summaryrefslogtreecommitdiff
path: root/libs/raylib/src/rmem.h
diff options
context:
space:
mode:
Diffstat (limited to 'libs/raylib/src/rmem.h')
-rw-r--r--libs/raylib/src/rmem.h774
1 files changed, 774 insertions, 0 deletions
diff --git a/libs/raylib/src/rmem.h b/libs/raylib/src/rmem.h
new file mode 100644
index 0000000..9c7d0a7
--- /dev/null
+++ b/libs/raylib/src/rmem.h
@@ -0,0 +1,774 @@
+/**********************************************************************************************
+*
+* rmem - raylib memory pool and objects pool
+*
+* A quick, efficient, and minimal free list and stack-based allocator
+*
+* PURPOSE:
+* - A quicker, efficient memory allocator alternative to 'malloc' and friends.
+* - Reduce the possibilities of memory leaks for beginner developers using Raylib.
+* - Being able to flexibly range check memory if necessary.
+*
+* CONFIGURATION:
+*
+* #define RMEM_IMPLEMENTATION
+* Generates the implementation of the library into the included file.
+* If not defined, the library is in header only mode and can be included in other headers
+* or source files without problems. But only ONE file should hold the implementation.
+*
+*
+* LICENSE: zlib/libpng
+*
+* Copyright (c) 2019 Kevin 'Assyrianic' Yonan (@assyrianic) and reviewed by Ramon Santamaria (@raysan5)
+*
+* This software is provided "as-is", without any express or implied warranty. In no event
+* will the authors be held liable for any damages arising from the use of this software.
+*
+* Permission is granted to anyone to use this software for any purpose, including commercial
+* applications, and to alter it and redistribute it freely, subject to the following restrictions:
+*
+* 1. The origin of this software must not be misrepresented; you must not claim that you
+* wrote the original software. If you use this software in a product, an acknowledgment
+* in the product documentation would be appreciated but is not required.
+*
+* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
+* as being the original software.
+*
+* 3. This notice may not be removed or altered from any source distribution.
+*
+**********************************************************************************************/
+
+#ifndef RMEM_H
+#define RMEM_H
+
+#include <inttypes.h>
+#include <stdbool.h>
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED)
+ #define RMEMAPI __declspec(dllexport) // We are building library as a Win32 shared library (.dll)
+#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED)
+ #define RMEMAPI __declspec(dllimport) // We are using library as a Win32 shared library (.dll)
+#else
+ #define RMEMAPI // We are building or using library as a static library (or Linux shared library)
+#endif
+
+//----------------------------------------------------------------------------------
+// Types and Structures Definition
+//----------------------------------------------------------------------------------
+
+// Memory Pool
+typedef struct MemNode MemNode;
+struct MemNode {
+ size_t size;
+ MemNode *next, *prev;
+};
+
+typedef struct AllocList {
+ MemNode *head, *tail;
+ size_t len, maxNodes;
+ bool autoDefrag : 1;
+} AllocList;
+
+typedef struct Stack {
+ uint8_t *mem, *base;
+ size_t size;
+} Stack;
+
+#define MEMPOOL_BUCKET_SIZE 8
+#define MEMPOOL_BUCKET_BITS 3
+
+typedef struct MemPool {
+ AllocList freeList;
+ Stack stack;
+ MemNode *buckets[MEMPOOL_BUCKET_SIZE];
+} MemPool;
+
+// Object Pool
+typedef struct ObjPool {
+ Stack stack;
+ size_t objSize, freeBlocks;
+} ObjPool;
+
+
+// Double-Ended Stack aka Deque
+typedef struct BiStack {
+ uint8_t *mem, *front, *back;
+ size_t size;
+} BiStack;
+
+#if defined(__cplusplus)
+extern "C" { // Prevents name mangling of functions
+#endif
+
+//------------------------------------------------------------------------------------
