ObjPoolAlloc(ObjPool *objpool); +RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr); +RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref); + +//------------------------------------------------------------------------------------ +// Functions Declaration - Double-Ended Stack +//------------------------------------------------------------------------------------ +RMEMAPI BiStack CreateBiStack(size_t len); +RMEMAPI BiStack CreateBiStackFromBuffer(void *buf, size_t len); +RMEMAPI void DestroyBiStack(BiStack *destack); + +RMEMAPI void *BiStackAllocFront(BiStack *destack, size_t len); +RMEMAPI void *BiStackAllocBack(BiStack *destack, size_t len); + +RMEMAPI void BiStackResetFront(BiStack *destack); +RMEMAPI void BiStackResetBack(BiStack *destack); +RMEMAPI void BiStackResetAll(BiStack *destack); + +RMEMAPI intptr_t BiStackMargins(BiStack destack); + +#ifdef __cplusplus +} +#endif + +#endif // RMEM_H + +/*********************************************************************************** +* +* RMEM IMPLEMENTATION +* +************************************************************************************/ + +#if defined(RMEM_IMPLEMENTATION) + +#include <stdio.h> // Required for: +#include <stdlib.h> // Required for: +#include <string.h> // Required for: + +//---------------------------------------------------------------------------------- +// Defines and Macros +//---------------------------------------------------------------------------------- + +// Make sure restrict type qualifier for pointers is defined +// NOTE: Not supported by C++, it is a C only keyword +#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER) + #ifndef restrict + #define restrict __restrict + #endif +#endif + +//---------------------------------------------------------------------------------- +// Global Variables Definition +//---------------------------------------------------------------------------------- +// ... + +//---------------------------------------------------------------------------------- +// Module specific Functions Declaration +//---------------------------------------------------------------------------------- +static inline size_t __AlignSize(const size_t size, const size_t align) +{ + return (size + (align - 1)) & -align; +} + +//---------------------------------------------------------------------------------- +// Module Functions Definition - Memory Pool +//---------------------------------------------------------------------------------- + +MemPool CreateMemPool(const size_t size) +{ + MemPool mempool = { 0 }; + + if (size == 0UL) return mempool; + else + { + // Align the mempool size to at least the size of an alloc node. + mempool.stack.size = size; + mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem); + + if (mempool.stack.mem==NULL) + { + mempool.stack.size = 0UL; + return mempool; + } + else + { + mempool.stack.base = mempool.stack.mem + mempool.stack.size; + return mempool; + } + } +} + +MemPool CreateMemPoolFromBuffer(void *buf, const size_t size) +{ + MemPool mempool = { 0 }; + + if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool; + else + { + mempool.stack.size = size; + mempool.stack.mem = buf; + mempool.stack.base = mempool.stack.mem + mempool.stack.size; + return mempool; + } +} + +void DestroyMemPool(MemPool *const mempool) +{ + if ((mempool == NULL) || (mempool->stack.mem == NULL)) return; + else + { + free(mempool->stack.mem); + *mempool = (MemPool){ 0 }; + } +} + +void *MemPoolAlloc(MemPool *const mempool, const size_t size) +{ + if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL; + else + { + MemNode *new_mem = NULL; + const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t)); + const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1; + + // If the size is small enough, let's check if our buckets has a fitting memory block. + if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE && mempool->buckets[BUCKET_INDEX] != NULL && mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE) + { + new_mem = mempool->buckets[BUCKET_INDEX]; + mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next; + if( mempool->buckets[BUCKET_INDEX] != NULL ) + mempool->buckets[BUCKET_INDEX]->prev = NULL; + } + else if (mempool->freeList.head != NULL) + { + const size_t MEM_SPLIT_THRESHOLD = 16; + + // If the freelist is valid, let's allocate FROM the freelist then! + for (MemNode *inode = mempool->freeList.head; inode != NULL; inode = inode->next) + { + if (inode->size < ALLOC_SIZE) continue; + else if (inode->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD)) + { + // Close in size - reduce fragmentation by not splitting. + new_mem = inode; + (inode->prev != NULL)? (inode->prev->next = inode->next) : (mempool->freeList.head = inode->next); + (inode->next != NULL)? (inode->next->prev = inode->prev) : (mempool->freeList.tail = inode->prev); + + if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL; + else mempool->freeList.tail = NULL; + + if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL; + mempool->freeList.len--; + break; + } + else + { + // Split the memory chunk. + new_mem = (MemNode *)((uint8_t *)inode + (inode->size - ALLOC_SIZE)); + inode->size -= ALLOC_SIZE; + new_mem->size = ALLOC_SIZE; + break; + } + } + } + + if (new_mem == NULL) + { + // not enough memory to support the size! + if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL; + else + { + // Couldn't allocate from a freelist, allocate from available mempool. + // Subtract allocation size from the mempool. + mempool->stack.base -= ALLOC_SIZE; + + // Use the available mempool space as the new node. + new_mem = (MemNode *)mempool->stack.base; + new_mem->size = ALLOC_SIZE; + } + } + + // Visual of the allocation block. + // -------------- + // | mem size | lowest addr of block + // | next node | 12 byte (32-bit) header + // | prev node | 24 byte (64-bit) header + // -------------- + // | alloc'd | + // | memory | + // | space | highest addr of block + // -------------- + new_mem->next = new_mem->prev = NULL; + uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem; + return memset(final_mem, 0, new_mem->size - sizeof *new_mem); + } +} + +void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size) +{ + if ((mempool == NULL) || (size > mempool->stack.size)) return NULL; + // NULL ptr should make this work like regular Allocation. + else if (ptr == NULL) return MemPoolAlloc(mempool, size); + else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL; + else + { + MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node); + const size_t NODE_SIZE = sizeof *node; + uint8_t *const resized_block = MemPoolAlloc(mempool, size); + + if (resized_block == NULL) return NULL; + else + { + MemNode *const resized = (MemNode *)(resized_block - sizeof *resized); + memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE)); + MemPoolFree(mempool, ptr); + return resized_block; + } + } +} + +void MemPoolFree(MemPool *const restrict mempool, void *ptr) +{ + if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return; + else + { + // Behind the actual pointer data is the allocation info. + MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node); + const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1; + + // Make sure the pointer data is valid. + if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) || + (((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) || + (mem_node->size == 0UL) || + (mem_node->size > mempool->stack.size)) return; + // If the mem_node is right at the stack base ptr, then add it to the stack. + else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base) + { + mempool->stack.base += mem_node->size; + } + // attempted stack merge failed, try to place it into the memnode buckets + else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE) + { + if (mempool->buckets[BUCKET_INDEX] == NULL) mempool->buckets[BUCKET_INDEX] = mem_node; + else + { + for (MemNode *n = mempool->buckets[BUCKET_INDEX]; n != NULL; n = n->next) if( n==mem_node ) return; + mempool->buckets[BUCKET_INDEX]->prev = mem_node; + mem_node->next = mempool->buckets[BUCKET_INDEX]; + mempool->buckets[BUCKET_INDEX] = mem_node; + } + } + // Otherwise, we add it to the free list. + // We also check if the freelist already has the pointer so we can prevent double frees. + else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/ + { + for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return; + + // This code insertion sorts where largest size is last. + if (mempool->freeList.head == NULL) + { + mempool->freeList.head = mempool->freeList.tail = mem_node; + mempool->freeList.len++; + } + else if (mempool->freeList.head->size >= mem_node->size) + { + mem_node->next = mempool->freeList.head; + mem_node->next->prev = mem_node; + mempool->freeList.head = mem_node; + mempool->freeList.len++; + } + else //if (mempool->freeList.tail->size <= mem_node->size) + { + mem_node->prev = mempool->freeList.tail; + mempool->freeList.tail->next = mem_node; + mempool->freeList.tail = mem_node; + mempool->freeList.len++; + } + + if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool); + } + } +} + +void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref) +{ + if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return; + else + { + MemPoolFree(mempool, *ptrref); + *ptrref = NULL; + } +} + +size_t GetMemPoolFreeMemory(const MemPool mempool) +{ + size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem; + + for (MemNode *n=mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size; + + for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size; + + return total_remaining; +} + +void MemPoolReset(MemPool *const mempool) +{ + if (mempool == NULL) return; + mempool->freeList.head = mempool->freeList.tail = NULL; + mempool->freeList.len = 0; + for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL; + mempool->stack.base = mempool->stack.mem + mempool->stack.size; +} + +bool MemPoolDefrag(MemPool *const mempool) +{ + if (mempool == NULL) return false; + else + { + // If the memory pool has been entirely released, fully defrag it. + if (mempool->stack.size == GetMemPoolFreeMemory(*mempool)) + { + MemPoolReset(mempool); + return true; + } + else + { + for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) + { + while (mempool->buckets[i] != NULL) + { + if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base) + { + mempool->stack.base += mempool->buckets[i]->size; + mempool->buckets[i]->size = 0; + mempool->buckets[i] = mempool->buckets[i]->next; + if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL; + } + else break; + } + } + + const size_t PRE_DEFRAG_LEN = mempool->freeList.len; + MemNode **node = &mempool->freeList.head; + + while (*node != NULL) + { + if ((uintptr_t)*node == (uintptr_t)mempool->stack.base) + { + // If node is right at the stack, merge it back into the stack. + mempool->stack.base += (*node)->size; + (*node)->size = 0UL; + ((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (mempool->freeList.head = (*node)->next); + ((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (mempool->freeList.tail = (*node)->prev); + + if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL; + else mempool->freeList.tail = NULL; + + if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL; + mempool->freeList.len--; + node = &mempool->freeList.head; + } + else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next) + { + // Next node is at a higher address. + (*node)->size += (*node)->next->size; + (*node)->next->size = 0UL; + + // <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]-> + // + // |--------------------| + // <-[P Curr N]-> <-[P Next N]-> [P NextNext N]-> + if ((*node)->next->next != NULL) (*node)->next->next->prev = *node; + + // <-[P Curr N]-> <-[P NextNext N]-> + (*node)->next = (*node)->next->next; + + mempool->freeList.len--; + node = &mempool->freeList.head; + } + else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL)) + { + // Prev node is at a higher address. + (*node)->size += (*node)->prev->size; + (*node)->prev->size = 0UL; + + // <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]-> + // + // |--------------------| + // <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]-> + (*node)->prev->prev->next = *node; + + // <-[P PrevPrev N]-> <-[P Curr N]-> + (*node)->prev = (*node)->prev->prev; + + mempool->freeList.len--; + node = &mempool->freeList.head; + } + else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next) + { + // Next node is at a lower address. + (*node)->next->size += (*node)->size; + + (*node)->size = 0UL; + (*node)->next->prev = (*node)->prev; + (*node)->prev->next = (*node)->next; + *node = (*node)->next; + + mempool->freeList.len--; + node = &mempool->freeList.head; + } + else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev) + { + // Prev node is at a lower address. + (*node)->prev->size += (*node)->size; + + (*node)->size = 0UL; + (*node)->next->prev = (*node)->prev; + (*node)->prev->next = (*node)->next; + *node = (*node)->prev; + + mempool->freeList.len--; + node = &mempool->freeList.head; + } + else + { + node = &(*node)->next; + } + } + + return PRE_DEFRAG_LEN > mempool->freeList.len; + } + } +} + +void ToggleMemPoolAutoDefrag(MemPool *const mempool) +{ + if (mempool == NULL) return; + else mempool->freeList.autoDefrag ^= true; +} + +//---------------------------------------------------------------------------------- +// Module Functions Definition - Object Pool +//---------------------------------------------------------------------------------- +union ObjInfo { + uint8_t *const byte; + size_t *const index; +}; + +ObjPool CreateObjPool(const size_t objsize, const size_t len) +{ + ObjPool objpool = { 0 }; + + if ((len == 0UL) || (objsize == 0UL)) return objpool; + else + { + objpool.objSize = __AlignSize(objsize, sizeof(size_t)); + objpool.stack.size = objpool.freeBlocks = len; + objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize); + + if (objpool.stack.mem == NULL) + { + objpool.stack.size = 0UL; + return objpool; + } + else + { + for (size_t i=0; i<objpool.freeBlocks; i++) + { + union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] }; + *block.index = i + 1; + } + + objpool.stack.base = objpool.stack.mem; + return objpool; + } + } +} + +ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len) +{ + ObjPool objpool = { 0 }; + + // If the object size isn't large enough to align to a size_t, then we can't use it. + if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool; + else + { + objpool.objSize = __AlignSize(objsize, sizeof(size_t)); + objpool.stack.size = objpool.freeBlocks = len; + objpool.stack.mem = buf; + + for (size_t i=0; i<objpool.freeBlocks; i++) + { + union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] }; + *block.index = i + 1; + } + + objpool.stack.base = objpool.stack.mem; + return objpool; + } +} + +void DestroyObjPool(ObjPool *const objpool) +{ + if ((objpool == NULL) || (objpool->stack.mem == NULL)) return; + else + { + free(objpool->stack.mem); + *objpool = (ObjPool){0}; + } +} + +void *ObjPoolAlloc(ObjPool *const objpool) +{ + if (objpool == NULL) return NULL; + else + { + if (objpool->freeBlocks > 0UL) + { + // For first allocation, head points to the very first index. + // Head = &pool[0]; + // ret = Head == ret = &pool[0]; + union ObjInfo ret = { .byte = objpool->stack.base }; + objpool->freeBlocks--; + + // after allocating, we set head to the address of the index that *Head holds. + // Head = &pool[*Head * pool.objsize]; + objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL; + memset(ret.byte, 0, objpool->objSize); + return ret.byte; + } + else return NULL; + } +} + +void ObjPoolFree(ObjPool *const restrict objpool, void *ptr) +{ + union ObjInfo p = { .byte = ptr }; + if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return; + else + { + // When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head. + // *p = index of Head in relation to the buffer; + // Head = p; + *p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size; + objpool->stack.base = p.byte; + objpool->freeBlocks++; + } +} + +void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref) +{ + if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return; + else + { + ObjPoolFree(objpool, *ptrref); + *ptrref = NULL; + } +} + + +//---------------------------------------------------------------------------------- +// Module Functions Definition - Double-Ended Stack +//---------------------------------------------------------------------------------- +BiStack CreateBiStack(const size_t len) +{ + BiStack destack = { 0 }; + if (len == 0UL) return destack; + + destack.size = len; + destack.mem = malloc(len*sizeof *destack.mem); + if (destack.mem==NULL) destack.size = 0UL; + else + { + destack.front = destack.mem; + destack.back = destack.mem + len; + } + return destack; +} + +BiStack CreateBiStackFromBuffer(void *const buf, const size_t len) +{ + BiStack destack = { 0 }; + if (len == 0UL || buf == NULL) return destack; + destack.size = len; + destack.mem = destack.front = buf; + destack.back = destack.mem + len; + return destack; +} + +void DestroyBiStack(BiStack *const destack) +{ + if ((destack == NULL) || (destack->mem == NULL)) return; + free(destack->mem); + *destack = (BiStack){0}; +} + +void *BiStackAllocFront(BiStack *const destack, const size_t len) +{ + if ((destack == NULL) || (destack->mem == NULL)) return NULL; + + const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t)); + // front end stack is too high! + if (destack->front + ALIGNED_LEN >= destack->back) return NULL; + + uint8_t *ptr = destack->front; + destack->front += ALIGNED_LEN; + return ptr; +} + +void *BiStackAllocBack(BiStack *const destack, const size_t len) +{ + if ((destack == NULL) || (destack->mem == NULL)) return NULL; + + const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t)); + // back end stack is too low + if (destack->back - ALIGNED_LEN <= destack->front) return NULL; + + destack->back -= ALIGNED_LEN; + return destack->back; +} + +void BiStackResetFront(BiStack *const destack) +{ + if ((destack == NULL) || (destack->mem == NULL)) return; + destack->front = destack->mem; +} + +void BiStackResetBack(BiStack *const destack) +{ + if ((destack == NULL) || (destack->mem == NULL)) return; + destack->back = destack->mem + destack->size; +} + +void BiStackResetAll(BiStack *const destack) +{ + BiStackResetBack(destack); + BiStackResetFront(destack); +} + +intptr_t BiStackMargins(const BiStack destack) +{ + return destack.back - destack.front; +} + +#endif // RMEM_IMPLEMENTATION |