summaryrefslogtreecommitdiff
path: root/candle-examples/examples/llama2-c/training.rs
diff options
context:
space:
mode:
authorLaurent Mazare <laurent.mazare@gmail.com>2023-08-01 19:53:41 +0100
committerGitHub <noreply@github.com>2023-08-01 19:53:41 +0100
commitff876c2103bc530f9ba3bc278c5e09148c124885 (patch)
treeeb4ec2b9a112549fd21c0a42e2a3f597dada910c /candle-examples/examples/llama2-c/training.rs
parenta27239f3d9b77ad4c300de38d43c6ad64d6b5ea6 (diff)
downloadcandle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.gz
candle-ff876c2103bc530f9ba3bc278c5e09148c124885.tar.bz2
candle-ff876c2103bc530f9ba3bc278c5e09148c124885.zip
Llama more training (#297)
* Rework the var-builder to handle initializations. * Add some helper functions for layer creation. * Improve the layer initializations. * Get initialized variables. * Precompute the rot embeddings when training lamas.
Diffstat (limited to 'candle-examples/examples/llama2-c/training.rs')
-rw-r--r--candle-examples/examples/llama2-c/training.rs6
1 files changed, 3 insertions, 3 deletions
diff --git a/candle-examples/examples/llama2-c/training.rs b/candle-examples/examples/llama2-c/training.rs
index 196ba9a8..92aa90e6 100644
--- a/candle-examples/examples/llama2-c/training.rs
+++ b/candle-examples/examples/llama2-c/training.rs
@@ -142,15 +142,15 @@ pub fn run(args: &crate::TrainingCmd, common_args: &crate::Args) -> Result<()> {
dataset.train_tokens.len(),
dataset.valid_tokens.len()
);
- let vb = candle_nn::VarBuilder::zeros(DType::F32, &device);
+ let varmap = candle_nn::VarMap::new();
+ let vb = candle_nn::VarBuilder::from_varmap(&varmap, DType::F32, &device);
let config = Config::tiny();
let iter = DatasetRandomIter::new(&dataset, false, config.seq_len, device.clone());
let batch_iter = candle_nn::dataset::Batcher::new_r2(iter).batch_size(args.batch_size);
let cache = Cache::new(false, &config, vb.pp("rot"))?;
let model = Llama::load(vb, &cache, config)?;
- let all_vars = vec![]; // TODO: Propagate the variables from the VarBuilder to here.
- let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate);
+ let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate);
for (batch_index, batch) in batch_iter.enumerate() {
let (inp, tgt) = batch?;
let logits = model.forward(&inp, 0)?;