+// Functions Declaration - Memory Pool
+//------------------------------------------------------------------------------------
+RMEMAPI MemPool CreateMemPool(size_t bytes);
+RMEMAPI MemPool CreateMemPoolFromBuffer(void *buf, size_t bytes);
+RMEMAPI void DestroyMemPool(MemPool *mempool);
+
+RMEMAPI void *MemPoolAlloc(MemPool *mempool, size_t bytes);
+RMEMAPI void *MemPoolRealloc(MemPool *mempool, void *ptr, size_t bytes);
+RMEMAPI void MemPoolFree(MemPool *mempool, void *ptr);
+RMEMAPI void MemPoolCleanUp(MemPool *mempool, void **ptrref);
+RMEMAPI void MemPoolReset(MemPool *mempool);
+RMEMAPI bool MemPoolDefrag(MemPool *mempool);
+
+RMEMAPI size_t GetMemPoolFreeMemory(const MemPool mempool);
+RMEMAPI void ToggleMemPoolAutoDefrag(MemPool *mempool);
+
+//------------------------------------------------------------------------------------
+// Functions Declaration - Object Pool
+//------------------------------------------------------------------------------------
+RMEMAPI ObjPool CreateObjPool(size_t objsize, size_t len);
+RMEMAPI ObjPool CreateObjPoolFromBuffer(void *buf, size_t objsize, size_t len);
+RMEMAPI void DestroyObjPool(ObjPool *objpool);
+
+RMEMAPI void *ObjPoolAlloc(ObjPool *objpool);
+RMEMAPI void ObjPoolFree(ObjPool *objpool, void *ptr);
+RMEMAPI void ObjPoolCleanUp(ObjPool *objpool, void **ptrref);
+
+//------------------------------------------------------------------------------------
+// Functions Declaration - Double-Ended Stack
+//------------------------------------------------------------------------------------
+RMEMAPI BiStack CreateBiStack(size_t len);
+RMEMAPI BiStack CreateBiStackFromBuffer(void *buf, size_t len);
+RMEMAPI void DestroyBiStack(BiStack *destack);
+
+RMEMAPI void *BiStackAllocFront(BiStack *destack, size_t len);
+RMEMAPI void *BiStackAllocBack(BiStack *destack, size_t len);
+
+RMEMAPI void BiStackResetFront(BiStack *destack);
+RMEMAPI void BiStackResetBack(BiStack *destack);
+RMEMAPI void BiStackResetAll(BiStack *destack);
+
+RMEMAPI intptr_t BiStackMargins(BiStack destack);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // RMEM_H
+
+/***********************************************************************************
+*
+* RMEM IMPLEMENTATION
+*
+************************************************************************************/
+
+#if defined(RMEM_IMPLEMENTATION)
+
+#include <stdio.h> // Required for:
+#include <stdlib.h> // Required for:
+#include <string.h> // Required for:
+
+//----------------------------------------------------------------------------------
+// Defines and Macros
+//----------------------------------------------------------------------------------
+
+// Make sure restrict type qualifier for pointers is defined
+// NOTE: Not supported by C++, it is a C only keyword
+#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
+ #ifndef restrict
+ #define restrict __restrict
+ #endif
+#endif
+
+//----------------------------------------------------------------------------------
+// Global Variables Definition
+//----------------------------------------------------------------------------------
+// ...
+
+//----------------------------------------------------------------------------------
+// Module specific Functions Declaration
+//----------------------------------------------------------------------------------
+static inline size_t __AlignSize(const size_t size, const size_t align)
+{
+ return (size + (align - 1)) & -align;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Memory Pool
+//----------------------------------------------------------------------------------
+
+MemPool CreateMemPool(const size_t size)
+{
+ MemPool mempool = { 0 };
+
+ if (size == 0UL) return mempool;
+ else
+ {
+ // Align the mempool size to at least the size of an alloc node.
+ mempool.stack.size = size;
+ mempool.stack.mem = malloc(mempool.stack.size*sizeof *mempool.stack.mem);
+
+ if (mempool.stack.mem==NULL)
+ {
+ mempool.stack.size = 0UL;
+ return mempool;
+ }
+ else
+ {
+ mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+ return mempool;
+ }
+ }
+}
+
+MemPool CreateMemPoolFromBuffer(void *buf, const size_t size)
+{
+ MemPool mempool = { 0 };
+
+ if ((size == 0UL) || (buf == NULL) || (size <= sizeof(MemNode))) return mempool;
+ else
+ {
+ mempool.stack.size = size;
+ mempool.stack.mem = buf;
+ mempool.stack.base = mempool.stack.mem + mempool.stack.size;
+ return mempool;
+ }
+}
+
+void DestroyMemPool(MemPool *const mempool)
+{
+ if ((mempool == NULL) || (mempool->stack.mem == NULL)) return;
+ else
+ {
+ free(mempool->stack.mem);
+ *mempool = (MemPool){ 0 };
+ }
+}
+
+void *MemPoolAlloc(MemPool *const mempool, const size_t size)
+{
+ if ((mempool == NULL) || (size == 0UL) || (size > mempool->stack.size)) return NULL;
+ else
+ {
+ MemNode *new_mem = NULL;
+ const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
+ const size_t BUCKET_INDEX = (ALLOC_SIZE >> MEMPOOL_BUCKET_BITS) - 1;
+
+ // If the size is small enough, let's check if our buckets has a fitting memory block.
+ if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE && mempool->buckets[BUCKET_INDEX] != NULL && mempool->buckets[BUCKET_INDEX]->size >= ALLOC_SIZE)
+ {
+ new_mem = mempool->buckets[BUCKET_INDEX];
+ mempool->buckets[BUCKET_INDEX] = mempool->buckets[BUCKET_INDEX]->next;
+ if( mempool->buckets[BUCKET_INDEX] != NULL )
+ mempool->buckets[BUCKET_INDEX]->prev = NULL;
+ }
+ else if (mempool->freeList.head != NULL)
+ {
+ const size_t MEM_SPLIT_THRESHOLD = 16;
+
+ // If the freelist is valid, let's allocate FROM the freelist then!
+ for (MemNode *inode = mempool->freeList.head; inode != NULL; inode = inode->next)
+ {
+ if (inode->size < ALLOC_SIZE) continue;
+ else if (inode->size <= (ALLOC_SIZE + MEM_SPLIT_THRESHOLD))
+ {
+ // Close in size - reduce fragmentation by not splitting.
+ new_mem = inode;
+ (inode->prev != NULL)? (inode->prev->next = inode->next) : (mempool->freeList.head = inode->next);
+ (inode->next != NULL)? (inode->next->prev = inode->prev) : (mempool->freeList.tail = inode->prev);
+
+ if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
+ else mempool->freeList.tail = NULL;
+
+ if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
+ mempool->freeList.len--;
+ break;
+ }
+ else
+ {
+ // Split the memory chunk.
+ new_mem = (MemNode *)((uint8_t *)inode + (inode->size - ALLOC_SIZE));
+ inode->size -= ALLOC_SIZE;
+ new_mem->size = ALLOC_SIZE;
+ break;
+ }
+ }
+ }
+
+ if (new_mem == NULL)
+ {
+ // not enough memory to support the size!
+ if ((mempool->stack.base - ALLOC_SIZE) < mempool->stack.mem) return NULL;
+ else
+ {
+ // Couldn't allocate from a freelist, allocate from available mempool.
+ // Subtract allocation size from the mempool.
+ mempool->stack.base -= ALLOC_SIZE;
+
+ // Use the available mempool space as the new node.
+ new_mem = (MemNode *)mempool->stack.base;
+ new_mem->size = ALLOC_SIZE;
+ }
+ }
+
+ // Visual of the allocation block.
+ // --------------
+ // | mem size | lowest addr of block
+ // | next node | 12 byte (32-bit) header
+ // | prev node | 24 byte (64-bit) header
+ // --------------
+ // | alloc'd |
+ // | memory |
+ // | space | highest addr of block
+ // --------------
+ new_mem->next = new_mem->prev = NULL;
+ uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
+ return memset(final_mem, 0, new_mem->size - sizeof *new_mem);
+ }
+}
+
+void *MemPoolRealloc(MemPool *const restrict mempool, void *ptr, const size_t size)
+{
+ if ((mempool == NULL) || (size > mempool->stack.size)) return NULL;
+ // NULL ptr should make this work like regular Allocation.
+ else if (ptr == NULL) return MemPoolAlloc(mempool, size);
+ else if ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem) return NULL;
+ else
+ {
+ MemNode *const node = (MemNode *)((uint8_t *)ptr - sizeof *node);
+ const size_t NODE_SIZE = sizeof *node;
+ uint8_t *const resized_block = MemPoolAlloc(mempool, size);
+
+ if (resized_block == NULL) return NULL;
+ else
+ {
+ MemNode *const resized = (MemNode *)(resized_block - sizeof *resized);
+ memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
+ MemPoolFree(mempool, ptr);
+ return resized_block;
+ }
+ }
+}
+
+void MemPoolFree(MemPool *const restrict mempool, void *ptr)
+{
+ if ((mempool == NULL) || (ptr == NULL) || ((uintptr_t)ptr - sizeof(MemNode) < (uintptr_t)mempool->stack.mem)) return;
+ else
+ {
+ // Behind the actual pointer data is the allocation info.
+ MemNode *const mem_node = (MemNode *)((uint8_t *)ptr - sizeof *mem_node);
+ const size_t BUCKET_INDEX = (mem_node->size >> MEMPOOL_BUCKET_BITS) - 1;
+
+ // Make sure the pointer data is valid.
+ if (((uintptr_t)mem_node < (uintptr_t)mempool->stack.base) ||
+ (((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size) ||
+ (mem_node->size == 0UL) ||
+ (mem_node->size > mempool->stack.size)) return;
+ // If the mem_node is right at the stack base ptr, then add it to the stack.
+ else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base)
+ {
+ mempool->stack.base += mem_node->size;
+ }
+ // attempted stack merge failed, try to place it into the memnode buckets
+ else if (BUCKET_INDEX < MEMPOOL_BUCKET_SIZE)
+ {
+ if (mempool->buckets[BUCKET_INDEX] == NULL) mempool->buckets[BUCKET_INDEX] = mem_node;
+ else
+ {
+ for (MemNode *n = mempool->buckets[BUCKET_INDEX]; n != NULL; n = n->next) if( n==mem_node ) return;
+ mempool->buckets[BUCKET_INDEX]->prev = mem_node;
+ mem_node->next = mempool->buckets[BUCKET_INDEX];
+ mempool->buckets[BUCKET_INDEX] = mem_node;
+ }
+ }
+ // Otherwise, we add it to the free list.
+ // We also check if the freelist already has the pointer so we can prevent double frees.
+ else /*if ((mempool->freeList.len == 0UL) || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size))*/
+ {
+ for (MemNode *n = mempool->freeList.head; n != NULL; n = n->next) if (n == mem_node) return;
+
+ // This code insertion sorts where largest size is last.
+ if (mempool->freeList.head == NULL)
+ {
+ mempool->freeList.head = mempool->freeList.tail = mem_node;
+ mempool->freeList.len++;
+ }
+ else if (mempool->freeList.head->size >= mem_node->size)
+ {
+ mem_node->next = mempool->freeList.head;
+ mem_node->next->prev = mem_node;
+ mempool->freeList.head = mem_node;
+ mempool->freeList.len++;
+ }
+ else //if (mempool->freeList.tail->size <= mem_node->size)
+ {
+ mem_node->prev = mempool->freeList.tail;
+ mempool->freeList.tail->next = mem_node;
+ mempool->freeList.tail = mem_node;
+ mempool->freeList.len++;
+ }
+
+ if (mempool->freeList.autoDefrag && (mempool->freeList.maxNodes != 0UL) && (mempool->freeList.len > mempool->freeList.maxNodes)) MemPoolDefrag(mempool);
+ }
+ }
+}
+
+void MemPoolCleanUp(MemPool *const restrict mempool, void **ptrref)
+{
+ if ((mempool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+ else
+ {
+ MemPoolFree(mempool, *ptrref);
+ *ptrref = NULL;
+ }
+}
+
+size_t GetMemPoolFreeMemory(const MemPool mempool)
+{
+ size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
+
+ for (MemNode *n=mempool.freeList.head; n != NULL; n = n->next) total_remaining += n->size;
+
+ for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++) for (MemNode *n = mempool.buckets[i]; n != NULL; n = n->next) total_remaining += n->size;
+
+ return total_remaining;
+}
+
+void MemPoolReset(MemPool *const mempool)
+{
+ if (mempool == NULL) return;
+ mempool->freeList.head = mempool->freeList.tail = NULL;
+ mempool->freeList.len = 0;
+ for (size_t i = 0; i < MEMPOOL_BUCKET_SIZE; i++) mempool->buckets[i] = NULL;
+ mempool->stack.base = mempool->stack.mem + mempool->stack.size;
+}
+
+bool MemPoolDefrag(MemPool *const mempool)
+{
+ if (mempool == NULL) return false;
+ else
+ {
+ // If the memory pool has been entirely released, fully defrag it.
+ if (mempool->stack.size == GetMemPoolFreeMemory(*mempool))
+ {
+ MemPoolReset(mempool);
+ return true;
+ }
+ else
+ {
+ for (size_t i=0; i<MEMPOOL_BUCKET_SIZE; i++)
+ {
+ while (mempool->buckets[i] != NULL)
+ {
+ if ((uintptr_t)mempool->buckets[i] == (uintptr_t)mempool->stack.base)
+ {
+ mempool->stack.base += mempool->buckets[i]->size;
+ mempool->buckets[i]->size = 0;
+ mempool->buckets[i] = mempool->buckets[i]->next;
+ if (mempool->buckets[i] != NULL) mempool->buckets[i]->prev = NULL;
+ }
+ else break;
+ }
+ }
+
+ const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
+ MemNode **node = &mempool->freeList.head;
+
+ while (*node != NULL)
+ {
+ if ((uintptr_t)*node == (uintptr_t)mempool->stack.base)
+ {
+ // If node is right at the stack, merge it back into the stack.
+ mempool->stack.base += (*node)->size;
+ (*node)->size = 0UL;
+ ((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (mempool->freeList.head = (*node)->next);
+ ((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (mempool->freeList.tail = (*node)->prev);
+
+ if (mempool->freeList.head != NULL) mempool->freeList.head->prev = NULL;
+ else mempool->freeList.tail = NULL;
+
+ if (mempool->freeList.tail != NULL) mempool->freeList.tail->next = NULL;
+ mempool->freeList.len--;
+ node = &mempool->freeList.head;
+ }
+ else if (((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->next)
+ {
+ // Next node is at a higher address.
+ (*node)->size += (*node)->next->size;
+ (*node)->next->size = 0UL;
+
+ // <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
+ //
+ // |--------------------|
+ // <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
+ if ((*node)->next->next != NULL) (*node)->next->next->prev = *node;
+
+ // <-[P Curr N]-> <-[P NextNext N]->
+ (*node)->next = (*node)->next->next;
+
+ mempool->freeList.len--;
+ node = &mempool->freeList.head;
+ }
+ else if ((((uintptr_t)*node + (*node)->size) == (uintptr_t)(*node)->prev) && ((*node)->prev->prev != NULL))
+ {
+ // Prev node is at a higher address.
+ (*node)->size += (*node)->prev->size;
+ (*node)->prev->size = 0UL;
+
+ // <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
+ //
+ // |--------------------|
+ // <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
+ (*node)->prev->prev->next = *node;
+
+ // <-[P PrevPrev N]-> <-[P Curr N]->
+ (*node)->prev = (*node)->prev->prev;
+
+ mempool->freeList.len--;
+ node = &mempool->freeList.head;
+ }
+ else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next)
+ {
+ // Next node is at a lower address.
+ (*node)->next->size += (*node)->size;
+
+ (*node)->size = 0UL;
+ (*node)->next->prev = (*node)->prev;
+ (*node)->prev->next = (*node)->next;
+ *node = (*node)->next;
+
+ mempool->freeList.len--;
+ node = &mempool->freeList.head;
+ }
+ else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev)
+ {
+ // Prev node is at a lower address.
+ (*node)->prev->size += (*node)->size;
+
+ (*node)->size = 0UL;
+ (*node)->next->prev = (*node)->prev;
+ (*node)->prev->next = (*node)->next;
+ *node = (*node)->prev;
+
+ mempool->freeList.len--;
+ node = &mempool->freeList.head;
+ }
+ else
+ {
+ node = &(*node)->next;
+ }
+ }
+
+ return PRE_DEFRAG_LEN > mempool->freeList.len;
+ }
+ }
+}
+
+void ToggleMemPoolAutoDefrag(MemPool *const mempool)
+{
+ if (mempool == NULL) return;
+ else mempool->freeList.autoDefrag ^= true;
+}
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Object Pool
+//----------------------------------------------------------------------------------
+union ObjInfo {
+ uint8_t *const byte;
+ size_t *const index;
+};
+
+ObjPool CreateObjPool(const size_t objsize, const size_t len)
+{
+ ObjPool objpool = { 0 };
+
+ if ((len == 0UL) || (objsize == 0UL)) return objpool;
+ else
+ {
+ objpool.objSize = __AlignSize(objsize, sizeof(size_t));
+ objpool.stack.size = objpool.freeBlocks = len;
+ objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
+
+ if (objpool.stack.mem == NULL)
+ {
+ objpool.stack.size = 0UL;
+ return objpool;
+ }
+ else
+ {
+ for (size_t i=0; i<objpool.freeBlocks; i++)
+ {
+ union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
+ *block.index = i + 1;
+ }
+
+ objpool.stack.base = objpool.stack.mem;
+ return objpool;
+ }
+ }
+}
+
+ObjPool CreateObjPoolFromBuffer(void *const buf, const size_t objsize, const size_t len)
+{
+ ObjPool objpool = { 0 };
+
+ // If the object size isn't large enough to align to a size_t, then we can't use it.
+ if ((buf == NULL) || (len == 0UL) || (objsize < sizeof(size_t)) || (objsize*len != __AlignSize(objsize, sizeof(size_t))*len)) return objpool;
+ else
+ {
+ objpool.objSize = __AlignSize(objsize, sizeof(size_t));
+ objpool.stack.size = objpool.freeBlocks = len;
+ objpool.stack.mem = buf;
+
+ for (size_t i=0; i<objpool.freeBlocks; i++)
+ {
+ union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
+ *block.index = i + 1;
+ }
+
+ objpool.stack.base = objpool.stack.mem;
+ return objpool;
+ }
+}
+
+void DestroyObjPool(ObjPool *const objpool)
+{
+ if ((objpool == NULL) || (objpool->stack.mem == NULL)) return;
+ else
+ {
+ free(objpool->stack.mem);
+ *objpool = (ObjPool){0};
+ }
+}
+
+void *ObjPoolAlloc(ObjPool *const objpool)
+{
+ if (objpool == NULL) return NULL;
+ else
+ {
+ if (objpool->freeBlocks > 0UL)
+ {
+ // For first allocation, head points to the very first index.
+ // Head = &pool[0];
+ // ret = Head == ret = &pool[0];
+ union ObjInfo ret = { .byte = objpool->stack.base };
+ objpool->freeBlocks--;
+
+ // after allocating, we set head to the address of the index that *Head holds.
+ // Head = &pool[*Head * pool.objsize];
+ objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + (*ret.index*objpool->objSize) : NULL;
+ memset(ret.byte, 0, objpool->objSize);
+ return ret.byte;
+ }
+ else return NULL;
+ }
+}
+
+void ObjPoolFree(ObjPool *const restrict objpool, void *ptr)
+{
+ union ObjInfo p = { .byte = ptr };
+ if ((objpool == NULL) || (ptr == NULL) || (p.byte < objpool->stack.mem) || (p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)) return;
+ else
+ {
+ // When we free our pointer, we recycle the pointer space to store the previous index and then we push it as our new head.
+ // *p = index of Head in relation to the buffer;
+ // Head = p;
+ *p.index = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
+ objpool->stack.base = p.byte;
+ objpool->freeBlocks++;
+ }
+}
+
+void ObjPoolCleanUp(ObjPool *const restrict objpool, void **ptrref)
+{
+ if ((objpool == NULL) || (ptrref == NULL) || (*ptrref == NULL)) return;
+ else
+ {
+ ObjPoolFree(objpool, *ptrref);
+ *ptrref = NULL;
+ }
+}
+
+
+//----------------------------------------------------------------------------------
+// Module Functions Definition - Double-Ended Stack
+//----------------------------------------------------------------------------------
+BiStack CreateBiStack(const size_t len)
+{
+ BiStack destack = { 0 };
+ if (len == 0UL) return destack;
+
+ destack.size = len;
+ destack.mem = malloc(len*sizeof *destack.mem);
+ if (destack.mem==NULL) destack.size = 0UL;
+ else
+ {
+ destack.front = destack.mem;
+ destack.back = destack.mem + len;
+ }
+ return destack;
+}
+
+BiStack CreateBiStackFromBuffer(void *const buf, const size_t len)
+{
+ BiStack destack = { 0 };
+ if (len == 0UL || buf == NULL) return destack;
+ destack.size = len;
+ destack.mem = destack.front = buf;
+ destack.back = destack.mem + len;
+ return destack;
+}
+
+void DestroyBiStack(BiStack *const destack)
+{
+ if ((destack == NULL) || (destack->mem == NULL)) return;
+ free(destack->mem);
+ *destack = (BiStack){0};
+}
+
+void *BiStackAllocFront(BiStack *const destack, const size_t len)
+{
+ if ((destack == NULL) || (destack->mem == NULL)) return NULL;
+
+ const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+ // front end stack is too high!
+ if (destack->front + ALIGNED_LEN >= destack->back) return NULL;
+
+ uint8_t *ptr = destack->front;
+ destack->front += ALIGNED_LEN;
+ return ptr;
+}
+
+void *BiStackAllocBack(BiStack *const destack, const size_t len)
+{
+ if ((destack == NULL) || (destack->mem == NULL)) return NULL;
+
+ const size_t ALIGNED_LEN = __AlignSize(len, sizeof(uintptr_t));
+ // back end stack is too low
+ if (destack->back - ALIGNED_LEN <= destack->front) return NULL;
+
+ destack->back -= ALIGNED_LEN;
+ return destack->back;
+}
+
+void BiStackResetFront(BiStack *const destack)
+{
+ if ((destack == NULL) || (destack->mem == NULL)) return;
+ destack->front = destack->mem;
+}
+
+void BiStackResetBack(BiStack *const destack)
+{
+ if ((destack == NULL) || (destack->mem == NULL)) return;
+ destack->back = destack->mem + destack->size;
+}
+
+void BiStackResetAll(BiStack *const destack)
+{
+ BiStackResetBack(destack);
+ BiStackResetFront(destack);
+}
+
+intptr_t BiStackMargins(const BiStack destack)
+{
+ return destack.back - destack.front;
+}
+
+#endif // RMEM_IMPLEMENTATION